2 * Architecture-specific setup.
4 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Stephane Eranian <eranian@hpl.hp.com>
7 * Copyright (C) 2000, 2004 Intel Corp
8 * Rohit Seth <rohit.seth@intel.com>
9 * Suresh Siddha <suresh.b.siddha@intel.com>
10 * Gordon Jin <gordon.jin@intel.com>
11 * Copyright (C) 1999 VA Linux Systems
12 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
14 * 12/26/04 S.Siddha, G.Jin, R.Seth
15 * Add multi-threading and multi-core detection
16 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18 * 03/31/00 R.Seth cpu_initialized and current->processor fixes
19 * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
20 * 02/01/00 R.Seth fixed get_cpuinfo for SMP
21 * 01/07/99 S.Eranian added the support for command line argument
22 * 06/24/99 W.Drummond added boot_cpu_data.
23 * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
25 #include <linux/module.h>
26 #include <linux/init.h>
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/screen_info.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
45 #include <linux/cpufreq.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
50 #include <asm/machvec.h>
52 #include <asm/meminit.h>
54 #include <asm/paravirt.h>
55 #include <asm/patch.h>
56 #include <asm/pgtable.h>
57 #include <asm/processor.h>
59 #include <asm/sections.h>
60 #include <asm/setup.h>
62 #include <asm/system.h>
63 #include <asm/tlbflush.h>
64 #include <asm/unistd.h>
65 #include <asm/hpsim.h>
67 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
68 # error "struct cpuinfo_ia64 too big!"
72 unsigned long __per_cpu_offset[NR_CPUS];
73 EXPORT_SYMBOL(__per_cpu_offset);
76 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
77 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
78 unsigned long ia64_cycles_per_usec;
79 struct ia64_boot_param *ia64_boot_param;
80 struct screen_info screen_info;
81 unsigned long vga_console_iobase;
82 unsigned long vga_console_membase;
84 static struct resource data_resource = {
85 .name = "Kernel data",
86 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
89 static struct resource code_resource = {
90 .name = "Kernel code",
91 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
94 static struct resource bss_resource = {
96 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
99 unsigned long ia64_max_cacheline_size;
101 int dma_get_cache_alignment(void)
103 return ia64_max_cacheline_size;
105 EXPORT_SYMBOL(dma_get_cache_alignment);
107 unsigned long ia64_iobase; /* virtual address for I/O accesses */
108 EXPORT_SYMBOL(ia64_iobase);
109 struct io_space io_space[MAX_IO_SPACES];
110 EXPORT_SYMBOL(io_space);
111 unsigned int num_io_spaces;
114 * "flush_icache_range()" needs to know what processor dependent stride size to use
115 * when it makes i-cache(s) coherent with d-caches.
117 #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
118 unsigned long ia64_i_cache_stride_shift = ~0;
120 * "clflush_cache_range()" needs to know what processor dependent stride size to
121 * use when it flushes cache lines including both d-cache and i-cache.
123 /* Safest way to go: 32 bytes by 32 bytes */
124 #define CACHE_STRIDE_SHIFT 5
125 unsigned long ia64_cache_stride_shift = ~0;
128 * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This
129 * mask specifies a mask of address bits that must be 0 in order for two buffers to be
130 * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
131 * address of the second buffer must be aligned to (merge_mask+1) in order to be
132 * mergeable). By default, we assume there is no I/O MMU which can merge physically
133 * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
136 unsigned long ia64_max_iommu_merge_mask = ~0UL;
137 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
140 * We use a special marker for the end of memory and it uses the extra (+1) slot
142 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
143 int num_rsvd_regions __initdata;
147 * Filter incoming memory segments based on the primitive map created from the boot
148 * parameters. Segments contained in the map are removed from the memory ranges. A
149 * caller-specified function is called with the memory ranges that remain after filtering.
150 * This routine does not assume the incoming segments are sorted.
153 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
155 unsigned long range_start, range_end, prev_start;
156 void (*func)(unsigned long, unsigned long, int);
160 if (start == PAGE_OFFSET) {
161 printk(KERN_WARNING "warning: skipping physical page 0\n");
163 if (start >= end) return 0;
167 * lowest possible address(walker uses virtual)
169 prev_start = PAGE_OFFSET;
172 for (i = 0; i < num_rsvd_regions; ++i) {
173 range_start = max(start, prev_start);
174 range_end = min(end, rsvd_region[i].start);
176 if (range_start < range_end)
177 call_pernode_memory(__pa(range_start), range_end - range_start, func);
179 /* nothing more available in this segment */
180 if (range_end == end) return 0;
182 prev_start = rsvd_region[i].end;
184 /* end of memory marker allows full processing inside loop body */
189 * Similar to "filter_rsvd_memory()", but the reserved memory ranges
190 * are not filtered out.
193 filter_memory(unsigned long start, unsigned long end, void *arg)
195 void (*func)(unsigned long, unsigned long, int);
198 if (start == PAGE_OFFSET) {
199 printk(KERN_WARNING "warning: skipping physical page 0\n");
207 call_pernode_memory(__pa(start), end - start, func);
212 sort_regions (struct rsvd_region *rsvd_region, int max)
216 /* simple bubble sorting */
218 for (j = 0; j < max; ++j) {
219 if (rsvd_region[j].start > rsvd_region[j+1].start) {
220 struct rsvd_region tmp;
221 tmp = rsvd_region[j];
222 rsvd_region[j] = rsvd_region[j + 1];
223 rsvd_region[j + 1] = tmp;
230 * Request address space for all standard resources
232 static int __init register_memory(void)
234 code_resource.start = ia64_tpa(_text);
235 code_resource.end = ia64_tpa(_etext) - 1;
236 data_resource.start = ia64_tpa(_etext);
237 data_resource.end = ia64_tpa(_edata) - 1;
238 bss_resource.start = ia64_tpa(__bss_start);
239 bss_resource.end = ia64_tpa(_end) - 1;
240 efi_initialize_iomem_resources(&code_resource, &data_resource,
246 __initcall(register_memory);
252 * This function checks if the reserved crashkernel is allowed on the specific
253 * IA64 machine flavour. Machines without an IO TLB use swiotlb and require
254 * some memory below 4 GB (i.e. in 32 bit area), see the implementation of
255 * lib/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
256 * in kdump case. See the comment in sba_init() in sba_iommu.c.
258 * So, the only machvec that really supports loading the kdump kernel
259 * over 4 GB is "sn2".
261 static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
263 if (ia64_platform_is("sn2") || ia64_platform_is("uv"))
266 return pbase < (1UL << 32);
269 static void __init setup_crashkernel(unsigned long total, int *n)
271 unsigned long long base = 0, size = 0;
274 ret = parse_crashkernel(boot_command_line, total,
276 if (ret == 0 && size > 0) {
278 sort_regions(rsvd_region, *n);
279 base = kdump_find_rsvd_region(size,
283 if (!check_crashkernel_memory(base, size)) {
284 pr_warning("crashkernel: There would be kdump memory "
285 "at %ld GB but this is unusable because it "
286 "must\nbe below 4 GB. Change the memory "
287 "configuration of the machine.\n",
288 (unsigned long)(base >> 30));
293 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
294 "for crashkernel (System RAM: %ldMB)\n",
295 (unsigned long)(size >> 20),
296 (unsigned long)(base >> 20),
297 (unsigned long)(total >> 20));
298 rsvd_region[*n].start =
299 (unsigned long)__va(base);
300 rsvd_region[*n].end =
301 (unsigned long)__va(base + size);
303 crashk_res.start = base;
304 crashk_res.end = base + size - 1;
307 efi_memmap_res.start = ia64_boot_param->efi_memmap;
308 efi_memmap_res.end = efi_memmap_res.start +
309 ia64_boot_param->efi_memmap_size;
310 boot_param_res.start = __pa(ia64_boot_param);
311 boot_param_res.end = boot_param_res.start +
312 sizeof(*ia64_boot_param);
315 static inline void __init setup_crashkernel(unsigned long total, int *n)
320 * reserve_memory - setup reserved memory areas
322 * Setup the reserved memory areas set aside for the boot parameters,
323 * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
324 * see arch/ia64/include/asm/meminit.h if you need to define more.
327 reserve_memory (void)
330 unsigned long total_memory;
333 * none of the entries in this table overlap
335 rsvd_region[n].start = (unsigned long) ia64_boot_param;
336 rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
339 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
340 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
343 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
344 rsvd_region[n].end = (rsvd_region[n].start
345 + strlen(__va(ia64_boot_param->command_line)) + 1);
348 rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
349 rsvd_region[n].end = (unsigned long) ia64_imva(_end);
352 n += paravirt_reserve_memory(&rsvd_region[n]);
354 #ifdef CONFIG_BLK_DEV_INITRD
355 if (ia64_boot_param->initrd_start) {
356 rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
357 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
362 #ifdef CONFIG_CRASH_KERNEL
363 if (reserve_elfcorehdr(&rsvd_region[n].start,
364 &rsvd_region[n].end) == 0)
368 total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
371 setup_crashkernel(total_memory, &n);
373 /* end of memory marker */
374 rsvd_region[n].start = ~0UL;
375 rsvd_region[n].end = ~0UL;
378 num_rsvd_regions = n;
379 BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
381 sort_regions(rsvd_region, num_rsvd_regions);
386 * find_initrd - get initrd parameters from the boot parameter structure
388 * Grab the initrd start and end from the boot parameter struct given us by
394 #ifdef CONFIG_BLK_DEV_INITRD
395 if (ia64_boot_param->initrd_start) {
396 initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
397 initrd_end = initrd_start+ia64_boot_param->initrd_size;
399 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
400 initrd_start, ia64_boot_param->initrd_size);
408 unsigned long phys_iobase;
411 * Set `iobase' based on the EFI memory map or, failing that, the
412 * value firmware left in ar.k0.
414 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
415 * the port's virtual address, so ia32_load_state() loads it with a
416 * user virtual address. But in ia64 mode, glibc uses the
417 * *physical* address in ar.k0 to mmap the appropriate area from
418 * /dev/mem, and the inX()/outX() interfaces use MMIO. In both
419 * cases, user-mode can only use the legacy 0-64K I/O port space.
421 * ar.k0 is not involved in kernel I/O port accesses, which can use
422 * any of the I/O port spaces and are done via MMIO using the
423 * virtual mmio_base from the appropriate io_space[].
425 phys_iobase = efi_get_iobase();
427 phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
428 printk(KERN_INFO "No I/O port range found in EFI memory map, "
429 "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
431 ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
432 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
434 /* setup legacy IO port space */
435 io_space[0].mmio_base = ia64_iobase;
436 io_space[0].sparse = 1;
441 * early_console_setup - setup debugging console
443 * Consoles started here require little enough setup that we can start using
444 * them very early in the boot process, either right after the machine
445 * vector initialization, or even before if the drivers can detect their hw.
447 * Returns non-zero if a console couldn't be setup.
449 static inline int __init
450 early_console_setup (char *cmdline)
454 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
456 extern int sn_serial_console_early_setup(void);
457 if (!sn_serial_console_early_setup())
461 #ifdef CONFIG_EFI_PCDP
462 if (!efi_setup_pcdp_console(cmdline))
465 if (!simcons_register())
468 return (earlycons) ? 0 : -1;
472 mark_bsp_online (void)
475 /* If we register an early console, allow CPU 0 to printk */
476 cpu_set(smp_processor_id(), cpu_online_map);
480 static __initdata int nomca;
481 static __init int setup_nomca(char *s)
486 early_param("nomca", setup_nomca);
489 * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
490 * is_kdump_kernel() to determine if we are booting after a panic. Hence
491 * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
493 #ifdef CONFIG_CRASH_DUMP
494 /* elfcorehdr= specifies the location of elf core header
495 * stored by the crashed kernel.
497 static int __init parse_elfcorehdr(char *arg)
502 elfcorehdr_addr = memparse(arg, &arg);
505 early_param("elfcorehdr", parse_elfcorehdr);
507 int __init reserve_elfcorehdr(unsigned long *start, unsigned long *end)
509 unsigned long length;
511 /* We get the address using the kernel command line,
512 * but the size is extracted from the EFI tables.
513 * Both address and size are required for reservation
517 if (!is_vmcore_usable())
520 if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
525 *start = (unsigned long)__va(elfcorehdr_addr);
526 *end = *start + length;
530 #endif /* CONFIG_PROC_VMCORE */
533 setup_arch (char **cmdline_p)
537 paravirt_arch_setup_early();
539 ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
541 *cmdline_p = __va(ia64_boot_param->command_line);
542 strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
547 #ifdef CONFIG_IA64_GENERIC
548 /* machvec needs to be parsed from the command line
549 * before parse_early_param() is called to ensure
550 * that ia64_mv is initialised before any command line
551 * settings may cause console setup to occur
553 machvec_init_from_cmdline(*cmdline_p);
558 if (early_console_setup(*cmdline_p) == 0)
562 /* Initialize the ACPI boot-time table parser */
564 # ifdef CONFIG_ACPI_NUMA
566 per_cpu_scan_finalize((cpus_weight(early_cpu_possible_map) == 0 ?
567 32 : cpus_weight(early_cpu_possible_map)),
568 additional_cpus > 0 ? additional_cpus : 0);
572 smp_build_cpu_map(); /* happens, e.g., with the Ski simulator */
574 #endif /* CONFIG_APCI_BOOT */
578 /* process SAL system table: */
579 ia64_sal_init(__va(efi.sal_systab));
581 #ifdef CONFIG_ITANIUM
582 ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
585 u64 num_phys_stacked;
587 if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96)
588 ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
593 cpu_physical_id(0) = hard_smp_processor_id();
596 cpu_init(); /* initialize the bootstrap CPU */
597 mmu_context_init(); /* initialize context_id bitmap */
604 paravirt_arch_setup_console(cmdline_p);
608 # if defined(CONFIG_DUMMY_CONSOLE)
609 conswitchp = &dummy_con;
611 # if defined(CONFIG_VGA_CONSOLE)
613 * Non-legacy systems may route legacy VGA MMIO range to system
614 * memory. vga_con probes the MMIO hole, so memory looks like
615 * a VGA device to it. The EFI memory map can tell us if it's
616 * memory so we can avoid this problem.
618 if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
619 conswitchp = &vga_con;
624 /* enable IA-64 Machine Check Abort Handling unless disabled */
625 if (paravirt_arch_setup_nomca())
630 platform_setup(cmdline_p);
631 #ifndef CONFIG_IA64_HP_SIM
632 check_sal_cache_flush();
638 * Display cpu info for all CPUs.
641 show_cpuinfo (struct seq_file *m, void *v)
644 # define lpj c->loops_per_jiffy
645 # define cpunum c->cpu
647 # define lpj loops_per_jiffy
652 const char *feature_name;
654 { 1UL << 0, "branchlong" },
655 { 1UL << 1, "spontaneous deferral"},
656 { 1UL << 2, "16-byte atomic ops" }
658 char features[128], *cp, *sep;
659 struct cpuinfo_ia64 *c = v;
661 unsigned long proc_freq;
666 /* build the feature string: */
667 memcpy(features, "standard", 9);
669 size = sizeof(features);
671 for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
672 if (mask & feature_bits[i].mask) {
673 cp += snprintf(cp, size, "%s%s", sep,
674 feature_bits[i].feature_name),
676 mask &= ~feature_bits[i].mask;
677 size = sizeof(features) - (cp - features);
680 if (mask && size > 1) {
681 /* print unknown features as a hex value */
682 snprintf(cp, size, "%s0x%lx", sep, mask);
685 proc_freq = cpufreq_quick_get(cpunum);
687 proc_freq = c->proc_freq / 1000;
701 "cpu MHz : %lu.%03lu\n"
702 "itc MHz : %lu.%06lu\n"
703 "BogoMIPS : %lu.%02lu\n",
704 cpunum, c->vendor, c->family, c->model,
705 c->model_name, c->revision, c->archrev,
706 features, c->ppn, c->number,
707 proc_freq / 1000, proc_freq % 1000,
708 c->itc_freq / 1000000, c->itc_freq % 1000000,
709 lpj*HZ/500000, (lpj*HZ/5000) % 100);
711 seq_printf(m, "siblings : %u\n", cpus_weight(cpu_core_map[cpunum]));
712 if (c->socket_id != -1)
713 seq_printf(m, "physical id: %u\n", c->socket_id);
714 if (c->threads_per_core > 1 || c->cores_per_socket > 1)
718 c->core_id, c->thread_id);
726 c_start (struct seq_file *m, loff_t *pos)
729 while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
732 return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
736 c_next (struct seq_file *m, void *v, loff_t *pos)
739 return c_start(m, pos);
743 c_stop (struct seq_file *m, void *v)
747 const struct seq_operations cpuinfo_op = {
755 static char brandname[MAX_BRANDS][128];
757 static char * __cpuinit
758 get_model_name(__u8 family, __u8 model)
764 memcpy(brand, "Unknown", 8);
765 if (ia64_pal_get_brand_info(brand)) {
767 memcpy(brand, "Merced", 7);
768 else if (family == 0x1f) switch (model) {
769 case 0: memcpy(brand, "McKinley", 9); break;
770 case 1: memcpy(brand, "Madison", 8); break;
771 case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
774 for (i = 0; i < MAX_BRANDS; i++)
775 if (strcmp(brandname[i], brand) == 0)
777 for (i = 0; i < MAX_BRANDS; i++)
778 if (brandname[i][0] == '\0')
779 return strcpy(brandname[i], brand);
782 "%s: Table overflow. Some processor model information will be missing\n",
787 static void __cpuinit
788 identify_cpu (struct cpuinfo_ia64 *c)
791 unsigned long bits[5];
797 u64 ppn; /* processor serial number */
801 unsigned revision : 8;
804 unsigned archrev : 8;
805 unsigned reserved : 24;
811 pal_vm_info_1_u_t vm1;
812 pal_vm_info_2_u_t vm2;
814 unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
816 for (i = 0; i < 5; ++i)
817 cpuid.bits[i] = ia64_get_cpuid(i);
819 memcpy(c->vendor, cpuid.field.vendor, 16);
821 c->cpu = smp_processor_id();
823 /* below default values will be overwritten by identify_siblings()
824 * for Multi-Threading/Multi-Core capable CPUs
826 c->threads_per_core = c->cores_per_socket = c->num_log = 1;
829 identify_siblings(c);
831 if (c->threads_per_core > smp_num_siblings)
832 smp_num_siblings = c->threads_per_core;
834 c->ppn = cpuid.field.ppn;
835 c->number = cpuid.field.number;
836 c->revision = cpuid.field.revision;
837 c->model = cpuid.field.model;
838 c->family = cpuid.field.family;
839 c->archrev = cpuid.field.archrev;
840 c->features = cpuid.field.features;
841 c->model_name = get_model_name(c->family, c->model);
843 status = ia64_pal_vm_summary(&vm1, &vm2);
844 if (status == PAL_STATUS_SUCCESS) {
845 impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
846 phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
848 c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
849 c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
853 setup_per_cpu_areas (void)
855 /* start_kernel() requires this... */
856 #ifdef CONFIG_ACPI_HOTPLUG_CPU
857 prefill_possible_map();
862 * Do the following calculations:
864 * 1. the max. cache line size.
865 * 2. the minimum of the i-cache stride sizes for "flush_icache_range()".
866 * 3. the minimum of the cache stride sizes for "clflush_cache_range()".
868 static void __cpuinit
871 unsigned long line_size, max = 1;
872 u64 l, levels, unique_caches;
873 pal_cache_config_info_t cci;
876 status = ia64_pal_cache_summary(&levels, &unique_caches);
878 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
880 max = SMP_CACHE_BYTES;
881 /* Safest setup for "flush_icache_range()" */
882 ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
883 /* Safest setup for "clflush_cache_range()" */
884 ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
888 for (l = 0; l < levels; ++l) {
889 /* cache_type (data_or_unified)=2 */
890 status = ia64_pal_cache_config_info(l, 2, &cci);
893 "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
894 __func__, l, status);
895 max = SMP_CACHE_BYTES;
896 /* The safest setup for "flush_icache_range()" */
897 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
898 /* The safest setup for "clflush_cache_range()" */
899 ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
900 cci.pcci_unified = 1;
902 if (cci.pcci_stride < ia64_cache_stride_shift)
903 ia64_cache_stride_shift = cci.pcci_stride;
905 line_size = 1 << cci.pcci_line_size;
910 if (!cci.pcci_unified) {
911 /* cache_type (instruction)=1*/
912 status = ia64_pal_cache_config_info(l, 1, &cci);
915 "%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
916 __func__, l, status);
917 /* The safest setup for "flush_icache_range()" */
918 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
921 if (cci.pcci_stride < ia64_i_cache_stride_shift)
922 ia64_i_cache_stride_shift = cci.pcci_stride;
925 if (max > ia64_max_cacheline_size)
926 ia64_max_cacheline_size = max;
930 * cpu_init() initializes state that is per-CPU. This function acts
931 * as a 'CPU state barrier', nothing should get across.
936 extern void __cpuinit ia64_mmu_init (void *);
937 static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
938 unsigned long num_phys_stacked;
939 pal_vm_info_2_u_t vmi;
940 unsigned int max_ctx;
941 struct cpuinfo_ia64 *cpu_info;
944 cpu_data = per_cpu_init();
947 * insert boot cpu into sibling and core mapes
948 * (must be done after per_cpu area is setup)
950 if (smp_processor_id() == 0) {
951 cpu_set(0, per_cpu(cpu_sibling_map, 0));
952 cpu_set(0, cpu_core_map[0]);
955 * Set ar.k3 so that assembly code in MCA handler can compute
956 * physical addresses of per cpu variables with a simple:
957 * phys = ar.k3 + &per_cpu_var
958 * and the alt-dtlb-miss handler can set per-cpu mapping into
959 * the TLB when needed. head.S already did this for cpu0.
961 ia64_set_kr(IA64_KR_PER_CPU_DATA,
962 ia64_tpa(cpu_data) - (long) __per_cpu_start);
969 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
970 * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
971 * depends on the data returned by identify_cpu(). We break the dependency by
972 * accessing cpu_data() through the canonical per-CPU address.
974 cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
975 identify_cpu(cpu_info);
977 #ifdef CONFIG_MCKINLEY
979 # define FEATURE_SET 16
980 struct ia64_pal_retval iprv;
982 if (cpu_info->family == 0x1f) {
983 PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
984 if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
985 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
986 (iprv.v1 | 0x80), FEATURE_SET, 0);
991 /* Clear the stack memory reserved for pt_regs: */
992 memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
994 ia64_set_kr(IA64_KR_FPU_OWNER, 0);
997 * Initialize the page-table base register to a global
998 * directory with all zeroes. This ensure that we can handle
999 * TLB-misses to user address-space even before we created the
1000 * first user address-space. This may happen, e.g., due to
1001 * aggressive use of lfetch.fault.
1003 ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
1006 * Initialize default control register to defer speculative faults except
1007 * for those arising from TLB misses, which are not deferred. The
1008 * kernel MUST NOT depend on a particular setting of these bits (in other words,
1009 * the kernel must have recovery code for all speculative accesses). Turn on
1010 * dcr.lc as per recommendation by the architecture team. Most IA-32 apps
1011 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
1014 ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
1015 | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
1016 atomic_inc(&init_mm.mm_count);
1017 current->active_mm = &init_mm;
1021 ia64_mmu_init(ia64_imva(cpu_data));
1022 ia64_mca_cpu_init(ia64_imva(cpu_data));
1024 #ifdef CONFIG_IA32_SUPPORT
1028 /* Clear ITC to eliminate sched_clock() overflows in human time. */
1031 /* disable all local interrupt sources: */
1032 ia64_set_itv(1 << 16);
1033 ia64_set_lrr0(1 << 16);
1034 ia64_set_lrr1(1 << 16);
1035 ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
1036 ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
1038 /* clear TPR & XTP to enable all interrupt classes: */
1039 ia64_setreg(_IA64_REG_CR_TPR, 0);
1041 /* Clear any pending interrupts left by SAL/EFI */
1042 while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
1049 /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
1050 if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
1051 max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
1052 setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
1054 printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
1055 max_ctx = (1U << 15) - 1; /* use architected minimum */
1057 while (max_ctx < ia64_ctx.max_ctx) {
1058 unsigned int old = ia64_ctx.max_ctx;
1059 if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
1063 if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
1064 printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
1066 num_phys_stacked = 96;
1068 /* size of physical stacked register partition plus 8 bytes: */
1069 if (num_phys_stacked > max_num_phys_stacked) {
1070 ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
1071 max_num_phys_stacked = num_phys_stacked;
1073 platform_cpu_init();
1074 pm_idle = default_idle;
1080 ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1081 (unsigned long) __end___mckinley_e9_bundles);
1084 static int __init run_dmi_scan(void)
1089 core_initcall(run_dmi_scan);