1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
18 #include <linux/tcp.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include "net_driver.h"
33 #define EFX_MAX_MTU (9 * 1024)
35 /* RX slow fill workqueue. If memory allocation fails in the fast path,
36 * a work item is pushed onto this work queue to retry the allocation later,
37 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
38 * workqueue, there is nothing to be gained in making it per NIC
40 static struct workqueue_struct *refill_workqueue;
42 /**************************************************************************
46 *************************************************************************/
49 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
51 * This sets the default for new devices. It can be controlled later
54 static int lro = true;
55 module_param(lro, int, 0644);
56 MODULE_PARM_DESC(lro, "Large receive offload acceleration");
59 * Use separate channels for TX and RX events
61 * Set this to 1 to use separate channels for TX and RX. It allows us to
62 * apply a higher level of interrupt moderation to TX events.
64 * This is forced to 0 for MSI interrupt mode as the interrupt vector
67 static unsigned int separate_tx_and_rx_channels = true;
69 /* This is the weight assigned to each of the (per-channel) virtual
72 static int napi_weight = 64;
74 /* This is the time (in jiffies) between invocations of the hardware
75 * monitor, which checks for known hardware bugs and resets the
76 * hardware and driver as necessary.
78 unsigned int efx_monitor_interval = 1 * HZ;
80 /* This controls whether or not the hardware monitor will trigger a
81 * reset when it detects an error condition.
83 static unsigned int monitor_reset = true;
85 /* This controls whether or not the driver will initialise devices
86 * with invalid MAC addresses stored in the EEPROM or flash. If true,
87 * such devices will be initialised with a random locally-generated
88 * MAC address. This allows for loading the sfc_mtd driver to
89 * reprogram the flash, even if the flash contents (including the MAC
90 * address) have previously been erased.
92 static unsigned int allow_bad_hwaddr;
94 /* Initial interrupt moderation settings. They can be modified after
95 * module load with ethtool.
97 * The default for RX should strike a balance between increasing the
98 * round-trip latency and reducing overhead.
100 static unsigned int rx_irq_mod_usec = 60;
102 /* Initial interrupt moderation settings. They can be modified after
103 * module load with ethtool.
105 * This default is chosen to ensure that a 10G link does not go idle
106 * while a TX queue is stopped after it has become full. A queue is
107 * restarted when it drops below half full. The time this takes (assuming
108 * worst case 3 descriptors per packet and 1024 descriptors) is
109 * 512 / 3 * 1.2 = 205 usec.
111 static unsigned int tx_irq_mod_usec = 150;
113 /* This is the first interrupt mode to try out of:
118 static unsigned int interrupt_mode;
120 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
121 * i.e. the number of CPUs among which we may distribute simultaneous
122 * interrupt handling.
124 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
125 * The default (0) means to assign an interrupt to each package (level II cache)
127 static unsigned int rss_cpus;
128 module_param(rss_cpus, uint, 0444);
129 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
131 /**************************************************************************
133 * Utility functions and prototypes
135 *************************************************************************/
136 static void efx_remove_channel(struct efx_channel *channel);
137 static void efx_remove_port(struct efx_nic *efx);
138 static void efx_fini_napi(struct efx_nic *efx);
139 static void efx_fini_channels(struct efx_nic *efx);
141 #define EFX_ASSERT_RESET_SERIALISED(efx) \
143 if ((efx->state == STATE_RUNNING) || \
144 (efx->state == STATE_RESETTING)) \
148 /**************************************************************************
150 * Event queue processing
152 *************************************************************************/
154 /* Process channel's event queue
156 * This function is responsible for processing the event queue of a
157 * single channel. The caller must guarantee that this function will
158 * never be concurrently called more than once on the same channel,
159 * though different channels may be being processed concurrently.
161 static int efx_process_channel(struct efx_channel *channel, int rx_quota)
163 struct efx_nic *efx = channel->efx;
166 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
170 rx_packets = falcon_process_eventq(channel, rx_quota);
174 /* Deliver last RX packet. */
175 if (channel->rx_pkt) {
176 __efx_rx_packet(channel, channel->rx_pkt,
177 channel->rx_pkt_csummed);
178 channel->rx_pkt = NULL;
181 efx_flush_lro(channel);
182 efx_rx_strategy(channel);
184 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
189 /* Mark channel as finished processing
191 * Note that since we will not receive further interrupts for this
192 * channel before we finish processing and call the eventq_read_ack()
193 * method, there is no need to use the interrupt hold-off timers.
195 static inline void efx_channel_processed(struct efx_channel *channel)
197 /* The interrupt handler for this channel may set work_pending
198 * as soon as we acknowledge the events we've seen. Make sure
199 * it's cleared before then. */
200 channel->work_pending = false;
203 falcon_eventq_read_ack(channel);
208 * NAPI guarantees serialisation of polls of the same device, which
209 * provides the guarantee required by efx_process_channel().
211 static int efx_poll(struct napi_struct *napi, int budget)
213 struct efx_channel *channel =
214 container_of(napi, struct efx_channel, napi_str);
215 struct net_device *napi_dev = channel->napi_dev;
218 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
219 channel->channel, raw_smp_processor_id());
221 rx_packets = efx_process_channel(channel, budget);
223 if (rx_packets < budget) {
224 /* There is no race here; although napi_disable() will
225 * only wait for netif_rx_complete(), this isn't a problem
226 * since efx_channel_processed() will have no effect if
227 * interrupts have already been disabled.
229 netif_rx_complete(napi_dev, napi);
230 efx_channel_processed(channel);
236 /* Process the eventq of the specified channel immediately on this CPU
238 * Disable hardware generated interrupts, wait for any existing
239 * processing to finish, then directly poll (and ack ) the eventq.
240 * Finally reenable NAPI and interrupts.
242 * Since we are touching interrupts the caller should hold the suspend lock
244 void efx_process_channel_now(struct efx_channel *channel)
246 struct efx_nic *efx = channel->efx;
248 BUG_ON(!channel->used_flags);
249 BUG_ON(!channel->enabled);
251 /* Disable interrupts and wait for ISRs to complete */
252 falcon_disable_interrupts(efx);
254 synchronize_irq(efx->legacy_irq);
256 synchronize_irq(channel->irq);
258 /* Wait for any NAPI processing to complete */
259 napi_disable(&channel->napi_str);
261 /* Poll the channel */
262 efx_process_channel(channel, efx->type->evq_size);
264 /* Ack the eventq. This may cause an interrupt to be generated
265 * when they are reenabled */
266 efx_channel_processed(channel);
268 napi_enable(&channel->napi_str);
269 falcon_enable_interrupts(efx);
272 /* Create event queue
273 * Event queue memory allocations are done only once. If the channel
274 * is reset, the memory buffer will be reused; this guards against
275 * errors during channel reset and also simplifies interrupt handling.
277 static int efx_probe_eventq(struct efx_channel *channel)
279 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
281 return falcon_probe_eventq(channel);
284 /* Prepare channel's event queue */
285 static void efx_init_eventq(struct efx_channel *channel)
287 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
289 channel->eventq_read_ptr = 0;
291 falcon_init_eventq(channel);
294 static void efx_fini_eventq(struct efx_channel *channel)
296 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
298 falcon_fini_eventq(channel);
301 static void efx_remove_eventq(struct efx_channel *channel)
303 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
305 falcon_remove_eventq(channel);
308 /**************************************************************************
312 *************************************************************************/
314 static int efx_probe_channel(struct efx_channel *channel)
316 struct efx_tx_queue *tx_queue;
317 struct efx_rx_queue *rx_queue;
320 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
322 rc = efx_probe_eventq(channel);
326 efx_for_each_channel_tx_queue(tx_queue, channel) {
327 rc = efx_probe_tx_queue(tx_queue);
332 efx_for_each_channel_rx_queue(rx_queue, channel) {
333 rc = efx_probe_rx_queue(rx_queue);
338 channel->n_rx_frm_trunc = 0;
343 efx_for_each_channel_rx_queue(rx_queue, channel)
344 efx_remove_rx_queue(rx_queue);
346 efx_for_each_channel_tx_queue(tx_queue, channel)
347 efx_remove_tx_queue(tx_queue);
353 /* Channels are shutdown and reinitialised whilst the NIC is running
354 * to propagate configuration changes (mtu, checksum offload), or
355 * to clear hardware error conditions
357 static void efx_init_channels(struct efx_nic *efx)
359 struct efx_tx_queue *tx_queue;
360 struct efx_rx_queue *rx_queue;
361 struct efx_channel *channel;
363 /* Calculate the rx buffer allocation parameters required to
364 * support the current MTU, including padding for header
365 * alignment and overruns.
367 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
368 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
369 efx->type->rx_buffer_padding);
370 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
372 /* Initialise the channels */
373 efx_for_each_channel(channel, efx) {
374 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
376 efx_init_eventq(channel);
378 efx_for_each_channel_tx_queue(tx_queue, channel)
379 efx_init_tx_queue(tx_queue);
381 /* The rx buffer allocation strategy is MTU dependent */
382 efx_rx_strategy(channel);
384 efx_for_each_channel_rx_queue(rx_queue, channel)
385 efx_init_rx_queue(rx_queue);
387 WARN_ON(channel->rx_pkt != NULL);
388 efx_rx_strategy(channel);
392 /* This enables event queue processing and packet transmission.
394 * Note that this function is not allowed to fail, since that would
395 * introduce too much complexity into the suspend/resume path.
397 static void efx_start_channel(struct efx_channel *channel)
399 struct efx_rx_queue *rx_queue;
401 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
403 if (!(channel->efx->net_dev->flags & IFF_UP))
404 netif_napi_add(channel->napi_dev, &channel->napi_str,
405 efx_poll, napi_weight);
407 /* The interrupt handler for this channel may set work_pending
408 * as soon as we enable it. Make sure it's cleared before
409 * then. Similarly, make sure it sees the enabled flag set. */
410 channel->work_pending = false;
411 channel->enabled = true;
414 napi_enable(&channel->napi_str);
416 /* Load up RX descriptors */
417 efx_for_each_channel_rx_queue(rx_queue, channel)
418 efx_fast_push_rx_descriptors(rx_queue);
421 /* This disables event queue processing and packet transmission.
422 * This function does not guarantee that all queue processing
423 * (e.g. RX refill) is complete.
425 static void efx_stop_channel(struct efx_channel *channel)
427 struct efx_rx_queue *rx_queue;
429 if (!channel->enabled)
432 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
434 channel->enabled = false;
435 napi_disable(&channel->napi_str);
437 /* Ensure that any worker threads have exited or will be no-ops */
438 efx_for_each_channel_rx_queue(rx_queue, channel) {
439 spin_lock_bh(&rx_queue->add_lock);
440 spin_unlock_bh(&rx_queue->add_lock);
444 static void efx_fini_channels(struct efx_nic *efx)
446 struct efx_channel *channel;
447 struct efx_tx_queue *tx_queue;
448 struct efx_rx_queue *rx_queue;
450 EFX_ASSERT_RESET_SERIALISED(efx);
451 BUG_ON(efx->port_enabled);
453 efx_for_each_channel(channel, efx) {
454 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
456 efx_for_each_channel_rx_queue(rx_queue, channel)
457 efx_fini_rx_queue(rx_queue);
458 efx_for_each_channel_tx_queue(tx_queue, channel)
459 efx_fini_tx_queue(tx_queue);
462 /* Do the event queues last so that we can handle flush events
463 * for all DMA queues. */
464 efx_for_each_channel(channel, efx) {
465 EFX_LOG(channel->efx, "shut down evq %d\n", channel->channel);
467 efx_fini_eventq(channel);
471 static void efx_remove_channel(struct efx_channel *channel)
473 struct efx_tx_queue *tx_queue;
474 struct efx_rx_queue *rx_queue;
476 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
478 efx_for_each_channel_rx_queue(rx_queue, channel)
479 efx_remove_rx_queue(rx_queue);
480 efx_for_each_channel_tx_queue(tx_queue, channel)
481 efx_remove_tx_queue(tx_queue);
482 efx_remove_eventq(channel);
484 channel->used_flags = 0;
487 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
489 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
492 /**************************************************************************
496 **************************************************************************/
498 /* This ensures that the kernel is kept informed (via
499 * netif_carrier_on/off) of the link status, and also maintains the
500 * link status's stop on the port's TX queue.
502 static void efx_link_status_changed(struct efx_nic *efx)
504 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
505 * that no events are triggered between unregister_netdev() and the
506 * driver unloading. A more general condition is that NETDEV_CHANGE
507 * can only be generated between NETDEV_UP and NETDEV_DOWN */
508 if (!netif_running(efx->net_dev))
511 if (efx->port_inhibited) {
512 netif_carrier_off(efx->net_dev);
516 if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
517 efx->n_link_state_changes++;
520 netif_carrier_on(efx->net_dev);
522 netif_carrier_off(efx->net_dev);
525 /* Status message for kernel log */
527 struct mii_if_info *gmii = &efx->mii;
529 /* NONE here means direct XAUI from the controller, with no
530 * MDIO-attached device we can query. */
531 if (efx->phy_type != PHY_TYPE_NONE) {
532 adv = gmii_advertised(gmii);
533 lpa = gmii_lpa(gmii);
535 lpa = GM_LPA_10000 | LPA_DUPLEX;
538 EFX_INFO(efx, "link up at %dMbps %s-duplex "
539 "(adv %04x lpa %04x) (MTU %d)%s\n",
540 (efx->link_options & GM_LPA_10000 ? 10000 :
541 (efx->link_options & GM_LPA_1000 ? 1000 :
542 (efx->link_options & GM_LPA_100 ? 100 :
544 (efx->link_options & GM_LPA_DUPLEX ?
548 (efx->promiscuous ? " [PROMISC]" : ""));
550 EFX_INFO(efx, "link down\n");
555 /* This call reinitialises the MAC to pick up new PHY settings. The
556 * caller must hold the mac_lock */
557 void __efx_reconfigure_port(struct efx_nic *efx)
559 WARN_ON(!mutex_is_locked(&efx->mac_lock));
561 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
562 raw_smp_processor_id());
564 falcon_reconfigure_xmac(efx);
566 /* Inform kernel of loss/gain of carrier */
567 efx_link_status_changed(efx);
570 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
572 void efx_reconfigure_port(struct efx_nic *efx)
574 EFX_ASSERT_RESET_SERIALISED(efx);
576 mutex_lock(&efx->mac_lock);
577 __efx_reconfigure_port(efx);
578 mutex_unlock(&efx->mac_lock);
581 /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
582 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
583 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
584 static void efx_reconfigure_work(struct work_struct *data)
586 struct efx_nic *efx = container_of(data, struct efx_nic,
589 mutex_lock(&efx->mac_lock);
590 if (efx->port_enabled)
591 __efx_reconfigure_port(efx);
592 mutex_unlock(&efx->mac_lock);
595 static int efx_probe_port(struct efx_nic *efx)
599 EFX_LOG(efx, "create port\n");
601 /* Connect up MAC/PHY operations table and read MAC address */
602 rc = falcon_probe_port(efx);
606 /* Sanity check MAC address */
607 if (is_valid_ether_addr(efx->mac_address)) {
608 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
610 DECLARE_MAC_BUF(mac);
612 EFX_ERR(efx, "invalid MAC address %s\n",
613 print_mac(mac, efx->mac_address));
614 if (!allow_bad_hwaddr) {
618 random_ether_addr(efx->net_dev->dev_addr);
619 EFX_INFO(efx, "using locally-generated MAC %s\n",
620 print_mac(mac, efx->net_dev->dev_addr));
626 efx_remove_port(efx);
630 static int efx_init_port(struct efx_nic *efx)
634 EFX_LOG(efx, "init port\n");
636 /* Initialise the MAC and PHY */
637 rc = falcon_init_xmac(efx);
641 efx->port_initialized = true;
642 efx->stats_enabled = true;
644 /* Reconfigure port to program MAC registers */
645 falcon_reconfigure_xmac(efx);
650 /* Allow efx_reconfigure_port() to be scheduled, and close the window
651 * between efx_stop_port and efx_flush_all whereby a previously scheduled
652 * efx_reconfigure_port() may have been cancelled */
653 static void efx_start_port(struct efx_nic *efx)
655 EFX_LOG(efx, "start port\n");
656 BUG_ON(efx->port_enabled);
658 mutex_lock(&efx->mac_lock);
659 efx->port_enabled = true;
660 __efx_reconfigure_port(efx);
661 mutex_unlock(&efx->mac_lock);
664 /* Prevent efx_reconfigure_work and efx_monitor() from executing, and
665 * efx_set_multicast_list() from scheduling efx_reconfigure_work.
666 * efx_reconfigure_work can still be scheduled via NAPI processing
667 * until efx_flush_all() is called */
668 static void efx_stop_port(struct efx_nic *efx)
670 EFX_LOG(efx, "stop port\n");
672 mutex_lock(&efx->mac_lock);
673 efx->port_enabled = false;
674 mutex_unlock(&efx->mac_lock);
676 /* Serialise against efx_set_multicast_list() */
677 if (efx_dev_registered(efx)) {
678 netif_addr_lock_bh(efx->net_dev);
679 netif_addr_unlock_bh(efx->net_dev);
683 static void efx_fini_port(struct efx_nic *efx)
685 EFX_LOG(efx, "shut down port\n");
687 if (!efx->port_initialized)
690 falcon_fini_xmac(efx);
691 efx->port_initialized = false;
693 efx->link_up = false;
694 efx_link_status_changed(efx);
697 static void efx_remove_port(struct efx_nic *efx)
699 EFX_LOG(efx, "destroying port\n");
701 falcon_remove_port(efx);
704 /**************************************************************************
708 **************************************************************************/
710 /* This configures the PCI device to enable I/O and DMA. */
711 static int efx_init_io(struct efx_nic *efx)
713 struct pci_dev *pci_dev = efx->pci_dev;
714 dma_addr_t dma_mask = efx->type->max_dma_mask;
717 EFX_LOG(efx, "initialising I/O\n");
719 rc = pci_enable_device(pci_dev);
721 EFX_ERR(efx, "failed to enable PCI device\n");
725 pci_set_master(pci_dev);
727 /* Set the PCI DMA mask. Try all possibilities from our
728 * genuine mask down to 32 bits, because some architectures
729 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
730 * masks event though they reject 46 bit masks.
732 while (dma_mask > 0x7fffffffUL) {
733 if (pci_dma_supported(pci_dev, dma_mask) &&
734 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
739 EFX_ERR(efx, "could not find a suitable DMA mask\n");
742 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
743 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
745 /* pci_set_consistent_dma_mask() is not *allowed* to
746 * fail with a mask that pci_set_dma_mask() accepted,
747 * but just in case...
749 EFX_ERR(efx, "failed to set consistent DMA mask\n");
753 efx->membase_phys = pci_resource_start(efx->pci_dev,
755 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
757 EFX_ERR(efx, "request for memory BAR failed\n");
761 efx->membase = ioremap_nocache(efx->membase_phys,
762 efx->type->mem_map_size);
764 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
766 (unsigned long long)efx->membase_phys,
767 efx->type->mem_map_size);
771 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
772 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
773 efx->type->mem_map_size, efx->membase);
778 release_mem_region(efx->membase_phys, efx->type->mem_map_size);
780 efx->membase_phys = 0;
782 pci_disable_device(efx->pci_dev);
787 static void efx_fini_io(struct efx_nic *efx)
789 EFX_LOG(efx, "shutting down I/O\n");
792 iounmap(efx->membase);
796 if (efx->membase_phys) {
797 pci_release_region(efx->pci_dev, efx->type->mem_bar);
798 efx->membase_phys = 0;
801 pci_disable_device(efx->pci_dev);
804 /* Get number of RX queues wanted. Return number of online CPU
805 * packages in the expectation that an IRQ balancer will spread
806 * interrupts across them. */
807 static int efx_wanted_rx_queues(void)
813 cpus_clear(core_mask);
815 for_each_online_cpu(cpu) {
816 if (!cpu_isset(cpu, core_mask)) {
818 cpus_or(core_mask, core_mask,
819 topology_core_siblings(cpu));
826 /* Probe the number and type of interrupts we are able to obtain, and
827 * the resulting numbers of channels and RX queues.
829 static void efx_probe_interrupts(struct efx_nic *efx)
832 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
835 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
836 struct msix_entry xentries[EFX_MAX_CHANNELS];
839 /* We want one RX queue and interrupt per CPU package
840 * (or as specified by the rss_cpus module parameter).
841 * We will need one channel per interrupt.
843 wanted_ints = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
844 efx->n_rx_queues = min(wanted_ints, max_channels);
846 for (i = 0; i < efx->n_rx_queues; i++)
847 xentries[i].entry = i;
848 rc = pci_enable_msix(efx->pci_dev, xentries, efx->n_rx_queues);
850 EFX_BUG_ON_PARANOID(rc >= efx->n_rx_queues);
851 efx->n_rx_queues = rc;
852 rc = pci_enable_msix(efx->pci_dev, xentries,
857 for (i = 0; i < efx->n_rx_queues; i++)
858 efx->channel[i].irq = xentries[i].vector;
860 /* Fall back to single channel MSI */
861 efx->interrupt_mode = EFX_INT_MODE_MSI;
862 EFX_ERR(efx, "could not enable MSI-X\n");
866 /* Try single interrupt MSI */
867 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
868 efx->n_rx_queues = 1;
869 rc = pci_enable_msi(efx->pci_dev);
871 efx->channel[0].irq = efx->pci_dev->irq;
873 EFX_ERR(efx, "could not enable MSI\n");
874 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
878 /* Assume legacy interrupts */
879 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
880 efx->n_rx_queues = 1;
881 efx->legacy_irq = efx->pci_dev->irq;
885 static void efx_remove_interrupts(struct efx_nic *efx)
887 struct efx_channel *channel;
889 /* Remove MSI/MSI-X interrupts */
890 efx_for_each_channel(channel, efx)
892 pci_disable_msi(efx->pci_dev);
893 pci_disable_msix(efx->pci_dev);
895 /* Remove legacy interrupt */
899 static void efx_set_channels(struct efx_nic *efx)
901 struct efx_tx_queue *tx_queue;
902 struct efx_rx_queue *rx_queue;
904 efx_for_each_tx_queue(tx_queue, efx) {
905 if (!EFX_INT_MODE_USE_MSI(efx) && separate_tx_and_rx_channels)
906 tx_queue->channel = &efx->channel[1];
908 tx_queue->channel = &efx->channel[0];
909 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
912 efx_for_each_rx_queue(rx_queue, efx) {
913 rx_queue->channel = &efx->channel[rx_queue->queue];
914 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
918 static int efx_probe_nic(struct efx_nic *efx)
922 EFX_LOG(efx, "creating NIC\n");
924 /* Carry out hardware-type specific initialisation */
925 rc = falcon_probe_nic(efx);
929 /* Determine the number of channels and RX queues by trying to hook
930 * in MSI-X interrupts. */
931 efx_probe_interrupts(efx);
933 efx_set_channels(efx);
935 /* Initialise the interrupt moderation settings */
936 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
941 static void efx_remove_nic(struct efx_nic *efx)
943 EFX_LOG(efx, "destroying NIC\n");
945 efx_remove_interrupts(efx);
946 falcon_remove_nic(efx);
949 /**************************************************************************
951 * NIC startup/shutdown
953 *************************************************************************/
955 static int efx_probe_all(struct efx_nic *efx)
957 struct efx_channel *channel;
961 rc = efx_probe_nic(efx);
963 EFX_ERR(efx, "failed to create NIC\n");
968 rc = efx_probe_port(efx);
970 EFX_ERR(efx, "failed to create port\n");
974 /* Create channels */
975 efx_for_each_channel(channel, efx) {
976 rc = efx_probe_channel(channel);
978 EFX_ERR(efx, "failed to create channel %d\n",
987 efx_for_each_channel(channel, efx)
988 efx_remove_channel(channel);
989 efx_remove_port(efx);
996 /* Called after previous invocation(s) of efx_stop_all, restarts the
997 * port, kernel transmit queue, NAPI processing and hardware interrupts,
998 * and ensures that the port is scheduled to be reconfigured.
999 * This function is safe to call multiple times when the NIC is in any
1001 static void efx_start_all(struct efx_nic *efx)
1003 struct efx_channel *channel;
1005 EFX_ASSERT_RESET_SERIALISED(efx);
1007 /* Check that it is appropriate to restart the interface. All
1008 * of these flags are safe to read under just the rtnl lock */
1009 if (efx->port_enabled)
1011 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1013 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1016 /* Mark the port as enabled so port reconfigurations can start, then
1017 * restart the transmit interface early so the watchdog timer stops */
1018 efx_start_port(efx);
1019 if (efx_dev_registered(efx))
1020 efx_wake_queue(efx);
1022 efx_for_each_channel(channel, efx)
1023 efx_start_channel(channel);
1025 falcon_enable_interrupts(efx);
1027 /* Start hardware monitor if we're in RUNNING */
1028 if (efx->state == STATE_RUNNING)
1029 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1030 efx_monitor_interval);
1033 /* Flush all delayed work. Should only be called when no more delayed work
1034 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1035 * since we're holding the rtnl_lock at this point. */
1036 static void efx_flush_all(struct efx_nic *efx)
1038 struct efx_rx_queue *rx_queue;
1040 /* Make sure the hardware monitor is stopped */
1041 cancel_delayed_work_sync(&efx->monitor_work);
1043 /* Ensure that all RX slow refills are complete. */
1044 efx_for_each_rx_queue(rx_queue, efx)
1045 cancel_delayed_work_sync(&rx_queue->work);
1047 /* Stop scheduled port reconfigurations */
1048 cancel_work_sync(&efx->reconfigure_work);
1052 /* Quiesce hardware and software without bringing the link down.
1053 * Safe to call multiple times, when the nic and interface is in any
1054 * state. The caller is guaranteed to subsequently be in a position
1055 * to modify any hardware and software state they see fit without
1057 static void efx_stop_all(struct efx_nic *efx)
1059 struct efx_channel *channel;
1061 EFX_ASSERT_RESET_SERIALISED(efx);
1063 /* port_enabled can be read safely under the rtnl lock */
1064 if (!efx->port_enabled)
1067 /* Disable interrupts and wait for ISR to complete */
1068 falcon_disable_interrupts(efx);
1069 if (efx->legacy_irq)
1070 synchronize_irq(efx->legacy_irq);
1071 efx_for_each_channel(channel, efx) {
1073 synchronize_irq(channel->irq);
1076 /* Stop all NAPI processing and synchronous rx refills */
1077 efx_for_each_channel(channel, efx)
1078 efx_stop_channel(channel);
1080 /* Stop all asynchronous port reconfigurations. Since all
1081 * event processing has already been stopped, there is no
1082 * window to loose phy events */
1085 /* Flush reconfigure_work, refill_workqueue, monitor_work */
1088 /* Isolate the MAC from the TX and RX engines, so that queue
1089 * flushes will complete in a timely fashion. */
1090 falcon_deconfigure_mac_wrapper(efx);
1091 falcon_drain_tx_fifo(efx);
1093 /* Stop the kernel transmit interface late, so the watchdog
1094 * timer isn't ticking over the flush */
1095 if (efx_dev_registered(efx)) {
1096 efx_stop_queue(efx);
1097 netif_tx_lock_bh(efx->net_dev);
1098 netif_tx_unlock_bh(efx->net_dev);
1102 static void efx_remove_all(struct efx_nic *efx)
1104 struct efx_channel *channel;
1106 efx_for_each_channel(channel, efx)
1107 efx_remove_channel(channel);
1108 efx_remove_port(efx);
1109 efx_remove_nic(efx);
1112 /* A convinience function to safely flush all the queues */
1113 void efx_flush_queues(struct efx_nic *efx)
1115 EFX_ASSERT_RESET_SERIALISED(efx);
1119 efx_fini_channels(efx);
1120 efx_init_channels(efx);
1125 /**************************************************************************
1127 * Interrupt moderation
1129 **************************************************************************/
1131 /* Set interrupt moderation parameters */
1132 void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
1134 struct efx_tx_queue *tx_queue;
1135 struct efx_rx_queue *rx_queue;
1137 EFX_ASSERT_RESET_SERIALISED(efx);
1139 efx_for_each_tx_queue(tx_queue, efx)
1140 tx_queue->channel->irq_moderation = tx_usecs;
1142 efx_for_each_rx_queue(rx_queue, efx)
1143 rx_queue->channel->irq_moderation = rx_usecs;
1146 /**************************************************************************
1150 **************************************************************************/
1152 /* Run periodically off the general workqueue. Serialised against
1153 * efx_reconfigure_port via the mac_lock */
1154 static void efx_monitor(struct work_struct *data)
1156 struct efx_nic *efx = container_of(data, struct efx_nic,
1160 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1161 raw_smp_processor_id());
1164 /* If the mac_lock is already held then it is likely a port
1165 * reconfiguration is already in place, which will likely do
1166 * most of the work of check_hw() anyway. */
1167 if (!mutex_trylock(&efx->mac_lock)) {
1168 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1169 efx_monitor_interval);
1173 if (efx->port_enabled)
1174 rc = falcon_check_xmac(efx);
1175 mutex_unlock(&efx->mac_lock);
1178 if (monitor_reset) {
1179 EFX_ERR(efx, "hardware monitor detected a fault: "
1180 "triggering reset\n");
1181 efx_schedule_reset(efx, RESET_TYPE_MONITOR);
1183 EFX_ERR(efx, "hardware monitor detected a fault, "
1184 "skipping reset\n");
1188 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1189 efx_monitor_interval);
1192 /**************************************************************************
1196 *************************************************************************/
1199 * Context: process, rtnl_lock() held.
1201 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1203 struct efx_nic *efx = netdev_priv(net_dev);
1205 EFX_ASSERT_RESET_SERIALISED(efx);
1207 return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
1210 /**************************************************************************
1214 **************************************************************************/
1216 static int efx_init_napi(struct efx_nic *efx)
1218 struct efx_channel *channel;
1221 efx_for_each_channel(channel, efx) {
1222 channel->napi_dev = efx->net_dev;
1223 rc = efx_lro_init(&channel->lro_mgr, efx);
1233 static void efx_fini_napi(struct efx_nic *efx)
1235 struct efx_channel *channel;
1237 efx_for_each_channel(channel, efx) {
1238 efx_lro_fini(&channel->lro_mgr);
1239 channel->napi_dev = NULL;
1243 /**************************************************************************
1245 * Kernel netpoll interface
1247 *************************************************************************/
1249 #ifdef CONFIG_NET_POLL_CONTROLLER
1251 /* Although in the common case interrupts will be disabled, this is not
1252 * guaranteed. However, all our work happens inside the NAPI callback,
1253 * so no locking is required.
1255 static void efx_netpoll(struct net_device *net_dev)
1257 struct efx_nic *efx = netdev_priv(net_dev);
1258 struct efx_channel *channel;
1260 efx_for_each_channel(channel, efx)
1261 efx_schedule_channel(channel);
1266 /**************************************************************************
1268 * Kernel net device interface
1270 *************************************************************************/
1272 /* Context: process, rtnl_lock() held. */
1273 static int efx_net_open(struct net_device *net_dev)
1275 struct efx_nic *efx = netdev_priv(net_dev);
1276 EFX_ASSERT_RESET_SERIALISED(efx);
1278 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1279 raw_smp_processor_id());
1281 if (efx->phy_mode & PHY_MODE_SPECIAL)
1288 /* Context: process, rtnl_lock() held.
1289 * Note that the kernel will ignore our return code; this method
1290 * should really be a void.
1292 static int efx_net_stop(struct net_device *net_dev)
1294 struct efx_nic *efx = netdev_priv(net_dev);
1296 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1297 raw_smp_processor_id());
1299 /* Stop the device and flush all the channels */
1301 efx_fini_channels(efx);
1302 efx_init_channels(efx);
1307 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1308 static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1310 struct efx_nic *efx = netdev_priv(net_dev);
1311 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1312 struct net_device_stats *stats = &net_dev->stats;
1314 /* Update stats if possible, but do not wait if another thread
1315 * is updating them (or resetting the NIC); slightly stale
1316 * stats are acceptable.
1318 if (!spin_trylock(&efx->stats_lock))
1320 if (efx->stats_enabled) {
1321 falcon_update_stats_xmac(efx);
1322 falcon_update_nic_stats(efx);
1324 spin_unlock(&efx->stats_lock);
1326 stats->rx_packets = mac_stats->rx_packets;
1327 stats->tx_packets = mac_stats->tx_packets;
1328 stats->rx_bytes = mac_stats->rx_bytes;
1329 stats->tx_bytes = mac_stats->tx_bytes;
1330 stats->multicast = mac_stats->rx_multicast;
1331 stats->collisions = mac_stats->tx_collision;
1332 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1333 mac_stats->rx_length_error);
1334 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1335 stats->rx_crc_errors = mac_stats->rx_bad;
1336 stats->rx_frame_errors = mac_stats->rx_align_error;
1337 stats->rx_fifo_errors = mac_stats->rx_overflow;
1338 stats->rx_missed_errors = mac_stats->rx_missed;
1339 stats->tx_window_errors = mac_stats->tx_late_collision;
1341 stats->rx_errors = (stats->rx_length_errors +
1342 stats->rx_over_errors +
1343 stats->rx_crc_errors +
1344 stats->rx_frame_errors +
1345 stats->rx_fifo_errors +
1346 stats->rx_missed_errors +
1347 mac_stats->rx_symbol_error);
1348 stats->tx_errors = (stats->tx_window_errors +
1354 /* Context: netif_tx_lock held, BHs disabled. */
1355 static void efx_watchdog(struct net_device *net_dev)
1357 struct efx_nic *efx = netdev_priv(net_dev);
1359 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d: %s\n",
1360 atomic_read(&efx->netif_stop_count), efx->port_enabled,
1361 monitor_reset ? "resetting channels" : "skipping reset");
1364 efx_schedule_reset(efx, RESET_TYPE_MONITOR);
1368 /* Context: process, rtnl_lock() held. */
1369 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1371 struct efx_nic *efx = netdev_priv(net_dev);
1374 EFX_ASSERT_RESET_SERIALISED(efx);
1376 if (new_mtu > EFX_MAX_MTU)
1381 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1383 efx_fini_channels(efx);
1384 net_dev->mtu = new_mtu;
1385 efx_init_channels(efx);
1391 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1393 struct efx_nic *efx = netdev_priv(net_dev);
1394 struct sockaddr *addr = data;
1395 char *new_addr = addr->sa_data;
1397 EFX_ASSERT_RESET_SERIALISED(efx);
1399 if (!is_valid_ether_addr(new_addr)) {
1400 DECLARE_MAC_BUF(mac);
1401 EFX_ERR(efx, "invalid ethernet MAC address requested: %s\n",
1402 print_mac(mac, new_addr));
1406 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1408 /* Reconfigure the MAC */
1409 efx_reconfigure_port(efx);
1414 /* Context: netif_tx_lock held, BHs disabled. */
1415 static void efx_set_multicast_list(struct net_device *net_dev)
1417 struct efx_nic *efx = netdev_priv(net_dev);
1418 struct dev_mc_list *mc_list = net_dev->mc_list;
1419 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1425 /* Set per-MAC promiscuity flag and reconfigure MAC if necessary */
1426 promiscuous = !!(net_dev->flags & IFF_PROMISC);
1427 if (efx->promiscuous != promiscuous) {
1428 efx->promiscuous = promiscuous;
1429 /* Close the window between efx_stop_port() and efx_flush_all()
1430 * by only queuing work when the port is enabled. */
1431 if (efx->port_enabled)
1432 queue_work(efx->workqueue, &efx->reconfigure_work);
1435 /* Build multicast hash table */
1436 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1437 memset(mc_hash, 0xff, sizeof(*mc_hash));
1439 memset(mc_hash, 0x00, sizeof(*mc_hash));
1440 for (i = 0; i < net_dev->mc_count; i++) {
1441 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1442 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1443 set_bit_le(bit, mc_hash->byte);
1444 mc_list = mc_list->next;
1448 /* Create and activate new global multicast hash table */
1449 falcon_set_multicast_hash(efx);
1452 static int efx_netdev_event(struct notifier_block *this,
1453 unsigned long event, void *ptr)
1455 struct net_device *net_dev = ptr;
1457 if (net_dev->open == efx_net_open && event == NETDEV_CHANGENAME) {
1458 struct efx_nic *efx = netdev_priv(net_dev);
1460 strcpy(efx->name, net_dev->name);
1466 static struct notifier_block efx_netdev_notifier = {
1467 .notifier_call = efx_netdev_event,
1470 static int efx_register_netdev(struct efx_nic *efx)
1472 struct net_device *net_dev = efx->net_dev;
1475 net_dev->watchdog_timeo = 5 * HZ;
1476 net_dev->irq = efx->pci_dev->irq;
1477 net_dev->open = efx_net_open;
1478 net_dev->stop = efx_net_stop;
1479 net_dev->get_stats = efx_net_stats;
1480 net_dev->tx_timeout = &efx_watchdog;
1481 net_dev->hard_start_xmit = efx_hard_start_xmit;
1482 net_dev->do_ioctl = efx_ioctl;
1483 net_dev->change_mtu = efx_change_mtu;
1484 net_dev->set_mac_address = efx_set_mac_address;
1485 net_dev->set_multicast_list = efx_set_multicast_list;
1486 #ifdef CONFIG_NET_POLL_CONTROLLER
1487 net_dev->poll_controller = efx_netpoll;
1489 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1490 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1492 /* Always start with carrier off; PHY events will detect the link */
1493 netif_carrier_off(efx->net_dev);
1495 /* Clear MAC statistics */
1496 falcon_update_stats_xmac(efx);
1497 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1499 rc = register_netdev(net_dev);
1501 EFX_ERR(efx, "could not register net dev\n");
1504 strcpy(efx->name, net_dev->name);
1509 static void efx_unregister_netdev(struct efx_nic *efx)
1511 struct efx_tx_queue *tx_queue;
1516 BUG_ON(netdev_priv(efx->net_dev) != efx);
1518 /* Free up any skbs still remaining. This has to happen before
1519 * we try to unregister the netdev as running their destructors
1520 * may be needed to get the device ref. count to 0. */
1521 efx_for_each_tx_queue(tx_queue, efx)
1522 efx_release_tx_buffers(tx_queue);
1524 if (efx_dev_registered(efx)) {
1525 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1526 unregister_netdev(efx->net_dev);
1530 /**************************************************************************
1532 * Device reset and suspend
1534 **************************************************************************/
1536 /* Tears down the entire software state and most of the hardware state
1538 void efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
1542 EFX_ASSERT_RESET_SERIALISED(efx);
1544 /* The net_dev->get_stats handler is quite slow, and will fail
1545 * if a fetch is pending over reset. Serialise against it. */
1546 spin_lock(&efx->stats_lock);
1547 efx->stats_enabled = false;
1548 spin_unlock(&efx->stats_lock);
1551 mutex_lock(&efx->mac_lock);
1553 rc = falcon_xmac_get_settings(efx, ecmd);
1555 EFX_ERR(efx, "could not back up PHY settings\n");
1557 efx_fini_channels(efx);
1560 /* This function will always ensure that the locks acquired in
1561 * efx_reset_down() are released. A failure return code indicates
1562 * that we were unable to reinitialise the hardware, and the
1563 * driver should be disabled. If ok is false, then the rx and tx
1564 * engines are not restarted, pending a RESET_DISABLE. */
1565 int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd, bool ok)
1569 EFX_ASSERT_RESET_SERIALISED(efx);
1571 rc = falcon_init_nic(efx);
1573 EFX_ERR(efx, "failed to initialise NIC\n");
1578 efx_init_channels(efx);
1580 if (falcon_xmac_set_settings(efx, ecmd))
1581 EFX_ERR(efx, "could not restore PHY settings\n");
1584 mutex_unlock(&efx->mac_lock);
1588 efx->stats_enabled = true;
1593 /* Reset the NIC as transparently as possible. Do not reset the PHY
1594 * Note that the reset may fail, in which case the card will be left
1595 * in a most-probably-unusable state.
1597 * This function will sleep. You cannot reset from within an atomic
1598 * state; use efx_schedule_reset() instead.
1600 * Grabs the rtnl_lock.
1602 static int efx_reset(struct efx_nic *efx)
1604 struct ethtool_cmd ecmd;
1605 enum reset_type method = efx->reset_pending;
1608 /* Serialise with kernel interfaces */
1611 /* If we're not RUNNING then don't reset. Leave the reset_pending
1612 * flag set so that efx_pci_probe_main will be retried */
1613 if (efx->state != STATE_RUNNING) {
1614 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1618 efx->state = STATE_RESETTING;
1619 EFX_INFO(efx, "resetting (%d)\n", method);
1621 efx_reset_down(efx, &ecmd);
1623 rc = falcon_reset_hw(efx, method);
1625 EFX_ERR(efx, "failed to reset hardware\n");
1629 /* Allow resets to be rescheduled. */
1630 efx->reset_pending = RESET_TYPE_NONE;
1632 /* Reinitialise bus-mastering, which may have been turned off before
1633 * the reset was scheduled. This is still appropriate, even in the
1634 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1635 * can respond to requests. */
1636 pci_set_master(efx->pci_dev);
1638 /* Leave device stopped if necessary */
1639 if (method == RESET_TYPE_DISABLE) {
1644 rc = efx_reset_up(efx, &ecmd, true);
1648 EFX_LOG(efx, "reset complete\n");
1649 efx->state = STATE_RUNNING;
1655 efx_reset_up(efx, &ecmd, false);
1657 EFX_ERR(efx, "has been disabled\n");
1658 efx->state = STATE_DISABLED;
1661 efx_unregister_netdev(efx);
1666 /* The worker thread exists so that code that cannot sleep can
1667 * schedule a reset for later.
1669 static void efx_reset_work(struct work_struct *data)
1671 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1676 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1678 enum reset_type method;
1680 if (efx->reset_pending != RESET_TYPE_NONE) {
1681 EFX_INFO(efx, "quenching already scheduled reset\n");
1686 case RESET_TYPE_INVISIBLE:
1687 case RESET_TYPE_ALL:
1688 case RESET_TYPE_WORLD:
1689 case RESET_TYPE_DISABLE:
1692 case RESET_TYPE_RX_RECOVERY:
1693 case RESET_TYPE_RX_DESC_FETCH:
1694 case RESET_TYPE_TX_DESC_FETCH:
1695 case RESET_TYPE_TX_SKIP:
1696 method = RESET_TYPE_INVISIBLE;
1699 method = RESET_TYPE_ALL;
1704 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1706 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1708 efx->reset_pending = method;
1710 queue_work(efx->reset_workqueue, &efx->reset_work);
1713 /**************************************************************************
1715 * List of NICs we support
1717 **************************************************************************/
1719 /* PCI device ID table */
1720 static struct pci_device_id efx_pci_table[] __devinitdata = {
1721 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1722 .driver_data = (unsigned long) &falcon_a_nic_type},
1723 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1724 .driver_data = (unsigned long) &falcon_b_nic_type},
1725 {0} /* end of list */
1728 /**************************************************************************
1730 * Dummy PHY/MAC/Board operations
1732 * Can be used for some unimplemented operations
1733 * Needed so all function pointers are valid and do not have to be tested
1736 **************************************************************************/
1737 int efx_port_dummy_op_int(struct efx_nic *efx)
1741 void efx_port_dummy_op_void(struct efx_nic *efx) {}
1742 void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
1744 static struct efx_phy_operations efx_dummy_phy_operations = {
1745 .init = efx_port_dummy_op_int,
1746 .reconfigure = efx_port_dummy_op_void,
1747 .check_hw = efx_port_dummy_op_int,
1748 .fini = efx_port_dummy_op_void,
1749 .clear_interrupt = efx_port_dummy_op_void,
1750 .reset_xaui = efx_port_dummy_op_void,
1753 static struct efx_board efx_dummy_board_info = {
1754 .init = efx_port_dummy_op_int,
1755 .init_leds = efx_port_dummy_op_int,
1756 .set_fault_led = efx_port_dummy_op_blink,
1757 .blink = efx_port_dummy_op_blink,
1758 .fini = efx_port_dummy_op_void,
1761 /**************************************************************************
1765 **************************************************************************/
1767 /* This zeroes out and then fills in the invariants in a struct
1768 * efx_nic (including all sub-structures).
1770 static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1771 struct pci_dev *pci_dev, struct net_device *net_dev)
1773 struct efx_channel *channel;
1774 struct efx_tx_queue *tx_queue;
1775 struct efx_rx_queue *rx_queue;
1778 /* Initialise common structures */
1779 memset(efx, 0, sizeof(*efx));
1780 spin_lock_init(&efx->biu_lock);
1781 spin_lock_init(&efx->phy_lock);
1782 INIT_WORK(&efx->reset_work, efx_reset_work);
1783 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1784 efx->pci_dev = pci_dev;
1785 efx->state = STATE_INIT;
1786 efx->reset_pending = RESET_TYPE_NONE;
1787 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1788 efx->board_info = efx_dummy_board_info;
1790 efx->net_dev = net_dev;
1791 efx->rx_checksum_enabled = true;
1792 spin_lock_init(&efx->netif_stop_lock);
1793 spin_lock_init(&efx->stats_lock);
1794 mutex_init(&efx->mac_lock);
1795 efx->phy_op = &efx_dummy_phy_operations;
1796 efx->mii.dev = net_dev;
1797 INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work);
1798 atomic_set(&efx->netif_stop_count, 1);
1800 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1801 channel = &efx->channel[i];
1803 channel->channel = i;
1804 channel->work_pending = false;
1806 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
1807 tx_queue = &efx->tx_queue[i];
1808 tx_queue->efx = efx;
1809 tx_queue->queue = i;
1810 tx_queue->buffer = NULL;
1811 tx_queue->channel = &efx->channel[0]; /* for safety */
1812 tx_queue->tso_headers_free = NULL;
1814 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1815 rx_queue = &efx->rx_queue[i];
1816 rx_queue->efx = efx;
1817 rx_queue->queue = i;
1818 rx_queue->channel = &efx->channel[0]; /* for safety */
1819 rx_queue->buffer = NULL;
1820 spin_lock_init(&rx_queue->add_lock);
1821 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1826 /* Sanity-check NIC type */
1827 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1828 (efx->type->txd_ring_mask + 1));
1829 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1830 (efx->type->rxd_ring_mask + 1));
1831 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1832 (efx->type->evq_size - 1));
1833 /* As close as we can get to guaranteeing that we don't overflow */
1834 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1835 (efx->type->txd_ring_mask + 1 +
1836 efx->type->rxd_ring_mask + 1));
1837 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1839 /* Higher numbered interrupt modes are less capable! */
1840 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1843 efx->workqueue = create_singlethread_workqueue("sfc_work");
1844 if (!efx->workqueue) {
1849 efx->reset_workqueue = create_singlethread_workqueue("sfc_reset");
1850 if (!efx->reset_workqueue) {
1858 destroy_workqueue(efx->workqueue);
1859 efx->workqueue = NULL;
1865 static void efx_fini_struct(struct efx_nic *efx)
1867 if (efx->reset_workqueue) {
1868 destroy_workqueue(efx->reset_workqueue);
1869 efx->reset_workqueue = NULL;
1871 if (efx->workqueue) {
1872 destroy_workqueue(efx->workqueue);
1873 efx->workqueue = NULL;
1877 /**************************************************************************
1881 **************************************************************************/
1883 /* Main body of final NIC shutdown code
1884 * This is called only at module unload (or hotplug removal).
1886 static void efx_pci_remove_main(struct efx_nic *efx)
1888 EFX_ASSERT_RESET_SERIALISED(efx);
1890 /* Skip everything if we never obtained a valid membase */
1894 efx_fini_channels(efx);
1897 /* Shutdown the board, then the NIC and board state */
1898 efx->board_info.fini(efx);
1899 falcon_fini_interrupt(efx);
1902 efx_remove_all(efx);
1905 /* Final NIC shutdown
1906 * This is called only at module unload (or hotplug removal).
1908 static void efx_pci_remove(struct pci_dev *pci_dev)
1910 struct efx_nic *efx;
1912 efx = pci_get_drvdata(pci_dev);
1916 /* Mark the NIC as fini, then stop the interface */
1918 efx->state = STATE_FINI;
1919 dev_close(efx->net_dev);
1921 /* Allow any queued efx_resets() to complete */
1924 if (efx->membase == NULL)
1927 efx_unregister_netdev(efx);
1929 /* Wait for any scheduled resets to complete. No more will be
1930 * scheduled from this point because efx_stop_all() has been
1931 * called, we are no longer registered with driverlink, and
1932 * the net_device's have been removed. */
1933 flush_workqueue(efx->reset_workqueue);
1935 efx_pci_remove_main(efx);
1939 EFX_LOG(efx, "shutdown successful\n");
1941 pci_set_drvdata(pci_dev, NULL);
1942 efx_fini_struct(efx);
1943 free_netdev(efx->net_dev);
1946 /* Main body of NIC initialisation
1947 * This is called at module load (or hotplug insertion, theoretically).
1949 static int efx_pci_probe_main(struct efx_nic *efx)
1953 /* Do start-of-day initialisation */
1954 rc = efx_probe_all(efx);
1958 rc = efx_init_napi(efx);
1962 /* Initialise the board */
1963 rc = efx->board_info.init(efx);
1965 EFX_ERR(efx, "failed to initialise board\n");
1969 rc = falcon_init_nic(efx);
1971 EFX_ERR(efx, "failed to initialise NIC\n");
1975 rc = efx_init_port(efx);
1977 EFX_ERR(efx, "failed to initialise port\n");
1981 efx_init_channels(efx);
1983 rc = falcon_init_interrupt(efx);
1990 efx_fini_channels(efx);
1997 efx_remove_all(efx);
2002 /* NIC initialisation
2004 * This is called at module load (or hotplug insertion,
2005 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2006 * sets up and registers the network devices with the kernel and hooks
2007 * the interrupt service routine. It does not prepare the device for
2008 * transmission; this is left to the first time one of the network
2009 * interfaces is brought up (i.e. efx_net_open).
2011 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2012 const struct pci_device_id *entry)
2014 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2015 struct net_device *net_dev;
2016 struct efx_nic *efx;
2019 /* Allocate and initialise a struct net_device and struct efx_nic */
2020 net_dev = alloc_etherdev(sizeof(*efx));
2023 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2024 NETIF_F_HIGHDMA | NETIF_F_TSO);
2026 net_dev->features |= NETIF_F_LRO;
2027 /* Mask for features that also apply to VLAN devices */
2028 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2029 NETIF_F_HIGHDMA | NETIF_F_TSO);
2030 efx = netdev_priv(net_dev);
2031 pci_set_drvdata(pci_dev, efx);
2032 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2036 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2038 /* Set up basic I/O (BAR mappings etc) */
2039 rc = efx_init_io(efx);
2043 /* No serialisation is required with the reset path because
2044 * we're in STATE_INIT. */
2045 for (i = 0; i < 5; i++) {
2046 rc = efx_pci_probe_main(efx);
2050 /* Serialise against efx_reset(). No more resets will be
2051 * scheduled since efx_stop_all() has been called, and we
2052 * have not and never have been registered with either
2053 * the rtnetlink or driverlink layers. */
2054 flush_workqueue(efx->reset_workqueue);
2056 /* Retry if a recoverably reset event has been scheduled */
2057 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2058 (efx->reset_pending != RESET_TYPE_ALL))
2061 efx->reset_pending = RESET_TYPE_NONE;
2065 EFX_ERR(efx, "Could not reset NIC\n");
2069 /* Switch to the running state before we expose the device to
2070 * the OS. This is to ensure that the initial gathering of
2071 * MAC stats succeeds. */
2073 efx->state = STATE_RUNNING;
2076 rc = efx_register_netdev(efx);
2080 EFX_LOG(efx, "initialisation successful\n");
2085 efx_pci_remove_main(efx);
2090 efx_fini_struct(efx);
2092 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2093 free_netdev(net_dev);
2097 static struct pci_driver efx_pci_driver = {
2098 .name = EFX_DRIVER_NAME,
2099 .id_table = efx_pci_table,
2100 .probe = efx_pci_probe,
2101 .remove = efx_pci_remove,
2104 /**************************************************************************
2106 * Kernel module interface
2108 *************************************************************************/
2110 module_param(interrupt_mode, uint, 0444);
2111 MODULE_PARM_DESC(interrupt_mode,
2112 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2114 static int __init efx_init_module(void)
2118 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2120 rc = register_netdevice_notifier(&efx_netdev_notifier);
2124 refill_workqueue = create_workqueue("sfc_refill");
2125 if (!refill_workqueue) {
2130 rc = pci_register_driver(&efx_pci_driver);
2137 destroy_workqueue(refill_workqueue);
2139 unregister_netdevice_notifier(&efx_netdev_notifier);
2144 static void __exit efx_exit_module(void)
2146 printk(KERN_INFO "Solarflare NET driver unloading\n");
2148 pci_unregister_driver(&efx_pci_driver);
2149 destroy_workqueue(refill_workqueue);
2150 unregister_netdevice_notifier(&efx_netdev_notifier);
2154 module_init(efx_init_module);
2155 module_exit(efx_exit_module);
2157 MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2158 "Solarflare Communications");
2159 MODULE_DESCRIPTION("Solarflare Communications network driver");
2160 MODULE_LICENSE("GPL");
2161 MODULE_DEVICE_TABLE(pci, efx_pci_table);