[CIFS] Allow SMBWrite2 to work to older servers
[linux-2.6] / include / asm-sh64 / pgtable.h
1 #ifndef __ASM_SH64_PGTABLE_H
2 #define __ASM_SH64_PGTABLE_H
3
4 #include <asm-generic/4level-fixup.h>
5
6 /*
7  * This file is subject to the terms and conditions of the GNU General Public
8  * License.  See the file "COPYING" in the main directory of this archive
9  * for more details.
10  *
11  * include/asm-sh64/pgtable.h
12  *
13  * Copyright (C) 2000, 2001  Paolo Alberelli
14  * Copyright (C) 2003, 2004  Paul Mundt
15  * Copyright (C) 2003, 2004  Richard Curnow
16  *
17  * This file contains the functions and defines necessary to modify and use
18  * the SuperH page table tree.
19  */
20
21 #ifndef __ASSEMBLY__
22 #include <asm/processor.h>
23 #include <asm/page.h>
24 #include <linux/threads.h>
25 #include <linux/config.h>
26
27 extern void paging_init(void);
28
29 /* We provide our own get_unmapped_area to avoid cache synonym issue */
30 #define HAVE_ARCH_UNMAPPED_AREA
31
32 /*
33  * Basically we have the same two-level (which is the logical three level
34  * Linux page table layout folded) page tables as the i386.
35  */
36
37 /*
38  * ZERO_PAGE is a global shared page that is always zero: used
39  * for zero-mapped memory areas etc..
40  */
41 extern unsigned char empty_zero_page[PAGE_SIZE];
42 #define ZERO_PAGE(vaddr) (mem_map + MAP_NR(empty_zero_page))
43
44 #endif /* !__ASSEMBLY__ */
45
46 /*
47  * NEFF and NPHYS related defines.
48  * FIXME : These need to be model-dependent.  For now this is OK, SH5-101 and SH5-103
49  * implement 32 bits effective and 32 bits physical.  But future implementations may
50  * extend beyond this.
51  */
52 #define NEFF            32
53 #define NEFF_SIGN       (1LL << (NEFF - 1))
54 #define NEFF_MASK       (-1LL << NEFF)
55
56 #define NPHYS           32
57 #define NPHYS_SIGN      (1LL << (NPHYS - 1))
58 #define NPHYS_MASK      (-1LL << NPHYS)
59
60 /* Typically 2-level is sufficient up to 32 bits of virtual address space, beyond
61    that 3-level would be appropriate. */
62 #if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
63 /* For 4k pages, this contains 512 entries, i.e. 9 bits worth of address. */
64 #define PTRS_PER_PTE    ((1<<PAGE_SHIFT)/sizeof(unsigned long long))
65 #define PTE_MAGNITUDE   3             /* sizeof(unsigned long long) magnit. */
66 #define PTE_SHIFT       PAGE_SHIFT
67 #define PTE_BITS        (PAGE_SHIFT - PTE_MAGNITUDE)
68
69 /* top level: PMD. */
70 #define PGDIR_SHIFT     (PTE_SHIFT + PTE_BITS)
71 #define PGD_BITS        (NEFF - PGDIR_SHIFT)
72 #define PTRS_PER_PGD    (1<<PGD_BITS)
73
74 /* middle level: PMD. This doesn't do anything for the 2-level case. */
75 #define PTRS_PER_PMD    (1)
76
77 #define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
78 #define PGDIR_MASK      (~(PGDIR_SIZE-1))
79 #define PMD_SHIFT       PGDIR_SHIFT
80 #define PMD_SIZE        PGDIR_SIZE
81 #define PMD_MASK        PGDIR_MASK
82
83 #elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
84 /*
85  * three-level asymmetric paging structure: PGD is top level.
86  * The asymmetry comes from 32-bit pointers and 64-bit PTEs.
87  */
88 /* bottom level: PTE. It's 9 bits = 512 pointers */
89 #define PTRS_PER_PTE    ((1<<PAGE_SHIFT)/sizeof(unsigned long long))
90 #define PTE_MAGNITUDE   3             /* sizeof(unsigned long long) magnit. */
91 #define PTE_SHIFT       PAGE_SHIFT
92 #define PTE_BITS        (PAGE_SHIFT - PTE_MAGNITUDE)
93
94 /* middle level: PMD. It's 10 bits = 1024 pointers */
95 #define PTRS_PER_PMD    ((1<<PAGE_SHIFT)/sizeof(unsigned long long *))
96 #define PMD_MAGNITUDE   2             /* sizeof(unsigned long long *) magnit. */
97 #define PMD_SHIFT       (PTE_SHIFT + PTE_BITS)
98 #define PMD_BITS        (PAGE_SHIFT - PMD_MAGNITUDE)
99
100 /* top level: PMD. It's 1 bit = 2 pointers */
101 #define PGDIR_SHIFT     (PMD_SHIFT + PMD_BITS)
102 #define PGD_BITS        (NEFF - PGDIR_SHIFT)
103 #define PTRS_PER_PGD    (1<<PGD_BITS)
104
105 #define PMD_SIZE        (1UL << PMD_SHIFT)
106 #define PMD_MASK        (~(PMD_SIZE-1))
107 #define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
108 #define PGDIR_MASK      (~(PGDIR_SIZE-1))
109
110 #else
111 #error "No defined number of page table levels"
112 #endif
113
114 /*
115  * Error outputs.
116  */
117 #define pte_ERROR(e) \
118         printk("%s:%d: bad pte %016Lx.\n", __FILE__, __LINE__, pte_val(e))
119 #define pmd_ERROR(e) \
120         printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
121 #define pgd_ERROR(e) \
122         printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
123
124 /*
125  * Table setting routines. Used within arch/mm only.
126  */
127 #define set_pgd(pgdptr, pgdval) (*(pgdptr) = pgdval)
128 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
129
130 static __inline__ void set_pte(pte_t *pteptr, pte_t pteval)
131 {
132         unsigned long long x = ((unsigned long long) pteval.pte);
133         unsigned long long *xp = (unsigned long long *) pteptr;
134         /*
135          * Sign-extend based on NPHYS.
136          */
137         *(xp) = (x & NPHYS_SIGN) ? (x | NPHYS_MASK) : x;
138 }
139 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
140
141 static __inline__ void pmd_set(pmd_t *pmdp,pte_t *ptep)
142 {
143         pmd_val(*pmdp) = (unsigned long) ptep;
144 }
145
146 /*
147  * PGD defines. Top level.
148  */
149
150 /* To find an entry in a generic PGD. */
151 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
152 #define __pgd_offset(address) pgd_index(address)
153 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
154
155 /* To find an entry in a kernel PGD. */
156 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
157
158 /*
159  * PGD level access routines.
160  *
161  * Note1:
162  * There's no need to use physical addresses since the tree walk is all
163  * in performed in software, until the PTE translation.
164  *
165  * Note 2:
166  * A PGD entry can be uninitialized (_PGD_UNUSED), generically bad,
167  * clear (_PGD_EMPTY), present. When present, lower 3 nibbles contain
168  * _KERNPG_TABLE. Being a kernel virtual pointer also bit 31 must
169  * be 1. Assuming an arbitrary clear value of bit 31 set to 0 and
170  * lower 3 nibbles set to 0xFFF (_PGD_EMPTY) any other value is a
171  * bad pgd that must be notified via printk().
172  *
173  */
174 #define _PGD_EMPTY              0x0
175
176 #if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
177 static inline int pgd_none(pgd_t pgd)           { return 0; }
178 static inline int pgd_bad(pgd_t pgd)            { return 0; }
179 #define pgd_present(pgd) ((pgd_val(pgd) & _PAGE_PRESENT) ? 1 : 0)
180 #define pgd_clear(xx)                           do { } while(0)
181
182 #elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
183 #define pgd_present(pgd_entry)  (1)
184 #define pgd_none(pgd_entry)     (pgd_val((pgd_entry)) == _PGD_EMPTY)
185 /* TODO: Think later about what a useful definition of 'bad' would be now. */
186 #define pgd_bad(pgd_entry)      (0)
187 #define pgd_clear(pgd_entry_p)  (set_pgd((pgd_entry_p), __pgd(_PGD_EMPTY)))
188
189 #endif
190
191
192 #define pgd_page(pgd_entry)     ((unsigned long) (pgd_val(pgd_entry) & PAGE_MASK))
193
194 /*
195  * PMD defines. Middle level.
196  */
197
198 /* PGD to PMD dereferencing */
199 #if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
200 static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
201 {
202         return (pmd_t *) dir;
203 }
204 #elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
205 #define __pmd_offset(address) \
206                 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
207 #define pmd_offset(dir, addr) \
208                 ((pmd_t *) ((pgd_val(*(dir))) & PAGE_MASK) + __pmd_offset((addr)))
209 #endif
210
211 /*
212  * PMD level access routines. Same notes as above.
213  */
214 #define _PMD_EMPTY              0x0
215 /* Either the PMD is empty or present, it's not paged out */
216 #define pmd_present(pmd_entry)  (pmd_val(pmd_entry) & _PAGE_PRESENT)
217 #define pmd_clear(pmd_entry_p)  (set_pmd((pmd_entry_p), __pmd(_PMD_EMPTY)))
218 #define pmd_none(pmd_entry)     (pmd_val((pmd_entry)) == _PMD_EMPTY)
219 #define pmd_bad(pmd_entry)      ((pmd_val(pmd_entry) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
220
221 #define pmd_page_kernel(pmd_entry) \
222         ((unsigned long) __va(pmd_val(pmd_entry) & PAGE_MASK))
223
224 #define pmd_page(pmd) \
225         (virt_to_page(pmd_val(pmd)))
226
227 /* PMD to PTE dereferencing */
228 #define pte_index(address) \
229                 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
230
231 #define pte_offset_kernel(dir, addr) \
232                 ((pte_t *) ((pmd_val(*(dir))) & PAGE_MASK) + pte_index((addr)))
233
234 #define pte_offset_map(dir,addr)        pte_offset_kernel(dir, addr)
235 #define pte_offset_map_nested(dir,addr) pte_offset_kernel(dir, addr)
236 #define pte_unmap(pte)          do { } while (0)
237 #define pte_unmap_nested(pte)   do { } while (0)
238
239 /* Round it up ! */
240 #define USER_PTRS_PER_PGD       ((TASK_SIZE+PGDIR_SIZE-1)/PGDIR_SIZE)
241 #define FIRST_USER_ADDRESS      0
242
243 #ifndef __ASSEMBLY__
244 #define VMALLOC_END     0xff000000
245 #define VMALLOC_START   0xf0000000
246 #define VMALLOC_VMADDR(x) ((unsigned long)(x))
247
248 #define IOBASE_VADDR    0xff000000
249 #define IOBASE_END      0xffffffff
250
251 /*
252  * PTEL coherent flags.
253  * See Chapter 17 ST50 CPU Core Volume 1, Architecture.
254  */
255 /* The bits that are required in the SH-5 TLB are placed in the h/w-defined
256    positions, to avoid expensive bit shuffling on every refill.  The remaining
257    bits are used for s/w purposes and masked out on each refill.
258
259    Note, the PTE slots are used to hold data of type swp_entry_t when a page is
260    swapped out.  Only the _PAGE_PRESENT flag is significant when the page is
261    swapped out, and it must be placed so that it doesn't overlap either the
262    type or offset fields of swp_entry_t.  For x86, offset is at [31:8] and type
263    at [6:1], with _PAGE_PRESENT at bit 0 for both pte_t and swp_entry_t.  This
264    scheme doesn't map to SH-5 because bit [0] controls cacheability.  So bit
265    [2] is used for _PAGE_PRESENT and the type field of swp_entry_t is split
266    into 2 pieces.  That is handled by SWP_ENTRY and SWP_TYPE below. */
267 #define _PAGE_WT        0x001  /* CB0: if cacheable, 1->write-thru, 0->write-back */
268 #define _PAGE_DEVICE    0x001  /* CB0: if uncacheable, 1->device (i.e. no write-combining or reordering at bus level) */
269 #define _PAGE_CACHABLE  0x002  /* CB1: uncachable/cachable */
270 #define _PAGE_PRESENT   0x004  /* software: page referenced */
271 #define _PAGE_FILE      0x004  /* software: only when !present */
272 #define _PAGE_SIZE0     0x008  /* SZ0-bit : size of page */
273 #define _PAGE_SIZE1     0x010  /* SZ1-bit : size of page */
274 #define _PAGE_SHARED    0x020  /* software: reflects PTEH's SH */
275 #define _PAGE_READ      0x040  /* PR0-bit : read access allowed */
276 #define _PAGE_EXECUTE   0x080  /* PR1-bit : execute access allowed */
277 #define _PAGE_WRITE     0x100  /* PR2-bit : write access allowed */
278 #define _PAGE_USER      0x200  /* PR3-bit : user space access allowed */
279 #define _PAGE_DIRTY     0x400  /* software: page accessed in write */
280 #define _PAGE_ACCESSED  0x800  /* software: page referenced */
281
282 /* Mask which drops software flags */
283 #define _PAGE_FLAGS_HARDWARE_MASK       0xfffffffffffff3dbLL
284
285 /*
286  * HugeTLB support
287  */
288 #if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
289 #define _PAGE_SZHUGE    (_PAGE_SIZE0)
290 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_1MB)
291 #define _PAGE_SZHUGE    (_PAGE_SIZE1)
292 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_512MB)
293 #define _PAGE_SZHUGE    (_PAGE_SIZE0 | _PAGE_SIZE1)
294 #endif
295
296 /*
297  * Default flags for a Kernel page.
298  * This is fundametally also SHARED because the main use of this define
299  * (other than for PGD/PMD entries) is for the VMALLOC pool which is
300  * contextless.
301  *
302  * _PAGE_EXECUTE is required for modules
303  *
304  */
305 #define _KERNPG_TABLE   (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
306                          _PAGE_EXECUTE | \
307                          _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_DIRTY | \
308                          _PAGE_SHARED)
309
310 /* Default flags for a User page */
311 #define _PAGE_TABLE     (_KERNPG_TABLE | _PAGE_USER)
312
313 #define _PAGE_CHG_MASK  (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
314
315 #define PAGE_NONE       __pgprot(_PAGE_CACHABLE | _PAGE_ACCESSED)
316 #define PAGE_SHARED     __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
317                                  _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_USER | \
318                                  _PAGE_SHARED)
319 /* We need to include PAGE_EXECUTE in PAGE_COPY because it is the default
320  * protection mode for the stack. */
321 #define PAGE_COPY       __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \
322                                  _PAGE_ACCESSED | _PAGE_USER | _PAGE_EXECUTE)
323 #define PAGE_READONLY   __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \
324                                  _PAGE_ACCESSED | _PAGE_USER)
325 #define PAGE_KERNEL     __pgprot(_KERNPG_TABLE)
326
327
328 /*
329  * In ST50 we have full permissions (Read/Write/Execute/Shared).
330  * Just match'em all. These are for mmap(), therefore all at least
331  * User/Cachable/Present/Accessed. No point in making Fault on Write.
332  */
333 #define __MMAP_COMMON   (_PAGE_PRESENT | _PAGE_USER | _PAGE_CACHABLE | _PAGE_ACCESSED)
334        /* sxwr */
335 #define __P000  __pgprot(__MMAP_COMMON)
336 #define __P001  __pgprot(__MMAP_COMMON | _PAGE_READ)
337 #define __P010  __pgprot(__MMAP_COMMON)
338 #define __P011  __pgprot(__MMAP_COMMON | _PAGE_READ)
339 #define __P100  __pgprot(__MMAP_COMMON | _PAGE_EXECUTE)
340 #define __P101  __pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ)
341 #define __P110  __pgprot(__MMAP_COMMON | _PAGE_EXECUTE)
342 #define __P111  __pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ)
343
344 #define __S000  __pgprot(__MMAP_COMMON | _PAGE_SHARED)
345 #define __S001  __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ)
346 #define __S010  __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_WRITE)
347 #define __S011  __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ | _PAGE_WRITE)
348 #define __S100  __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE)
349 #define __S101  __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ)
350 #define __S110  __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_WRITE)
351 #define __S111  __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ | _PAGE_WRITE)
352
353 /* Make it a device mapping for maximum safety (e.g. for mapping device
354    registers into user-space via /dev/map).  */
355 #define pgprot_noncached(x) __pgprot(((x).pgprot & ~(_PAGE_CACHABLE)) | _PAGE_DEVICE)
356 #define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~_PAGE_CACHABLE)
357
358 /*
359  * Handling allocation failures during page table setup.
360  */
361 extern void __handle_bad_pmd_kernel(pmd_t * pmd);
362 #define __handle_bad_pmd(x)     __handle_bad_pmd_kernel(x)
363
364 /*
365  * PTE level access routines.
366  *
367  * Note1:
368  * It's the tree walk leaf. This is physical address to be stored.
369  *
370  * Note 2:
371  * Regarding the choice of _PTE_EMPTY:
372
373    We must choose a bit pattern that cannot be valid, whether or not the page
374    is present.  bit[2]==1 => present, bit[2]==0 => swapped out.  If swapped
375    out, bits [31:8], [6:3], [1:0] are under swapper control, so only bit[7] is
376    left for us to select.  If we force bit[7]==0 when swapped out, we could use
377    the combination bit[7,2]=2'b10 to indicate an empty PTE.  Alternatively, if
378    we force bit[7]==1 when swapped out, we can use all zeroes to indicate
379    empty.  This is convenient, because the page tables get cleared to zero
380    when they are allocated.
381
382  */
383 #define _PTE_EMPTY      0x0
384 #define pte_present(x)  (pte_val(x) & _PAGE_PRESENT)
385 #define pte_clear(mm,addr,xp)   (set_pte_at(mm, addr, xp, __pte(_PTE_EMPTY)))
386 #define pte_none(x)     (pte_val(x) == _PTE_EMPTY)
387
388 /*
389  * Some definitions to translate between mem_map, PTEs, and page
390  * addresses:
391  */
392
393 /*
394  * Given a PTE, return the index of the mem_map[] entry corresponding
395  * to the page frame the PTE. Get the absolute physical address, make
396  * a relative physical address and translate it to an index.
397  */
398 #define pte_pagenr(x)           (((unsigned long) (pte_val(x)) - \
399                                  __MEMORY_START) >> PAGE_SHIFT)
400
401 /*
402  * Given a PTE, return the "struct page *".
403  */
404 #define pte_page(x)             (mem_map + pte_pagenr(x))
405
406 /*
407  * Return number of (down rounded) MB corresponding to x pages.
408  */
409 #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
410
411
412 /*
413  * The following have defined behavior only work if pte_present() is true.
414  */
415 static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
416 static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXECUTE; }
417 static inline int pte_dirty(pte_t pte){ return pte_val(pte) & _PAGE_DIRTY; }
418 static inline int pte_young(pte_t pte){ return pte_val(pte) & _PAGE_ACCESSED; }
419 static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
420 static inline int pte_write(pte_t pte){ return pte_val(pte) & _PAGE_WRITE; }
421
422 extern inline pte_t pte_rdprotect(pte_t pte)    { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_READ)); return pte; }
423 extern inline pte_t pte_wrprotect(pte_t pte)    { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_WRITE)); return pte; }
424 extern inline pte_t pte_exprotect(pte_t pte)    { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_EXECUTE)); return pte; }
425 extern inline pte_t pte_mkclean(pte_t pte)      { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; }
426 extern inline pte_t pte_mkold(pte_t pte)        { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; }
427
428 extern inline pte_t pte_mkread(pte_t pte)       { set_pte(&pte, __pte(pte_val(pte) | _PAGE_READ)); return pte; }
429 extern inline pte_t pte_mkwrite(pte_t pte)      { set_pte(&pte, __pte(pte_val(pte) | _PAGE_WRITE)); return pte; }
430 extern inline pte_t pte_mkexec(pte_t pte)       { set_pte(&pte, __pte(pte_val(pte) | _PAGE_EXECUTE)); return pte; }
431 extern inline pte_t pte_mkdirty(pte_t pte)      { set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; }
432 extern inline pte_t pte_mkyoung(pte_t pte)      { set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; }
433 extern inline pte_t pte_mkhuge(pte_t pte)       { set_pte(&pte, __pte(pte_val(pte) | _PAGE_SZHUGE)); return pte; }
434
435
436 /*
437  * Conversion functions: convert a page and protection to a page entry.
438  *
439  * extern pte_t mk_pte(struct page *page, pgprot_t pgprot)
440  */
441 #define mk_pte(page,pgprot)                                                     \
442 ({                                                                              \
443         pte_t __pte;                                                            \
444                                                                                 \
445         set_pte(&__pte, __pte((((page)-mem_map) << PAGE_SHIFT) |                \
446                 __MEMORY_START | pgprot_val((pgprot))));                        \
447         __pte;                                                                  \
448 })
449
450 /*
451  * This takes a (absolute) physical page address that is used
452  * by the remapping functions
453  */
454 #define mk_pte_phys(physpage, pgprot) \
455 ({ pte_t __pte; set_pte(&__pte, __pte(physpage | pgprot_val(pgprot))); __pte; })
456
457 extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
458 { set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))); return pte; }
459
460 #define page_pte_prot(page, prot) mk_pte(page, prot)
461 #define page_pte(page) page_pte_prot(page, __pgprot(0))
462
463 typedef pte_t *pte_addr_t;
464 #define pgtable_cache_init()    do { } while (0)
465
466 extern void update_mmu_cache(struct vm_area_struct * vma,
467                              unsigned long address, pte_t pte);
468
469 /* Encode and decode a swap entry */
470 #define __swp_type(x)                   (((x).val & 3) + (((x).val >> 1) & 0x3c))
471 #define __swp_offset(x)                 ((x).val >> 8)
472 #define __swp_entry(type, offset)       ((swp_entry_t) { ((offset << 8) + ((type & 0x3c) << 1) + (type & 3)) })
473 #define __pte_to_swp_entry(pte)         ((swp_entry_t) { pte_val(pte) })
474 #define __swp_entry_to_pte(x)           ((pte_t) { (x).val })
475
476 /* Encode and decode a nonlinear file mapping entry */
477 #define PTE_FILE_MAX_BITS               29
478 #define pte_to_pgoff(pte)               (pte_val(pte))
479 #define pgoff_to_pte(off)               ((pte_t) { (off) | _PAGE_FILE })
480
481 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
482 #define PageSkip(page)          (0)
483 #define kern_addr_valid(addr)   (1)
484
485 #define io_remap_page_range(vma, vaddr, paddr, size, prot)              \
486                 remap_pfn_range(vma, vaddr, (paddr) >> PAGE_SHIFT, size, prot)
487
488 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot)         \
489                 remap_pfn_range(vma, vaddr, pfn, size, prot)
490
491 #define MK_IOSPACE_PFN(space, pfn)      (pfn)
492 #define GET_IOSPACE(pfn)                0
493 #define GET_PFN(pfn)                    (pfn)
494
495 #endif /* !__ASSEMBLY__ */
496
497 /*
498  * No page table caches to initialise
499  */
500 #define pgtable_cache_init()    do { } while (0)
501
502 #define pte_pfn(x)              (((unsigned long)((x).pte)) >> PAGE_SHIFT)
503 #define pfn_pte(pfn, prot)      __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
504 #define pfn_pmd(pfn, prot)      __pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
505
506 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
507
508 #include <asm-generic/pgtable.h>
509
510 #endif /* __ASM_SH64_PGTABLE_H */