Merge branch 'master' of git://dev.medozas.de/linux
[linux-2.6] / drivers / usb / host / oxu210hp-hcd.c
1 /*
2  * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
3  * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
4  *
5  * This code is *strongly* based on EHCI-HCD code by David Brownell since
6  * the chip is a quasi-EHCI compatible.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the
10  * Free Software Foundation; either version 2 of the License, or (at your
11  * option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/module.h>
24 #include <linux/pci.h>
25 #include <linux/dmapool.h>
26 #include <linux/kernel.h>
27 #include <linux/delay.h>
28 #include <linux/ioport.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/errno.h>
32 #include <linux/init.h>
33 #include <linux/timer.h>
34 #include <linux/list.h>
35 #include <linux/interrupt.h>
36 #include <linux/reboot.h>
37 #include <linux/usb.h>
38 #include <linux/moduleparam.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/io.h>
41
42 #include "../core/hcd.h"
43
44 #include <asm/irq.h>
45 #include <asm/system.h>
46 #include <asm/unaligned.h>
47
48 #include <linux/irq.h>
49 #include <linux/platform_device.h>
50
51 #include "oxu210hp.h"
52
53 #define DRIVER_VERSION "0.0.50"
54
55 /*
56  * Main defines
57  */
58
59 #define oxu_dbg(oxu, fmt, args...) \
60                 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
61 #define oxu_err(oxu, fmt, args...) \
62                 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
63 #define oxu_info(oxu, fmt, args...) \
64                 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
65
66 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
67 {
68         return container_of((void *) oxu, struct usb_hcd, hcd_priv);
69 }
70
71 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
72 {
73         return (struct oxu_hcd *) (hcd->hcd_priv);
74 }
75
76 /*
77  * Debug stuff
78  */
79
80 #undef OXU_URB_TRACE
81 #undef OXU_VERBOSE_DEBUG
82
83 #ifdef OXU_VERBOSE_DEBUG
84 #define oxu_vdbg                        oxu_dbg
85 #else
86 #define oxu_vdbg(oxu, fmt, args...)     /* Nop */
87 #endif
88
89 #ifdef DEBUG
90
91 static int __attribute__((__unused__))
92 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
93 {
94         return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
95                 label, label[0] ? " " : "", status,
96                 (status & STS_ASS) ? " Async" : "",
97                 (status & STS_PSS) ? " Periodic" : "",
98                 (status & STS_RECL) ? " Recl" : "",
99                 (status & STS_HALT) ? " Halt" : "",
100                 (status & STS_IAA) ? " IAA" : "",
101                 (status & STS_FATAL) ? " FATAL" : "",
102                 (status & STS_FLR) ? " FLR" : "",
103                 (status & STS_PCD) ? " PCD" : "",
104                 (status & STS_ERR) ? " ERR" : "",
105                 (status & STS_INT) ? " INT" : ""
106                 );
107 }
108
109 static int __attribute__((__unused__))
110 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
111 {
112         return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
113                 label, label[0] ? " " : "", enable,
114                 (enable & STS_IAA) ? " IAA" : "",
115                 (enable & STS_FATAL) ? " FATAL" : "",
116                 (enable & STS_FLR) ? " FLR" : "",
117                 (enable & STS_PCD) ? " PCD" : "",
118                 (enable & STS_ERR) ? " ERR" : "",
119                 (enable & STS_INT) ? " INT" : ""
120                 );
121 }
122
123 static const char *const fls_strings[] =
124     { "1024", "512", "256", "??" };
125
126 static int dbg_command_buf(char *buf, unsigned len,
127                                 const char *label, u32 command)
128 {
129         return scnprintf(buf, len,
130                 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
131                 label, label[0] ? " " : "", command,
132                 (command & CMD_PARK) ? "park" : "(park)",
133                 CMD_PARK_CNT(command),
134                 (command >> 16) & 0x3f,
135                 (command & CMD_LRESET) ? " LReset" : "",
136                 (command & CMD_IAAD) ? " IAAD" : "",
137                 (command & CMD_ASE) ? " Async" : "",
138                 (command & CMD_PSE) ? " Periodic" : "",
139                 fls_strings[(command >> 2) & 0x3],
140                 (command & CMD_RESET) ? " Reset" : "",
141                 (command & CMD_RUN) ? "RUN" : "HALT"
142                 );
143 }
144
145 static int dbg_port_buf(char *buf, unsigned len, const char *label,
146                                 int port, u32 status)
147 {
148         char    *sig;
149
150         /* signaling state */
151         switch (status & (3 << 10)) {
152         case 0 << 10:
153                 sig = "se0";
154                 break;
155         case 1 << 10:
156                 sig = "k";      /* low speed */
157                 break;
158         case 2 << 10:
159                 sig = "j";
160                 break;
161         default:
162                 sig = "?";
163                 break;
164         }
165
166         return scnprintf(buf, len,
167                 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
168                 label, label[0] ? " " : "", port, status,
169                 (status & PORT_POWER) ? " POWER" : "",
170                 (status & PORT_OWNER) ? " OWNER" : "",
171                 sig,
172                 (status & PORT_RESET) ? " RESET" : "",
173                 (status & PORT_SUSPEND) ? " SUSPEND" : "",
174                 (status & PORT_RESUME) ? " RESUME" : "",
175                 (status & PORT_OCC) ? " OCC" : "",
176                 (status & PORT_OC) ? " OC" : "",
177                 (status & PORT_PEC) ? " PEC" : "",
178                 (status & PORT_PE) ? " PE" : "",
179                 (status & PORT_CSC) ? " CSC" : "",
180                 (status & PORT_CONNECT) ? " CONNECT" : ""
181             );
182 }
183
184 #else
185
186 static inline int __attribute__((__unused__))
187 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
188 { return 0; }
189
190 static inline int __attribute__((__unused__))
191 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
192 { return 0; }
193
194 static inline int __attribute__((__unused__))
195 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
196 { return 0; }
197
198 static inline int __attribute__((__unused__))
199 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
200 { return 0; }
201
202 #endif /* DEBUG */
203
204 /* functions have the "wrong" filename when they're output... */
205 #define dbg_status(oxu, label, status) { \
206         char _buf[80]; \
207         dbg_status_buf(_buf, sizeof _buf, label, status); \
208         oxu_dbg(oxu, "%s\n", _buf); \
209 }
210
211 #define dbg_cmd(oxu, label, command) { \
212         char _buf[80]; \
213         dbg_command_buf(_buf, sizeof _buf, label, command); \
214         oxu_dbg(oxu, "%s\n", _buf); \
215 }
216
217 #define dbg_port(oxu, label, port, status) { \
218         char _buf[80]; \
219         dbg_port_buf(_buf, sizeof _buf, label, port, status); \
220         oxu_dbg(oxu, "%s\n", _buf); \
221 }
222
223 /*
224  * Module parameters
225  */
226
227 /* Initial IRQ latency: faster than hw default */
228 static int log2_irq_thresh;                     /* 0 to 6 */
229 module_param(log2_irq_thresh, int, S_IRUGO);
230 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
231
232 /* Initial park setting: slower than hw default */
233 static unsigned park;
234 module_param(park, uint, S_IRUGO);
235 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
236
237 /* For flakey hardware, ignore overcurrent indicators */
238 static int ignore_oc;
239 module_param(ignore_oc, bool, S_IRUGO);
240 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
241
242
243 static void ehci_work(struct oxu_hcd *oxu);
244 static int oxu_hub_control(struct usb_hcd *hcd,
245                                 u16 typeReq, u16 wValue, u16 wIndex,
246                                 char *buf, u16 wLength);
247
248 /*
249  * Local functions
250  */
251
252 /* Low level read/write registers functions */
253 static inline u32 oxu_readl(void *base, u32 reg)
254 {
255         return readl(base + reg);
256 }
257
258 static inline void oxu_writel(void *base, u32 reg, u32 val)
259 {
260         writel(val, base + reg);
261 }
262
263 static inline void timer_action_done(struct oxu_hcd *oxu,
264                                         enum ehci_timer_action action)
265 {
266         clear_bit(action, &oxu->actions);
267 }
268
269 static inline void timer_action(struct oxu_hcd *oxu,
270                                         enum ehci_timer_action action)
271 {
272         if (!test_and_set_bit(action, &oxu->actions)) {
273                 unsigned long t;
274
275                 switch (action) {
276                 case TIMER_IAA_WATCHDOG:
277                         t = EHCI_IAA_JIFFIES;
278                         break;
279                 case TIMER_IO_WATCHDOG:
280                         t = EHCI_IO_JIFFIES;
281                         break;
282                 case TIMER_ASYNC_OFF:
283                         t = EHCI_ASYNC_JIFFIES;
284                         break;
285                 case TIMER_ASYNC_SHRINK:
286                 default:
287                         t = EHCI_SHRINK_JIFFIES;
288                         break;
289                 }
290                 t += jiffies;
291                 /* all timings except IAA watchdog can be overridden.
292                  * async queue SHRINK often precedes IAA.  while it's ready
293                  * to go OFF neither can matter, and afterwards the IO
294                  * watchdog stops unless there's still periodic traffic.
295                  */
296                 if (action != TIMER_IAA_WATCHDOG
297                                 && t > oxu->watchdog.expires
298                                 && timer_pending(&oxu->watchdog))
299                         return;
300                 mod_timer(&oxu->watchdog, t);
301         }
302 }
303
304 /*
305  * handshake - spin reading hc until handshake completes or fails
306  * @ptr: address of hc register to be read
307  * @mask: bits to look at in result of read
308  * @done: value of those bits when handshake succeeds
309  * @usec: timeout in microseconds
310  *
311  * Returns negative errno, or zero on success
312  *
313  * Success happens when the "mask" bits have the specified value (hardware
314  * handshake done).  There are two failure modes:  "usec" have passed (major
315  * hardware flakeout), or the register reads as all-ones (hardware removed).
316  *
317  * That last failure should_only happen in cases like physical cardbus eject
318  * before driver shutdown. But it also seems to be caused by bugs in cardbus
319  * bridge shutdown:  shutting down the bridge before the devices using it.
320  */
321 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
322                                         u32 mask, u32 done, int usec)
323 {
324         u32 result;
325
326         do {
327                 result = readl(ptr);
328                 if (result == ~(u32)0)          /* card removed */
329                         return -ENODEV;
330                 result &= mask;
331                 if (result == done)
332                         return 0;
333                 udelay(1);
334                 usec--;
335         } while (usec > 0);
336         return -ETIMEDOUT;
337 }
338
339 /* Force HC to halt state from unknown (EHCI spec section 2.3) */
340 static int ehci_halt(struct oxu_hcd *oxu)
341 {
342         u32     temp = readl(&oxu->regs->status);
343
344         /* disable any irqs left enabled by previous code */
345         writel(0, &oxu->regs->intr_enable);
346
347         if ((temp & STS_HALT) != 0)
348                 return 0;
349
350         temp = readl(&oxu->regs->command);
351         temp &= ~CMD_RUN;
352         writel(temp, &oxu->regs->command);
353         return handshake(oxu, &oxu->regs->status,
354                           STS_HALT, STS_HALT, 16 * 125);
355 }
356
357 /* Put TDI/ARC silicon into EHCI mode */
358 static void tdi_reset(struct oxu_hcd *oxu)
359 {
360         u32 __iomem *reg_ptr;
361         u32 tmp;
362
363         reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
364         tmp = readl(reg_ptr);
365         tmp |= 0x3;
366         writel(tmp, reg_ptr);
367 }
368
369 /* Reset a non-running (STS_HALT == 1) controller */
370 static int ehci_reset(struct oxu_hcd *oxu)
371 {
372         int     retval;
373         u32     command = readl(&oxu->regs->command);
374
375         command |= CMD_RESET;
376         dbg_cmd(oxu, "reset", command);
377         writel(command, &oxu->regs->command);
378         oxu_to_hcd(oxu)->state = HC_STATE_HALT;
379         oxu->next_statechange = jiffies;
380         retval = handshake(oxu, &oxu->regs->command,
381                             CMD_RESET, 0, 250 * 1000);
382
383         if (retval)
384                 return retval;
385
386         tdi_reset(oxu);
387
388         return retval;
389 }
390
391 /* Idle the controller (from running) */
392 static void ehci_quiesce(struct oxu_hcd *oxu)
393 {
394         u32     temp;
395
396 #ifdef DEBUG
397         if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
398                 BUG();
399 #endif
400
401         /* wait for any schedule enables/disables to take effect */
402         temp = readl(&oxu->regs->command) << 10;
403         temp &= STS_ASS | STS_PSS;
404         if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
405                                 temp, 16 * 125) != 0) {
406                 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
407                 return;
408         }
409
410         /* then disable anything that's still active */
411         temp = readl(&oxu->regs->command);
412         temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
413         writel(temp, &oxu->regs->command);
414
415         /* hardware can take 16 microframes to turn off ... */
416         if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
417                                 0, 16 * 125) != 0) {
418                 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
419                 return;
420         }
421 }
422
423 static int check_reset_complete(struct oxu_hcd *oxu, int index,
424                                 u32 __iomem *status_reg, int port_status)
425 {
426         if (!(port_status & PORT_CONNECT)) {
427                 oxu->reset_done[index] = 0;
428                 return port_status;
429         }
430
431         /* if reset finished and it's still not enabled -- handoff */
432         if (!(port_status & PORT_PE)) {
433                 oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
434                                 index+1);
435                 return port_status;
436         } else
437                 oxu_dbg(oxu, "port %d high speed\n", index + 1);
438
439         return port_status;
440 }
441
442 static void ehci_hub_descriptor(struct oxu_hcd *oxu,
443                                 struct usb_hub_descriptor *desc)
444 {
445         int ports = HCS_N_PORTS(oxu->hcs_params);
446         u16 temp;
447
448         desc->bDescriptorType = 0x29;
449         desc->bPwrOn2PwrGood = 10;      /* oxu 1.0, 2.3.9 says 20ms max */
450         desc->bHubContrCurrent = 0;
451
452         desc->bNbrPorts = ports;
453         temp = 1 + (ports / 8);
454         desc->bDescLength = 7 + 2 * temp;
455
456         /* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
457         memset(&desc->bitmap[0], 0, temp);
458         memset(&desc->bitmap[temp], 0xff, temp);
459
460         temp = 0x0008;                  /* per-port overcurrent reporting */
461         if (HCS_PPC(oxu->hcs_params))
462                 temp |= 0x0001;         /* per-port power control */
463         else
464                 temp |= 0x0002;         /* no power switching */
465         desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
466 }
467
468
469 /* Allocate an OXU210HP on-chip memory data buffer
470  *
471  * An on-chip memory data buffer is required for each OXU210HP USB transfer.
472  * Each transfer descriptor has one or more on-chip memory data buffers.
473  *
474  * Data buffers are allocated from a fix sized pool of data blocks.
475  * To minimise fragmentation and give reasonable memory utlisation,
476  * data buffers are allocated with sizes the power of 2 multiples of
477  * the block size, starting on an address a multiple of the allocated size.
478  *
479  * FIXME: callers of this function require a buffer to be allocated for
480  * len=0. This is a waste of on-chip memory and should be fix. Then this
481  * function should be changed to not allocate a buffer for len=0.
482  */
483 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
484 {
485         int n_blocks;   /* minium blocks needed to hold len */
486         int a_blocks;   /* blocks allocated */
487         int i, j;
488
489         /* Don't allocte bigger than supported */
490         if (len > BUFFER_SIZE * BUFFER_NUM) {
491                 oxu_err(oxu, "buffer too big (%d)\n", len);
492                 return -ENOMEM;
493         }
494
495         spin_lock(&oxu->mem_lock);
496
497         /* Number of blocks needed to hold len */
498         n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
499
500         /* Round the number of blocks up to the power of 2 */
501         for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
502                 ;
503
504         /* Find a suitable available data buffer */
505         for (i = 0; i < BUFFER_NUM;
506                         i += max(a_blocks, (int)oxu->db_used[i])) {
507
508                 /* Check all the required blocks are available */
509                 for (j = 0; j < a_blocks; j++)
510                         if (oxu->db_used[i + j])
511                                 break;
512
513                 if (j != a_blocks)
514                         continue;
515
516                 /* Allocate blocks found! */
517                 qtd->buffer = (void *) &oxu->mem->db_pool[i];
518                 qtd->buffer_dma = virt_to_phys(qtd->buffer);
519
520                 qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
521                 oxu->db_used[i] = a_blocks;
522
523                 spin_unlock(&oxu->mem_lock);
524
525                 return 0;
526         }
527
528         /* Failed */
529
530         spin_unlock(&oxu->mem_lock);
531
532         return -ENOMEM;
533 }
534
535 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
536 {
537         int index;
538
539         spin_lock(&oxu->mem_lock);
540
541         index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
542                                                          / BUFFER_SIZE;
543         oxu->db_used[index] = 0;
544         qtd->qtd_buffer_len = 0;
545         qtd->buffer_dma = 0;
546         qtd->buffer = NULL;
547
548         spin_unlock(&oxu->mem_lock);
549
550         return;
551 }
552
553 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
554 {
555         memset(qtd, 0, sizeof *qtd);
556         qtd->qtd_dma = dma;
557         qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
558         qtd->hw_next = EHCI_LIST_END;
559         qtd->hw_alt_next = EHCI_LIST_END;
560         INIT_LIST_HEAD(&qtd->qtd_list);
561 }
562
563 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
564 {
565         int index;
566
567         if (qtd->buffer)
568                 oxu_buf_free(oxu, qtd);
569
570         spin_lock(&oxu->mem_lock);
571
572         index = qtd - &oxu->mem->qtd_pool[0];
573         oxu->qtd_used[index] = 0;
574
575         spin_unlock(&oxu->mem_lock);
576
577         return;
578 }
579
580 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
581 {
582         int i;
583         struct ehci_qtd *qtd = NULL;
584
585         spin_lock(&oxu->mem_lock);
586
587         for (i = 0; i < QTD_NUM; i++)
588                 if (!oxu->qtd_used[i])
589                         break;
590
591         if (i < QTD_NUM) {
592                 qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
593                 memset(qtd, 0, sizeof *qtd);
594
595                 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
596                 qtd->hw_next = EHCI_LIST_END;
597                 qtd->hw_alt_next = EHCI_LIST_END;
598                 INIT_LIST_HEAD(&qtd->qtd_list);
599
600                 qtd->qtd_dma = virt_to_phys(qtd);
601
602                 oxu->qtd_used[i] = 1;
603         }
604
605         spin_unlock(&oxu->mem_lock);
606
607         return qtd;
608 }
609
610 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
611 {
612         int index;
613
614         spin_lock(&oxu->mem_lock);
615
616         index = qh - &oxu->mem->qh_pool[0];
617         oxu->qh_used[index] = 0;
618
619         spin_unlock(&oxu->mem_lock);
620
621         return;
622 }
623
624 static void qh_destroy(struct kref *kref)
625 {
626         struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
627         struct oxu_hcd *oxu = qh->oxu;
628
629         /* clean qtds first, and know this is not linked */
630         if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
631                 oxu_dbg(oxu, "unused qh not empty!\n");
632                 BUG();
633         }
634         if (qh->dummy)
635                 oxu_qtd_free(oxu, qh->dummy);
636         oxu_qh_free(oxu, qh);
637 }
638
639 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
640 {
641         int i;
642         struct ehci_qh *qh = NULL;
643
644         spin_lock(&oxu->mem_lock);
645
646         for (i = 0; i < QHEAD_NUM; i++)
647                 if (!oxu->qh_used[i])
648                         break;
649
650         if (i < QHEAD_NUM) {
651                 qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
652                 memset(qh, 0, sizeof *qh);
653
654                 kref_init(&qh->kref);
655                 qh->oxu = oxu;
656                 qh->qh_dma = virt_to_phys(qh);
657                 INIT_LIST_HEAD(&qh->qtd_list);
658
659                 /* dummy td enables safe urb queuing */
660                 qh->dummy = ehci_qtd_alloc(oxu);
661                 if (qh->dummy == NULL) {
662                         oxu_dbg(oxu, "no dummy td\n");
663                         oxu->qh_used[i] = 0;
664
665                         return NULL;
666                 }
667
668                 oxu->qh_used[i] = 1;
669         }
670
671         spin_unlock(&oxu->mem_lock);
672
673         return qh;
674 }
675
676 /* to share a qh (cpu threads, or hc) */
677 static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
678 {
679         kref_get(&qh->kref);
680         return qh;
681 }
682
683 static inline void qh_put(struct ehci_qh *qh)
684 {
685         kref_put(&qh->kref, qh_destroy);
686 }
687
688 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
689 {
690         int index;
691
692         spin_lock(&oxu->mem_lock);
693
694         index = murb - &oxu->murb_pool[0];
695         oxu->murb_used[index] = 0;
696
697         spin_unlock(&oxu->mem_lock);
698
699         return;
700 }
701
702 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
703
704 {
705         int i;
706         struct oxu_murb *murb = NULL;
707
708         spin_lock(&oxu->mem_lock);
709
710         for (i = 0; i < MURB_NUM; i++)
711                 if (!oxu->murb_used[i])
712                         break;
713
714         if (i < MURB_NUM) {
715                 murb = &(oxu->murb_pool)[i];
716
717                 oxu->murb_used[i] = 1;
718         }
719
720         spin_unlock(&oxu->mem_lock);
721
722         return murb;
723 }
724
725 /* The queue heads and transfer descriptors are managed from pools tied
726  * to each of the "per device" structures.
727  * This is the initialisation and cleanup code.
728  */
729 static void ehci_mem_cleanup(struct oxu_hcd *oxu)
730 {
731         kfree(oxu->murb_pool);
732         oxu->murb_pool = NULL;
733
734         if (oxu->async)
735                 qh_put(oxu->async);
736         oxu->async = NULL;
737
738         del_timer(&oxu->urb_timer);
739
740         oxu->periodic = NULL;
741
742         /* shadow periodic table */
743         kfree(oxu->pshadow);
744         oxu->pshadow = NULL;
745 }
746
747 /* Remember to add cleanup code (above) if you add anything here.
748  */
749 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
750 {
751         int i;
752
753         for (i = 0; i < oxu->periodic_size; i++)
754                 oxu->mem->frame_list[i] = EHCI_LIST_END;
755         for (i = 0; i < QHEAD_NUM; i++)
756                 oxu->qh_used[i] = 0;
757         for (i = 0; i < QTD_NUM; i++)
758                 oxu->qtd_used[i] = 0;
759
760         oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
761         if (!oxu->murb_pool)
762                 goto fail;
763
764         for (i = 0; i < MURB_NUM; i++)
765                 oxu->murb_used[i] = 0;
766
767         oxu->async = oxu_qh_alloc(oxu);
768         if (!oxu->async)
769                 goto fail;
770
771         oxu->periodic = (__le32 *) &oxu->mem->frame_list;
772         oxu->periodic_dma = virt_to_phys(oxu->periodic);
773
774         for (i = 0; i < oxu->periodic_size; i++)
775                 oxu->periodic[i] = EHCI_LIST_END;
776
777         /* software shadow of hardware table */
778         oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
779         if (oxu->pshadow != NULL)
780                 return 0;
781
782 fail:
783         oxu_dbg(oxu, "couldn't init memory\n");
784         ehci_mem_cleanup(oxu);
785         return -ENOMEM;
786 }
787
788 /* Fill a qtd, returning how much of the buffer we were able to queue up.
789  */
790 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
791                                 int token, int maxpacket)
792 {
793         int i, count;
794         u64 addr = buf;
795
796         /* one buffer entry per 4K ... first might be short or unaligned */
797         qtd->hw_buf[0] = cpu_to_le32((u32)addr);
798         qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
799         count = 0x1000 - (buf & 0x0fff);        /* rest of that page */
800         if (likely(len < count))                /* ... iff needed */
801                 count = len;
802         else {
803                 buf +=  0x1000;
804                 buf &= ~0x0fff;
805
806                 /* per-qtd limit: from 16K to 20K (best alignment) */
807                 for (i = 1; count < len && i < 5; i++) {
808                         addr = buf;
809                         qtd->hw_buf[i] = cpu_to_le32((u32)addr);
810                         qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
811                         buf += 0x1000;
812                         if ((count + 0x1000) < len)
813                                 count += 0x1000;
814                         else
815                                 count = len;
816                 }
817
818                 /* short packets may only terminate transfers */
819                 if (count != len)
820                         count -= (count % maxpacket);
821         }
822         qtd->hw_token = cpu_to_le32((count << 16) | token);
823         qtd->length = count;
824
825         return count;
826 }
827
828 static inline void qh_update(struct oxu_hcd *oxu,
829                                 struct ehci_qh *qh, struct ehci_qtd *qtd)
830 {
831         /* writes to an active overlay are unsafe */
832         BUG_ON(qh->qh_state != QH_STATE_IDLE);
833
834         qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
835         qh->hw_alt_next = EHCI_LIST_END;
836
837         /* Except for control endpoints, we make hardware maintain data
838          * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
839          * and set the pseudo-toggle in udev. Only usb_clear_halt() will
840          * ever clear it.
841          */
842         if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
843                 unsigned        is_out, epnum;
844
845                 is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
846                 epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
847                 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
848                         qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
849                         usb_settoggle(qh->dev, epnum, is_out, 1);
850                 }
851         }
852
853         /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
854         wmb();
855         qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
856 }
857
858 /* If it weren't for a common silicon quirk (writing the dummy into the qh
859  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
860  * recovery (including urb dequeue) would need software changes to a QH...
861  */
862 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
863 {
864         struct ehci_qtd *qtd;
865
866         if (list_empty(&qh->qtd_list))
867                 qtd = qh->dummy;
868         else {
869                 qtd = list_entry(qh->qtd_list.next,
870                                 struct ehci_qtd, qtd_list);
871                 /* first qtd may already be partially processed */
872                 if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
873                         qtd = NULL;
874         }
875
876         if (qtd)
877                 qh_update(oxu, qh, qtd);
878 }
879
880 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
881                                 size_t length, u32 token)
882 {
883         /* count IN/OUT bytes, not SETUP (even short packets) */
884         if (likely(QTD_PID(token) != 2))
885                 urb->actual_length += length - QTD_LENGTH(token);
886
887         /* don't modify error codes */
888         if (unlikely(urb->status != -EINPROGRESS))
889                 return;
890
891         /* force cleanup after short read; not always an error */
892         if (unlikely(IS_SHORT_READ(token)))
893                 urb->status = -EREMOTEIO;
894
895         /* serious "can't proceed" faults reported by the hardware */
896         if (token & QTD_STS_HALT) {
897                 if (token & QTD_STS_BABBLE) {
898                         /* FIXME "must" disable babbling device's port too */
899                         urb->status = -EOVERFLOW;
900                 } else if (token & QTD_STS_MMF) {
901                         /* fs/ls interrupt xfer missed the complete-split */
902                         urb->status = -EPROTO;
903                 } else if (token & QTD_STS_DBE) {
904                         urb->status = (QTD_PID(token) == 1) /* IN ? */
905                                 ? -ENOSR  /* hc couldn't read data */
906                                 : -ECOMM; /* hc couldn't write data */
907                 } else if (token & QTD_STS_XACT) {
908                         /* timeout, bad crc, wrong PID, etc; retried */
909                         if (QTD_CERR(token))
910                                 urb->status = -EPIPE;
911                         else {
912                                 oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
913                                         urb->dev->devpath,
914                                         usb_pipeendpoint(urb->pipe),
915                                         usb_pipein(urb->pipe) ? "in" : "out");
916                                 urb->status = -EPROTO;
917                         }
918                 /* CERR nonzero + no errors + halt --> stall */
919                 } else if (QTD_CERR(token))
920                         urb->status = -EPIPE;
921                 else    /* unknown */
922                         urb->status = -EPROTO;
923
924                 oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
925                         usb_pipedevice(urb->pipe),
926                         usb_pipeendpoint(urb->pipe),
927                         usb_pipein(urb->pipe) ? "in" : "out",
928                         token, urb->status);
929         }
930 }
931
932 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
933 __releases(oxu->lock)
934 __acquires(oxu->lock)
935 {
936         if (likely(urb->hcpriv != NULL)) {
937                 struct ehci_qh  *qh = (struct ehci_qh *) urb->hcpriv;
938
939                 /* S-mask in a QH means it's an interrupt urb */
940                 if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
941
942                         /* ... update hc-wide periodic stats (for usbfs) */
943                         oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
944                 }
945                 qh_put(qh);
946         }
947
948         urb->hcpriv = NULL;
949         switch (urb->status) {
950         case -EINPROGRESS:              /* success */
951                 urb->status = 0;
952         default:                        /* fault */
953                 break;
954         case -EREMOTEIO:                /* fault or normal */
955                 if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
956                         urb->status = 0;
957                 break;
958         case -ECONNRESET:               /* canceled */
959         case -ENOENT:
960                 break;
961         }
962
963 #ifdef OXU_URB_TRACE
964         oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
965                 __func__, urb->dev->devpath, urb,
966                 usb_pipeendpoint(urb->pipe),
967                 usb_pipein(urb->pipe) ? "in" : "out",
968                 urb->status,
969                 urb->actual_length, urb->transfer_buffer_length);
970 #endif
971
972         /* complete() can reenter this HCD */
973         spin_unlock(&oxu->lock);
974         usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
975         spin_lock(&oxu->lock);
976 }
977
978 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
979 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
980
981 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
982 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
983
984 #define HALT_BIT cpu_to_le32(QTD_STS_HALT)
985
986 /* Process and free completed qtds for a qh, returning URBs to drivers.
987  * Chases up to qh->hw_current.  Returns number of completions called,
988  * indicating how much "real" work we did.
989  */
990 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
991 {
992         struct ehci_qtd *last = NULL, *end = qh->dummy;
993         struct list_head *entry, *tmp;
994         int stopped;
995         unsigned count = 0;
996         int do_status = 0;
997         u8 state;
998         struct oxu_murb *murb = NULL;
999
1000         if (unlikely(list_empty(&qh->qtd_list)))
1001                 return count;
1002
1003         /* completions (or tasks on other cpus) must never clobber HALT
1004          * till we've gone through and cleaned everything up, even when
1005          * they add urbs to this qh's queue or mark them for unlinking.
1006          *
1007          * NOTE:  unlinking expects to be done in queue order.
1008          */
1009         state = qh->qh_state;
1010         qh->qh_state = QH_STATE_COMPLETING;
1011         stopped = (state == QH_STATE_IDLE);
1012
1013         /* remove de-activated QTDs from front of queue.
1014          * after faults (including short reads), cleanup this urb
1015          * then let the queue advance.
1016          * if queue is stopped, handles unlinks.
1017          */
1018         list_for_each_safe(entry, tmp, &qh->qtd_list) {
1019                 struct ehci_qtd *qtd;
1020                 struct urb *urb;
1021                 u32 token = 0;
1022
1023                 qtd = list_entry(entry, struct ehci_qtd, qtd_list);
1024                 urb = qtd->urb;
1025
1026                 /* Clean up any state from previous QTD ...*/
1027                 if (last) {
1028                         if (likely(last->urb != urb)) {
1029                                 if (last->urb->complete == NULL) {
1030                                         murb = (struct oxu_murb *) last->urb;
1031                                         last->urb = murb->main;
1032                                         if (murb->last) {
1033                                                 ehci_urb_done(oxu, last->urb);
1034                                                 count++;
1035                                         }
1036                                         oxu_murb_free(oxu, murb);
1037                                 } else {
1038                                         ehci_urb_done(oxu, last->urb);
1039                                         count++;
1040                                 }
1041                         }
1042                         oxu_qtd_free(oxu, last);
1043                         last = NULL;
1044                 }
1045
1046                 /* ignore urbs submitted during completions we reported */
1047                 if (qtd == end)
1048                         break;
1049
1050                 /* hardware copies qtd out of qh overlay */
1051                 rmb();
1052                 token = le32_to_cpu(qtd->hw_token);
1053
1054                 /* always clean up qtds the hc de-activated */
1055                 if ((token & QTD_STS_ACTIVE) == 0) {
1056
1057                         if ((token & QTD_STS_HALT) != 0) {
1058                                 stopped = 1;
1059
1060                         /* magic dummy for some short reads; qh won't advance.
1061                          * that silicon quirk can kick in with this dummy too.
1062                          */
1063                         } else if (IS_SHORT_READ(token) &&
1064                                         !(qtd->hw_alt_next & EHCI_LIST_END)) {
1065                                 stopped = 1;
1066                                 goto halt;
1067                         }
1068
1069                 /* stop scanning when we reach qtds the hc is using */
1070                 } else if (likely(!stopped &&
1071                                 HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
1072                         break;
1073
1074                 } else {
1075                         stopped = 1;
1076
1077                         if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
1078                                 urb->status = -ESHUTDOWN;
1079
1080                         /* ignore active urbs unless some previous qtd
1081                          * for the urb faulted (including short read) or
1082                          * its urb was canceled.  we may patch qh or qtds.
1083                          */
1084                         if (likely(urb->status == -EINPROGRESS))
1085                                 continue;
1086
1087                         /* issue status after short control reads */
1088                         if (unlikely(do_status != 0)
1089                                         && QTD_PID(token) == 0 /* OUT */) {
1090                                 do_status = 0;
1091                                 continue;
1092                         }
1093
1094                         /* token in overlay may be most current */
1095                         if (state == QH_STATE_IDLE
1096                                         && cpu_to_le32(qtd->qtd_dma)
1097                                                 == qh->hw_current)
1098                                 token = le32_to_cpu(qh->hw_token);
1099
1100                         /* force halt for unlinked or blocked qh, so we'll
1101                          * patch the qh later and so that completions can't
1102                          * activate it while we "know" it's stopped.
1103                          */
1104                         if ((HALT_BIT & qh->hw_token) == 0) {
1105 halt:
1106                                 qh->hw_token |= HALT_BIT;
1107                                 wmb();
1108                         }
1109                 }
1110
1111                 /* Remove it from the queue */
1112                 qtd_copy_status(oxu, urb->complete ?
1113                                         urb : ((struct oxu_murb *) urb)->main,
1114                                 qtd->length, token);
1115                 if ((usb_pipein(qtd->urb->pipe)) &&
1116                                 (NULL != qtd->transfer_buffer))
1117                         memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
1118                 do_status = (urb->status == -EREMOTEIO)
1119                                 && usb_pipecontrol(urb->pipe);
1120
1121                 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
1122                         last = list_entry(qtd->qtd_list.prev,
1123                                         struct ehci_qtd, qtd_list);
1124                         last->hw_next = qtd->hw_next;
1125                 }
1126                 list_del(&qtd->qtd_list);
1127                 last = qtd;
1128         }
1129
1130         /* last urb's completion might still need calling */
1131         if (likely(last != NULL)) {
1132                 if (last->urb->complete == NULL) {
1133                         murb = (struct oxu_murb *) last->urb;
1134                         last->urb = murb->main;
1135                         if (murb->last) {
1136                                 ehci_urb_done(oxu, last->urb);
1137                                 count++;
1138                         }
1139                         oxu_murb_free(oxu, murb);
1140                 } else {
1141                         ehci_urb_done(oxu, last->urb);
1142                         count++;
1143                 }
1144                 oxu_qtd_free(oxu, last);
1145         }
1146
1147         /* restore original state; caller must unlink or relink */
1148         qh->qh_state = state;
1149
1150         /* be sure the hardware's done with the qh before refreshing
1151          * it after fault cleanup, or recovering from silicon wrongly
1152          * overlaying the dummy qtd (which reduces DMA chatter).
1153          */
1154         if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
1155                 switch (state) {
1156                 case QH_STATE_IDLE:
1157                         qh_refresh(oxu, qh);
1158                         break;
1159                 case QH_STATE_LINKED:
1160                         /* should be rare for periodic transfers,
1161                          * except maybe high bandwidth ...
1162                          */
1163                         if ((cpu_to_le32(QH_SMASK)
1164                                         & qh->hw_info2) != 0) {
1165                                 intr_deschedule(oxu, qh);
1166                                 (void) qh_schedule(oxu, qh);
1167                         } else
1168                                 unlink_async(oxu, qh);
1169                         break;
1170                 /* otherwise, unlink already started */
1171                 }
1172         }
1173
1174         return count;
1175 }
1176
1177 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1178 #define hb_mult(wMaxPacketSize)         (1 + (((wMaxPacketSize) >> 11) & 0x03))
1179 /* ... and packet size, for any kind of endpoint descriptor */
1180 #define max_packet(wMaxPacketSize)      ((wMaxPacketSize) & 0x07ff)
1181
1182 /* Reverse of qh_urb_transaction: free a list of TDs.
1183  * used for cleanup after errors, before HC sees an URB's TDs.
1184  */
1185 static void qtd_list_free(struct oxu_hcd *oxu,
1186                                 struct urb *urb, struct list_head *qtd_list)
1187 {
1188         struct list_head *entry, *temp;
1189
1190         list_for_each_safe(entry, temp, qtd_list) {
1191                 struct ehci_qtd *qtd;
1192
1193                 qtd = list_entry(entry, struct ehci_qtd, qtd_list);
1194                 list_del(&qtd->qtd_list);
1195                 oxu_qtd_free(oxu, qtd);
1196         }
1197 }
1198
1199 /* Create a list of filled qtds for this URB; won't link into qh.
1200  */
1201 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
1202                                                 struct urb *urb,
1203                                                 struct list_head *head,
1204                                                 gfp_t flags)
1205 {
1206         struct ehci_qtd *qtd, *qtd_prev;
1207         dma_addr_t buf;
1208         int len, maxpacket;
1209         int is_input;
1210         u32 token;
1211         void *transfer_buf = NULL;
1212         int ret;
1213
1214         /*
1215          * URBs map to sequences of QTDs: one logical transaction
1216          */
1217         qtd = ehci_qtd_alloc(oxu);
1218         if (unlikely(!qtd))
1219                 return NULL;
1220         list_add_tail(&qtd->qtd_list, head);
1221         qtd->urb = urb;
1222
1223         token = QTD_STS_ACTIVE;
1224         token |= (EHCI_TUNE_CERR << 10);
1225         /* for split transactions, SplitXState initialized to zero */
1226
1227         len = urb->transfer_buffer_length;
1228         is_input = usb_pipein(urb->pipe);
1229         if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
1230                 urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
1231
1232         if (usb_pipecontrol(urb->pipe)) {
1233                 /* SETUP pid */
1234                 ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
1235                 if (ret)
1236                         goto cleanup;
1237
1238                 qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
1239                                 token | (2 /* "setup" */ << 8), 8);
1240                 memcpy(qtd->buffer, qtd->urb->setup_packet,
1241                                 sizeof(struct usb_ctrlrequest));
1242
1243                 /* ... and always at least one more pid */
1244                 token ^= QTD_TOGGLE;
1245                 qtd_prev = qtd;
1246                 qtd = ehci_qtd_alloc(oxu);
1247                 if (unlikely(!qtd))
1248                         goto cleanup;
1249                 qtd->urb = urb;
1250                 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1251                 list_add_tail(&qtd->qtd_list, head);
1252
1253                 /* for zero length DATA stages, STATUS is always IN */
1254                 if (len == 0)
1255                         token |= (1 /* "in" */ << 8);
1256         }
1257
1258         /*
1259          * Data transfer stage: buffer setup
1260          */
1261
1262         ret = oxu_buf_alloc(oxu, qtd, len);
1263         if (ret)
1264                 goto cleanup;
1265
1266         buf = qtd->buffer_dma;
1267         transfer_buf = urb->transfer_buffer;
1268
1269         if (!is_input)
1270                 memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
1271
1272         if (is_input)
1273                 token |= (1 /* "in" */ << 8);
1274         /* else it's already initted to "out" pid (0 << 8) */
1275
1276         maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
1277
1278         /*
1279          * buffer gets wrapped in one or more qtds;
1280          * last one may be "short" (including zero len)
1281          * and may serve as a control status ack
1282          */
1283         for (;;) {
1284                 int this_qtd_len;
1285
1286                 this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
1287                 qtd->transfer_buffer = transfer_buf;
1288                 len -= this_qtd_len;
1289                 buf += this_qtd_len;
1290                 transfer_buf += this_qtd_len;
1291                 if (is_input)
1292                         qtd->hw_alt_next = oxu->async->hw_alt_next;
1293
1294                 /* qh makes control packets use qtd toggle; maybe switch it */
1295                 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
1296                         token ^= QTD_TOGGLE;
1297
1298                 if (likely(len <= 0))
1299                         break;
1300
1301                 qtd_prev = qtd;
1302                 qtd = ehci_qtd_alloc(oxu);
1303                 if (unlikely(!qtd))
1304                         goto cleanup;
1305                 if (likely(len > 0)) {
1306                         ret = oxu_buf_alloc(oxu, qtd, len);
1307                         if (ret)
1308                                 goto cleanup;
1309                 }
1310                 qtd->urb = urb;
1311                 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1312                 list_add_tail(&qtd->qtd_list, head);
1313         }
1314
1315         /* unless the bulk/interrupt caller wants a chance to clean
1316          * up after short reads, hc should advance qh past this urb
1317          */
1318         if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
1319                                 || usb_pipecontrol(urb->pipe)))
1320                 qtd->hw_alt_next = EHCI_LIST_END;
1321
1322         /*
1323          * control requests may need a terminating data "status" ack;
1324          * bulk ones may need a terminating short packet (zero length).
1325          */
1326         if (likely(urb->transfer_buffer_length != 0)) {
1327                 int     one_more = 0;
1328
1329                 if (usb_pipecontrol(urb->pipe)) {
1330                         one_more = 1;
1331                         token ^= 0x0100;        /* "in" <--> "out"  */
1332                         token |= QTD_TOGGLE;    /* force DATA1 */
1333                 } else if (usb_pipebulk(urb->pipe)
1334                                 && (urb->transfer_flags & URB_ZERO_PACKET)
1335                                 && !(urb->transfer_buffer_length % maxpacket)) {
1336                         one_more = 1;
1337                 }
1338                 if (one_more) {
1339                         qtd_prev = qtd;
1340                         qtd = ehci_qtd_alloc(oxu);
1341                         if (unlikely(!qtd))
1342                                 goto cleanup;
1343                         qtd->urb = urb;
1344                         qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1345                         list_add_tail(&qtd->qtd_list, head);
1346
1347                         /* never any data in such packets */
1348                         qtd_fill(qtd, 0, 0, token, 0);
1349                 }
1350         }
1351
1352         /* by default, enable interrupt on urb completion */
1353                 qtd->hw_token |= cpu_to_le32(QTD_IOC);
1354         return head;
1355
1356 cleanup:
1357         qtd_list_free(oxu, urb, head);
1358         return NULL;
1359 }
1360
1361 /* Each QH holds a qtd list; a QH is used for everything except iso.
1362  *
1363  * For interrupt urbs, the scheduler must set the microframe scheduling
1364  * mask(s) each time the QH gets scheduled.  For highspeed, that's
1365  * just one microframe in the s-mask.  For split interrupt transactions
1366  * there are additional complications: c-mask, maybe FSTNs.
1367  */
1368 static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
1369                                 struct urb *urb, gfp_t flags)
1370 {
1371         struct ehci_qh *qh = oxu_qh_alloc(oxu);
1372         u32 info1 = 0, info2 = 0;
1373         int is_input, type;
1374         int maxp = 0;
1375
1376         if (!qh)
1377                 return qh;
1378
1379         /*
1380          * init endpoint/device data for this QH
1381          */
1382         info1 |= usb_pipeendpoint(urb->pipe) << 8;
1383         info1 |= usb_pipedevice(urb->pipe) << 0;
1384
1385         is_input = usb_pipein(urb->pipe);
1386         type = usb_pipetype(urb->pipe);
1387         maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
1388
1389         /* Compute interrupt scheduling parameters just once, and save.
1390          * - allowing for high bandwidth, how many nsec/uframe are used?
1391          * - split transactions need a second CSPLIT uframe; same question
1392          * - splits also need a schedule gap (for full/low speed I/O)
1393          * - qh has a polling interval
1394          *
1395          * For control/bulk requests, the HC or TT handles these.
1396          */
1397         if (type == PIPE_INTERRUPT) {
1398                 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
1399                                                                 is_input, 0,
1400                                 hb_mult(maxp) * max_packet(maxp)));
1401                 qh->start = NO_FRAME;
1402
1403                 if (urb->dev->speed == USB_SPEED_HIGH) {
1404                         qh->c_usecs = 0;
1405                         qh->gap_uf = 0;
1406
1407                         qh->period = urb->interval >> 3;
1408                         if (qh->period == 0 && urb->interval != 1) {
1409                                 /* NOTE interval 2 or 4 uframes could work.
1410                                  * But interval 1 scheduling is simpler, and
1411                                  * includes high bandwidth.
1412                                  */
1413                                 dbg("intr period %d uframes, NYET!",
1414                                                 urb->interval);
1415                                 goto done;
1416                         }
1417                 } else {
1418                         struct usb_tt   *tt = urb->dev->tt;
1419                         int             think_time;
1420
1421                         /* gap is f(FS/LS transfer times) */
1422                         qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
1423                                         is_input, 0, maxp) / (125 * 1000);
1424
1425                         /* FIXME this just approximates SPLIT/CSPLIT times */
1426                         if (is_input) {         /* SPLIT, gap, CSPLIT+DATA */
1427                                 qh->c_usecs = qh->usecs + HS_USECS(0);
1428                                 qh->usecs = HS_USECS(1);
1429                         } else {                /* SPLIT+DATA, gap, CSPLIT */
1430                                 qh->usecs += HS_USECS(1);
1431                                 qh->c_usecs = HS_USECS(0);
1432                         }
1433
1434                         think_time = tt ? tt->think_time : 0;
1435                         qh->tt_usecs = NS_TO_US(think_time +
1436                                         usb_calc_bus_time(urb->dev->speed,
1437                                         is_input, 0, max_packet(maxp)));
1438                         qh->period = urb->interval;
1439                 }
1440         }
1441
1442         /* support for tt scheduling, and access to toggles */
1443         qh->dev = urb->dev;
1444
1445         /* using TT? */
1446         switch (urb->dev->speed) {
1447         case USB_SPEED_LOW:
1448                 info1 |= (1 << 12);     /* EPS "low" */
1449                 /* FALL THROUGH */
1450
1451         case USB_SPEED_FULL:
1452                 /* EPS 0 means "full" */
1453                 if (type != PIPE_INTERRUPT)
1454                         info1 |= (EHCI_TUNE_RL_TT << 28);
1455                 if (type == PIPE_CONTROL) {
1456                         info1 |= (1 << 27);     /* for TT */
1457                         info1 |= 1 << 14;       /* toggle from qtd */
1458                 }
1459                 info1 |= maxp << 16;
1460
1461                 info2 |= (EHCI_TUNE_MULT_TT << 30);
1462                 info2 |= urb->dev->ttport << 23;
1463
1464                 /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1465
1466                 break;
1467
1468         case USB_SPEED_HIGH:            /* no TT involved */
1469                 info1 |= (2 << 12);     /* EPS "high" */
1470                 if (type == PIPE_CONTROL) {
1471                         info1 |= (EHCI_TUNE_RL_HS << 28);
1472                         info1 |= 64 << 16;      /* usb2 fixed maxpacket */
1473                         info1 |= 1 << 14;       /* toggle from qtd */
1474                         info2 |= (EHCI_TUNE_MULT_HS << 30);
1475                 } else if (type == PIPE_BULK) {
1476                         info1 |= (EHCI_TUNE_RL_HS << 28);
1477                         info1 |= 512 << 16;     /* usb2 fixed maxpacket */
1478                         info2 |= (EHCI_TUNE_MULT_HS << 30);
1479                 } else {                /* PIPE_INTERRUPT */
1480                         info1 |= max_packet(maxp) << 16;
1481                         info2 |= hb_mult(maxp) << 30;
1482                 }
1483                 break;
1484         default:
1485                 dbg("bogus dev %p speed %d", urb->dev, urb->dev->speed);
1486 done:
1487                 qh_put(qh);
1488                 return NULL;
1489         }
1490
1491         /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1492
1493         /* init as live, toggle clear, advance to dummy */
1494         qh->qh_state = QH_STATE_IDLE;
1495         qh->hw_info1 = cpu_to_le32(info1);
1496         qh->hw_info2 = cpu_to_le32(info2);
1497         usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
1498         qh_refresh(oxu, qh);
1499         return qh;
1500 }
1501
1502 /* Move qh (and its qtds) onto async queue; maybe enable queue.
1503  */
1504 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1505 {
1506         __le32 dma = QH_NEXT(qh->qh_dma);
1507         struct ehci_qh *head;
1508
1509         /* (re)start the async schedule? */
1510         head = oxu->async;
1511         timer_action_done(oxu, TIMER_ASYNC_OFF);
1512         if (!head->qh_next.qh) {
1513                 u32     cmd = readl(&oxu->regs->command);
1514
1515                 if (!(cmd & CMD_ASE)) {
1516                         /* in case a clear of CMD_ASE didn't take yet */
1517                         (void)handshake(oxu, &oxu->regs->status,
1518                                         STS_ASS, 0, 150);
1519                         cmd |= CMD_ASE | CMD_RUN;
1520                         writel(cmd, &oxu->regs->command);
1521                         oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1522                         /* posted write need not be known to HC yet ... */
1523                 }
1524         }
1525
1526         /* clear halt and/or toggle; and maybe recover from silicon quirk */
1527         if (qh->qh_state == QH_STATE_IDLE)
1528                 qh_refresh(oxu, qh);
1529
1530         /* splice right after start */
1531         qh->qh_next = head->qh_next;
1532         qh->hw_next = head->hw_next;
1533         wmb();
1534
1535         head->qh_next.qh = qh;
1536         head->hw_next = dma;
1537
1538         qh->qh_state = QH_STATE_LINKED;
1539         /* qtd completions reported later by interrupt */
1540 }
1541
1542 #define QH_ADDR_MASK    cpu_to_le32(0x7f)
1543
1544 /*
1545  * For control/bulk/interrupt, return QH with these TDs appended.
1546  * Allocates and initializes the QH if necessary.
1547  * Returns null if it can't allocate a QH it needs to.
1548  * If the QH has TDs (urbs) already, that's great.
1549  */
1550 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
1551                                 struct urb *urb, struct list_head *qtd_list,
1552                                 int epnum, void **ptr)
1553 {
1554         struct ehci_qh *qh = NULL;
1555
1556         qh = (struct ehci_qh *) *ptr;
1557         if (unlikely(qh == NULL)) {
1558                 /* can't sleep here, we have oxu->lock... */
1559                 qh = qh_make(oxu, urb, GFP_ATOMIC);
1560                 *ptr = qh;
1561         }
1562         if (likely(qh != NULL)) {
1563                 struct ehci_qtd *qtd;
1564
1565                 if (unlikely(list_empty(qtd_list)))
1566                         qtd = NULL;
1567                 else
1568                         qtd = list_entry(qtd_list->next, struct ehci_qtd,
1569                                         qtd_list);
1570
1571                 /* control qh may need patching ... */
1572                 if (unlikely(epnum == 0)) {
1573
1574                         /* usb_reset_device() briefly reverts to address 0 */
1575                         if (usb_pipedevice(urb->pipe) == 0)
1576                                 qh->hw_info1 &= ~QH_ADDR_MASK;
1577                 }
1578
1579                 /* just one way to queue requests: swap with the dummy qtd.
1580                  * only hc or qh_refresh() ever modify the overlay.
1581                  */
1582                 if (likely(qtd != NULL)) {
1583                         struct ehci_qtd *dummy;
1584                         dma_addr_t dma;
1585                         __le32 token;
1586
1587                         /* to avoid racing the HC, use the dummy td instead of
1588                          * the first td of our list (becomes new dummy).  both
1589                          * tds stay deactivated until we're done, when the
1590                          * HC is allowed to fetch the old dummy (4.10.2).
1591                          */
1592                         token = qtd->hw_token;
1593                         qtd->hw_token = HALT_BIT;
1594                         wmb();
1595                         dummy = qh->dummy;
1596
1597                         dma = dummy->qtd_dma;
1598                         *dummy = *qtd;
1599                         dummy->qtd_dma = dma;
1600
1601                         list_del(&qtd->qtd_list);
1602                         list_add(&dummy->qtd_list, qtd_list);
1603                         list_splice(qtd_list, qh->qtd_list.prev);
1604
1605                         ehci_qtd_init(qtd, qtd->qtd_dma);
1606                         qh->dummy = qtd;
1607
1608                         /* hc must see the new dummy at list end */
1609                         dma = qtd->qtd_dma;
1610                         qtd = list_entry(qh->qtd_list.prev,
1611                                         struct ehci_qtd, qtd_list);
1612                         qtd->hw_next = QTD_NEXT(dma);
1613
1614                         /* let the hc process these next qtds */
1615                         dummy->hw_token = (token & ~(0x80));
1616                         wmb();
1617                         dummy->hw_token = token;
1618
1619                         urb->hcpriv = qh_get(qh);
1620                 }
1621         }
1622         return qh;
1623 }
1624
1625 static int submit_async(struct oxu_hcd  *oxu, struct urb *urb,
1626                         struct list_head *qtd_list, gfp_t mem_flags)
1627 {
1628         struct ehci_qtd *qtd;
1629         int epnum;
1630         unsigned long flags;
1631         struct ehci_qh *qh = NULL;
1632         int rc = 0;
1633
1634         qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1635         epnum = urb->ep->desc.bEndpointAddress;
1636
1637 #ifdef OXU_URB_TRACE
1638         oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1639                 __func__, urb->dev->devpath, urb,
1640                 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1641                 urb->transfer_buffer_length,
1642                 qtd, urb->ep->hcpriv);
1643 #endif
1644
1645         spin_lock_irqsave(&oxu->lock, flags);
1646         if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
1647                                &oxu_to_hcd(oxu)->flags))) {
1648                 rc = -ESHUTDOWN;
1649                 goto done;
1650         }
1651
1652         qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
1653         if (unlikely(qh == NULL)) {
1654                 rc = -ENOMEM;
1655                 goto done;
1656         }
1657
1658         /* Control/bulk operations through TTs don't need scheduling,
1659          * the HC and TT handle it when the TT has a buffer ready.
1660          */
1661         if (likely(qh->qh_state == QH_STATE_IDLE))
1662                 qh_link_async(oxu, qh_get(qh));
1663 done:
1664         spin_unlock_irqrestore(&oxu->lock, flags);
1665         if (unlikely(qh == NULL))
1666                 qtd_list_free(oxu, urb, qtd_list);
1667         return rc;
1668 }
1669
1670 /* The async qh for the qtds being reclaimed are now unlinked from the HC */
1671
1672 static void end_unlink_async(struct oxu_hcd *oxu)
1673 {
1674         struct ehci_qh *qh = oxu->reclaim;
1675         struct ehci_qh *next;
1676
1677         timer_action_done(oxu, TIMER_IAA_WATCHDOG);
1678
1679         qh->qh_state = QH_STATE_IDLE;
1680         qh->qh_next.qh = NULL;
1681         qh_put(qh);                     /* refcount from reclaim */
1682
1683         /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
1684         next = qh->reclaim;
1685         oxu->reclaim = next;
1686         oxu->reclaim_ready = 0;
1687         qh->reclaim = NULL;
1688
1689         qh_completions(oxu, qh);
1690
1691         if (!list_empty(&qh->qtd_list)
1692                         && HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
1693                 qh_link_async(oxu, qh);
1694         else {
1695                 qh_put(qh);             /* refcount from async list */
1696
1697                 /* it's not free to turn the async schedule on/off; leave it
1698                  * active but idle for a while once it empties.
1699                  */
1700                 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
1701                                 && oxu->async->qh_next.qh == NULL)
1702                         timer_action(oxu, TIMER_ASYNC_OFF);
1703         }
1704
1705         if (next) {
1706                 oxu->reclaim = NULL;
1707                 start_unlink_async(oxu, next);
1708         }
1709 }
1710
1711 /* makes sure the async qh will become idle */
1712 /* caller must own oxu->lock */
1713
1714 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1715 {
1716         int cmd = readl(&oxu->regs->command);
1717         struct ehci_qh *prev;
1718
1719 #ifdef DEBUG
1720         assert_spin_locked(&oxu->lock);
1721         if (oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
1722                                 && qh->qh_state != QH_STATE_UNLINK_WAIT))
1723                 BUG();
1724 #endif
1725
1726         /* stop async schedule right now? */
1727         if (unlikely(qh == oxu->async)) {
1728                 /* can't get here without STS_ASS set */
1729                 if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
1730                                 && !oxu->reclaim) {
1731                         /* ... and CMD_IAAD clear */
1732                         writel(cmd & ~CMD_ASE, &oxu->regs->command);
1733                         wmb();
1734                         /* handshake later, if we need to */
1735                         timer_action_done(oxu, TIMER_ASYNC_OFF);
1736                 }
1737                 return;
1738         }
1739
1740         qh->qh_state = QH_STATE_UNLINK;
1741         oxu->reclaim = qh = qh_get(qh);
1742
1743         prev = oxu->async;
1744         while (prev->qh_next.qh != qh)
1745                 prev = prev->qh_next.qh;
1746
1747         prev->hw_next = qh->hw_next;
1748         prev->qh_next = qh->qh_next;
1749         wmb();
1750
1751         if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
1752                 /* if (unlikely(qh->reclaim != 0))
1753                  *      this will recurse, probably not much
1754                  */
1755                 end_unlink_async(oxu);
1756                 return;
1757         }
1758
1759         oxu->reclaim_ready = 0;
1760         cmd |= CMD_IAAD;
1761         writel(cmd, &oxu->regs->command);
1762         (void) readl(&oxu->regs->command);
1763         timer_action(oxu, TIMER_IAA_WATCHDOG);
1764 }
1765
1766 static void scan_async(struct oxu_hcd *oxu)
1767 {
1768         struct ehci_qh *qh;
1769         enum ehci_timer_action action = TIMER_IO_WATCHDOG;
1770
1771         if (!++(oxu->stamp))
1772                 oxu->stamp++;
1773         timer_action_done(oxu, TIMER_ASYNC_SHRINK);
1774 rescan:
1775         qh = oxu->async->qh_next.qh;
1776         if (likely(qh != NULL)) {
1777                 do {
1778                         /* clean any finished work for this qh */
1779                         if (!list_empty(&qh->qtd_list)
1780                                         && qh->stamp != oxu->stamp) {
1781                                 int temp;
1782
1783                                 /* unlinks could happen here; completion
1784                                  * reporting drops the lock.  rescan using
1785                                  * the latest schedule, but don't rescan
1786                                  * qhs we already finished (no looping).
1787                                  */
1788                                 qh = qh_get(qh);
1789                                 qh->stamp = oxu->stamp;
1790                                 temp = qh_completions(oxu, qh);
1791                                 qh_put(qh);
1792                                 if (temp != 0)
1793                                         goto rescan;
1794                         }
1795
1796                         /* unlink idle entries, reducing HC PCI usage as well
1797                          * as HCD schedule-scanning costs.  delay for any qh
1798                          * we just scanned, there's a not-unusual case that it
1799                          * doesn't stay idle for long.
1800                          * (plus, avoids some kind of re-activation race.)
1801                          */
1802                         if (list_empty(&qh->qtd_list)) {
1803                                 if (qh->stamp == oxu->stamp)
1804                                         action = TIMER_ASYNC_SHRINK;
1805                                 else if (!oxu->reclaim
1806                                             && qh->qh_state == QH_STATE_LINKED)
1807                                         start_unlink_async(oxu, qh);
1808                         }
1809
1810                         qh = qh->qh_next.qh;
1811                 } while (qh);
1812         }
1813         if (action == TIMER_ASYNC_SHRINK)
1814                 timer_action(oxu, TIMER_ASYNC_SHRINK);
1815 }
1816
1817 /*
1818  * periodic_next_shadow - return "next" pointer on shadow list
1819  * @periodic: host pointer to qh/itd/sitd
1820  * @tag: hardware tag for type of this record
1821  */
1822 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
1823                                                 __le32 tag)
1824 {
1825         switch (tag) {
1826         default:
1827         case Q_TYPE_QH:
1828                 return &periodic->qh->qh_next;
1829         }
1830 }
1831
1832 /* caller must hold oxu->lock */
1833 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
1834 {
1835         union ehci_shadow *prev_p = &oxu->pshadow[frame];
1836         __le32 *hw_p = &oxu->periodic[frame];
1837         union ehci_shadow here = *prev_p;
1838
1839         /* find predecessor of "ptr"; hw and shadow lists are in sync */
1840         while (here.ptr && here.ptr != ptr) {
1841                 prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
1842                 hw_p = here.hw_next;
1843                 here = *prev_p;
1844         }
1845         /* an interrupt entry (at list end) could have been shared */
1846         if (!here.ptr)
1847                 return;
1848
1849         /* update shadow and hardware lists ... the old "next" pointers
1850          * from ptr may still be in use, the caller updates them.
1851          */
1852         *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
1853         *hw_p = *here.hw_next;
1854 }
1855
1856 /* how many of the uframe's 125 usecs are allocated? */
1857 static unsigned short periodic_usecs(struct oxu_hcd *oxu,
1858                                         unsigned frame, unsigned uframe)
1859 {
1860         __le32 *hw_p = &oxu->periodic[frame];
1861         union ehci_shadow *q = &oxu->pshadow[frame];
1862         unsigned usecs = 0;
1863
1864         while (q->ptr) {
1865                 switch (Q_NEXT_TYPE(*hw_p)) {
1866                 case Q_TYPE_QH:
1867                 default:
1868                         /* is it in the S-mask? */
1869                         if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
1870                                 usecs += q->qh->usecs;
1871                         /* ... or C-mask? */
1872                         if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
1873                                 usecs += q->qh->c_usecs;
1874                         hw_p = &q->qh->hw_next;
1875                         q = &q->qh->qh_next;
1876                         break;
1877                 }
1878         }
1879 #ifdef DEBUG
1880         if (usecs > 100)
1881                 oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
1882                                                 frame * 8 + uframe, usecs);
1883 #endif
1884         return usecs;
1885 }
1886
1887 static int enable_periodic(struct oxu_hcd *oxu)
1888 {
1889         u32 cmd;
1890         int status;
1891
1892         /* did clearing PSE did take effect yet?
1893          * takes effect only at frame boundaries...
1894          */
1895         status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
1896         if (status != 0) {
1897                 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
1898                 return status;
1899         }
1900
1901         cmd = readl(&oxu->regs->command) | CMD_PSE;
1902         writel(cmd, &oxu->regs->command);
1903         /* posted write ... PSS happens later */
1904         oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1905
1906         /* make sure ehci_work scans these */
1907         oxu->next_uframe = readl(&oxu->regs->frame_index)
1908                 % (oxu->periodic_size << 3);
1909         return 0;
1910 }
1911
1912 static int disable_periodic(struct oxu_hcd *oxu)
1913 {
1914         u32 cmd;
1915         int status;
1916
1917         /* did setting PSE not take effect yet?
1918          * takes effect only at frame boundaries...
1919          */
1920         status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
1921         if (status != 0) {
1922                 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
1923                 return status;
1924         }
1925
1926         cmd = readl(&oxu->regs->command) & ~CMD_PSE;
1927         writel(cmd, &oxu->regs->command);
1928         /* posted write ... */
1929
1930         oxu->next_uframe = -1;
1931         return 0;
1932 }
1933
1934 /* periodic schedule slots have iso tds (normal or split) first, then a
1935  * sparse tree for active interrupt transfers.
1936  *
1937  * this just links in a qh; caller guarantees uframe masks are set right.
1938  * no FSTN support (yet; oxu 0.96+)
1939  */
1940 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
1941 {
1942         unsigned i;
1943         unsigned period = qh->period;
1944
1945         dev_dbg(&qh->dev->dev,
1946                 "link qh%d-%04x/%p start %d [%d/%d us]\n",
1947                 period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
1948                 qh, qh->start, qh->usecs, qh->c_usecs);
1949
1950         /* high bandwidth, or otherwise every microframe */
1951         if (period == 0)
1952                 period = 1;
1953
1954         for (i = qh->start; i < oxu->periodic_size; i += period) {
1955                 union ehci_shadow       *prev = &oxu->pshadow[i];
1956                 __le32                  *hw_p = &oxu->periodic[i];
1957                 union ehci_shadow       here = *prev;
1958                 __le32                  type = 0;
1959
1960                 /* skip the iso nodes at list head */
1961                 while (here.ptr) {
1962                         type = Q_NEXT_TYPE(*hw_p);
1963                         if (type == Q_TYPE_QH)
1964                                 break;
1965                         prev = periodic_next_shadow(prev, type);
1966                         hw_p = &here.qh->hw_next;
1967                         here = *prev;
1968                 }
1969
1970                 /* sorting each branch by period (slow-->fast)
1971                  * enables sharing interior tree nodes
1972                  */
1973                 while (here.ptr && qh != here.qh) {
1974                         if (qh->period > here.qh->period)
1975                                 break;
1976                         prev = &here.qh->qh_next;
1977                         hw_p = &here.qh->hw_next;
1978                         here = *prev;
1979                 }
1980                 /* link in this qh, unless some earlier pass did that */
1981                 if (qh != here.qh) {
1982                         qh->qh_next = here;
1983                         if (here.qh)
1984                                 qh->hw_next = *hw_p;
1985                         wmb();
1986                         prev->qh = qh;
1987                         *hw_p = QH_NEXT(qh->qh_dma);
1988                 }
1989         }
1990         qh->qh_state = QH_STATE_LINKED;
1991         qh_get(qh);
1992
1993         /* update per-qh bandwidth for usbfs */
1994         oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
1995                 ? ((qh->usecs + qh->c_usecs) / qh->period)
1996                 : (qh->usecs * 8);
1997
1998         /* maybe enable periodic schedule processing */
1999         if (!oxu->periodic_sched++)
2000                 return enable_periodic(oxu);
2001
2002         return 0;
2003 }
2004
2005 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2006 {
2007         unsigned i;
2008         unsigned period;
2009
2010         /* FIXME:
2011          *   IF this isn't high speed
2012          *   and this qh is active in the current uframe
2013          *   (and overlay token SplitXstate is false?)
2014          * THEN
2015          *   qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2016          */
2017
2018         /* high bandwidth, or otherwise part of every microframe */
2019         period = qh->period;
2020         if (period == 0)
2021                 period = 1;
2022
2023         for (i = qh->start; i < oxu->periodic_size; i += period)
2024                 periodic_unlink(oxu, i, qh);
2025
2026         /* update per-qh bandwidth for usbfs */
2027         oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
2028                 ? ((qh->usecs + qh->c_usecs) / qh->period)
2029                 : (qh->usecs * 8);
2030
2031         dev_dbg(&qh->dev->dev,
2032                 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2033                 qh->period,
2034                 le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2035                 qh, qh->start, qh->usecs, qh->c_usecs);
2036
2037         /* qh->qh_next still "live" to HC */
2038         qh->qh_state = QH_STATE_UNLINK;
2039         qh->qh_next.ptr = NULL;
2040         qh_put(qh);
2041
2042         /* maybe turn off periodic schedule */
2043         oxu->periodic_sched--;
2044         if (!oxu->periodic_sched)
2045                 (void) disable_periodic(oxu);
2046 }
2047
2048 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2049 {
2050         unsigned wait;
2051
2052         qh_unlink_periodic(oxu, qh);
2053
2054         /* simple/paranoid:  always delay, expecting the HC needs to read
2055          * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2056          * expect khubd to clean up after any CSPLITs we won't issue.
2057          * active high speed queues may need bigger delays...
2058          */
2059         if (list_empty(&qh->qtd_list)
2060                 || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
2061                 wait = 2;
2062         else
2063                 wait = 55;      /* worst case: 3 * 1024 */
2064
2065         udelay(wait);
2066         qh->qh_state = QH_STATE_IDLE;
2067         qh->hw_next = EHCI_LIST_END;
2068         wmb();
2069 }
2070
2071 static int check_period(struct oxu_hcd *oxu,
2072                         unsigned frame, unsigned uframe,
2073                         unsigned period, unsigned usecs)
2074 {
2075         int claimed;
2076
2077         /* complete split running into next frame?
2078          * given FSTN support, we could sometimes check...
2079          */
2080         if (uframe >= 8)
2081                 return 0;
2082
2083         /*
2084          * 80% periodic == 100 usec/uframe available
2085          * convert "usecs we need" to "max already claimed"
2086          */
2087         usecs = 100 - usecs;
2088
2089         /* we "know" 2 and 4 uframe intervals were rejected; so
2090          * for period 0, check _every_ microframe in the schedule.
2091          */
2092         if (unlikely(period == 0)) {
2093                 do {
2094                         for (uframe = 0; uframe < 7; uframe++) {
2095                                 claimed = periodic_usecs(oxu, frame, uframe);
2096                                 if (claimed > usecs)
2097                                         return 0;
2098                         }
2099                 } while ((frame += 1) < oxu->periodic_size);
2100
2101         /* just check the specified uframe, at that period */
2102         } else {
2103                 do {
2104                         claimed = periodic_usecs(oxu, frame, uframe);
2105                         if (claimed > usecs)
2106                                 return 0;
2107                 } while ((frame += period) < oxu->periodic_size);
2108         }
2109
2110         return 1;
2111 }
2112
2113 static int check_intr_schedule(struct oxu_hcd   *oxu,
2114                                 unsigned frame, unsigned uframe,
2115                                 const struct ehci_qh *qh, __le32 *c_maskp)
2116 {
2117         int retval = -ENOSPC;
2118
2119         if (qh->c_usecs && uframe >= 6)         /* FSTN territory? */
2120                 goto done;
2121
2122         if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
2123                 goto done;
2124         if (!qh->c_usecs) {
2125                 retval = 0;
2126                 *c_maskp = 0;
2127                 goto done;
2128         }
2129
2130 done:
2131         return retval;
2132 }
2133
2134 /* "first fit" scheduling policy used the first time through,
2135  * or when the previous schedule slot can't be re-used.
2136  */
2137 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2138 {
2139         int             status;
2140         unsigned        uframe;
2141         __le32          c_mask;
2142         unsigned        frame;          /* 0..(qh->period - 1), or NO_FRAME */
2143
2144         qh_refresh(oxu, qh);
2145         qh->hw_next = EHCI_LIST_END;
2146         frame = qh->start;
2147
2148         /* reuse the previous schedule slots, if we can */
2149         if (frame < qh->period) {
2150                 uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
2151                 status = check_intr_schedule(oxu, frame, --uframe,
2152                                 qh, &c_mask);
2153         } else {
2154                 uframe = 0;
2155                 c_mask = 0;
2156                 status = -ENOSPC;
2157         }
2158
2159         /* else scan the schedule to find a group of slots such that all
2160          * uframes have enough periodic bandwidth available.
2161          */
2162         if (status) {
2163                 /* "normal" case, uframing flexible except with splits */
2164                 if (qh->period) {
2165                         frame = qh->period - 1;
2166                         do {
2167                                 for (uframe = 0; uframe < 8; uframe++) {
2168                                         status = check_intr_schedule(oxu,
2169                                                         frame, uframe, qh,
2170                                                         &c_mask);
2171                                         if (status == 0)
2172                                                 break;
2173                                 }
2174                         } while (status && frame--);
2175
2176                 /* qh->period == 0 means every uframe */
2177                 } else {
2178                         frame = 0;
2179                         status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
2180                 }
2181                 if (status)
2182                         goto done;
2183                 qh->start = frame;
2184
2185                 /* reset S-frame and (maybe) C-frame masks */
2186                 qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
2187                 qh->hw_info2 |= qh->period
2188                         ? cpu_to_le32(1 << uframe)
2189                         : cpu_to_le32(QH_SMASK);
2190                 qh->hw_info2 |= c_mask;
2191         } else
2192                 oxu_dbg(oxu, "reused qh %p schedule\n", qh);
2193
2194         /* stuff into the periodic schedule */
2195         status = qh_link_periodic(oxu, qh);
2196 done:
2197         return status;
2198 }
2199
2200 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
2201                         struct list_head *qtd_list, gfp_t mem_flags)
2202 {
2203         unsigned epnum;
2204         unsigned long flags;
2205         struct ehci_qh *qh;
2206         int status = 0;
2207         struct list_head        empty;
2208
2209         /* get endpoint and transfer/schedule data */
2210         epnum = urb->ep->desc.bEndpointAddress;
2211
2212         spin_lock_irqsave(&oxu->lock, flags);
2213
2214         if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
2215                                &oxu_to_hcd(oxu)->flags))) {
2216                 status = -ESHUTDOWN;
2217                 goto done;
2218         }
2219
2220         /* get qh and force any scheduling errors */
2221         INIT_LIST_HEAD(&empty);
2222         qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
2223         if (qh == NULL) {
2224                 status = -ENOMEM;
2225                 goto done;
2226         }
2227         if (qh->qh_state == QH_STATE_IDLE) {
2228                 status = qh_schedule(oxu, qh);
2229                 if (status != 0)
2230                         goto done;
2231         }
2232
2233         /* then queue the urb's tds to the qh */
2234         qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2235         BUG_ON(qh == NULL);
2236
2237         /* ... update usbfs periodic stats */
2238         oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
2239
2240 done:
2241         spin_unlock_irqrestore(&oxu->lock, flags);
2242         if (status)
2243                 qtd_list_free(oxu, urb, qtd_list);
2244
2245         return status;
2246 }
2247
2248 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
2249                                                 gfp_t mem_flags)
2250 {
2251         oxu_dbg(oxu, "iso support is missing!\n");
2252         return -ENOSYS;
2253 }
2254
2255 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
2256                                                 gfp_t mem_flags)
2257 {
2258         oxu_dbg(oxu, "split iso support is missing!\n");
2259         return -ENOSYS;
2260 }
2261
2262 static void scan_periodic(struct oxu_hcd *oxu)
2263 {
2264         unsigned frame, clock, now_uframe, mod;
2265         unsigned modified;
2266
2267         mod = oxu->periodic_size << 3;
2268
2269         /*
2270          * When running, scan from last scan point up to "now"
2271          * else clean up by scanning everything that's left.
2272          * Touches as few pages as possible:  cache-friendly.
2273          */
2274         now_uframe = oxu->next_uframe;
2275         if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2276                 clock = readl(&oxu->regs->frame_index);
2277         else
2278                 clock = now_uframe + mod - 1;
2279         clock %= mod;
2280
2281         for (;;) {
2282                 union ehci_shadow       q, *q_p;
2283                 __le32                  type, *hw_p;
2284                 unsigned                uframes;
2285
2286                 /* don't scan past the live uframe */
2287                 frame = now_uframe >> 3;
2288                 if (frame == (clock >> 3))
2289                         uframes = now_uframe & 0x07;
2290                 else {
2291                         /* safe to scan the whole frame at once */
2292                         now_uframe |= 0x07;
2293                         uframes = 8;
2294                 }
2295
2296 restart:
2297                 /* scan each element in frame's queue for completions */
2298                 q_p = &oxu->pshadow[frame];
2299                 hw_p = &oxu->periodic[frame];
2300                 q.ptr = q_p->ptr;
2301                 type = Q_NEXT_TYPE(*hw_p);
2302                 modified = 0;
2303
2304                 while (q.ptr != NULL) {
2305                         union ehci_shadow temp;
2306                         int live;
2307
2308                         live = HC_IS_RUNNING(oxu_to_hcd(oxu)->state);
2309                         switch (type) {
2310                         case Q_TYPE_QH:
2311                                 /* handle any completions */
2312                                 temp.qh = qh_get(q.qh);
2313                                 type = Q_NEXT_TYPE(q.qh->hw_next);
2314                                 q = q.qh->qh_next;
2315                                 modified = qh_completions(oxu, temp.qh);
2316                                 if (unlikely(list_empty(&temp.qh->qtd_list)))
2317                                         intr_deschedule(oxu, temp.qh);
2318                                 qh_put(temp.qh);
2319                                 break;
2320                         default:
2321                                 dbg("corrupt type %d frame %d shadow %p",
2322                                         type, frame, q.ptr);
2323                                 q.ptr = NULL;
2324                         }
2325
2326                         /* assume completion callbacks modify the queue */
2327                         if (unlikely(modified))
2328                                 goto restart;
2329                 }
2330
2331                 /* Stop when we catch up to the HC */
2332
2333                 /* FIXME:  this assumes we won't get lapped when
2334                  * latencies climb; that should be rare, but...
2335                  * detect it, and just go all the way around.
2336                  * FLR might help detect this case, so long as latencies
2337                  * don't exceed periodic_size msec (default 1.024 sec).
2338                  */
2339
2340                 /* FIXME: likewise assumes HC doesn't halt mid-scan */
2341
2342                 if (now_uframe == clock) {
2343                         unsigned        now;
2344
2345                         if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2346                                 break;
2347                         oxu->next_uframe = now_uframe;
2348                         now = readl(&oxu->regs->frame_index) % mod;
2349                         if (now_uframe == now)
2350                                 break;
2351
2352                         /* rescan the rest of this frame, then ... */
2353                         clock = now;
2354                 } else {
2355                         now_uframe++;
2356                         now_uframe %= mod;
2357                 }
2358         }
2359 }
2360
2361 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
2362  * The firmware seems to think that powering off is a wakeup event!
2363  * This routine turns off remote wakeup and everything else, on all ports.
2364  */
2365 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
2366 {
2367         int port = HCS_N_PORTS(oxu->hcs_params);
2368
2369         while (port--)
2370                 writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
2371 }
2372
2373 static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
2374 {
2375         unsigned port;
2376
2377         if (!HCS_PPC(oxu->hcs_params))
2378                 return;
2379
2380         oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down");
2381         for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; )
2382                 (void) oxu_hub_control(oxu_to_hcd(oxu),
2383                                 is_on ? SetPortFeature : ClearPortFeature,
2384                                 USB_PORT_FEAT_POWER,
2385                                 port--, NULL, 0);
2386         msleep(20);
2387 }
2388
2389 /* Called from some interrupts, timers, and so on.
2390  * It calls driver completion functions, after dropping oxu->lock.
2391  */
2392 static void ehci_work(struct oxu_hcd *oxu)
2393 {
2394         timer_action_done(oxu, TIMER_IO_WATCHDOG);
2395         if (oxu->reclaim_ready)
2396                 end_unlink_async(oxu);
2397
2398         /* another CPU may drop oxu->lock during a schedule scan while
2399          * it reports urb completions.  this flag guards against bogus
2400          * attempts at re-entrant schedule scanning.
2401          */
2402         if (oxu->scanning)
2403                 return;
2404         oxu->scanning = 1;
2405         scan_async(oxu);
2406         if (oxu->next_uframe != -1)
2407                 scan_periodic(oxu);
2408         oxu->scanning = 0;
2409
2410         /* the IO watchdog guards against hardware or driver bugs that
2411          * misplace IRQs, and should let us run completely without IRQs.
2412          * such lossage has been observed on both VT6202 and VT8235.
2413          */
2414         if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
2415                         (oxu->async->qh_next.ptr != NULL ||
2416                          oxu->periodic_sched != 0))
2417                 timer_action(oxu, TIMER_IO_WATCHDOG);
2418 }
2419
2420 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2421 {
2422         /* if we need to use IAA and it's busy, defer */
2423         if (qh->qh_state == QH_STATE_LINKED
2424                         && oxu->reclaim
2425                         && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
2426                 struct ehci_qh          *last;
2427
2428                 for (last = oxu->reclaim;
2429                                 last->reclaim;
2430                                 last = last->reclaim)
2431                         continue;
2432                 qh->qh_state = QH_STATE_UNLINK_WAIT;
2433                 last->reclaim = qh;
2434
2435         /* bypass IAA if the hc can't care */
2436         } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
2437                 end_unlink_async(oxu);
2438
2439         /* something else might have unlinked the qh by now */
2440         if (qh->qh_state == QH_STATE_LINKED)
2441                 start_unlink_async(oxu, qh);
2442 }
2443
2444 /*
2445  * USB host controller methods
2446  */
2447
2448 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
2449 {
2450         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2451         u32 status, pcd_status = 0;
2452         int bh;
2453
2454         spin_lock(&oxu->lock);
2455
2456         status = readl(&oxu->regs->status);
2457
2458         /* e.g. cardbus physical eject */
2459         if (status == ~(u32) 0) {
2460                 oxu_dbg(oxu, "device removed\n");
2461                 goto dead;
2462         }
2463
2464         status &= INTR_MASK;
2465         if (!status) {                  /* irq sharing? */
2466                 spin_unlock(&oxu->lock);
2467                 return IRQ_NONE;
2468         }
2469
2470         /* clear (just) interrupts */
2471         writel(status, &oxu->regs->status);
2472         readl(&oxu->regs->command);     /* unblock posted write */
2473         bh = 0;
2474
2475 #ifdef OXU_VERBOSE_DEBUG
2476         /* unrequested/ignored: Frame List Rollover */
2477         dbg_status(oxu, "irq", status);
2478 #endif
2479
2480         /* INT, ERR, and IAA interrupt rates can be throttled */
2481
2482         /* normal [4.15.1.2] or error [4.15.1.1] completion */
2483         if (likely((status & (STS_INT|STS_ERR)) != 0))
2484                 bh = 1;
2485
2486         /* complete the unlinking of some qh [4.15.2.3] */
2487         if (status & STS_IAA) {
2488                 oxu->reclaim_ready = 1;
2489                 bh = 1;
2490         }
2491
2492         /* remote wakeup [4.3.1] */
2493         if (status & STS_PCD) {
2494                 unsigned i = HCS_N_PORTS(oxu->hcs_params);
2495                 pcd_status = status;
2496
2497                 /* resume root hub? */
2498                 if (!(readl(&oxu->regs->command) & CMD_RUN))
2499                         usb_hcd_resume_root_hub(hcd);
2500
2501                 while (i--) {
2502                         int pstatus = readl(&oxu->regs->port_status[i]);
2503
2504                         if (pstatus & PORT_OWNER)
2505                                 continue;
2506                         if (!(pstatus & PORT_RESUME)
2507                                         || oxu->reset_done[i] != 0)
2508                                 continue;
2509
2510                         /* start 20 msec resume signaling from this port,
2511                          * and make khubd collect PORT_STAT_C_SUSPEND to
2512                          * stop that signaling.
2513                          */
2514                         oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
2515                         oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
2516                         mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
2517                 }
2518         }
2519
2520         /* PCI errors [4.15.2.4] */
2521         if (unlikely((status & STS_FATAL) != 0)) {
2522                 /* bogus "fatal" IRQs appear on some chips... why?  */
2523                 status = readl(&oxu->regs->status);
2524                 dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
2525                 dbg_status(oxu, "fatal", status);
2526                 if (status & STS_HALT) {
2527                         oxu_err(oxu, "fatal error\n");
2528 dead:
2529                         ehci_reset(oxu);
2530                         writel(0, &oxu->regs->configured_flag);
2531                         /* generic layer kills/unlinks all urbs, then
2532                          * uses oxu_stop to clean up the rest
2533                          */
2534                         bh = 1;
2535                 }
2536         }
2537
2538         if (bh)
2539                 ehci_work(oxu);
2540         spin_unlock(&oxu->lock);
2541         if (pcd_status & STS_PCD)
2542                 usb_hcd_poll_rh_status(hcd);
2543         return IRQ_HANDLED;
2544 }
2545
2546 static irqreturn_t oxu_irq(struct usb_hcd *hcd)
2547 {
2548         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2549         int ret = IRQ_HANDLED;
2550
2551         u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
2552         u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
2553
2554         /* Disable all interrupt */
2555         oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
2556
2557         if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
2558                 (!oxu->is_otg && (status & OXU_USBSPHI)))
2559                 oxu210_hcd_irq(hcd);
2560         else
2561                 ret = IRQ_NONE;
2562
2563         /* Enable all interrupt back */
2564         oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
2565
2566         return ret;
2567 }
2568
2569 static void oxu_watchdog(unsigned long param)
2570 {
2571         struct oxu_hcd  *oxu = (struct oxu_hcd *) param;
2572         unsigned long flags;
2573
2574         spin_lock_irqsave(&oxu->lock, flags);
2575
2576         /* lost IAA irqs wedge things badly; seen with a vt8235 */
2577         if (oxu->reclaim) {
2578                 u32 status = readl(&oxu->regs->status);
2579                 if (status & STS_IAA) {
2580                         oxu_vdbg(oxu, "lost IAA\n");
2581                         writel(STS_IAA, &oxu->regs->status);
2582                         oxu->reclaim_ready = 1;
2583                 }
2584         }
2585
2586         /* stop async processing after it's idled a bit */
2587         if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
2588                 start_unlink_async(oxu, oxu->async);
2589
2590         /* oxu could run by timer, without IRQs ... */
2591         ehci_work(oxu);
2592
2593         spin_unlock_irqrestore(&oxu->lock, flags);
2594 }
2595
2596 /* One-time init, only for memory state.
2597  */
2598 static int oxu_hcd_init(struct usb_hcd *hcd)
2599 {
2600         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2601         u32 temp;
2602         int retval;
2603         u32 hcc_params;
2604
2605         spin_lock_init(&oxu->lock);
2606
2607         init_timer(&oxu->watchdog);
2608         oxu->watchdog.function = oxu_watchdog;
2609         oxu->watchdog.data = (unsigned long) oxu;
2610
2611         /*
2612          * hw default: 1K periodic list heads, one per frame.
2613          * periodic_size can shrink by USBCMD update if hcc_params allows.
2614          */
2615         oxu->periodic_size = DEFAULT_I_TDPS;
2616         retval = ehci_mem_init(oxu, GFP_KERNEL);
2617         if (retval < 0)
2618                 return retval;
2619
2620         /* controllers may cache some of the periodic schedule ... */
2621         hcc_params = readl(&oxu->caps->hcc_params);
2622         if (HCC_ISOC_CACHE(hcc_params))         /* full frame cache */
2623                 oxu->i_thresh = 8;
2624         else                                    /* N microframes cached */
2625                 oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
2626
2627         oxu->reclaim = NULL;
2628         oxu->reclaim_ready = 0;
2629         oxu->next_uframe = -1;
2630
2631         /*
2632          * dedicate a qh for the async ring head, since we couldn't unlink
2633          * a 'real' qh without stopping the async schedule [4.8].  use it
2634          * as the 'reclamation list head' too.
2635          * its dummy is used in hw_alt_next of many tds, to prevent the qh
2636          * from automatically advancing to the next td after short reads.
2637          */
2638         oxu->async->qh_next.qh = NULL;
2639         oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
2640         oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
2641         oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
2642         oxu->async->hw_qtd_next = EHCI_LIST_END;
2643         oxu->async->qh_state = QH_STATE_LINKED;
2644         oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
2645
2646         /* clear interrupt enables, set irq latency */
2647         if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
2648                 log2_irq_thresh = 0;
2649         temp = 1 << (16 + log2_irq_thresh);
2650         if (HCC_CANPARK(hcc_params)) {
2651                 /* HW default park == 3, on hardware that supports it (like
2652                  * NVidia and ALI silicon), maximizes throughput on the async
2653                  * schedule by avoiding QH fetches between transfers.
2654                  *
2655                  * With fast usb storage devices and NForce2, "park" seems to
2656                  * make problems:  throughput reduction (!), data errors...
2657                  */
2658                 if (park) {
2659                         park = min(park, (unsigned) 3);
2660                         temp |= CMD_PARK;
2661                         temp |= park << 8;
2662                 }
2663                 oxu_dbg(oxu, "park %d\n", park);
2664         }
2665         if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
2666                 /* periodic schedule size can be smaller than default */
2667                 temp &= ~(3 << 2);
2668                 temp |= (EHCI_TUNE_FLS << 2);
2669         }
2670         oxu->command = temp;
2671
2672         return 0;
2673 }
2674
2675 /* Called during probe() after chip reset completes.
2676  */
2677 static int oxu_reset(struct usb_hcd *hcd)
2678 {
2679         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2680         int ret;
2681
2682         spin_lock_init(&oxu->mem_lock);
2683         INIT_LIST_HEAD(&oxu->urb_list);
2684         oxu->urb_len = 0;
2685
2686         /* FIMXE */
2687         hcd->self.controller->dma_mask = NULL;
2688
2689         if (oxu->is_otg) {
2690                 oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
2691                 oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
2692                         HC_LENGTH(readl(&oxu->caps->hc_capbase));
2693
2694                 oxu->mem = hcd->regs + OXU_SPH_MEM;
2695         } else {
2696                 oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
2697                 oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
2698                         HC_LENGTH(readl(&oxu->caps->hc_capbase));
2699
2700                 oxu->mem = hcd->regs + OXU_OTG_MEM;
2701         }
2702
2703         oxu->hcs_params = readl(&oxu->caps->hcs_params);
2704         oxu->sbrn = 0x20;
2705
2706         ret = oxu_hcd_init(hcd);
2707         if (ret)
2708                 return ret;
2709
2710         return 0;
2711 }
2712
2713 static int oxu_run(struct usb_hcd *hcd)
2714 {
2715         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2716         int retval;
2717         u32 temp, hcc_params;
2718
2719         hcd->uses_new_polling = 1;
2720         hcd->poll_rh = 0;
2721
2722         /* EHCI spec section 4.1 */
2723         retval = ehci_reset(oxu);
2724         if (retval != 0) {
2725                 ehci_mem_cleanup(oxu);
2726                 return retval;
2727         }
2728         writel(oxu->periodic_dma, &oxu->regs->frame_list);
2729         writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
2730
2731         /* hcc_params controls whether oxu->regs->segment must (!!!)
2732          * be used; it constrains QH/ITD/SITD and QTD locations.
2733          * pci_pool consistent memory always uses segment zero.
2734          * streaming mappings for I/O buffers, like pci_map_single(),
2735          * can return segments above 4GB, if the device allows.
2736          *
2737          * NOTE:  the dma mask is visible through dma_supported(), so
2738          * drivers can pass this info along ... like NETIF_F_HIGHDMA,
2739          * Scsi_Host.highmem_io, and so forth.  It's readonly to all
2740          * host side drivers though.
2741          */
2742         hcc_params = readl(&oxu->caps->hcc_params);
2743         if (HCC_64BIT_ADDR(hcc_params))
2744                 writel(0, &oxu->regs->segment);
2745
2746         oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
2747                                 CMD_ASE | CMD_RESET);
2748         oxu->command |= CMD_RUN;
2749         writel(oxu->command, &oxu->regs->command);
2750         dbg_cmd(oxu, "init", oxu->command);
2751
2752         /*
2753          * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
2754          * are explicitly handed to companion controller(s), so no TT is
2755          * involved with the root hub.  (Except where one is integrated,
2756          * and there's no companion controller unless maybe for USB OTG.)
2757          */
2758         hcd->state = HC_STATE_RUNNING;
2759         writel(FLAG_CF, &oxu->regs->configured_flag);
2760         readl(&oxu->regs->command);     /* unblock posted writes */
2761
2762         temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
2763         oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
2764                 ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
2765                 temp >> 8, temp & 0xff, DRIVER_VERSION,
2766                 ignore_oc ? ", overcurrent ignored" : "");
2767
2768         writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
2769
2770         return 0;
2771 }
2772
2773 static void oxu_stop(struct usb_hcd *hcd)
2774 {
2775         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2776
2777         /* Turn off port power on all root hub ports. */
2778         ehci_port_power(oxu, 0);
2779
2780         /* no more interrupts ... */
2781         del_timer_sync(&oxu->watchdog);
2782
2783         spin_lock_irq(&oxu->lock);
2784         if (HC_IS_RUNNING(hcd->state))
2785                 ehci_quiesce(oxu);
2786
2787         ehci_reset(oxu);
2788         writel(0, &oxu->regs->intr_enable);
2789         spin_unlock_irq(&oxu->lock);
2790
2791         /* let companion controllers work when we aren't */
2792         writel(0, &oxu->regs->configured_flag);
2793
2794         /* root hub is shut down separately (first, when possible) */
2795         spin_lock_irq(&oxu->lock);
2796         if (oxu->async)
2797                 ehci_work(oxu);
2798         spin_unlock_irq(&oxu->lock);
2799         ehci_mem_cleanup(oxu);
2800
2801         dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
2802 }
2803
2804 /* Kick in for silicon on any bus (not just pci, etc).
2805  * This forcibly disables dma and IRQs, helping kexec and other cases
2806  * where the next system software may expect clean state.
2807  */
2808 static void oxu_shutdown(struct usb_hcd *hcd)
2809 {
2810         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2811
2812         (void) ehci_halt(oxu);
2813         ehci_turn_off_all_ports(oxu);
2814
2815         /* make BIOS/etc use companion controller during reboot */
2816         writel(0, &oxu->regs->configured_flag);
2817
2818         /* unblock posted writes */
2819         readl(&oxu->regs->configured_flag);
2820 }
2821
2822 /* Non-error returns are a promise to giveback() the urb later
2823  * we drop ownership so next owner (or urb unlink) can get it
2824  *
2825  * urb + dev is in hcd.self.controller.urb_list
2826  * we're queueing TDs onto software and hardware lists
2827  *
2828  * hcd-specific init for hcpriv hasn't been done yet
2829  *
2830  * NOTE:  control, bulk, and interrupt share the same code to append TDs
2831  * to a (possibly active) QH, and the same QH scanning code.
2832  */
2833 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2834                                 gfp_t mem_flags)
2835 {
2836         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2837         struct list_head qtd_list;
2838
2839         INIT_LIST_HEAD(&qtd_list);
2840
2841         switch (usb_pipetype(urb->pipe)) {
2842         case PIPE_CONTROL:
2843         case PIPE_BULK:
2844         default:
2845                 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
2846                         return -ENOMEM;
2847                 return submit_async(oxu, urb, &qtd_list, mem_flags);
2848
2849         case PIPE_INTERRUPT:
2850                 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
2851                         return -ENOMEM;
2852                 return intr_submit(oxu, urb, &qtd_list, mem_flags);
2853
2854         case PIPE_ISOCHRONOUS:
2855                 if (urb->dev->speed == USB_SPEED_HIGH)
2856                         return itd_submit(oxu, urb, mem_flags);
2857                 else
2858                         return sitd_submit(oxu, urb, mem_flags);
2859         }
2860 }
2861
2862 /* This function is responsible for breaking URBs with big data size
2863  * into smaller size and processing small urbs in sequence.
2864  */
2865 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2866                                 gfp_t mem_flags)
2867 {
2868         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2869         int num, rem;
2870         int transfer_buffer_length;
2871         void *transfer_buffer;
2872         struct urb *murb;
2873         int i, ret;
2874
2875         /* If not bulk pipe just enqueue the URB */
2876         if (!usb_pipebulk(urb->pipe))
2877                 return __oxu_urb_enqueue(hcd, urb, mem_flags);
2878
2879         /* Otherwise we should verify the USB transfer buffer size! */
2880         transfer_buffer = urb->transfer_buffer;
2881         transfer_buffer_length = urb->transfer_buffer_length;
2882
2883         num = urb->transfer_buffer_length / 4096;
2884         rem = urb->transfer_buffer_length % 4096;
2885         if (rem != 0)
2886                 num++;
2887
2888         /* If URB is smaller than 4096 bytes just enqueue it! */
2889         if (num == 1)
2890                 return __oxu_urb_enqueue(hcd, urb, mem_flags);
2891
2892         /* Ok, we have more job to do! :) */
2893
2894         for (i = 0; i < num - 1; i++) {
2895                 /* Get free micro URB poll till a free urb is recieved */
2896
2897                 do {
2898                         murb = (struct urb *) oxu_murb_alloc(oxu);
2899                         if (!murb)
2900                                 schedule();
2901                 } while (!murb);
2902
2903                 /* Coping the urb */
2904                 memcpy(murb, urb, sizeof(struct urb));
2905
2906                 murb->transfer_buffer_length = 4096;
2907                 murb->transfer_buffer = transfer_buffer + i * 4096;
2908
2909                 /* Null pointer for the encodes that this is a micro urb */
2910                 murb->complete = NULL;
2911
2912                 ((struct oxu_murb *) murb)->main = urb;
2913                 ((struct oxu_murb *) murb)->last = 0;
2914
2915                 /* This loop is to guarantee urb to be processed when there's
2916                  * not enough resources at a particular time by retrying.
2917                  */
2918                 do {
2919                         ret  = __oxu_urb_enqueue(hcd, murb, mem_flags);
2920                         if (ret)
2921                                 schedule();
2922                 } while (ret);
2923         }
2924
2925         /* Last urb requires special handling  */
2926
2927         /* Get free micro URB poll till a free urb is recieved */
2928         do {
2929                 murb = (struct urb *) oxu_murb_alloc(oxu);
2930                 if (!murb)
2931                         schedule();
2932         } while (!murb);
2933
2934         /* Coping the urb */
2935         memcpy(murb, urb, sizeof(struct urb));
2936
2937         murb->transfer_buffer_length = rem > 0 ? rem : 4096;
2938         murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
2939
2940         /* Null pointer for the encodes that this is a micro urb */
2941         murb->complete = NULL;
2942
2943         ((struct oxu_murb *) murb)->main = urb;
2944         ((struct oxu_murb *) murb)->last = 1;
2945
2946         do {
2947                 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
2948                 if (ret)
2949                         schedule();
2950         } while (ret);
2951
2952         return ret;
2953 }
2954
2955 /* Remove from hardware lists.
2956  * Completions normally happen asynchronously
2957  */
2958 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
2959 {
2960         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2961         struct ehci_qh *qh;
2962         unsigned long flags;
2963
2964         spin_lock_irqsave(&oxu->lock, flags);
2965         switch (usb_pipetype(urb->pipe)) {
2966         case PIPE_CONTROL:
2967         case PIPE_BULK:
2968         default:
2969                 qh = (struct ehci_qh *) urb->hcpriv;
2970                 if (!qh)
2971                         break;
2972                 unlink_async(oxu, qh);
2973                 break;
2974
2975         case PIPE_INTERRUPT:
2976                 qh = (struct ehci_qh *) urb->hcpriv;
2977                 if (!qh)
2978                         break;
2979                 switch (qh->qh_state) {
2980                 case QH_STATE_LINKED:
2981                         intr_deschedule(oxu, qh);
2982                         /* FALL THROUGH */
2983                 case QH_STATE_IDLE:
2984                         qh_completions(oxu, qh);
2985                         break;
2986                 default:
2987                         oxu_dbg(oxu, "bogus qh %p state %d\n",
2988                                         qh, qh->qh_state);
2989                         goto done;
2990                 }
2991
2992                 /* reschedule QH iff another request is queued */
2993                 if (!list_empty(&qh->qtd_list)
2994                                 && HC_IS_RUNNING(hcd->state)) {
2995                         int status;
2996
2997                         status = qh_schedule(oxu, qh);
2998                         spin_unlock_irqrestore(&oxu->lock, flags);
2999
3000                         if (status != 0) {
3001                                 /* shouldn't happen often, but ...
3002                                  * FIXME kill those tds' urbs
3003                                  */
3004                                 err("can't reschedule qh %p, err %d",
3005                                         qh, status);
3006                         }
3007                         return status;
3008                 }
3009                 break;
3010         }
3011 done:
3012         spin_unlock_irqrestore(&oxu->lock, flags);
3013         return 0;
3014 }
3015
3016 /* Bulk qh holds the data toggle */
3017 static void oxu_endpoint_disable(struct usb_hcd *hcd,
3018                                         struct usb_host_endpoint *ep)
3019 {
3020         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3021         unsigned long           flags;
3022         struct ehci_qh          *qh, *tmp;
3023
3024         /* ASSERT:  any requests/urbs are being unlinked */
3025         /* ASSERT:  nobody can be submitting urbs for this any more */
3026
3027 rescan:
3028         spin_lock_irqsave(&oxu->lock, flags);
3029         qh = ep->hcpriv;
3030         if (!qh)
3031                 goto done;
3032
3033         /* endpoints can be iso streams.  for now, we don't
3034          * accelerate iso completions ... so spin a while.
3035          */
3036         if (qh->hw_info1 == 0) {
3037                 oxu_vdbg(oxu, "iso delay\n");
3038                 goto idle_timeout;
3039         }
3040
3041         if (!HC_IS_RUNNING(hcd->state))
3042                 qh->qh_state = QH_STATE_IDLE;
3043         switch (qh->qh_state) {
3044         case QH_STATE_LINKED:
3045                 for (tmp = oxu->async->qh_next.qh;
3046                                 tmp && tmp != qh;
3047                                 tmp = tmp->qh_next.qh)
3048                         continue;
3049                 /* periodic qh self-unlinks on empty */
3050                 if (!tmp)
3051                         goto nogood;
3052                 unlink_async(oxu, qh);
3053                 /* FALL THROUGH */
3054         case QH_STATE_UNLINK:           /* wait for hw to finish? */
3055 idle_timeout:
3056                 spin_unlock_irqrestore(&oxu->lock, flags);
3057                 schedule_timeout_uninterruptible(1);
3058                 goto rescan;
3059         case QH_STATE_IDLE:             /* fully unlinked */
3060                 if (list_empty(&qh->qtd_list)) {
3061                         qh_put(qh);
3062                         break;
3063                 }
3064                 /* else FALL THROUGH */
3065         default:
3066 nogood:
3067                 /* caller was supposed to have unlinked any requests;
3068                  * that's not our job.  just leak this memory.
3069                  */
3070                 oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
3071                         qh, ep->desc.bEndpointAddress, qh->qh_state,
3072                         list_empty(&qh->qtd_list) ? "" : "(has tds)");
3073                 break;
3074         }
3075         ep->hcpriv = NULL;
3076 done:
3077         spin_unlock_irqrestore(&oxu->lock, flags);
3078         return;
3079 }
3080
3081 static int oxu_get_frame(struct usb_hcd *hcd)
3082 {
3083         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3084
3085         return (readl(&oxu->regs->frame_index) >> 3) %
3086                 oxu->periodic_size;
3087 }
3088
3089 /* Build "status change" packet (one or two bytes) from HC registers */
3090 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
3091 {
3092         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3093         u32 temp, mask, status = 0;
3094         int ports, i, retval = 1;
3095         unsigned long flags;
3096
3097         /* if !USB_SUSPEND, root hub timers won't get shut down ... */
3098         if (!HC_IS_RUNNING(hcd->state))
3099                 return 0;
3100
3101         /* init status to no-changes */
3102         buf[0] = 0;
3103         ports = HCS_N_PORTS(oxu->hcs_params);
3104         if (ports > 7) {
3105                 buf[1] = 0;
3106                 retval++;
3107         }
3108
3109         /* Some boards (mostly VIA?) report bogus overcurrent indications,
3110          * causing massive log spam unless we completely ignore them.  It
3111          * may be relevant that VIA VT8235 controlers, where PORT_POWER is
3112          * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3113          * PORT_POWER; that's surprising, but maybe within-spec.
3114          */
3115         if (!ignore_oc)
3116                 mask = PORT_CSC | PORT_PEC | PORT_OCC;
3117         else
3118                 mask = PORT_CSC | PORT_PEC;
3119
3120         /* no hub change reports (bit 0) for now (power, ...) */
3121
3122         /* port N changes (bit N)? */
3123         spin_lock_irqsave(&oxu->lock, flags);
3124         for (i = 0; i < ports; i++) {
3125                 temp = readl(&oxu->regs->port_status[i]);
3126
3127                 /*
3128                  * Return status information even for ports with OWNER set.
3129                  * Otherwise khubd wouldn't see the disconnect event when a
3130                  * high-speed device is switched over to the companion
3131                  * controller by the user.
3132                  */
3133
3134                 if (!(temp & PORT_CONNECT))
3135                         oxu->reset_done[i] = 0;
3136                 if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
3137                                 time_after_eq(jiffies, oxu->reset_done[i]))) {
3138                         if (i < 7)
3139                                 buf[0] |= 1 << (i + 1);
3140                         else
3141                                 buf[1] |= 1 << (i - 7);
3142                         status = STS_PCD;
3143                 }
3144         }
3145         /* FIXME autosuspend idle root hubs */
3146         spin_unlock_irqrestore(&oxu->lock, flags);
3147         return status ? retval : 0;
3148 }
3149
3150 /* Returns the speed of a device attached to a port on the root hub. */
3151 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
3152                                                 unsigned int portsc)
3153 {
3154         switch ((portsc >> 26) & 3) {
3155         case 0:
3156                 return 0;
3157         case 1:
3158                 return 1 << USB_PORT_FEAT_LOWSPEED;
3159         case 2:
3160         default:
3161                 return 1 << USB_PORT_FEAT_HIGHSPEED;
3162         }
3163 }
3164
3165 #define PORT_WAKE_BITS  (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
3166 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
3167                                 u16 wValue, u16 wIndex, char *buf, u16 wLength)
3168 {
3169         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3170         int ports = HCS_N_PORTS(oxu->hcs_params);
3171         u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
3172         u32 temp, status;
3173         unsigned long   flags;
3174         int retval = 0;
3175         unsigned selector;
3176
3177         /*
3178          * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3179          * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3180          * (track current state ourselves) ... blink for diagnostics,
3181          * power, "this is the one", etc.  EHCI spec supports this.
3182          */
3183
3184         spin_lock_irqsave(&oxu->lock, flags);
3185         switch (typeReq) {
3186         case ClearHubFeature:
3187                 switch (wValue) {
3188                 case C_HUB_LOCAL_POWER:
3189                 case C_HUB_OVER_CURRENT:
3190                         /* no hub-wide feature/status flags */
3191                         break;
3192                 default:
3193                         goto error;
3194                 }
3195                 break;
3196         case ClearPortFeature:
3197                 if (!wIndex || wIndex > ports)
3198                         goto error;
3199                 wIndex--;
3200                 temp = readl(status_reg);
3201
3202                 /*
3203                  * Even if OWNER is set, so the port is owned by the
3204                  * companion controller, khubd needs to be able to clear
3205                  * the port-change status bits (especially
3206                  * USB_PORT_FEAT_C_CONNECTION).
3207                  */
3208
3209                 switch (wValue) {
3210                 case USB_PORT_FEAT_ENABLE:
3211                         writel(temp & ~PORT_PE, status_reg);
3212                         break;
3213                 case USB_PORT_FEAT_C_ENABLE:
3214                         writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
3215                         break;
3216                 case USB_PORT_FEAT_SUSPEND:
3217                         if (temp & PORT_RESET)
3218                                 goto error;
3219                         if (temp & PORT_SUSPEND) {
3220                                 if ((temp & PORT_PE) == 0)
3221                                         goto error;
3222                                 /* resume signaling for 20 msec */
3223                                 temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
3224                                 writel(temp | PORT_RESUME, status_reg);
3225                                 oxu->reset_done[wIndex] = jiffies
3226                                                 + msecs_to_jiffies(20);
3227                         }
3228                         break;
3229                 case USB_PORT_FEAT_C_SUSPEND:
3230                         /* we auto-clear this feature */
3231                         break;
3232                 case USB_PORT_FEAT_POWER:
3233                         if (HCS_PPC(oxu->hcs_params))
3234                                 writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
3235                                           status_reg);
3236                         break;
3237                 case USB_PORT_FEAT_C_CONNECTION:
3238                         writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
3239                         break;
3240                 case USB_PORT_FEAT_C_OVER_CURRENT:
3241                         writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
3242                         break;
3243                 case USB_PORT_FEAT_C_RESET:
3244                         /* GetPortStatus clears reset */
3245                         break;
3246                 default:
3247                         goto error;
3248                 }
3249                 readl(&oxu->regs->command);     /* unblock posted write */
3250                 break;
3251         case GetHubDescriptor:
3252                 ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
3253                         buf);
3254                 break;
3255         case GetHubStatus:
3256                 /* no hub-wide feature/status flags */
3257                 memset(buf, 0, 4);
3258                 break;
3259         case GetPortStatus:
3260                 if (!wIndex || wIndex > ports)
3261                         goto error;
3262                 wIndex--;
3263                 status = 0;
3264                 temp = readl(status_reg);
3265
3266                 /* wPortChange bits */
3267                 if (temp & PORT_CSC)
3268                         status |= 1 << USB_PORT_FEAT_C_CONNECTION;
3269                 if (temp & PORT_PEC)
3270                         status |= 1 << USB_PORT_FEAT_C_ENABLE;
3271                 if ((temp & PORT_OCC) && !ignore_oc)
3272                         status |= 1 << USB_PORT_FEAT_C_OVER_CURRENT;
3273
3274                 /* whoever resumes must GetPortStatus to complete it!! */
3275                 if (temp & PORT_RESUME) {
3276
3277                         /* Remote Wakeup received? */
3278                         if (!oxu->reset_done[wIndex]) {
3279                                 /* resume signaling for 20 msec */
3280                                 oxu->reset_done[wIndex] = jiffies
3281                                                 + msecs_to_jiffies(20);
3282                                 /* check the port again */
3283                                 mod_timer(&oxu_to_hcd(oxu)->rh_timer,
3284                                                 oxu->reset_done[wIndex]);
3285                         }
3286
3287                         /* resume completed? */
3288                         else if (time_after_eq(jiffies,
3289                                         oxu->reset_done[wIndex])) {
3290                                 status |= 1 << USB_PORT_FEAT_C_SUSPEND;
3291                                 oxu->reset_done[wIndex] = 0;
3292
3293                                 /* stop resume signaling */
3294                                 temp = readl(status_reg);
3295                                 writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
3296                                         status_reg);
3297                                 retval = handshake(oxu, status_reg,
3298                                            PORT_RESUME, 0, 2000 /* 2msec */);
3299                                 if (retval != 0) {
3300                                         oxu_err(oxu,
3301                                                 "port %d resume error %d\n",
3302                                                 wIndex + 1, retval);
3303                                         goto error;
3304                                 }
3305                                 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
3306                         }
3307                 }
3308
3309                 /* whoever resets must GetPortStatus to complete it!! */
3310                 if ((temp & PORT_RESET)
3311                                 && time_after_eq(jiffies,
3312                                         oxu->reset_done[wIndex])) {
3313                         status |= 1 << USB_PORT_FEAT_C_RESET;
3314                         oxu->reset_done[wIndex] = 0;
3315
3316                         /* force reset to complete */
3317                         writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
3318                                         status_reg);
3319                         /* REVISIT:  some hardware needs 550+ usec to clear
3320                          * this bit; seems too long to spin routinely...
3321                          */
3322                         retval = handshake(oxu, status_reg,
3323                                         PORT_RESET, 0, 750);
3324                         if (retval != 0) {
3325                                 oxu_err(oxu, "port %d reset error %d\n",
3326                                         wIndex + 1, retval);
3327                                 goto error;
3328                         }
3329
3330                         /* see what we found out */
3331                         temp = check_reset_complete(oxu, wIndex, status_reg,
3332                                         readl(status_reg));
3333                 }
3334
3335                 /* transfer dedicated ports to the companion hc */
3336                 if ((temp & PORT_CONNECT) &&
3337                                 test_bit(wIndex, &oxu->companion_ports)) {
3338                         temp &= ~PORT_RWC_BITS;
3339                         temp |= PORT_OWNER;
3340                         writel(temp, status_reg);
3341                         oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
3342                         temp = readl(status_reg);
3343                 }
3344
3345                 /*
3346                  * Even if OWNER is set, there's no harm letting khubd
3347                  * see the wPortStatus values (they should all be 0 except
3348                  * for PORT_POWER anyway).
3349                  */
3350
3351                 if (temp & PORT_CONNECT) {
3352                         status |= 1 << USB_PORT_FEAT_CONNECTION;
3353                         /* status may be from integrated TT */
3354                         status |= oxu_port_speed(oxu, temp);
3355                 }
3356                 if (temp & PORT_PE)
3357                         status |= 1 << USB_PORT_FEAT_ENABLE;
3358                 if (temp & (PORT_SUSPEND|PORT_RESUME))
3359                         status |= 1 << USB_PORT_FEAT_SUSPEND;
3360                 if (temp & PORT_OC)
3361                         status |= 1 << USB_PORT_FEAT_OVER_CURRENT;
3362                 if (temp & PORT_RESET)
3363                         status |= 1 << USB_PORT_FEAT_RESET;
3364                 if (temp & PORT_POWER)
3365                         status |= 1 << USB_PORT_FEAT_POWER;
3366
3367 #ifndef OXU_VERBOSE_DEBUG
3368         if (status & ~0xffff)   /* only if wPortChange is interesting */
3369 #endif
3370                 dbg_port(oxu, "GetStatus", wIndex + 1, temp);
3371                 put_unaligned(cpu_to_le32(status), (__le32 *) buf);
3372                 break;
3373         case SetHubFeature:
3374                 switch (wValue) {
3375                 case C_HUB_LOCAL_POWER:
3376                 case C_HUB_OVER_CURRENT:
3377                         /* no hub-wide feature/status flags */
3378                         break;
3379                 default:
3380                         goto error;
3381                 }
3382                 break;
3383         case SetPortFeature:
3384                 selector = wIndex >> 8;
3385                 wIndex &= 0xff;
3386                 if (!wIndex || wIndex > ports)
3387                         goto error;
3388                 wIndex--;
3389                 temp = readl(status_reg);
3390                 if (temp & PORT_OWNER)
3391                         break;
3392
3393                 temp &= ~PORT_RWC_BITS;
3394                 switch (wValue) {
3395                 case USB_PORT_FEAT_SUSPEND:
3396                         if ((temp & PORT_PE) == 0
3397                                         || (temp & PORT_RESET) != 0)
3398                                 goto error;
3399                         if (device_may_wakeup(&hcd->self.root_hub->dev))
3400                                 temp |= PORT_WAKE_BITS;
3401                         writel(temp | PORT_SUSPEND, status_reg);
3402                         break;
3403                 case USB_PORT_FEAT_POWER:
3404                         if (HCS_PPC(oxu->hcs_params))
3405                                 writel(temp | PORT_POWER, status_reg);
3406                         break;
3407                 case USB_PORT_FEAT_RESET:
3408                         if (temp & PORT_RESUME)
3409                                 goto error;
3410                         /* line status bits may report this as low speed,
3411                          * which can be fine if this root hub has a
3412                          * transaction translator built in.
3413                          */
3414                         oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
3415                         temp |= PORT_RESET;
3416                         temp &= ~PORT_PE;
3417
3418                         /*
3419                          * caller must wait, then call GetPortStatus
3420                          * usb 2.0 spec says 50 ms resets on root
3421                          */
3422                         oxu->reset_done[wIndex] = jiffies
3423                                         + msecs_to_jiffies(50);
3424                         writel(temp, status_reg);
3425                         break;
3426
3427                 /* For downstream facing ports (these):  one hub port is put
3428                  * into test mode according to USB2 11.24.2.13, then the hub
3429                  * must be reset (which for root hub now means rmmod+modprobe,
3430                  * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
3431                  * about the EHCI-specific stuff.
3432                  */
3433                 case USB_PORT_FEAT_TEST:
3434                         if (!selector || selector > 5)
3435                                 goto error;
3436                         ehci_quiesce(oxu);
3437                         ehci_halt(oxu);
3438                         temp |= selector << 16;
3439                         writel(temp, status_reg);
3440                         break;
3441
3442                 default:
3443                         goto error;
3444                 }
3445                 readl(&oxu->regs->command);     /* unblock posted writes */
3446                 break;
3447
3448         default:
3449 error:
3450                 /* "stall" on error */
3451                 retval = -EPIPE;
3452         }
3453         spin_unlock_irqrestore(&oxu->lock, flags);
3454         return retval;
3455 }
3456
3457 #ifdef CONFIG_PM
3458
3459 static int oxu_bus_suspend(struct usb_hcd *hcd)
3460 {
3461         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3462         int port;
3463         int mask;
3464
3465         oxu_dbg(oxu, "suspend root hub\n");
3466
3467         if (time_before(jiffies, oxu->next_statechange))
3468                 msleep(5);
3469
3470         port = HCS_N_PORTS(oxu->hcs_params);
3471         spin_lock_irq(&oxu->lock);
3472
3473         /* stop schedules, clean any completed work */
3474         if (HC_IS_RUNNING(hcd->state)) {
3475                 ehci_quiesce(oxu);
3476                 hcd->state = HC_STATE_QUIESCING;
3477         }
3478         oxu->command = readl(&oxu->regs->command);
3479         if (oxu->reclaim)
3480                 oxu->reclaim_ready = 1;
3481         ehci_work(oxu);
3482
3483         /* Unlike other USB host controller types, EHCI doesn't have
3484          * any notion of "global" or bus-wide suspend.  The driver has
3485          * to manually suspend all the active unsuspended ports, and
3486          * then manually resume them in the bus_resume() routine.
3487          */
3488         oxu->bus_suspended = 0;
3489         while (port--) {
3490                 u32 __iomem *reg = &oxu->regs->port_status[port];
3491                 u32 t1 = readl(reg) & ~PORT_RWC_BITS;
3492                 u32 t2 = t1;
3493
3494                 /* keep track of which ports we suspend */
3495                 if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
3496                                 !(t1 & PORT_SUSPEND)) {
3497                         t2 |= PORT_SUSPEND;
3498                         set_bit(port, &oxu->bus_suspended);
3499                 }
3500
3501                 /* enable remote wakeup on all ports */
3502                 if (device_may_wakeup(&hcd->self.root_hub->dev))
3503                         t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
3504                 else
3505                         t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
3506
3507                 if (t1 != t2) {
3508                         oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
3509                                 port + 1, t1, t2);
3510                         writel(t2, reg);
3511                 }
3512         }
3513
3514         /* turn off now-idle HC */
3515         del_timer_sync(&oxu->watchdog);
3516         ehci_halt(oxu);
3517         hcd->state = HC_STATE_SUSPENDED;
3518
3519         /* allow remote wakeup */
3520         mask = INTR_MASK;
3521         if (!device_may_wakeup(&hcd->self.root_hub->dev))
3522                 mask &= ~STS_PCD;
3523         writel(mask, &oxu->regs->intr_enable);
3524         readl(&oxu->regs->intr_enable);
3525
3526         oxu->next_statechange = jiffies + msecs_to_jiffies(10);
3527         spin_unlock_irq(&oxu->lock);
3528         return 0;
3529 }
3530
3531 /* Caller has locked the root hub, and should reset/reinit on error */
3532 static int oxu_bus_resume(struct usb_hcd *hcd)
3533 {
3534         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3535         u32 temp;
3536         int i;
3537
3538         if (time_before(jiffies, oxu->next_statechange))
3539                 msleep(5);
3540         spin_lock_irq(&oxu->lock);
3541
3542         /* Ideally and we've got a real resume here, and no port's power
3543          * was lost.  (For PCI, that means Vaux was maintained.)  But we
3544          * could instead be restoring a swsusp snapshot -- so that BIOS was
3545          * the last user of the controller, not reset/pm hardware keeping
3546          * state we gave to it.
3547          */
3548         temp = readl(&oxu->regs->intr_enable);
3549         oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
3550
3551         /* at least some APM implementations will try to deliver
3552          * IRQs right away, so delay them until we're ready.
3553          */
3554         writel(0, &oxu->regs->intr_enable);
3555
3556         /* re-init operational registers */
3557         writel(0, &oxu->regs->segment);
3558         writel(oxu->periodic_dma, &oxu->regs->frame_list);
3559         writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3560
3561         /* restore CMD_RUN, framelist size, and irq threshold */
3562         writel(oxu->command, &oxu->regs->command);
3563
3564         /* Some controller/firmware combinations need a delay during which
3565          * they set up the port statuses.  See Bugzilla #8190. */
3566         mdelay(8);
3567
3568         /* manually resume the ports we suspended during bus_suspend() */
3569         i = HCS_N_PORTS(oxu->hcs_params);
3570         while (i--) {
3571                 temp = readl(&oxu->regs->port_status[i]);
3572                 temp &= ~(PORT_RWC_BITS
3573                         | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
3574                 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3575                         oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
3576                         temp |= PORT_RESUME;
3577                 }
3578                 writel(temp, &oxu->regs->port_status[i]);
3579         }
3580         i = HCS_N_PORTS(oxu->hcs_params);
3581         mdelay(20);
3582         while (i--) {
3583                 temp = readl(&oxu->regs->port_status[i]);
3584                 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3585                         temp &= ~(PORT_RWC_BITS | PORT_RESUME);
3586                         writel(temp, &oxu->regs->port_status[i]);
3587                         oxu_vdbg(oxu, "resumed port %d\n", i + 1);
3588                 }
3589         }
3590         (void) readl(&oxu->regs->command);
3591
3592         /* maybe re-activate the schedule(s) */
3593         temp = 0;
3594         if (oxu->async->qh_next.qh)
3595                 temp |= CMD_ASE;
3596         if (oxu->periodic_sched)
3597                 temp |= CMD_PSE;
3598         if (temp) {
3599                 oxu->command |= temp;
3600                 writel(oxu->command, &oxu->regs->command);
3601         }
3602
3603         oxu->next_statechange = jiffies + msecs_to_jiffies(5);
3604         hcd->state = HC_STATE_RUNNING;
3605
3606         /* Now we can safely re-enable irqs */
3607         writel(INTR_MASK, &oxu->regs->intr_enable);
3608
3609         spin_unlock_irq(&oxu->lock);
3610         return 0;
3611 }
3612
3613 #else
3614
3615 static int oxu_bus_suspend(struct usb_hcd *hcd)
3616 {
3617         return 0;
3618 }
3619
3620 static int oxu_bus_resume(struct usb_hcd *hcd)
3621 {
3622         return 0;
3623 }
3624
3625 #endif  /* CONFIG_PM */
3626
3627 static const struct hc_driver oxu_hc_driver = {
3628         .description =          "oxu210hp_hcd",
3629         .product_desc =         "oxu210hp HCD",
3630         .hcd_priv_size =        sizeof(struct oxu_hcd),
3631
3632         /*
3633          * Generic hardware linkage
3634          */
3635         .irq =                  oxu_irq,
3636         .flags =                HCD_MEMORY | HCD_USB2,
3637
3638         /*
3639          * Basic lifecycle operations
3640          */
3641         .reset =                oxu_reset,
3642         .start =                oxu_run,
3643         .stop =                 oxu_stop,
3644         .shutdown =             oxu_shutdown,
3645
3646         /*
3647          * Managing i/o requests and associated device resources
3648          */
3649         .urb_enqueue =          oxu_urb_enqueue,
3650         .urb_dequeue =          oxu_urb_dequeue,
3651         .endpoint_disable =     oxu_endpoint_disable,
3652
3653         /*
3654          * Scheduling support
3655          */
3656         .get_frame_number =     oxu_get_frame,
3657
3658         /*
3659          * Root hub support
3660          */
3661         .hub_status_data =      oxu_hub_status_data,
3662         .hub_control =          oxu_hub_control,
3663         .bus_suspend =          oxu_bus_suspend,
3664         .bus_resume =           oxu_bus_resume,
3665 };
3666
3667 /*
3668  * Module stuff
3669  */
3670
3671 static void oxu_configuration(struct platform_device *pdev, void *base)
3672 {
3673         u32 tmp;
3674
3675         /* Initialize top level registers.
3676          * First write ever
3677          */
3678         oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
3679         oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
3680         oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
3681
3682         tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
3683         oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
3684
3685         oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
3686                                         OXU_COMPARATOR | OXU_ASO_OP);
3687
3688         tmp = oxu_readl(base, OXU_CLKCTRL_SET);
3689         oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
3690
3691         /* Clear all top interrupt enable */
3692         oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
3693
3694         /* Clear all top interrupt status */
3695         oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
3696
3697         /* Enable all needed top interrupt except OTG SPH core */
3698         oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
3699 }
3700
3701 static int oxu_verify_id(struct platform_device *pdev, void *base)
3702 {
3703         u32 id;
3704         char *bo[] = {
3705                 "reserved",
3706                 "128-pin LQFP",
3707                 "84-pin TFBGA",
3708                 "reserved",
3709         };
3710
3711         /* Read controller signature register to find a match */
3712         id = oxu_readl(base, OXU_DEVICEID);
3713         dev_info(&pdev->dev, "device ID %x\n", id);
3714         if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
3715                 return -1;
3716
3717         dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
3718                 id >> OXU_REV_SHIFT,
3719                 bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
3720                 (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
3721                 (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
3722
3723         return 0;
3724 }
3725
3726 static const struct hc_driver oxu_hc_driver;
3727 static struct usb_hcd *oxu_create(struct platform_device *pdev,
3728                                 unsigned long memstart, unsigned long memlen,
3729                                 void *base, int irq, int otg)
3730 {
3731         struct device *dev = &pdev->dev;
3732
3733         struct usb_hcd *hcd;
3734         struct oxu_hcd *oxu;
3735         int ret;
3736
3737         /* Set endian mode and host mode */
3738         oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
3739                                 OXU_USBMODE,
3740                                 OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
3741
3742         hcd = usb_create_hcd(&oxu_hc_driver, dev,
3743                                 otg ? "oxu210hp_otg" : "oxu210hp_sph");
3744         if (!hcd)
3745                 return ERR_PTR(-ENOMEM);
3746
3747         hcd->rsrc_start = memstart;
3748         hcd->rsrc_len = memlen;
3749         hcd->regs = base;
3750         hcd->irq = irq;
3751         hcd->state = HC_STATE_HALT;
3752
3753         oxu = hcd_to_oxu(hcd);
3754         oxu->is_otg = otg;
3755
3756         ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
3757         if (ret < 0)
3758                 return ERR_PTR(ret);
3759
3760         return hcd;
3761 }
3762
3763 static int oxu_init(struct platform_device *pdev,
3764                                 unsigned long memstart, unsigned long memlen,
3765                                 void *base, int irq)
3766 {
3767         struct oxu_info *info = platform_get_drvdata(pdev);
3768         struct usb_hcd *hcd;
3769         int ret;
3770
3771         /* First time configuration at start up */
3772         oxu_configuration(pdev, base);
3773
3774         ret = oxu_verify_id(pdev, base);
3775         if (ret) {
3776                 dev_err(&pdev->dev, "no devices found!\n");
3777                 return -ENODEV;
3778         }
3779
3780         /* Create the OTG controller */
3781         hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
3782         if (IS_ERR(hcd)) {
3783                 dev_err(&pdev->dev, "cannot create OTG controller!\n");
3784                 ret = PTR_ERR(hcd);
3785                 goto error_create_otg;
3786         }
3787         info->hcd[0] = hcd;
3788
3789         /* Create the SPH host controller */
3790         hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
3791         if (IS_ERR(hcd)) {
3792                 dev_err(&pdev->dev, "cannot create SPH controller!\n");
3793                 ret = PTR_ERR(hcd);
3794                 goto error_create_sph;
3795         }
3796         info->hcd[1] = hcd;
3797
3798         oxu_writel(base, OXU_CHIPIRQEN_SET,
3799                 oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
3800
3801         return 0;
3802
3803 error_create_sph:
3804         usb_remove_hcd(info->hcd[0]);
3805         usb_put_hcd(info->hcd[0]);
3806
3807 error_create_otg:
3808         return ret;
3809 }
3810
3811 static int oxu_drv_probe(struct platform_device *pdev)
3812 {
3813         struct resource *res;
3814         void *base;
3815         unsigned long memstart, memlen;
3816         int irq, ret;
3817         struct oxu_info *info;
3818
3819         if (usb_disabled())
3820                 return -ENODEV;
3821
3822         /*
3823          * Get the platform resources
3824          */
3825         res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
3826         if (!res) {
3827                 dev_err(&pdev->dev,
3828                         "no IRQ! Check %s setup!\n", dev_name(&pdev->dev));
3829                 return -ENODEV;
3830         }
3831         irq = res->start;
3832         dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
3833
3834         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3835         if (!res) {
3836                 dev_err(&pdev->dev, "no registers address! Check %s setup!\n",
3837                         dev_name(&pdev->dev));
3838                 return -ENODEV;
3839         }
3840         memstart = res->start;
3841         memlen = res->end - res->start + 1;
3842         dev_dbg(&pdev->dev, "MEM resource %lx-%lx\n", memstart, memlen);
3843         if (!request_mem_region(memstart, memlen,
3844                                 oxu_hc_driver.description)) {
3845                 dev_dbg(&pdev->dev, "memory area already in use\n");
3846                 return -EBUSY;
3847         }
3848
3849         ret = set_irq_type(irq, IRQF_TRIGGER_FALLING);
3850         if (ret) {
3851                 dev_err(&pdev->dev, "error setting irq type\n");
3852                 ret = -EFAULT;
3853                 goto error_set_irq_type;
3854         }
3855
3856         base = ioremap(memstart, memlen);
3857         if (!base) {
3858                 dev_dbg(&pdev->dev, "error mapping memory\n");
3859                 ret = -EFAULT;
3860                 goto error_ioremap;
3861         }
3862
3863         /* Allocate a driver data struct to hold useful info for both
3864          * SPH & OTG devices
3865          */
3866         info = kzalloc(sizeof(struct oxu_info), GFP_KERNEL);
3867         if (!info) {
3868                 dev_dbg(&pdev->dev, "error allocating memory\n");
3869                 ret = -EFAULT;
3870                 goto error_alloc;
3871         }
3872         platform_set_drvdata(pdev, info);
3873
3874         ret = oxu_init(pdev, memstart, memlen, base, irq);
3875         if (ret < 0) {
3876                 dev_dbg(&pdev->dev, "cannot init USB devices\n");
3877                 goto error_init;
3878         }
3879
3880         dev_info(&pdev->dev, "devices enabled and running\n");
3881         platform_set_drvdata(pdev, info);
3882
3883         return 0;
3884
3885 error_init:
3886         kfree(info);
3887         platform_set_drvdata(pdev, NULL);
3888
3889 error_alloc:
3890         iounmap(base);
3891
3892 error_set_irq_type:
3893 error_ioremap:
3894         release_mem_region(memstart, memlen);
3895
3896         dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
3897         return ret;
3898 }
3899
3900 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
3901 {
3902         usb_remove_hcd(hcd);
3903         usb_put_hcd(hcd);
3904 }
3905
3906 static int oxu_drv_remove(struct platform_device *pdev)
3907 {
3908         struct oxu_info *info = platform_get_drvdata(pdev);
3909         unsigned long memstart = info->hcd[0]->rsrc_start,
3910                         memlen = info->hcd[0]->rsrc_len;
3911         void *base = info->hcd[0]->regs;
3912
3913         oxu_remove(pdev, info->hcd[0]);
3914         oxu_remove(pdev, info->hcd[1]);
3915
3916         iounmap(base);
3917         release_mem_region(memstart, memlen);
3918
3919         kfree(info);
3920         platform_set_drvdata(pdev, NULL);
3921
3922         return 0;
3923 }
3924
3925 static void oxu_drv_shutdown(struct platform_device *pdev)
3926 {
3927         oxu_drv_remove(pdev);
3928 }
3929
3930 #if 0
3931 /* FIXME: TODO */
3932 static int oxu_drv_suspend(struct device *dev)
3933 {
3934         struct platform_device *pdev = to_platform_device(dev);
3935         struct usb_hcd *hcd = dev_get_drvdata(dev);
3936
3937         return 0;
3938 }
3939
3940 static int oxu_drv_resume(struct device *dev)
3941 {
3942         struct platform_device *pdev = to_platform_device(dev);
3943         struct usb_hcd *hcd = dev_get_drvdata(dev);
3944
3945         return 0;
3946 }
3947 #else
3948 #define oxu_drv_suspend NULL
3949 #define oxu_drv_resume  NULL
3950 #endif
3951
3952 static struct platform_driver oxu_driver = {
3953         .probe          = oxu_drv_probe,
3954         .remove         = oxu_drv_remove,
3955         .shutdown       = oxu_drv_shutdown,
3956         .suspend        = oxu_drv_suspend,
3957         .resume         = oxu_drv_resume,
3958         .driver = {
3959                 .name = "oxu210hp-hcd",
3960                 .bus = &platform_bus_type
3961         }
3962 };
3963
3964 static int __init oxu_module_init(void)
3965 {
3966         int retval = 0;
3967
3968         retval = platform_driver_register(&oxu_driver);
3969         if (retval < 0)
3970                 return retval;
3971
3972         return retval;
3973 }
3974
3975 static void __exit oxu_module_cleanup(void)
3976 {
3977         platform_driver_unregister(&oxu_driver);
3978 }
3979
3980 module_init(oxu_module_init);
3981 module_exit(oxu_module_cleanup);
3982
3983 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
3984 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
3985 MODULE_LICENSE("GPL");