x86: configuration options to compile out x86 CPU support code
[linux-2.6] / arch / ia64 / kernel / topology.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * This file contains NUMA specific variables and functions which can
7  * be split away from DISCONTIGMEM and are used on NUMA machines with
8  * contiguous memory.
9  *              2002/08/07 Erich Focht <efocht@ess.nec.de>
10  * Populate cpu entries in sysfs for non-numa systems as well
11  *      Intel Corporation - Ashok Raj
12  * 02/27/2006 Zhang, Yanmin
13  *      Populate cpu cache entries in sysfs for cpu cache info
14  */
15
16 #include <linux/cpu.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/node.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/nodemask.h>
23 #include <linux/notifier.h>
24 #include <asm/mmzone.h>
25 #include <asm/numa.h>
26 #include <asm/cpu.h>
27
28 static struct ia64_cpu *sysfs_cpus;
29
30 void arch_fix_phys_package_id(int num, u32 slot)
31 {
32 #ifdef CONFIG_SMP
33         if (cpu_data(num)->socket_id == -1)
34                 cpu_data(num)->socket_id = slot;
35 #endif
36 }
37 EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
38
39
40 #ifdef CONFIG_HOTPLUG_CPU
41 int __ref arch_register_cpu(int num)
42 {
43 #ifdef CONFIG_ACPI
44         /*
45          * If CPEI can be re-targetted or if this is not
46          * CPEI target, then it is hotpluggable
47          */
48         if (can_cpei_retarget() || !is_cpu_cpei_target(num))
49                 sysfs_cpus[num].cpu.hotpluggable = 1;
50         map_cpu_to_node(num, node_cpuid[num].nid);
51 #endif
52         return register_cpu(&sysfs_cpus[num].cpu, num);
53 }
54 EXPORT_SYMBOL(arch_register_cpu);
55
56 void arch_unregister_cpu(int num)
57 {
58         unregister_cpu(&sysfs_cpus[num].cpu);
59         unmap_cpu_from_node(num, cpu_to_node(num));
60 }
61 EXPORT_SYMBOL(arch_unregister_cpu);
62 #else
63 static int __init arch_register_cpu(int num)
64 {
65         return register_cpu(&sysfs_cpus[num].cpu, num);
66 }
67 #endif /*CONFIG_HOTPLUG_CPU*/
68
69
70 static int __init topology_init(void)
71 {
72         int i, err = 0;
73
74 #ifdef CONFIG_NUMA
75         /*
76          * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
77          */
78         for_each_online_node(i) {
79                 if ((err = register_one_node(i)))
80                         goto out;
81         }
82 #endif
83
84         sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
85         if (!sysfs_cpus)
86                 panic("kzalloc in topology_init failed - NR_CPUS too big?");
87
88         for_each_present_cpu(i) {
89                 if((err = arch_register_cpu(i)))
90                         goto out;
91         }
92 out:
93         return err;
94 }
95
96 subsys_initcall(topology_init);
97
98
99 /*
100  * Export cpu cache information through sysfs
101  */
102
103 /*
104  *  A bunch of string array to get pretty printing
105  */
106 static const char *cache_types[] = {
107         "",                     /* not used */
108         "Instruction",
109         "Data",
110         "Unified"       /* unified */
111 };
112
113 static const char *cache_mattrib[]={
114         "WriteThrough",
115         "WriteBack",
116         "",             /* reserved */
117         ""              /* reserved */
118 };
119
120 struct cache_info {
121         pal_cache_config_info_t cci;
122         cpumask_t shared_cpu_map;
123         int level;
124         int type;
125         struct kobject kobj;
126 };
127
128 struct cpu_cache_info {
129         struct cache_info *cache_leaves;
130         int     num_cache_leaves;
131         struct kobject kobj;
132 };
133
134 static struct cpu_cache_info    all_cpu_cache_info[NR_CPUS] __cpuinitdata;
135 #define LEAF_KOBJECT_PTR(x,y)    (&all_cpu_cache_info[x].cache_leaves[y])
136
137 #ifdef CONFIG_SMP
138 static void __cpuinit cache_shared_cpu_map_setup( unsigned int cpu,
139                 struct cache_info * this_leaf)
140 {
141         pal_cache_shared_info_t csi;
142         int num_shared, i = 0;
143         unsigned int j;
144
145         if (cpu_data(cpu)->threads_per_core <= 1 &&
146                 cpu_data(cpu)->cores_per_socket <= 1) {
147                 cpu_set(cpu, this_leaf->shared_cpu_map);
148                 return;
149         }
150
151         if (ia64_pal_cache_shared_info(this_leaf->level,
152                                         this_leaf->type,
153                                         0,
154                                         &csi) != PAL_STATUS_SUCCESS)
155                 return;
156
157         num_shared = (int) csi.num_shared;
158         do {
159                 for_each_possible_cpu(j)
160                         if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
161                                 && cpu_data(j)->core_id == csi.log1_cid
162                                 && cpu_data(j)->thread_id == csi.log1_tid)
163                                 cpu_set(j, this_leaf->shared_cpu_map);
164
165                 i++;
166         } while (i < num_shared &&
167                 ia64_pal_cache_shared_info(this_leaf->level,
168                                 this_leaf->type,
169                                 i,
170                                 &csi) == PAL_STATUS_SUCCESS);
171 }
172 #else
173 static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu,
174                 struct cache_info * this_leaf)
175 {
176         cpu_set(cpu, this_leaf->shared_cpu_map);
177         return;
178 }
179 #endif
180
181 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
182                                         char *buf)
183 {
184         return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
185 }
186
187 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
188                                         char *buf)
189 {
190         return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
191 }
192
193 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
194 {
195         return sprintf(buf,
196                         "%s\n",
197                         cache_mattrib[this_leaf->cci.pcci_cache_attr]);
198 }
199
200 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
201 {
202         return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
203 }
204
205 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
206 {
207         unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
208         number_of_sets /= this_leaf->cci.pcci_assoc;
209         number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
210
211         return sprintf(buf, "%u\n", number_of_sets);
212 }
213
214 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
215 {
216         ssize_t len;
217         cpumask_t shared_cpu_map;
218
219         cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map);
220         len = cpumask_scnprintf(buf, NR_CPUS+1, shared_cpu_map);
221         len += sprintf(buf+len, "\n");
222         return len;
223 }
224
225 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
226 {
227         int type = this_leaf->type + this_leaf->cci.pcci_unified;
228         return sprintf(buf, "%s\n", cache_types[type]);
229 }
230
231 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
232 {
233         return sprintf(buf, "%u\n", this_leaf->level);
234 }
235
236 struct cache_attr {
237         struct attribute attr;
238         ssize_t (*show)(struct cache_info *, char *);
239         ssize_t (*store)(struct cache_info *, const char *, size_t count);
240 };
241
242 #ifdef define_one_ro
243         #undef define_one_ro
244 #endif
245 #define define_one_ro(_name) \
246         static struct cache_attr _name = \
247 __ATTR(_name, 0444, show_##_name, NULL)
248
249 define_one_ro(level);
250 define_one_ro(type);
251 define_one_ro(coherency_line_size);
252 define_one_ro(ways_of_associativity);
253 define_one_ro(size);
254 define_one_ro(number_of_sets);
255 define_one_ro(shared_cpu_map);
256 define_one_ro(attributes);
257
258 static struct attribute * cache_default_attrs[] = {
259         &type.attr,
260         &level.attr,
261         &coherency_line_size.attr,
262         &ways_of_associativity.attr,
263         &attributes.attr,
264         &size.attr,
265         &number_of_sets.attr,
266         &shared_cpu_map.attr,
267         NULL
268 };
269
270 #define to_object(k) container_of(k, struct cache_info, kobj)
271 #define to_attr(a) container_of(a, struct cache_attr, attr)
272
273 static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
274 {
275         struct cache_attr *fattr = to_attr(attr);
276         struct cache_info *this_leaf = to_object(kobj);
277         ssize_t ret;
278
279         ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
280         return ret;
281 }
282
283 static struct sysfs_ops cache_sysfs_ops = {
284         .show   = cache_show
285 };
286
287 static struct kobj_type cache_ktype = {
288         .sysfs_ops      = &cache_sysfs_ops,
289         .default_attrs  = cache_default_attrs,
290 };
291
292 static struct kobj_type cache_ktype_percpu_entry = {
293         .sysfs_ops      = &cache_sysfs_ops,
294 };
295
296 static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu)
297 {
298         kfree(all_cpu_cache_info[cpu].cache_leaves);
299         all_cpu_cache_info[cpu].cache_leaves = NULL;
300         all_cpu_cache_info[cpu].num_cache_leaves = 0;
301         memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
302         return;
303 }
304
305 static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu)
306 {
307         u64 i, levels, unique_caches;
308         pal_cache_config_info_t cci;
309         int j;
310         s64 status;
311         struct cache_info *this_cache;
312         int num_cache_leaves = 0;
313
314         if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
315                 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
316                 return -1;
317         }
318
319         this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
320                         GFP_KERNEL);
321         if (this_cache == NULL)
322                 return -ENOMEM;
323
324         for (i=0; i < levels; i++) {
325                 for (j=2; j >0 ; j--) {
326                         if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
327                                         PAL_STATUS_SUCCESS)
328                                 continue;
329
330                         this_cache[num_cache_leaves].cci = cci;
331                         this_cache[num_cache_leaves].level = i + 1;
332                         this_cache[num_cache_leaves].type = j;
333
334                         cache_shared_cpu_map_setup(cpu,
335                                         &this_cache[num_cache_leaves]);
336                         num_cache_leaves ++;
337                 }
338         }
339
340         all_cpu_cache_info[cpu].cache_leaves = this_cache;
341         all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
342
343         memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
344
345         return 0;
346 }
347
348 /* Add cache interface for CPU device */
349 static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
350 {
351         unsigned int cpu = sys_dev->id;
352         unsigned long i, j;
353         struct cache_info *this_object;
354         int retval = 0;
355         cpumask_t oldmask;
356
357         if (all_cpu_cache_info[cpu].kobj.parent)
358                 return 0;
359
360         oldmask = current->cpus_allowed;
361         retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
362         if (unlikely(retval))
363                 return retval;
364
365         retval = cpu_cache_sysfs_init(cpu);
366         set_cpus_allowed(current, oldmask);
367         if (unlikely(retval < 0))
368                 return retval;
369
370         retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
371                                       &cache_ktype_percpu_entry, &sys_dev->kobj,
372                                       "%s", "cache");
373
374         for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
375                 this_object = LEAF_KOBJECT_PTR(cpu,i);
376                 retval = kobject_init_and_add(&(this_object->kobj),
377                                               &cache_ktype,
378                                               &all_cpu_cache_info[cpu].kobj,
379                                               "index%1lu", i);
380                 if (unlikely(retval)) {
381                         for (j = 0; j < i; j++) {
382                                 kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
383                         }
384                         kobject_put(&all_cpu_cache_info[cpu].kobj);
385                         cpu_cache_sysfs_exit(cpu);
386                         break;
387                 }
388                 kobject_uevent(&(this_object->kobj), KOBJ_ADD);
389         }
390         kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
391         return retval;
392 }
393
394 /* Remove cache interface for CPU device */
395 static int __cpuinit cache_remove_dev(struct sys_device * sys_dev)
396 {
397         unsigned int cpu = sys_dev->id;
398         unsigned long i;
399
400         for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
401                 kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
402
403         if (all_cpu_cache_info[cpu].kobj.parent) {
404                 kobject_put(&all_cpu_cache_info[cpu].kobj);
405                 memset(&all_cpu_cache_info[cpu].kobj,
406                         0,
407                         sizeof(struct kobject));
408         }
409
410         cpu_cache_sysfs_exit(cpu);
411
412         return 0;
413 }
414
415 /*
416  * When a cpu is hot-plugged, do a check and initiate
417  * cache kobject if necessary
418  */
419 static int __cpuinit cache_cpu_callback(struct notifier_block *nfb,
420                 unsigned long action, void *hcpu)
421 {
422         unsigned int cpu = (unsigned long)hcpu;
423         struct sys_device *sys_dev;
424
425         sys_dev = get_cpu_sysdev(cpu);
426         switch (action) {
427         case CPU_ONLINE:
428         case CPU_ONLINE_FROZEN:
429                 cache_add_dev(sys_dev);
430                 break;
431         case CPU_DEAD:
432         case CPU_DEAD_FROZEN:
433                 cache_remove_dev(sys_dev);
434                 break;
435         }
436         return NOTIFY_OK;
437 }
438
439 static struct notifier_block __cpuinitdata cache_cpu_notifier =
440 {
441         .notifier_call = cache_cpu_callback
442 };
443
444 static int __init cache_sysfs_init(void)
445 {
446         int i;
447
448         for_each_online_cpu(i) {
449                 struct sys_device *sys_dev = get_cpu_sysdev((unsigned int)i);
450                 cache_add_dev(sys_dev);
451         }
452
453         register_hotcpu_notifier(&cache_cpu_notifier);
454
455         return 0;
456 }
457
458 device_initcall(cache_sysfs_init);
459