2 /*******************************************************************************
4 * Module Name: hwregs - Read/write access functions for the various ACPI
5 * control and status registers.
7 ******************************************************************************/
10 * Copyright (C) 2000 - 2008, Intel Corp.
11 * All rights reserved.
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions, and the following disclaimer,
18 * without modification.
19 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
20 * substantially similar to the "NO WARRANTY" disclaimer below
21 * ("Disclaimer") and any redistribution must be conditioned upon
22 * including a substantially similar Disclaimer requirement for further
23 * binary redistribution.
24 * 3. Neither the names of the above-listed copyright holders nor the names
25 * of any contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
28 * Alternatively, this software may be distributed under the terms of the
29 * GNU General Public License ("GPL") version 2 as published by the Free
30 * Software Foundation.
33 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
36 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
42 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
43 * POSSIBILITY OF SUCH DAMAGES.
46 #include <acpi/acpi.h>
51 #define _COMPONENT ACPI_HARDWARE
52 ACPI_MODULE_NAME("hwregs")
54 /* Local Prototypes */
56 acpi_hw_read_multiple(u32 *value,
57 struct acpi_generic_address *register_a,
58 struct acpi_generic_address *register_b);
61 acpi_hw_write_multiple(u32 value,
62 struct acpi_generic_address *register_a,
63 struct acpi_generic_address *register_b);
65 /*******************************************************************************
67 * FUNCTION: acpi_hw_clear_acpi_status
73 * DESCRIPTION: Clears all fixed and general purpose status bits
75 ******************************************************************************/
77 acpi_status acpi_hw_clear_acpi_status(void)
80 acpi_cpu_flags lock_flags = 0;
82 ACPI_FUNCTION_TRACE(hw_clear_acpi_status);
84 ACPI_DEBUG_PRINT((ACPI_DB_IO, "About to write %04X to %8.8X%8.8X\n",
85 ACPI_BITMASK_ALL_FIXED_STATUS,
86 ACPI_FORMAT_UINT64(acpi_gbl_xpm1a_status.address)));
88 lock_flags = acpi_os_acquire_lock(acpi_gbl_hardware_lock);
90 /* Clear the fixed events in PM1 A/B */
92 status = acpi_hw_register_write(ACPI_REGISTER_PM1_STATUS,
93 ACPI_BITMASK_ALL_FIXED_STATUS);
94 if (ACPI_FAILURE(status)) {
98 /* Clear the GPE Bits in all GPE registers in all GPE blocks */
100 status = acpi_ev_walk_gpe_list(acpi_hw_clear_gpe_block, NULL);
103 acpi_os_release_lock(acpi_gbl_hardware_lock, lock_flags);
104 return_ACPI_STATUS(status);
107 /*******************************************************************************
109 * FUNCTION: acpi_hw_get_register_bit_mask
111 * PARAMETERS: register_id - Index of ACPI Register to access
113 * RETURN: The bitmask to be used when accessing the register
115 * DESCRIPTION: Map register_id into a register bitmask.
117 ******************************************************************************/
119 struct acpi_bit_register_info *acpi_hw_get_bit_register_info(u32 register_id)
121 ACPI_FUNCTION_ENTRY();
123 if (register_id > ACPI_BITREG_MAX) {
124 ACPI_ERROR((AE_INFO, "Invalid BitRegister ID: %X",
129 return (&acpi_gbl_bit_register_info[register_id]);
132 /******************************************************************************
134 * FUNCTION: acpi_hw_write_pm1_control
136 * PARAMETERS: pm1a_control - Value to be written to PM1A control
137 * pm1b_control - Value to be written to PM1B control
141 * DESCRIPTION: Write the PM1 A/B control registers. These registers are
142 * different than than the PM1 A/B status and enable registers
143 * in that different values can be written to the A/B registers.
144 * Most notably, the SLP_TYP bits can be different, as per the
145 * values returned from the _Sx predefined methods.
147 ******************************************************************************/
149 acpi_status acpi_hw_write_pm1_control(u32 pm1a_control, u32 pm1b_control)
153 ACPI_FUNCTION_TRACE(hw_write_pm1_control);
155 status = acpi_write(pm1a_control, &acpi_gbl_FADT.xpm1a_control_block);
156 if (ACPI_FAILURE(status)) {
157 return_ACPI_STATUS(status);
160 if (acpi_gbl_FADT.xpm1b_control_block.address) {
162 acpi_write(pm1b_control,
163 &acpi_gbl_FADT.xpm1b_control_block);
165 return_ACPI_STATUS(status);
168 /******************************************************************************
170 * FUNCTION: acpi_hw_register_read
172 * PARAMETERS: register_id - ACPI Register ID
173 * return_value - Where the register value is returned
175 * RETURN: Status and the value read.
177 * DESCRIPTION: Read from the specified ACPI register
179 ******************************************************************************/
181 acpi_hw_register_read(u32 register_id, u32 * return_value)
186 ACPI_FUNCTION_TRACE(hw_register_read);
188 switch (register_id) {
189 case ACPI_REGISTER_PM1_STATUS: /* PM1 A/B: 16-bit access each */
191 status = acpi_hw_read_multiple(&value,
192 &acpi_gbl_xpm1a_status,
193 &acpi_gbl_xpm1b_status);
196 case ACPI_REGISTER_PM1_ENABLE: /* PM1 A/B: 16-bit access each */
198 status = acpi_hw_read_multiple(&value,
199 &acpi_gbl_xpm1a_enable,
200 &acpi_gbl_xpm1b_enable);
203 case ACPI_REGISTER_PM1_CONTROL: /* PM1 A/B: 16-bit access each */
205 status = acpi_hw_read_multiple(&value,
209 xpm1b_control_block);
212 * Zero the write-only bits. From the ACPI specification, "Hardware
213 * Write-Only Bits": "Upon reads to registers with write-only bits,
214 * software masks out all write-only bits."
216 value &= ~ACPI_PM1_CONTROL_WRITEONLY_BITS;
219 case ACPI_REGISTER_PM2_CONTROL: /* 8-bit access */
221 status = acpi_read(&value, &acpi_gbl_FADT.xpm2_control_block);
224 case ACPI_REGISTER_PM_TIMER: /* 32-bit access */
226 status = acpi_read(&value, &acpi_gbl_FADT.xpm_timer_block);
229 case ACPI_REGISTER_SMI_COMMAND_BLOCK: /* 8-bit access */
232 acpi_hw_read_port(acpi_gbl_FADT.smi_command, &value, 8);
236 ACPI_ERROR((AE_INFO, "Unknown Register ID: %X", register_id));
237 status = AE_BAD_PARAMETER;
241 if (ACPI_SUCCESS(status)) {
242 *return_value = value;
245 return_ACPI_STATUS(status);
248 /******************************************************************************
250 * FUNCTION: acpi_hw_register_write
252 * PARAMETERS: register_id - ACPI Register ID
253 * Value - The value to write
257 * DESCRIPTION: Write to the specified ACPI register
259 * NOTE: In accordance with the ACPI specification, this function automatically
260 * preserves the value of the following bits, meaning that these bits cannot be
261 * changed via this interface:
263 * PM1_CONTROL[0] = SCI_EN
268 * 1) Hardware Ignored Bits: When software writes to a register with ignored
269 * bit fields, it preserves the ignored bit fields
270 * 2) SCI_EN: OSPM always preserves this bit position
272 ******************************************************************************/
274 acpi_status acpi_hw_register_write(u32 register_id, u32 value)
279 ACPI_FUNCTION_TRACE(hw_register_write);
281 switch (register_id) {
282 case ACPI_REGISTER_PM1_STATUS: /* PM1 A/B: 16-bit access each */
284 * Handle the "ignored" bit in PM1 Status. According to the ACPI
285 * specification, ignored bits are to be preserved when writing.
286 * Normally, this would mean a read/modify/write sequence. However,
287 * preserving a bit in the status register is different. Writing a
288 * one clears the status, and writing a zero preserves the status.
289 * Therefore, we must always write zero to the ignored bit.
291 * This behavior is clarified in the ACPI 4.0 specification.
293 value &= ~ACPI_PM1_STATUS_PRESERVED_BITS;
295 status = acpi_hw_write_multiple(value,
296 &acpi_gbl_xpm1a_status,
297 &acpi_gbl_xpm1b_status);
300 case ACPI_REGISTER_PM1_ENABLE: /* PM1 A/B: 16-bit access */
302 status = acpi_hw_write_multiple(value,
303 &acpi_gbl_xpm1a_enable,
304 &acpi_gbl_xpm1b_enable);
307 case ACPI_REGISTER_PM1_CONTROL: /* PM1 A/B: 16-bit access each */
310 * Perform a read first to preserve certain bits (per ACPI spec)
311 * Note: This includes SCI_EN, we never want to change this bit
313 status = acpi_hw_read_multiple(&read_value,
317 xpm1b_control_block);
318 if (ACPI_FAILURE(status)) {
322 /* Insert the bits to be preserved */
324 ACPI_INSERT_BITS(value, ACPI_PM1_CONTROL_PRESERVED_BITS,
327 /* Now we can write the data */
329 status = acpi_hw_write_multiple(value,
333 xpm1b_control_block);
336 case ACPI_REGISTER_PM2_CONTROL: /* 8-bit access */
339 * For control registers, all reserved bits must be preserved,
340 * as per the ACPI spec.
343 acpi_read(&read_value, &acpi_gbl_FADT.xpm2_control_block);
344 if (ACPI_FAILURE(status)) {
348 /* Insert the bits to be preserved */
350 ACPI_INSERT_BITS(value, ACPI_PM2_CONTROL_PRESERVED_BITS,
353 status = acpi_write(value, &acpi_gbl_FADT.xpm2_control_block);
356 case ACPI_REGISTER_PM_TIMER: /* 32-bit access */
358 status = acpi_write(value, &acpi_gbl_FADT.xpm_timer_block);
361 case ACPI_REGISTER_SMI_COMMAND_BLOCK: /* 8-bit access */
363 /* SMI_CMD is currently always in IO space */
366 acpi_hw_write_port(acpi_gbl_FADT.smi_command, value, 8);
370 ACPI_ERROR((AE_INFO, "Unknown Register ID: %X", register_id));
371 status = AE_BAD_PARAMETER;
376 return_ACPI_STATUS(status);
379 /******************************************************************************
381 * FUNCTION: acpi_hw_read_multiple
383 * PARAMETERS: Value - Where the register value is returned
384 * register_a - First ACPI register (required)
385 * register_b - Second ACPI register (optional)
389 * DESCRIPTION: Read from the specified two-part ACPI register (such as PM1 A/B)
391 ******************************************************************************/
394 acpi_hw_read_multiple(u32 *value,
395 struct acpi_generic_address *register_a,
396 struct acpi_generic_address *register_b)
402 /* The first register is always required */
404 status = acpi_read(&value_a, register_a);
405 if (ACPI_FAILURE(status)) {
409 /* Second register is optional */
411 if (register_b->address) {
412 status = acpi_read(&value_b, register_b);
413 if (ACPI_FAILURE(status)) {
419 * OR the two return values together. No shifting or masking is necessary,
420 * because of how the PM1 registers are defined in the ACPI specification:
422 * "Although the bits can be split between the two register blocks (each
423 * register block has a unique pointer within the FADT), the bit positions
424 * are maintained. The register block with unimplemented bits (that is,
425 * those implemented in the other register block) always returns zeros,
426 * and writes have no side effects"
428 *value = (value_a | value_b);
432 /******************************************************************************
434 * FUNCTION: acpi_hw_write_multiple
436 * PARAMETERS: Value - The value to write
437 * register_a - First ACPI register (required)
438 * register_b - Second ACPI register (optional)
442 * DESCRIPTION: Write to the specified two-part ACPI register (such as PM1 A/B)
444 ******************************************************************************/
447 acpi_hw_write_multiple(u32 value,
448 struct acpi_generic_address *register_a,
449 struct acpi_generic_address *register_b)
453 /* The first register is always required */
455 status = acpi_write(value, register_a);
456 if (ACPI_FAILURE(status)) {
461 * Second register is optional
463 * No bit shifting or clearing is necessary, because of how the PM1
464 * registers are defined in the ACPI specification:
466 * "Although the bits can be split between the two register blocks (each
467 * register block has a unique pointer within the FADT), the bit positions
468 * are maintained. The register block with unimplemented bits (that is,
469 * those implemented in the other register block) always returns zeros,
470 * and writes have no side effects"
472 if (register_b->address) {
473 status = acpi_write(value, register_b);