2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
8 * (c) Copyright 2000, 2001 Red Hat Inc
10 * Development of this driver was funded by Equiinet Ltd
11 * http://www.equiinet.com
15 * Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
16 * unification of all the Z85x30 asynchronous drivers for real.
18 * DMA now uses get_free_page as kmalloc buffers may span a 64K
21 * Modified for SMP safety and SMP locking by Alan Cox <alan@redhat.com>
26 * Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
27 * X.25 is not unrealistic on all machines. DMA mode can in theory
28 * handle T1/E1 quite nicely. In practice the limit seems to be about
29 * 512Kbit->1Mbit depending on motherboard.
32 * 64K will take DMA, 9600 baud X.25 should be ok.
35 * Synchronous mode without DMA is unlikely to pass about 2400 baud.
38 #include <linux/module.h>
39 #include <linux/kernel.h>
41 #include <linux/net.h>
42 #include <linux/skbuff.h>
43 #include <linux/netdevice.h>
44 #include <linux/if_arp.h>
45 #include <linux/delay.h>
46 #include <linux/ioport.h>
47 #include <linux/init.h>
52 #include <linux/spinlock.h>
54 #include <net/syncppp.h>
59 * z8530_read_port - Architecture specific interface function
62 * Provided port access methods. The Comtrol SV11 requires no delays
63 * between accesses and uses PC I/O. Some drivers may need a 5uS delay
65 * In the longer term this should become an architecture specific
66 * section so that this can become a generic driver interface for all
67 * platforms. For now we only handle PC I/O ports with or without the
68 * dread 5uS sanity delay.
70 * The caller must hold sufficient locks to avoid violating the horrible
74 static inline int z8530_read_port(unsigned long p)
76 u8 r=inb(Z8530_PORT_OF(p));
77 if(p&Z8530_PORT_SLEEP) /* gcc should figure this out efficiently ! */
83 * z8530_write_port - Architecture specific interface function
87 * Write a value to a port with delays if need be. Note that the
88 * caller must hold locks to avoid read/writes from other contexts
89 * violating the 5uS rule
91 * In the longer term this should become an architecture specific
92 * section so that this can become a generic driver interface for all
93 * platforms. For now we only handle PC I/O ports with or without the
94 * dread 5uS sanity delay.
98 static inline void z8530_write_port(unsigned long p, u8 d)
100 outb(d,Z8530_PORT_OF(p));
101 if(p&Z8530_PORT_SLEEP)
107 static void z8530_rx_done(struct z8530_channel *c);
108 static void z8530_tx_done(struct z8530_channel *c);
112 * read_zsreg - Read a register from a Z85230
113 * @c: Z8530 channel to read from (2 per chip)
114 * @reg: Register to read
115 * FIXME: Use a spinlock.
117 * Most of the Z8530 registers are indexed off the control registers.
118 * A read is done by writing to the control register and reading the
119 * register back. The caller must hold the lock
122 static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
125 z8530_write_port(c->ctrlio, reg);
126 return z8530_read_port(c->ctrlio);
130 * read_zsdata - Read the data port of a Z8530 channel
131 * @c: The Z8530 channel to read the data port from
133 * The data port provides fast access to some things. We still
134 * have all the 5uS delays to worry about.
137 static inline u8 read_zsdata(struct z8530_channel *c)
140 r=z8530_read_port(c->dataio);
145 * write_zsreg - Write to a Z8530 channel register
146 * @c: The Z8530 channel
147 * @reg: Register number
148 * @val: Value to write
150 * Write a value to an indexed register. The caller must hold the lock
151 * to honour the irritating delay rules. We know about register 0
152 * being fast to access.
154 * Assumes c->lock is held.
156 static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
159 z8530_write_port(c->ctrlio, reg);
160 z8530_write_port(c->ctrlio, val);
165 * write_zsctrl - Write to a Z8530 control register
166 * @c: The Z8530 channel
167 * @val: Value to write
169 * Write directly to the control register on the Z8530
172 static inline void write_zsctrl(struct z8530_channel *c, u8 val)
174 z8530_write_port(c->ctrlio, val);
178 * write_zsdata - Write to a Z8530 control register
179 * @c: The Z8530 channel
180 * @val: Value to write
182 * Write directly to the data register on the Z8530
186 static inline void write_zsdata(struct z8530_channel *c, u8 val)
188 z8530_write_port(c->dataio, val);
192 * Register loading parameters for a dead port
195 u8 z8530_dead_port[]=
200 EXPORT_SYMBOL(z8530_dead_port);
203 * Register loading parameters for currently supported circuit types
208 * Data clocked by telco end. This is the correct data for the UK
209 * "kilostream" service, and most other similar services.
212 u8 z8530_hdlc_kilostream[]=
214 4, SYNC_ENAB|SDLC|X1CLK,
215 2, 0, /* No vector */
217 3, ENT_HM|RxCRC_ENAB|Rx8,
218 5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
219 9, 0, /* Disable interrupts */
222 10, ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/
225 15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
226 1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
231 EXPORT_SYMBOL(z8530_hdlc_kilostream);
234 * As above but for enhanced chips.
237 u8 z8530_hdlc_kilostream_85230[]=
239 4, SYNC_ENAB|SDLC|X1CLK,
240 2, 0, /* No vector */
242 3, ENT_HM|RxCRC_ENAB|Rx8,
243 5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
244 9, 0, /* Disable interrupts */
247 10, ABUNDER|NRZ|CRCPS, /* MARKIDLE?? */
250 15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
251 1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
253 23, 3, /* Extended mode AUTO TX and EOM*/
258 EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
261 * z8530_flush_fifo - Flush on chip RX FIFO
262 * @c: Channel to flush
264 * Flush the receive FIFO. There is no specific option for this, we
265 * blindly read bytes and discard them. Reading when there is no data
266 * is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
268 * All locking is handled for the caller. On return data may still be
269 * present if it arrived during the flush.
272 static void z8530_flush_fifo(struct z8530_channel *c)
278 if(c->dev->type==Z85230)
288 * z8530_rtsdtr - Control the outgoing DTS/RTS line
289 * @c: The Z8530 channel to control;
290 * @set: 1 to set, 0 to clear
292 * Sets or clears DTR/RTS on the requested line. All locking is handled
293 * by the caller. For now we assume all boards use the actual RTS/DTR
294 * on the chip. Apparently one or two don't. We'll scream about them
298 static void z8530_rtsdtr(struct z8530_channel *c, int set)
301 c->regs[5] |= (RTS | DTR);
303 c->regs[5] &= ~(RTS | DTR);
304 write_zsreg(c, R5, c->regs[5]);
308 * z8530_rx - Handle a PIO receive event
309 * @c: Z8530 channel to process
311 * Receive handler for receiving in PIO mode. This is much like the
312 * async one but not quite the same or as complex
314 * Note: Its intended that this handler can easily be separated from
315 * the main code to run realtime. That'll be needed for some machines
316 * (eg to ever clock 64kbits on a sparc ;)).
318 * The RT_LOCK macros don't do anything now. Keep the code covered
319 * by them as short as possible in all circumstances - clocks cost
320 * baud. The interrupt handler is assumed to be atomic w.r.t. to
321 * other code - this is true in the RT case too.
323 * We only cover the sync cases for this. If you want 2Mbit async
324 * do it yourself but consider medical assistance first. This non DMA
325 * synchronous mode is portable code. The DMA mode assumes PCI like
328 * Called with the device lock held
331 static void z8530_rx(struct z8530_channel *c)
338 if(!(read_zsreg(c, R0)&1))
341 stat=read_zsreg(c, R1);
346 if(c->count < c->max)
358 if(stat&(Rx_OVR|CRC_ERR))
360 /* Rewind the buffer and return */
362 c->dptr=c->skb->data;
366 printk(KERN_WARNING "%s: overrun\n", c->dev->name);
372 /* printk("crc error\n"); */
374 /* Shove the frame upstream */
379 * Drop the lock for RX processing, or
380 * there are deadlocks
383 write_zsctrl(c, RES_Rx_CRC);
390 write_zsctrl(c, ERR_RES);
391 write_zsctrl(c, RES_H_IUS);
396 * z8530_tx - Handle a PIO transmit event
397 * @c: Z8530 channel to process
399 * Z8530 transmit interrupt handler for the PIO mode. The basic
400 * idea is to attempt to keep the FIFO fed. We fill as many bytes
401 * in as possible, its quite possible that we won't keep up with the
402 * data rate otherwise.
405 static void z8530_tx(struct z8530_channel *c)
409 if(!(read_zsreg(c, R0)&4))
413 * Shovel out the byte
415 write_zsreg(c, R8, *c->tx_ptr++);
416 write_zsctrl(c, RES_H_IUS);
417 /* We are about to underflow */
420 write_zsctrl(c, RES_EOM_L);
421 write_zsreg(c, R10, c->regs[10]&~ABUNDER);
427 * End of frame TX - fire another one
430 write_zsctrl(c, RES_Tx_P);
433 write_zsctrl(c, RES_H_IUS);
437 * z8530_status - Handle a PIO status exception
438 * @chan: Z8530 channel to process
440 * A status event occurred in PIO synchronous mode. There are several
441 * reasons the chip will bother us here. A transmit underrun means we
442 * failed to feed the chip fast enough and just broke a packet. A DCD
443 * change is a line up or down. We communicate that back to the protocol
444 * layer for synchronous PPP to renegotiate.
447 static void z8530_status(struct z8530_channel *chan)
451 status=read_zsreg(chan, R0);
452 altered=chan->status^status;
458 /* printk("%s: Tx underrun.\n", chan->dev->name); */
459 chan->stats.tx_fifo_errors++;
460 write_zsctrl(chan, ERR_RES);
464 if(altered&chan->dcdcheck)
466 if(status&chan->dcdcheck)
468 printk(KERN_INFO "%s: DCD raised\n", chan->dev->name);
469 write_zsreg(chan, R3, chan->regs[3]|RxENABLE);
470 if(chan->netdevice &&
471 ((chan->netdevice->type == ARPHRD_HDLC) ||
472 (chan->netdevice->type == ARPHRD_PPP)))
473 sppp_reopen(chan->netdevice);
477 printk(KERN_INFO "%s: DCD lost\n", chan->dev->name);
478 write_zsreg(chan, R3, chan->regs[3]&~RxENABLE);
479 z8530_flush_fifo(chan);
483 write_zsctrl(chan, RES_EXT_INT);
484 write_zsctrl(chan, RES_H_IUS);
487 struct z8530_irqhandler z8530_sync=
494 EXPORT_SYMBOL(z8530_sync);
497 * z8530_dma_rx - Handle a DMA RX event
498 * @chan: Channel to handle
500 * Non bus mastering DMA interfaces for the Z8x30 devices. This
501 * is really pretty PC specific. The DMA mode means that most receive
502 * events are handled by the DMA hardware. We get a kick here only if
506 static void z8530_dma_rx(struct z8530_channel *chan)
510 /* Special condition check only */
513 read_zsreg(chan, R7);
514 read_zsreg(chan, R6);
516 status=read_zsreg(chan, R1);
520 z8530_rx_done(chan); /* Fire up the next one */
522 write_zsctrl(chan, ERR_RES);
523 write_zsctrl(chan, RES_H_IUS);
527 /* DMA is off right now, drain the slow way */
533 * z8530_dma_tx - Handle a DMA TX event
534 * @chan: The Z8530 channel to handle
536 * We have received an interrupt while doing DMA transmissions. It
537 * shouldn't happen. Scream loudly if it does.
540 static void z8530_dma_tx(struct z8530_channel *chan)
544 printk(KERN_WARNING "Hey who turned the DMA off?\n");
548 /* This shouldnt occur in DMA mode */
549 printk(KERN_ERR "DMA tx - bogus event!\n");
554 * z8530_dma_status - Handle a DMA status exception
555 * @chan: Z8530 channel to process
557 * A status event occurred on the Z8530. We receive these for two reasons
558 * when in DMA mode. Firstly if we finished a packet transfer we get one
559 * and kick the next packet out. Secondly we may see a DCD change and
560 * have to poke the protocol layer.
564 static void z8530_dma_status(struct z8530_channel *chan)
568 status=read_zsreg(chan, R0);
569 altered=chan->status^status;
580 flags=claim_dma_lock();
581 disable_dma(chan->txdma);
582 clear_dma_ff(chan->txdma);
584 release_dma_lock(flags);
589 if(altered&chan->dcdcheck)
591 if(status&chan->dcdcheck)
593 printk(KERN_INFO "%s: DCD raised\n", chan->dev->name);
594 write_zsreg(chan, R3, chan->regs[3]|RxENABLE);
595 if(chan->netdevice &&
596 ((chan->netdevice->type == ARPHRD_HDLC) ||
597 (chan->netdevice->type == ARPHRD_PPP)))
598 sppp_reopen(chan->netdevice);
602 printk(KERN_INFO "%s:DCD lost\n", chan->dev->name);
603 write_zsreg(chan, R3, chan->regs[3]&~RxENABLE);
604 z8530_flush_fifo(chan);
608 write_zsctrl(chan, RES_EXT_INT);
609 write_zsctrl(chan, RES_H_IUS);
612 struct z8530_irqhandler z8530_dma_sync=
619 EXPORT_SYMBOL(z8530_dma_sync);
621 struct z8530_irqhandler z8530_txdma_sync=
628 EXPORT_SYMBOL(z8530_txdma_sync);
631 * z8530_rx_clear - Handle RX events from a stopped chip
632 * @c: Z8530 channel to shut up
634 * Receive interrupt vectors for a Z8530 that is in 'parked' mode.
635 * For machines with PCI Z85x30 cards, or level triggered interrupts
636 * (eg the MacII) we must clear the interrupt cause or die.
640 static void z8530_rx_clear(struct z8530_channel *c)
643 * Data and status bytes
648 stat=read_zsreg(c, R1);
651 write_zsctrl(c, RES_Rx_CRC);
655 write_zsctrl(c, ERR_RES);
656 write_zsctrl(c, RES_H_IUS);
660 * z8530_tx_clear - Handle TX events from a stopped chip
661 * @c: Z8530 channel to shut up
663 * Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
664 * For machines with PCI Z85x30 cards, or level triggered interrupts
665 * (eg the MacII) we must clear the interrupt cause or die.
668 static void z8530_tx_clear(struct z8530_channel *c)
670 write_zsctrl(c, RES_Tx_P);
671 write_zsctrl(c, RES_H_IUS);
675 * z8530_status_clear - Handle status events from a stopped chip
676 * @chan: Z8530 channel to shut up
678 * Status interrupt vectors for a Z8530 that is in 'parked' mode.
679 * For machines with PCI Z85x30 cards, or level triggered interrupts
680 * (eg the MacII) we must clear the interrupt cause or die.
683 static void z8530_status_clear(struct z8530_channel *chan)
685 u8 status=read_zsreg(chan, R0);
687 write_zsctrl(chan, ERR_RES);
688 write_zsctrl(chan, RES_EXT_INT);
689 write_zsctrl(chan, RES_H_IUS);
692 struct z8530_irqhandler z8530_nop=
700 EXPORT_SYMBOL(z8530_nop);
703 * z8530_interrupt - Handle an interrupt from a Z8530
704 * @irq: Interrupt number
705 * @dev_id: The Z8530 device that is interrupting.
708 * A Z85[2]30 device has stuck its hand in the air for attention.
709 * We scan both the channels on the chip for events and then call
710 * the channel specific call backs for each channel that has events.
711 * We have to use callback functions because the two channels can be
712 * in different modes.
714 * Locking is done for the handlers. Note that locking is done
715 * at the chip level (the 5uS delay issue is per chip not per
716 * channel). c->lock for both channels points to dev->lock
719 irqreturn_t z8530_interrupt(int irq, void *dev_id)
721 struct z8530_dev *dev=dev_id;
723 static volatile int locker=0;
725 struct z8530_irqhandler *irqs;
729 printk(KERN_ERR "IRQ re-enter\n");
734 spin_lock(&dev->lock);
739 intr = read_zsreg(&dev->chanA, R3);
740 if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT)))
743 /* This holds the IRQ status. On the 8530 you must read it from chan
744 A even though it applies to the whole chip */
746 /* Now walk the chip and see what it is wanting - it may be
747 an IRQ for someone else remember */
749 irqs=dev->chanA.irqs;
751 if(intr & (CHARxIP|CHATxIP|CHAEXT))
754 irqs->rx(&dev->chanA);
756 irqs->tx(&dev->chanA);
758 irqs->status(&dev->chanA);
761 irqs=dev->chanB.irqs;
763 if(intr & (CHBRxIP|CHBTxIP|CHBEXT))
766 irqs->rx(&dev->chanB);
768 irqs->tx(&dev->chanB);
770 irqs->status(&dev->chanB);
773 spin_unlock(&dev->lock);
775 printk(KERN_ERR "%s: interrupt jammed - abort(0x%X)!\n", dev->name, intr);
781 EXPORT_SYMBOL(z8530_interrupt);
783 static char reg_init[16]=
793 * z8530_sync_open - Open a Z8530 channel for PIO
794 * @dev: The network interface we are using
795 * @c: The Z8530 channel to open in synchronous PIO mode
797 * Switch a Z8530 into synchronous mode without DMA assist. We
798 * raise the RTS/DTR and commence network operation.
801 int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
805 spin_lock_irqsave(c->lock, flags);
808 c->mtu = dev->mtu+64;
812 c->irqs = &z8530_sync;
814 /* This loads the double buffer up */
815 z8530_rx_done(c); /* Load the frame ring */
816 z8530_rx_done(c); /* Load the backup frame */
819 c->regs[R1]|=TxINT_ENAB;
820 write_zsreg(c, R1, c->regs[R1]);
821 write_zsreg(c, R3, c->regs[R3]|RxENABLE);
823 spin_unlock_irqrestore(c->lock, flags);
828 EXPORT_SYMBOL(z8530_sync_open);
831 * z8530_sync_close - Close a PIO Z8530 channel
832 * @dev: Network device to close
833 * @c: Z8530 channel to disassociate and move to idle
835 * Close down a Z8530 interface and switch its interrupt handlers
836 * to discard future events.
839 int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
844 spin_lock_irqsave(c->lock, flags);
845 c->irqs = &z8530_nop;
849 chk=read_zsreg(c,R0);
850 write_zsreg(c, R3, c->regs[R3]);
853 spin_unlock_irqrestore(c->lock, flags);
857 EXPORT_SYMBOL(z8530_sync_close);
860 * z8530_sync_dma_open - Open a Z8530 for DMA I/O
861 * @dev: The network device to attach
862 * @c: The Z8530 channel to configure in sync DMA mode.
864 * Set up a Z85x30 device for synchronous DMA in both directions. Two
865 * ISA DMA channels must be available for this to work. We assume ISA
866 * DMA driven I/O and PC limits on access.
869 int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
871 unsigned long cflags, dflags;
874 c->mtu = dev->mtu+64;
879 * Load the DMA interfaces up
885 * Allocate the DMA flip buffers. Limit by page size.
886 * Everyone runs 1500 mtu or less on wan links so this
890 if(c->mtu > PAGE_SIZE/2)
893 c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
894 if(c->rx_buf[0]==NULL)
896 c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2;
898 c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
899 if(c->tx_dma_buf[0]==NULL)
901 free_page((unsigned long)c->rx_buf[0]);
905 c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2;
913 * Enable DMA control mode
916 spin_lock_irqsave(c->lock, cflags);
922 c->regs[R14]|= DTRREQ;
923 write_zsreg(c, R14, c->regs[R14]);
925 c->regs[R1]&= ~TxINT_ENAB;
926 write_zsreg(c, R1, c->regs[R1]);
932 c->regs[R1]|= WT_FN_RDYFN;
933 c->regs[R1]|= WT_RDY_RT;
934 c->regs[R1]|= INT_ERR_Rx;
935 c->regs[R1]&= ~TxINT_ENAB;
936 write_zsreg(c, R1, c->regs[R1]);
937 c->regs[R1]|= WT_RDY_ENAB;
938 write_zsreg(c, R1, c->regs[R1]);
945 * Set up the DMA configuration
948 dflags=claim_dma_lock();
950 disable_dma(c->rxdma);
951 clear_dma_ff(c->rxdma);
952 set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
953 set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
954 set_dma_count(c->rxdma, c->mtu);
955 enable_dma(c->rxdma);
957 disable_dma(c->txdma);
958 clear_dma_ff(c->txdma);
959 set_dma_mode(c->txdma, DMA_MODE_WRITE);
960 disable_dma(c->txdma);
962 release_dma_lock(dflags);
965 * Select the DMA interrupt handlers
972 c->irqs = &z8530_dma_sync;
974 write_zsreg(c, R3, c->regs[R3]|RxENABLE);
976 spin_unlock_irqrestore(c->lock, cflags);
981 EXPORT_SYMBOL(z8530_sync_dma_open);
984 * z8530_sync_dma_close - Close down DMA I/O
985 * @dev: Network device to detach
986 * @c: Z8530 channel to move into discard mode
988 * Shut down a DMA mode synchronous interface. Halt the DMA, and
992 int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
997 c->irqs = &z8530_nop;
1002 * Disable the PC DMA channels
1005 flags=claim_dma_lock();
1006 disable_dma(c->rxdma);
1007 clear_dma_ff(c->rxdma);
1011 disable_dma(c->txdma);
1012 clear_dma_ff(c->txdma);
1013 release_dma_lock(flags);
1018 spin_lock_irqsave(c->lock, flags);
1021 * Disable DMA control mode
1024 c->regs[R1]&= ~WT_RDY_ENAB;
1025 write_zsreg(c, R1, c->regs[R1]);
1026 c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1027 c->regs[R1]|= INT_ALL_Rx;
1028 write_zsreg(c, R1, c->regs[R1]);
1029 c->regs[R14]&= ~DTRREQ;
1030 write_zsreg(c, R14, c->regs[R14]);
1034 free_page((unsigned long)c->rx_buf[0]);
1037 if(c->tx_dma_buf[0])
1039 free_page((unsigned long)c->tx_dma_buf[0]);
1040 c->tx_dma_buf[0]=NULL;
1042 chk=read_zsreg(c,R0);
1043 write_zsreg(c, R3, c->regs[R3]);
1046 spin_unlock_irqrestore(c->lock, flags);
1051 EXPORT_SYMBOL(z8530_sync_dma_close);
1054 * z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
1055 * @dev: The network device to attach
1056 * @c: The Z8530 channel to configure in sync DMA mode.
1058 * Set up a Z85x30 device for synchronous DMA tranmission. One
1059 * ISA DMA channel must be available for this to work. The receive
1060 * side is run in PIO mode, but then it has the bigger FIFO.
1063 int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
1065 unsigned long cflags, dflags;
1067 printk("Opening sync interface for TX-DMA\n");
1069 c->mtu = dev->mtu+64;
1075 * Allocate the DMA flip buffers. Limit by page size.
1076 * Everyone runs 1500 mtu or less on wan links so this
1080 if(c->mtu > PAGE_SIZE/2)
1083 c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
1084 if(c->tx_dma_buf[0]==NULL)
1087 c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2;
1090 spin_lock_irqsave(c->lock, cflags);
1093 * Load the PIO receive ring
1100 * Load the DMA interfaces up
1112 * Enable DMA control mode
1116 * TX DMA via DIR/REQ
1118 c->regs[R14]|= DTRREQ;
1119 write_zsreg(c, R14, c->regs[R14]);
1121 c->regs[R1]&= ~TxINT_ENAB;
1122 write_zsreg(c, R1, c->regs[R1]);
1125 * Set up the DMA configuration
1128 dflags = claim_dma_lock();
1130 disable_dma(c->txdma);
1131 clear_dma_ff(c->txdma);
1132 set_dma_mode(c->txdma, DMA_MODE_WRITE);
1133 disable_dma(c->txdma);
1135 release_dma_lock(dflags);
1138 * Select the DMA interrupt handlers
1145 c->irqs = &z8530_txdma_sync;
1147 write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1148 spin_unlock_irqrestore(c->lock, cflags);
1153 EXPORT_SYMBOL(z8530_sync_txdma_open);
1156 * z8530_sync_txdma_close - Close down a TX driven DMA channel
1157 * @dev: Network device to detach
1158 * @c: Z8530 channel to move into discard mode
1160 * Shut down a DMA/PIO split mode synchronous interface. Halt the DMA,
1161 * and free the buffers.
1164 int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
1166 unsigned long dflags, cflags;
1170 spin_lock_irqsave(c->lock, cflags);
1172 c->irqs = &z8530_nop;
1177 * Disable the PC DMA channels
1180 dflags = claim_dma_lock();
1182 disable_dma(c->txdma);
1183 clear_dma_ff(c->txdma);
1187 release_dma_lock(dflags);
1190 * Disable DMA control mode
1193 c->regs[R1]&= ~WT_RDY_ENAB;
1194 write_zsreg(c, R1, c->regs[R1]);
1195 c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1196 c->regs[R1]|= INT_ALL_Rx;
1197 write_zsreg(c, R1, c->regs[R1]);
1198 c->regs[R14]&= ~DTRREQ;
1199 write_zsreg(c, R14, c->regs[R14]);
1201 if(c->tx_dma_buf[0])
1203 free_page((unsigned long)c->tx_dma_buf[0]);
1204 c->tx_dma_buf[0]=NULL;
1206 chk=read_zsreg(c,R0);
1207 write_zsreg(c, R3, c->regs[R3]);
1210 spin_unlock_irqrestore(c->lock, cflags);
1215 EXPORT_SYMBOL(z8530_sync_txdma_close);
1219 * Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
1223 static char *z8530_type_name[]={
1230 * z8530_describe - Uniformly describe a Z8530 port
1231 * @dev: Z8530 device to describe
1232 * @mapping: string holding mapping type (eg "I/O" or "Mem")
1233 * @io: the port value in question
1235 * Describe a Z8530 in a standard format. We must pass the I/O as
1236 * the port offset isnt predictable. The main reason for this function
1237 * is to try and get a common format of report.
1240 void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
1242 printk(KERN_INFO "%s: %s found at %s 0x%lX, IRQ %d.\n",
1244 z8530_type_name[dev->type],
1250 EXPORT_SYMBOL(z8530_describe);
1253 * Locked operation part of the z8530 init code
1256 static inline int do_z8530_init(struct z8530_dev *dev)
1258 /* NOP the interrupt handlers first - we might get a
1259 floating IRQ transition when we reset the chip */
1260 dev->chanA.irqs=&z8530_nop;
1261 dev->chanB.irqs=&z8530_nop;
1262 dev->chanA.dcdcheck=DCD;
1263 dev->chanB.dcdcheck=DCD;
1265 /* Reset the chip */
1266 write_zsreg(&dev->chanA, R9, 0xC0);
1268 /* Now check its valid */
1269 write_zsreg(&dev->chanA, R12, 0xAA);
1270 if(read_zsreg(&dev->chanA, R12)!=0xAA)
1272 write_zsreg(&dev->chanA, R12, 0x55);
1273 if(read_zsreg(&dev->chanA, R12)!=0x55)
1279 * See the application note.
1282 write_zsreg(&dev->chanA, R15, 0x01);
1285 * If we can set the low bit of R15 then
1286 * the chip is enhanced.
1289 if(read_zsreg(&dev->chanA, R15)==0x01)
1291 /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
1292 /* Put a char in the fifo */
1293 write_zsreg(&dev->chanA, R8, 0);
1294 if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP)
1295 dev->type = Z85230; /* Has a FIFO */
1297 dev->type = Z85C30; /* Z85C30, 1 byte FIFO */
1301 * The code assumes R7' and friends are
1302 * off. Use write_zsext() for these and keep
1306 write_zsreg(&dev->chanA, R15, 0);
1309 * At this point it looks like the chip is behaving
1312 memcpy(dev->chanA.regs, reg_init, 16);
1313 memcpy(dev->chanB.regs, reg_init ,16);
1319 * z8530_init - Initialise a Z8530 device
1320 * @dev: Z8530 device to initialise.
1322 * Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
1323 * is present, identify the type and then program it to hopefully
1324 * keep quite and behave. This matters a lot, a Z8530 in the wrong
1325 * state will sometimes get into stupid modes generating 10Khz
1326 * interrupt streams and the like.
1328 * We set the interrupt handler up to discard any events, in case
1329 * we get them during reset or setp.
1331 * Return 0 for success, or a negative value indicating the problem
1335 int z8530_init(struct z8530_dev *dev)
1337 unsigned long flags;
1340 /* Set up the chip level lock */
1341 spin_lock_init(&dev->lock);
1342 dev->chanA.lock = &dev->lock;
1343 dev->chanB.lock = &dev->lock;
1345 spin_lock_irqsave(&dev->lock, flags);
1346 ret = do_z8530_init(dev);
1347 spin_unlock_irqrestore(&dev->lock, flags);
1353 EXPORT_SYMBOL(z8530_init);
1356 * z8530_shutdown - Shutdown a Z8530 device
1357 * @dev: The Z8530 chip to shutdown
1359 * We set the interrupt handlers to silence any interrupts. We then
1360 * reset the chip and wait 100uS to be sure the reset completed. Just
1361 * in case the caller then tries to do stuff.
1363 * This is called without the lock held
1366 int z8530_shutdown(struct z8530_dev *dev)
1368 unsigned long flags;
1369 /* Reset the chip */
1371 spin_lock_irqsave(&dev->lock, flags);
1372 dev->chanA.irqs=&z8530_nop;
1373 dev->chanB.irqs=&z8530_nop;
1374 write_zsreg(&dev->chanA, R9, 0xC0);
1375 /* We must lock the udelay, the chip is offlimits here */
1377 spin_unlock_irqrestore(&dev->lock, flags);
1381 EXPORT_SYMBOL(z8530_shutdown);
1384 * z8530_channel_load - Load channel data
1385 * @c: Z8530 channel to configure
1386 * @rtable: table of register, value pairs
1387 * FIXME: ioctl to allow user uploaded tables
1389 * Load a Z8530 channel up from the system data. We use +16 to
1390 * indicate the "prime" registers. The value 255 terminates the
1394 int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
1396 unsigned long flags;
1398 spin_lock_irqsave(c->lock, flags);
1404 write_zsreg(c, R15, c->regs[15]|1);
1405 write_zsreg(c, reg&0x0F, *rtable);
1407 write_zsreg(c, R15, c->regs[15]&~1);
1408 c->regs[reg]=*rtable++;
1410 c->rx_function=z8530_null_rx;
1413 c->tx_next_skb=NULL;
1417 c->status=read_zsreg(c, R0);
1419 write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1421 spin_unlock_irqrestore(c->lock, flags);
1425 EXPORT_SYMBOL(z8530_channel_load);
1429 * z8530_tx_begin - Begin packet transmission
1430 * @c: The Z8530 channel to kick
1432 * This is the speed sensitive side of transmission. If we are called
1433 * and no buffer is being transmitted we commence the next buffer. If
1434 * nothing is queued we idle the sync.
1436 * Note: We are handling this code path in the interrupt path, keep it
1437 * fast or bad things will happen.
1439 * Called with the lock held.
1442 static void z8530_tx_begin(struct z8530_channel *c)
1444 unsigned long flags;
1448 c->tx_skb=c->tx_next_skb;
1449 c->tx_next_skb=NULL;
1450 c->tx_ptr=c->tx_next_ptr;
1457 flags=claim_dma_lock();
1458 disable_dma(c->txdma);
1460 * Check if we crapped out.
1462 if(get_dma_residue(c->txdma))
1464 c->stats.tx_dropped++;
1465 c->stats.tx_fifo_errors++;
1467 release_dma_lock(flags);
1473 c->txcount=c->tx_skb->len;
1479 * FIXME. DMA is broken for the original 8530,
1480 * on the older parts we need to set a flag and
1481 * wait for a further TX interrupt to fire this
1485 flags=claim_dma_lock();
1486 disable_dma(c->txdma);
1489 * These two are needed by the 8530/85C30
1490 * and must be issued when idling.
1493 if(c->dev->type!=Z85230)
1495 write_zsctrl(c, RES_Tx_CRC);
1496 write_zsctrl(c, RES_EOM_L);
1498 write_zsreg(c, R10, c->regs[10]&~ABUNDER);
1499 clear_dma_ff(c->txdma);
1500 set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
1501 set_dma_count(c->txdma, c->txcount);
1502 enable_dma(c->txdma);
1503 release_dma_lock(flags);
1504 write_zsctrl(c, RES_EOM_L);
1505 write_zsreg(c, R5, c->regs[R5]|TxENAB);
1511 write_zsreg(c, R10, c->regs[10]);
1512 write_zsctrl(c, RES_Tx_CRC);
1514 while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP))
1516 write_zsreg(c, R8, *c->tx_ptr++);
1523 * Since we emptied tx_skb we can ask for more
1525 netif_wake_queue(c->netdevice);
1529 * z8530_tx_done - TX complete callback
1530 * @c: The channel that completed a transmit.
1532 * This is called when we complete a packet send. We wake the queue,
1533 * start the next packet going and then free the buffer of the existing
1534 * packet. This code is fairly timing sensitive.
1536 * Called with the register lock held.
1539 static void z8530_tx_done(struct z8530_channel *c)
1541 struct sk_buff *skb;
1543 /* Actually this can happen.*/
1550 c->stats.tx_packets++;
1551 c->stats.tx_bytes+=skb->len;
1552 dev_kfree_skb_irq(skb);
1556 * z8530_null_rx - Discard a packet
1557 * @c: The channel the packet arrived on
1560 * We point the receive handler at this function when idle. Instead
1561 * of syncppp processing the frames we get to throw them away.
1564 void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
1566 dev_kfree_skb_any(skb);
1569 EXPORT_SYMBOL(z8530_null_rx);
1572 * z8530_rx_done - Receive completion callback
1573 * @c: The channel that completed a receive
1575 * A new packet is complete. Our goal here is to get back into receive
1576 * mode as fast as possible. On the Z85230 we could change to using
1577 * ESCC mode, but on the older chips we have no choice. We flip to the
1578 * new buffer immediately in DMA mode so that the DMA of the next
1579 * frame can occur while we are copying the previous buffer to an sk_buff
1581 * Called with the lock held
1584 static void z8530_rx_done(struct z8530_channel *c)
1586 struct sk_buff *skb;
1590 * Is our receive engine in DMA mode
1596 * Save the ready state and the buffer currently
1597 * being used as the DMA target
1600 int ready=c->dma_ready;
1601 unsigned char *rxb=c->rx_buf[c->dma_num];
1602 unsigned long flags;
1605 * Complete this DMA. Neccessary to find the length
1608 flags=claim_dma_lock();
1610 disable_dma(c->rxdma);
1611 clear_dma_ff(c->rxdma);
1613 ct=c->mtu-get_dma_residue(c->rxdma);
1615 ct=2; /* Shit happens.. */
1619 * Normal case: the other slot is free, start the next DMA
1620 * into it immediately.
1626 set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
1627 set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
1628 set_dma_count(c->rxdma, c->mtu);
1630 enable_dma(c->rxdma);
1631 /* Stop any frames that we missed the head of
1633 write_zsreg(c, R0, RES_Rx_CRC);
1636 /* Can't occur as we dont reenable the DMA irq until
1637 after the flip is done */
1638 printk(KERN_WARNING "%s: DMA flip overrun!\n", c->netdevice->name);
1640 release_dma_lock(flags);
1643 * Shove the old buffer into an sk_buff. We can't DMA
1644 * directly into one on a PC - it might be above the 16Mb
1645 * boundary. Optimisation - we could check to see if we
1646 * can avoid the copy. Optimisation 2 - make the memcpy
1650 skb=dev_alloc_skb(ct);
1653 c->stats.rx_dropped++;
1654 printk(KERN_WARNING "%s: Memory squeeze.\n", c->netdevice->name);
1659 skb_copy_to_linear_data(skb, rxb, ct);
1660 c->stats.rx_packets++;
1661 c->stats.rx_bytes+=ct;
1671 * The game we play for non DMA is similar. We want to
1672 * get the controller set up for the next packet as fast
1673 * as possible. We potentially only have one byte + the
1674 * fifo length for this. Thus we want to flip to the new
1675 * buffer and then mess around copying and allocating
1676 * things. For the current case it doesn't matter but
1677 * if you build a system where the sync irq isnt blocked
1678 * by the kernel IRQ disable then you need only block the
1679 * sync IRQ for the RT_LOCK area.
1689 c->dptr = c->skb->data;
1699 c->skb2 = dev_alloc_skb(c->mtu);
1701 printk(KERN_WARNING "%s: memory squeeze.\n",
1702 c->netdevice->name);
1705 skb_put(c->skb2,c->mtu);
1707 c->stats.rx_packets++;
1708 c->stats.rx_bytes+=ct;
1712 * If we received a frame we must now process it.
1717 c->rx_function(c,skb);
1721 c->stats.rx_dropped++;
1722 printk(KERN_ERR "%s: Lost a frame\n", c->netdevice->name);
1727 * spans_boundary - Check a packet can be ISA DMA'd
1728 * @skb: The buffer to check
1730 * Returns true if the buffer cross a DMA boundary on a PC. The poor
1731 * thing can only DMA within a 64K block not across the edges of it.
1734 static inline int spans_boundary(struct sk_buff *skb)
1736 unsigned long a=(unsigned long)skb->data;
1738 if(a&0x00010000) /* If the 64K bit is different.. */
1744 * z8530_queue_xmit - Queue a packet
1745 * @c: The channel to use
1746 * @skb: The packet to kick down the channel
1748 * Queue a packet for transmission. Because we have rather
1749 * hard to hit interrupt latencies for the Z85230 per packet
1750 * even in DMA mode we do the flip to DMA buffer if needed here
1753 * Called from the network code. The lock is not held at this
1757 int z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
1759 unsigned long flags;
1761 netif_stop_queue(c->netdevice);
1767 /* PC SPECIFIC - DMA limits */
1770 * If we will DMA the transmit and its gone over the ISA bus
1771 * limit, then copy to the flip buffer
1774 if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb)))
1777 * Send the flip buffer, and flip the flippy bit.
1778 * We don't care which is used when just so long as
1779 * we never use the same buffer twice in a row. Since
1780 * only one buffer can be going out at a time the other
1783 c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used];
1784 c->tx_dma_used^=1; /* Flip temp buffer */
1785 skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len);
1788 c->tx_next_ptr=skb->data;
1793 spin_lock_irqsave(c->lock, flags);
1795 spin_unlock_irqrestore(c->lock, flags);
1800 EXPORT_SYMBOL(z8530_queue_xmit);
1803 * z8530_get_stats - Get network statistics
1804 * @c: The channel to use
1806 * Get the statistics block. We keep the statistics in software as
1807 * the chip doesn't do it for us.
1809 * Locking is ignored here - we could lock for a copy but its
1810 * not likely to be that big an issue
1813 struct net_device_stats *z8530_get_stats(struct z8530_channel *c)
1818 EXPORT_SYMBOL(z8530_get_stats);
1823 static char banner[] __initdata = KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";
1825 static int __init z85230_init_driver(void)
1830 module_init(z85230_init_driver);
1832 static void __exit z85230_cleanup_driver(void)
1835 module_exit(z85230_cleanup_driver);
1837 MODULE_AUTHOR("Red Hat Inc.");
1838 MODULE_DESCRIPTION("Z85x30 synchronous driver core");
1839 MODULE_LICENSE("GPL");