tty: Fix leaks introduced by the shift to separate ldisc objects
[linux-2.6] / drivers / crypto / hifn_795x.c
1 /*
2  * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
3  * All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18  */
19
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/mm.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/scatterlist.h>
31 #include <linux/highmem.h>
32 #include <linux/crypto.h>
33 #include <linux/hw_random.h>
34 #include <linux/ktime.h>
35
36 #include <crypto/algapi.h>
37 #include <crypto/des.h>
38
39 #include <asm/kmap_types.h>
40
41 //#define HIFN_DEBUG
42
43 #ifdef HIFN_DEBUG
44 #define dprintk(f, a...)        printk(f, ##a)
45 #else
46 #define dprintk(f, a...)        do {} while (0)
47 #endif
48
49 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
50 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
51 MODULE_PARM_DESC(hifn_pll_ref,
52                  "PLL reference clock (pci[freq] or ext[freq], default ext)");
53
54 static atomic_t hifn_dev_number;
55
56 #define ACRYPTO_OP_DECRYPT      0
57 #define ACRYPTO_OP_ENCRYPT      1
58 #define ACRYPTO_OP_HMAC         2
59 #define ACRYPTO_OP_RNG          3
60
61 #define ACRYPTO_MODE_ECB                0
62 #define ACRYPTO_MODE_CBC                1
63 #define ACRYPTO_MODE_CFB                2
64 #define ACRYPTO_MODE_OFB                3
65
66 #define ACRYPTO_TYPE_AES_128    0
67 #define ACRYPTO_TYPE_AES_192    1
68 #define ACRYPTO_TYPE_AES_256    2
69 #define ACRYPTO_TYPE_3DES       3
70 #define ACRYPTO_TYPE_DES        4
71
72 #define PCI_VENDOR_ID_HIFN              0x13A3
73 #define PCI_DEVICE_ID_HIFN_7955         0x0020
74 #define PCI_DEVICE_ID_HIFN_7956         0x001d
75
76 /* I/O region sizes */
77
78 #define HIFN_BAR0_SIZE                  0x1000
79 #define HIFN_BAR1_SIZE                  0x2000
80 #define HIFN_BAR2_SIZE                  0x8000
81
82 /* DMA registres */
83
84 #define HIFN_DMA_CRA                    0x0C    /* DMA Command Ring Address */
85 #define HIFN_DMA_SDRA                   0x1C    /* DMA Source Data Ring Address */
86 #define HIFN_DMA_RRA                    0x2C    /* DMA Result Ring Address */
87 #define HIFN_DMA_DDRA                   0x3C    /* DMA Destination Data Ring Address */
88 #define HIFN_DMA_STCTL                  0x40    /* DMA Status and Control */
89 #define HIFN_DMA_INTREN                 0x44    /* DMA Interrupt Enable */
90 #define HIFN_DMA_CFG1                   0x48    /* DMA Configuration #1 */
91 #define HIFN_DMA_CFG2                   0x6C    /* DMA Configuration #2 */
92 #define HIFN_CHIP_ID                    0x98    /* Chip ID */
93
94 /*
95  * Processing Unit Registers (offset from BASEREG0)
96  */
97 #define HIFN_0_PUDATA           0x00    /* Processing Unit Data */
98 #define HIFN_0_PUCTRL           0x04    /* Processing Unit Control */
99 #define HIFN_0_PUISR            0x08    /* Processing Unit Interrupt Status */
100 #define HIFN_0_PUCNFG           0x0c    /* Processing Unit Configuration */
101 #define HIFN_0_PUIER            0x10    /* Processing Unit Interrupt Enable */
102 #define HIFN_0_PUSTAT           0x14    /* Processing Unit Status/Chip ID */
103 #define HIFN_0_FIFOSTAT         0x18    /* FIFO Status */
104 #define HIFN_0_FIFOCNFG         0x1c    /* FIFO Configuration */
105 #define HIFN_0_SPACESIZE        0x20    /* Register space size */
106
107 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
108 #define HIFN_PUCTRL_CLRSRCFIFO  0x0010  /* clear source fifo */
109 #define HIFN_PUCTRL_STOP        0x0008  /* stop pu */
110 #define HIFN_PUCTRL_LOCKRAM     0x0004  /* lock ram */
111 #define HIFN_PUCTRL_DMAENA      0x0002  /* enable dma */
112 #define HIFN_PUCTRL_RESET       0x0001  /* Reset processing unit */
113
114 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
115 #define HIFN_PUISR_CMDINVAL     0x8000  /* Invalid command interrupt */
116 #define HIFN_PUISR_DATAERR      0x4000  /* Data error interrupt */
117 #define HIFN_PUISR_SRCFIFO      0x2000  /* Source FIFO ready interrupt */
118 #define HIFN_PUISR_DSTFIFO      0x1000  /* Destination FIFO ready interrupt */
119 #define HIFN_PUISR_DSTOVER      0x0200  /* Destination overrun interrupt */
120 #define HIFN_PUISR_SRCCMD       0x0080  /* Source command interrupt */
121 #define HIFN_PUISR_SRCCTX       0x0040  /* Source context interrupt */
122 #define HIFN_PUISR_SRCDATA      0x0020  /* Source data interrupt */
123 #define HIFN_PUISR_DSTDATA      0x0010  /* Destination data interrupt */
124 #define HIFN_PUISR_DSTRESULT    0x0004  /* Destination result interrupt */
125
126 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
127 #define HIFN_PUCNFG_DRAMMASK    0xe000  /* DRAM size mask */
128 #define HIFN_PUCNFG_DSZ_256K    0x0000  /* 256k dram */
129 #define HIFN_PUCNFG_DSZ_512K    0x2000  /* 512k dram */
130 #define HIFN_PUCNFG_DSZ_1M      0x4000  /* 1m dram */
131 #define HIFN_PUCNFG_DSZ_2M      0x6000  /* 2m dram */
132 #define HIFN_PUCNFG_DSZ_4M      0x8000  /* 4m dram */
133 #define HIFN_PUCNFG_DSZ_8M      0xa000  /* 8m dram */
134 #define HIFN_PUNCFG_DSZ_16M     0xc000  /* 16m dram */
135 #define HIFN_PUCNFG_DSZ_32M     0xe000  /* 32m dram */
136 #define HIFN_PUCNFG_DRAMREFRESH 0x1800  /* DRAM refresh rate mask */
137 #define HIFN_PUCNFG_DRFR_512    0x0000  /* 512 divisor of ECLK */
138 #define HIFN_PUCNFG_DRFR_256    0x0800  /* 256 divisor of ECLK */
139 #define HIFN_PUCNFG_DRFR_128    0x1000  /* 128 divisor of ECLK */
140 #define HIFN_PUCNFG_TCALLPHASES 0x0200  /* your guess is as good as mine... */
141 #define HIFN_PUCNFG_TCDRVTOTEM  0x0100  /* your guess is as good as mine... */
142 #define HIFN_PUCNFG_BIGENDIAN   0x0080  /* DMA big endian mode */
143 #define HIFN_PUCNFG_BUS32       0x0040  /* Bus width 32bits */
144 #define HIFN_PUCNFG_BUS16       0x0000  /* Bus width 16 bits */
145 #define HIFN_PUCNFG_CHIPID      0x0020  /* Allow chipid from PUSTAT */
146 #define HIFN_PUCNFG_DRAM        0x0010  /* Context RAM is DRAM */
147 #define HIFN_PUCNFG_SRAM        0x0000  /* Context RAM is SRAM */
148 #define HIFN_PUCNFG_COMPSING    0x0004  /* Enable single compression context */
149 #define HIFN_PUCNFG_ENCCNFG     0x0002  /* Encryption configuration */
150
151 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
152 #define HIFN_PUIER_CMDINVAL     0x8000  /* Invalid command interrupt */
153 #define HIFN_PUIER_DATAERR      0x4000  /* Data error interrupt */
154 #define HIFN_PUIER_SRCFIFO      0x2000  /* Source FIFO ready interrupt */
155 #define HIFN_PUIER_DSTFIFO      0x1000  /* Destination FIFO ready interrupt */
156 #define HIFN_PUIER_DSTOVER      0x0200  /* Destination overrun interrupt */
157 #define HIFN_PUIER_SRCCMD       0x0080  /* Source command interrupt */
158 #define HIFN_PUIER_SRCCTX       0x0040  /* Source context interrupt */
159 #define HIFN_PUIER_SRCDATA      0x0020  /* Source data interrupt */
160 #define HIFN_PUIER_DSTDATA      0x0010  /* Destination data interrupt */
161 #define HIFN_PUIER_DSTRESULT    0x0004  /* Destination result interrupt */
162
163 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
164 #define HIFN_PUSTAT_CMDINVAL    0x8000  /* Invalid command interrupt */
165 #define HIFN_PUSTAT_DATAERR     0x4000  /* Data error interrupt */
166 #define HIFN_PUSTAT_SRCFIFO     0x2000  /* Source FIFO ready interrupt */
167 #define HIFN_PUSTAT_DSTFIFO     0x1000  /* Destination FIFO ready interrupt */
168 #define HIFN_PUSTAT_DSTOVER     0x0200  /* Destination overrun interrupt */
169 #define HIFN_PUSTAT_SRCCMD      0x0080  /* Source command interrupt */
170 #define HIFN_PUSTAT_SRCCTX      0x0040  /* Source context interrupt */
171 #define HIFN_PUSTAT_SRCDATA     0x0020  /* Source data interrupt */
172 #define HIFN_PUSTAT_DSTDATA     0x0010  /* Destination data interrupt */
173 #define HIFN_PUSTAT_DSTRESULT   0x0004  /* Destination result interrupt */
174 #define HIFN_PUSTAT_CHIPREV     0x00ff  /* Chip revision mask */
175 #define HIFN_PUSTAT_CHIPENA     0xff00  /* Chip enabled mask */
176 #define HIFN_PUSTAT_ENA_2       0x1100  /* Level 2 enabled */
177 #define HIFN_PUSTAT_ENA_1       0x1000  /* Level 1 enabled */
178 #define HIFN_PUSTAT_ENA_0       0x3000  /* Level 0 enabled */
179 #define HIFN_PUSTAT_REV_2       0x0020  /* 7751 PT6/2 */
180 #define HIFN_PUSTAT_REV_3       0x0030  /* 7751 PT6/3 */
181
182 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
183 #define HIFN_FIFOSTAT_SRC       0x7f00  /* Source FIFO available */
184 #define HIFN_FIFOSTAT_DST       0x007f  /* Destination FIFO available */
185
186 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
187 #define HIFN_FIFOCNFG_THRESHOLD 0x0400  /* must be written as 1 */
188
189 /*
190  * DMA Interface Registers (offset from BASEREG1)
191  */
192 #define HIFN_1_DMA_CRAR         0x0c    /* DMA Command Ring Address */
193 #define HIFN_1_DMA_SRAR         0x1c    /* DMA Source Ring Address */
194 #define HIFN_1_DMA_RRAR         0x2c    /* DMA Result Ring Address */
195 #define HIFN_1_DMA_DRAR         0x3c    /* DMA Destination Ring Address */
196 #define HIFN_1_DMA_CSR          0x40    /* DMA Status and Control */
197 #define HIFN_1_DMA_IER          0x44    /* DMA Interrupt Enable */
198 #define HIFN_1_DMA_CNFG         0x48    /* DMA Configuration */
199 #define HIFN_1_PLL              0x4c    /* 795x: PLL config */
200 #define HIFN_1_7811_RNGENA      0x60    /* 7811: rng enable */
201 #define HIFN_1_7811_RNGCFG      0x64    /* 7811: rng config */
202 #define HIFN_1_7811_RNGDAT      0x68    /* 7811: rng data */
203 #define HIFN_1_7811_RNGSTS      0x6c    /* 7811: rng status */
204 #define HIFN_1_7811_MIPSRST     0x94    /* 7811: MIPS reset */
205 #define HIFN_1_REVID            0x98    /* Revision ID */
206 #define HIFN_1_UNLOCK_SECRET1   0xf4
207 #define HIFN_1_UNLOCK_SECRET2   0xfc
208 #define HIFN_1_PUB_RESET        0x204   /* Public/RNG Reset */
209 #define HIFN_1_PUB_BASE         0x300   /* Public Base Address */
210 #define HIFN_1_PUB_OPLEN        0x304   /* Public Operand Length */
211 #define HIFN_1_PUB_OP           0x308   /* Public Operand */
212 #define HIFN_1_PUB_STATUS       0x30c   /* Public Status */
213 #define HIFN_1_PUB_IEN          0x310   /* Public Interrupt enable */
214 #define HIFN_1_RNG_CONFIG       0x314   /* RNG config */
215 #define HIFN_1_RNG_DATA         0x318   /* RNG data */
216 #define HIFN_1_PUB_MEM          0x400   /* start of Public key memory */
217 #define HIFN_1_PUB_MEMEND       0xbff   /* end of Public key memory */
218
219 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
220 #define HIFN_DMACSR_D_CTRLMASK  0xc0000000      /* Destinition Ring Control */
221 #define HIFN_DMACSR_D_CTRL_NOP  0x00000000      /* Dest. Control: no-op */
222 #define HIFN_DMACSR_D_CTRL_DIS  0x40000000      /* Dest. Control: disable */
223 #define HIFN_DMACSR_D_CTRL_ENA  0x80000000      /* Dest. Control: enable */
224 #define HIFN_DMACSR_D_ABORT     0x20000000      /* Destinition Ring PCIAbort */
225 #define HIFN_DMACSR_D_DONE      0x10000000      /* Destinition Ring Done */
226 #define HIFN_DMACSR_D_LAST      0x08000000      /* Destinition Ring Last */
227 #define HIFN_DMACSR_D_WAIT      0x04000000      /* Destinition Ring Waiting */
228 #define HIFN_DMACSR_D_OVER      0x02000000      /* Destinition Ring Overflow */
229 #define HIFN_DMACSR_R_CTRL      0x00c00000      /* Result Ring Control */
230 #define HIFN_DMACSR_R_CTRL_NOP  0x00000000      /* Result Control: no-op */
231 #define HIFN_DMACSR_R_CTRL_DIS  0x00400000      /* Result Control: disable */
232 #define HIFN_DMACSR_R_CTRL_ENA  0x00800000      /* Result Control: enable */
233 #define HIFN_DMACSR_R_ABORT     0x00200000      /* Result Ring PCI Abort */
234 #define HIFN_DMACSR_R_DONE      0x00100000      /* Result Ring Done */
235 #define HIFN_DMACSR_R_LAST      0x00080000      /* Result Ring Last */
236 #define HIFN_DMACSR_R_WAIT      0x00040000      /* Result Ring Waiting */
237 #define HIFN_DMACSR_R_OVER      0x00020000      /* Result Ring Overflow */
238 #define HIFN_DMACSR_S_CTRL      0x0000c000      /* Source Ring Control */
239 #define HIFN_DMACSR_S_CTRL_NOP  0x00000000      /* Source Control: no-op */
240 #define HIFN_DMACSR_S_CTRL_DIS  0x00004000      /* Source Control: disable */
241 #define HIFN_DMACSR_S_CTRL_ENA  0x00008000      /* Source Control: enable */
242 #define HIFN_DMACSR_S_ABORT     0x00002000      /* Source Ring PCI Abort */
243 #define HIFN_DMACSR_S_DONE      0x00001000      /* Source Ring Done */
244 #define HIFN_DMACSR_S_LAST      0x00000800      /* Source Ring Last */
245 #define HIFN_DMACSR_S_WAIT      0x00000400      /* Source Ring Waiting */
246 #define HIFN_DMACSR_ILLW        0x00000200      /* Illegal write (7811 only) */
247 #define HIFN_DMACSR_ILLR        0x00000100      /* Illegal read (7811 only) */
248 #define HIFN_DMACSR_C_CTRL      0x000000c0      /* Command Ring Control */
249 #define HIFN_DMACSR_C_CTRL_NOP  0x00000000      /* Command Control: no-op */
250 #define HIFN_DMACSR_C_CTRL_DIS  0x00000040      /* Command Control: disable */
251 #define HIFN_DMACSR_C_CTRL_ENA  0x00000080      /* Command Control: enable */
252 #define HIFN_DMACSR_C_ABORT     0x00000020      /* Command Ring PCI Abort */
253 #define HIFN_DMACSR_C_DONE      0x00000010      /* Command Ring Done */
254 #define HIFN_DMACSR_C_LAST      0x00000008      /* Command Ring Last */
255 #define HIFN_DMACSR_C_WAIT      0x00000004      /* Command Ring Waiting */
256 #define HIFN_DMACSR_PUBDONE     0x00000002      /* Public op done (7951 only) */
257 #define HIFN_DMACSR_ENGINE      0x00000001      /* Command Ring Engine IRQ */
258
259 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
260 #define HIFN_DMAIER_D_ABORT     0x20000000      /* Destination Ring PCIAbort */
261 #define HIFN_DMAIER_D_DONE      0x10000000      /* Destination Ring Done */
262 #define HIFN_DMAIER_D_LAST      0x08000000      /* Destination Ring Last */
263 #define HIFN_DMAIER_D_WAIT      0x04000000      /* Destination Ring Waiting */
264 #define HIFN_DMAIER_D_OVER      0x02000000      /* Destination Ring Overflow */
265 #define HIFN_DMAIER_R_ABORT     0x00200000      /* Result Ring PCI Abort */
266 #define HIFN_DMAIER_R_DONE      0x00100000      /* Result Ring Done */
267 #define HIFN_DMAIER_R_LAST      0x00080000      /* Result Ring Last */
268 #define HIFN_DMAIER_R_WAIT      0x00040000      /* Result Ring Waiting */
269 #define HIFN_DMAIER_R_OVER      0x00020000      /* Result Ring Overflow */
270 #define HIFN_DMAIER_S_ABORT     0x00002000      /* Source Ring PCI Abort */
271 #define HIFN_DMAIER_S_DONE      0x00001000      /* Source Ring Done */
272 #define HIFN_DMAIER_S_LAST      0x00000800      /* Source Ring Last */
273 #define HIFN_DMAIER_S_WAIT      0x00000400      /* Source Ring Waiting */
274 #define HIFN_DMAIER_ILLW        0x00000200      /* Illegal write (7811 only) */
275 #define HIFN_DMAIER_ILLR        0x00000100      /* Illegal read (7811 only) */
276 #define HIFN_DMAIER_C_ABORT     0x00000020      /* Command Ring PCI Abort */
277 #define HIFN_DMAIER_C_DONE      0x00000010      /* Command Ring Done */
278 #define HIFN_DMAIER_C_LAST      0x00000008      /* Command Ring Last */
279 #define HIFN_DMAIER_C_WAIT      0x00000004      /* Command Ring Waiting */
280 #define HIFN_DMAIER_PUBDONE     0x00000002      /* public op done (7951 only) */
281 #define HIFN_DMAIER_ENGINE      0x00000001      /* Engine IRQ */
282
283 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
284 #define HIFN_DMACNFG_BIGENDIAN  0x10000000      /* big endian mode */
285 #define HIFN_DMACNFG_POLLFREQ   0x00ff0000      /* Poll frequency mask */
286 #define HIFN_DMACNFG_UNLOCK     0x00000800
287 #define HIFN_DMACNFG_POLLINVAL  0x00000700      /* Invalid Poll Scalar */
288 #define HIFN_DMACNFG_LAST       0x00000010      /* Host control LAST bit */
289 #define HIFN_DMACNFG_MODE       0x00000004      /* DMA mode */
290 #define HIFN_DMACNFG_DMARESET   0x00000002      /* DMA Reset # */
291 #define HIFN_DMACNFG_MSTRESET   0x00000001      /* Master Reset # */
292
293 /* PLL configuration register */
294 #define HIFN_PLL_REF_CLK_HBI    0x00000000      /* HBI reference clock */
295 #define HIFN_PLL_REF_CLK_PLL    0x00000001      /* PLL reference clock */
296 #define HIFN_PLL_BP             0x00000002      /* Reference clock bypass */
297 #define HIFN_PLL_PK_CLK_HBI     0x00000000      /* PK engine HBI clock */
298 #define HIFN_PLL_PK_CLK_PLL     0x00000008      /* PK engine PLL clock */
299 #define HIFN_PLL_PE_CLK_HBI     0x00000000      /* PE engine HBI clock */
300 #define HIFN_PLL_PE_CLK_PLL     0x00000010      /* PE engine PLL clock */
301 #define HIFN_PLL_RESERVED_1     0x00000400      /* Reserved bit, must be 1 */
302 #define HIFN_PLL_ND_SHIFT       11              /* Clock multiplier shift */
303 #define HIFN_PLL_ND_MULT_2      0x00000000      /* PLL clock multiplier 2 */
304 #define HIFN_PLL_ND_MULT_4      0x00000800      /* PLL clock multiplier 4 */
305 #define HIFN_PLL_ND_MULT_6      0x00001000      /* PLL clock multiplier 6 */
306 #define HIFN_PLL_ND_MULT_8      0x00001800      /* PLL clock multiplier 8 */
307 #define HIFN_PLL_ND_MULT_10     0x00002000      /* PLL clock multiplier 10 */
308 #define HIFN_PLL_ND_MULT_12     0x00002800      /* PLL clock multiplier 12 */
309 #define HIFN_PLL_IS_1_8         0x00000000      /* charge pump (mult. 1-8) */
310 #define HIFN_PLL_IS_9_12        0x00010000      /* charge pump (mult. 9-12) */
311
312 #define HIFN_PLL_FCK_MAX        266             /* Maximum PLL frequency */
313
314 /* Public key reset register (HIFN_1_PUB_RESET) */
315 #define HIFN_PUBRST_RESET       0x00000001      /* reset public/rng unit */
316
317 /* Public base address register (HIFN_1_PUB_BASE) */
318 #define HIFN_PUBBASE_ADDR       0x00003fff      /* base address */
319
320 /* Public operand length register (HIFN_1_PUB_OPLEN) */
321 #define HIFN_PUBOPLEN_MOD_M     0x0000007f      /* modulus length mask */
322 #define HIFN_PUBOPLEN_MOD_S     0               /* modulus length shift */
323 #define HIFN_PUBOPLEN_EXP_M     0x0003ff80      /* exponent length mask */
324 #define HIFN_PUBOPLEN_EXP_S     7               /* exponent lenght shift */
325 #define HIFN_PUBOPLEN_RED_M     0x003c0000      /* reducend length mask */
326 #define HIFN_PUBOPLEN_RED_S     18              /* reducend length shift */
327
328 /* Public operation register (HIFN_1_PUB_OP) */
329 #define HIFN_PUBOP_AOFFSET_M    0x0000007f      /* A offset mask */
330 #define HIFN_PUBOP_AOFFSET_S    0               /* A offset shift */
331 #define HIFN_PUBOP_BOFFSET_M    0x00000f80      /* B offset mask */
332 #define HIFN_PUBOP_BOFFSET_S    7               /* B offset shift */
333 #define HIFN_PUBOP_MOFFSET_M    0x0003f000      /* M offset mask */
334 #define HIFN_PUBOP_MOFFSET_S    12              /* M offset shift */
335 #define HIFN_PUBOP_OP_MASK      0x003c0000      /* Opcode: */
336 #define HIFN_PUBOP_OP_NOP       0x00000000      /*  NOP */
337 #define HIFN_PUBOP_OP_ADD       0x00040000      /*  ADD */
338 #define HIFN_PUBOP_OP_ADDC      0x00080000      /*  ADD w/carry */
339 #define HIFN_PUBOP_OP_SUB       0x000c0000      /*  SUB */
340 #define HIFN_PUBOP_OP_SUBC      0x00100000      /*  SUB w/carry */
341 #define HIFN_PUBOP_OP_MODADD    0x00140000      /*  Modular ADD */
342 #define HIFN_PUBOP_OP_MODSUB    0x00180000      /*  Modular SUB */
343 #define HIFN_PUBOP_OP_INCA      0x001c0000      /*  INC A */
344 #define HIFN_PUBOP_OP_DECA      0x00200000      /*  DEC A */
345 #define HIFN_PUBOP_OP_MULT      0x00240000      /*  MULT */
346 #define HIFN_PUBOP_OP_MODMULT   0x00280000      /*  Modular MULT */
347 #define HIFN_PUBOP_OP_MODRED    0x002c0000      /*  Modular RED */
348 #define HIFN_PUBOP_OP_MODEXP    0x00300000      /*  Modular EXP */
349
350 /* Public status register (HIFN_1_PUB_STATUS) */
351 #define HIFN_PUBSTS_DONE        0x00000001      /* operation done */
352 #define HIFN_PUBSTS_CARRY       0x00000002      /* carry */
353
354 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
355 #define HIFN_PUBIEN_DONE        0x00000001      /* operation done interrupt */
356
357 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
358 #define HIFN_RNGCFG_ENA         0x00000001      /* enable rng */
359
360 #define HIFN_NAMESIZE                   32
361 #define HIFN_MAX_RESULT_ORDER           5
362
363 #define HIFN_D_CMD_RSIZE                24*1
364 #define HIFN_D_SRC_RSIZE                80*1
365 #define HIFN_D_DST_RSIZE                80*1
366 #define HIFN_D_RES_RSIZE                24*1
367
368 #define HIFN_D_DST_DALIGN               4
369
370 #define HIFN_QUEUE_LENGTH               (HIFN_D_CMD_RSIZE - 1)
371
372 #define AES_MIN_KEY_SIZE                16
373 #define AES_MAX_KEY_SIZE                32
374
375 #define HIFN_DES_KEY_LENGTH             8
376 #define HIFN_3DES_KEY_LENGTH            24
377 #define HIFN_MAX_CRYPT_KEY_LENGTH       AES_MAX_KEY_SIZE
378 #define HIFN_IV_LENGTH                  8
379 #define HIFN_AES_IV_LENGTH              16
380 #define HIFN_MAX_IV_LENGTH              HIFN_AES_IV_LENGTH
381
382 #define HIFN_MAC_KEY_LENGTH             64
383 #define HIFN_MD5_LENGTH                 16
384 #define HIFN_SHA1_LENGTH                20
385 #define HIFN_MAC_TRUNC_LENGTH           12
386
387 #define HIFN_MAX_COMMAND                (8 + 8 + 8 + 64 + 260)
388 #define HIFN_MAX_RESULT                 (8 + 4 + 4 + 20 + 4)
389 #define HIFN_USED_RESULT                12
390
391 struct hifn_desc
392 {
393         volatile __le32         l;
394         volatile __le32         p;
395 };
396
397 struct hifn_dma {
398         struct hifn_desc        cmdr[HIFN_D_CMD_RSIZE+1];
399         struct hifn_desc        srcr[HIFN_D_SRC_RSIZE+1];
400         struct hifn_desc        dstr[HIFN_D_DST_RSIZE+1];
401         struct hifn_desc        resr[HIFN_D_RES_RSIZE+1];
402
403         u8                      command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
404         u8                      result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
405
406         /*
407          *  Our current positions for insertion and removal from the descriptor
408          *  rings.
409          */
410         volatile int            cmdi, srci, dsti, resi;
411         volatile int            cmdu, srcu, dstu, resu;
412         int                     cmdk, srck, dstk, resk;
413 };
414
415 #define HIFN_FLAG_CMD_BUSY      (1<<0)
416 #define HIFN_FLAG_SRC_BUSY      (1<<1)
417 #define HIFN_FLAG_DST_BUSY      (1<<2)
418 #define HIFN_FLAG_RES_BUSY      (1<<3)
419 #define HIFN_FLAG_OLD_KEY       (1<<4)
420
421 #define HIFN_DEFAULT_ACTIVE_NUM 5
422
423 struct hifn_device
424 {
425         char                    name[HIFN_NAMESIZE];
426
427         int                     irq;
428
429         struct pci_dev          *pdev;
430         void __iomem            *bar[3];
431
432         void                    *desc_virt;
433         dma_addr_t              desc_dma;
434
435         u32                     dmareg;
436
437         void                    *sa[HIFN_D_RES_RSIZE];
438
439         spinlock_t              lock;
440
441         u32                     flags;
442         int                     active, started;
443         struct delayed_work     work;
444         unsigned long           reset;
445         unsigned long           success;
446         unsigned long           prev_success;
447
448         u8                      snum;
449
450         struct tasklet_struct   tasklet;
451
452         struct crypto_queue     queue;
453         struct list_head        alg_list;
454
455         unsigned int            pk_clk_freq;
456
457 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
458         unsigned int            rng_wait_time;
459         ktime_t                 rngtime;
460         struct hwrng            rng;
461 #endif
462 };
463
464 #define HIFN_D_LENGTH                   0x0000ffff
465 #define HIFN_D_NOINVALID                0x01000000
466 #define HIFN_D_MASKDONEIRQ              0x02000000
467 #define HIFN_D_DESTOVER                 0x04000000
468 #define HIFN_D_OVER                     0x08000000
469 #define HIFN_D_LAST                     0x20000000
470 #define HIFN_D_JUMP                     0x40000000
471 #define HIFN_D_VALID                    0x80000000
472
473 struct hifn_base_command
474 {
475         volatile __le16         masks;
476         volatile __le16         session_num;
477         volatile __le16         total_source_count;
478         volatile __le16         total_dest_count;
479 };
480
481 #define HIFN_BASE_CMD_COMP              0x0100  /* enable compression engine */
482 #define HIFN_BASE_CMD_PAD               0x0200  /* enable padding engine */
483 #define HIFN_BASE_CMD_MAC               0x0400  /* enable MAC engine */
484 #define HIFN_BASE_CMD_CRYPT             0x0800  /* enable crypt engine */
485 #define HIFN_BASE_CMD_DECODE            0x2000
486 #define HIFN_BASE_CMD_SRCLEN_M          0xc000
487 #define HIFN_BASE_CMD_SRCLEN_S          14
488 #define HIFN_BASE_CMD_DSTLEN_M          0x3000
489 #define HIFN_BASE_CMD_DSTLEN_S          12
490 #define HIFN_BASE_CMD_LENMASK_HI        0x30000
491 #define HIFN_BASE_CMD_LENMASK_LO        0x0ffff
492
493 /*
494  * Structure to help build up the command data structure.
495  */
496 struct hifn_crypt_command
497 {
498         volatile __le16                 masks;
499         volatile __le16                 header_skip;
500         volatile __le16                 source_count;
501         volatile __le16                 reserved;
502 };
503
504 #define HIFN_CRYPT_CMD_ALG_MASK         0x0003          /* algorithm: */
505 #define HIFN_CRYPT_CMD_ALG_DES          0x0000          /*   DES */
506 #define HIFN_CRYPT_CMD_ALG_3DES         0x0001          /*   3DES */
507 #define HIFN_CRYPT_CMD_ALG_RC4          0x0002          /*   RC4 */
508 #define HIFN_CRYPT_CMD_ALG_AES          0x0003          /*   AES */
509 #define HIFN_CRYPT_CMD_MODE_MASK        0x0018          /* Encrypt mode: */
510 #define HIFN_CRYPT_CMD_MODE_ECB         0x0000          /*   ECB */
511 #define HIFN_CRYPT_CMD_MODE_CBC         0x0008          /*   CBC */
512 #define HIFN_CRYPT_CMD_MODE_CFB         0x0010          /*   CFB */
513 #define HIFN_CRYPT_CMD_MODE_OFB         0x0018          /*   OFB */
514 #define HIFN_CRYPT_CMD_CLR_CTX          0x0040          /* clear context */
515 #define HIFN_CRYPT_CMD_KSZ_MASK         0x0600          /* AES key size: */
516 #define HIFN_CRYPT_CMD_KSZ_128          0x0000          /*  128 bit */
517 #define HIFN_CRYPT_CMD_KSZ_192          0x0200          /*  192 bit */
518 #define HIFN_CRYPT_CMD_KSZ_256          0x0400          /*  256 bit */
519 #define HIFN_CRYPT_CMD_NEW_KEY          0x0800          /* expect new key */
520 #define HIFN_CRYPT_CMD_NEW_IV           0x1000          /* expect new iv */
521 #define HIFN_CRYPT_CMD_SRCLEN_M         0xc000
522 #define HIFN_CRYPT_CMD_SRCLEN_S         14
523
524 /*
525  * Structure to help build up the command data structure.
526  */
527 struct hifn_mac_command
528 {
529         volatile __le16         masks;
530         volatile __le16         header_skip;
531         volatile __le16         source_count;
532         volatile __le16         reserved;
533 };
534
535 #define HIFN_MAC_CMD_ALG_MASK           0x0001
536 #define HIFN_MAC_CMD_ALG_SHA1           0x0000
537 #define HIFN_MAC_CMD_ALG_MD5            0x0001
538 #define HIFN_MAC_CMD_MODE_MASK          0x000c
539 #define HIFN_MAC_CMD_MODE_HMAC          0x0000
540 #define HIFN_MAC_CMD_MODE_SSL_MAC       0x0004
541 #define HIFN_MAC_CMD_MODE_HASH          0x0008
542 #define HIFN_MAC_CMD_MODE_FULL          0x0004
543 #define HIFN_MAC_CMD_TRUNC              0x0010
544 #define HIFN_MAC_CMD_RESULT             0x0020
545 #define HIFN_MAC_CMD_APPEND             0x0040
546 #define HIFN_MAC_CMD_SRCLEN_M           0xc000
547 #define HIFN_MAC_CMD_SRCLEN_S           14
548
549 /*
550  * MAC POS IPsec initiates authentication after encryption on encodes
551  * and before decryption on decodes.
552  */
553 #define HIFN_MAC_CMD_POS_IPSEC          0x0200
554 #define HIFN_MAC_CMD_NEW_KEY            0x0800
555
556 struct hifn_comp_command
557 {
558         volatile __le16         masks;
559         volatile __le16         header_skip;
560         volatile __le16         source_count;
561         volatile __le16         reserved;
562 };
563
564 #define HIFN_COMP_CMD_SRCLEN_M          0xc000
565 #define HIFN_COMP_CMD_SRCLEN_S          14
566 #define HIFN_COMP_CMD_ONE               0x0100  /* must be one */
567 #define HIFN_COMP_CMD_CLEARHIST         0x0010  /* clear history */
568 #define HIFN_COMP_CMD_UPDATEHIST        0x0008  /* update history */
569 #define HIFN_COMP_CMD_LZS_STRIP0        0x0004  /* LZS: strip zero */
570 #define HIFN_COMP_CMD_MPPC_RESTART      0x0004  /* MPPC: restart */
571 #define HIFN_COMP_CMD_ALG_MASK          0x0001  /* compression mode: */
572 #define HIFN_COMP_CMD_ALG_MPPC          0x0001  /*   MPPC */
573 #define HIFN_COMP_CMD_ALG_LZS           0x0000  /*   LZS */
574
575 struct hifn_base_result
576 {
577         volatile __le16         flags;
578         volatile __le16         session;
579         volatile __le16         src_cnt;                /* 15:0 of source count */
580         volatile __le16         dst_cnt;                /* 15:0 of dest count */
581 };
582
583 #define HIFN_BASE_RES_DSTOVERRUN        0x0200  /* destination overrun */
584 #define HIFN_BASE_RES_SRCLEN_M          0xc000  /* 17:16 of source count */
585 #define HIFN_BASE_RES_SRCLEN_S          14
586 #define HIFN_BASE_RES_DSTLEN_M          0x3000  /* 17:16 of dest count */
587 #define HIFN_BASE_RES_DSTLEN_S          12
588
589 struct hifn_comp_result
590 {
591         volatile __le16         flags;
592         volatile __le16         crc;
593 };
594
595 #define HIFN_COMP_RES_LCB_M             0xff00  /* longitudinal check byte */
596 #define HIFN_COMP_RES_LCB_S             8
597 #define HIFN_COMP_RES_RESTART           0x0004  /* MPPC: restart */
598 #define HIFN_COMP_RES_ENDMARKER         0x0002  /* LZS: end marker seen */
599 #define HIFN_COMP_RES_SRC_NOTZERO       0x0001  /* source expired */
600
601 struct hifn_mac_result
602 {
603         volatile __le16         flags;
604         volatile __le16         reserved;
605         /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
606 };
607
608 #define HIFN_MAC_RES_MISCOMPARE         0x0002  /* compare failed */
609 #define HIFN_MAC_RES_SRC_NOTZERO        0x0001  /* source expired */
610
611 struct hifn_crypt_result
612 {
613         volatile __le16         flags;
614         volatile __le16         reserved;
615 };
616
617 #define HIFN_CRYPT_RES_SRC_NOTZERO      0x0001  /* source expired */
618
619 #ifndef HIFN_POLL_FREQUENCY
620 #define HIFN_POLL_FREQUENCY     0x1
621 #endif
622
623 #ifndef HIFN_POLL_SCALAR
624 #define HIFN_POLL_SCALAR        0x0
625 #endif
626
627 #define HIFN_MAX_SEGLEN         0xffff          /* maximum dma segment len */
628 #define HIFN_MAX_DMALEN         0x3ffff         /* maximum dma length */
629
630 struct hifn_crypto_alg
631 {
632         struct list_head        entry;
633         struct crypto_alg       alg;
634         struct hifn_device      *dev;
635 };
636
637 #define ASYNC_SCATTERLIST_CACHE 16
638
639 #define ASYNC_FLAGS_MISALIGNED  (1<<0)
640
641 struct ablkcipher_walk
642 {
643         struct scatterlist      cache[ASYNC_SCATTERLIST_CACHE];
644         u32                     flags;
645         int                     num;
646 };
647
648 struct hifn_context
649 {
650         u8                      key[HIFN_MAX_CRYPT_KEY_LENGTH];
651         struct hifn_device      *dev;
652         unsigned int            keysize;
653 };
654
655 struct hifn_request_context
656 {
657         u8                      *iv;
658         unsigned int            ivsize;
659         u8                      op, type, mode, unused;
660         struct ablkcipher_walk  walk;
661 };
662
663 #define crypto_alg_to_hifn(a)   container_of(a, struct hifn_crypto_alg, alg)
664
665 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
666 {
667         u32 ret;
668
669         ret = readl(dev->bar[0] + reg);
670
671         return ret;
672 }
673
674 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
675 {
676         u32 ret;
677
678         ret = readl(dev->bar[1] + reg);
679
680         return ret;
681 }
682
683 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
684 {
685         writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
686 }
687
688 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
689 {
690         writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
691 }
692
693 static void hifn_wait_puc(struct hifn_device *dev)
694 {
695         int i;
696         u32 ret;
697
698         for (i=10000; i > 0; --i) {
699                 ret = hifn_read_0(dev, HIFN_0_PUCTRL);
700                 if (!(ret & HIFN_PUCTRL_RESET))
701                         break;
702
703                 udelay(1);
704         }
705
706         if (!i)
707                 dprintk("%s: Failed to reset PUC unit.\n", dev->name);
708 }
709
710 static void hifn_reset_puc(struct hifn_device *dev)
711 {
712         hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
713         hifn_wait_puc(dev);
714 }
715
716 static void hifn_stop_device(struct hifn_device *dev)
717 {
718         hifn_write_1(dev, HIFN_1_DMA_CSR,
719                 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
720                 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
721         hifn_write_0(dev, HIFN_0_PUIER, 0);
722         hifn_write_1(dev, HIFN_1_DMA_IER, 0);
723 }
724
725 static void hifn_reset_dma(struct hifn_device *dev, int full)
726 {
727         hifn_stop_device(dev);
728
729         /*
730          * Setting poll frequency and others to 0.
731          */
732         hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
733                         HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
734         mdelay(1);
735
736         /*
737          * Reset DMA.
738          */
739         if (full) {
740                 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
741                 mdelay(1);
742         } else {
743                 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
744                                 HIFN_DMACNFG_MSTRESET);
745                 hifn_reset_puc(dev);
746         }
747
748         hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
749                         HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
750
751         hifn_reset_puc(dev);
752 }
753
754 static u32 hifn_next_signature(u_int32_t a, u_int cnt)
755 {
756         int i;
757         u32 v;
758
759         for (i = 0; i < cnt; i++) {
760
761                 /* get the parity */
762                 v = a & 0x80080125;
763                 v ^= v >> 16;
764                 v ^= v >> 8;
765                 v ^= v >> 4;
766                 v ^= v >> 2;
767                 v ^= v >> 1;
768
769                 a = (v & 1) ^ (a << 1);
770         }
771
772         return a;
773 }
774
775 static struct pci2id {
776         u_short         pci_vendor;
777         u_short         pci_prod;
778         char            card_id[13];
779 } pci2id[] = {
780         {
781                 PCI_VENDOR_ID_HIFN,
782                 PCI_DEVICE_ID_HIFN_7955,
783                 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
784                   0x00, 0x00, 0x00, 0x00, 0x00 }
785         },
786         {
787                 PCI_VENDOR_ID_HIFN,
788                 PCI_DEVICE_ID_HIFN_7956,
789                 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
790                   0x00, 0x00, 0x00, 0x00, 0x00 }
791         }
792 };
793
794 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
795 static int hifn_rng_data_present(struct hwrng *rng, int wait)
796 {
797         struct hifn_device *dev = (struct hifn_device *)rng->priv;
798         s64 nsec;
799
800         nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
801         nsec -= dev->rng_wait_time;
802         if (nsec <= 0)
803                 return 1;
804         if (!wait)
805                 return 0;
806         ndelay(nsec);
807         return 1;
808 }
809
810 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
811 {
812         struct hifn_device *dev = (struct hifn_device *)rng->priv;
813
814         *data = hifn_read_1(dev, HIFN_1_RNG_DATA);
815         dev->rngtime = ktime_get();
816         return 4;
817 }
818
819 static int hifn_register_rng(struct hifn_device *dev)
820 {
821         /*
822          * We must wait at least 256 Pk_clk cycles between two reads of the rng.
823          */
824         dev->rng_wait_time      = DIV_ROUND_UP(NSEC_PER_SEC, dev->pk_clk_freq) *
825                                   256;
826
827         dev->rng.name           = dev->name;
828         dev->rng.data_present   = hifn_rng_data_present,
829         dev->rng.data_read      = hifn_rng_data_read,
830         dev->rng.priv           = (unsigned long)dev;
831
832         return hwrng_register(&dev->rng);
833 }
834
835 static void hifn_unregister_rng(struct hifn_device *dev)
836 {
837         hwrng_unregister(&dev->rng);
838 }
839 #else
840 #define hifn_register_rng(dev)          0
841 #define hifn_unregister_rng(dev)
842 #endif
843
844 static int hifn_init_pubrng(struct hifn_device *dev)
845 {
846         int i;
847
848         hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
849                         HIFN_PUBRST_RESET);
850
851         for (i=100; i > 0; --i) {
852                 mdelay(1);
853
854                 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
855                         break;
856         }
857
858         if (!i)
859                 dprintk("Chip %s: Failed to initialise public key engine.\n",
860                                 dev->name);
861         else {
862                 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
863                 dev->dmareg |= HIFN_DMAIER_PUBDONE;
864                 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
865
866                 dprintk("Chip %s: Public key engine has been sucessfully "
867                                 "initialised.\n", dev->name);
868         }
869
870         /*
871          * Enable RNG engine.
872          */
873
874         hifn_write_1(dev, HIFN_1_RNG_CONFIG,
875                         hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
876         dprintk("Chip %s: RNG engine has been successfully initialised.\n",
877                         dev->name);
878
879 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
880         /* First value must be discarded */
881         hifn_read_1(dev, HIFN_1_RNG_DATA);
882         dev->rngtime = ktime_get();
883 #endif
884         return 0;
885 }
886
887 static int hifn_enable_crypto(struct hifn_device *dev)
888 {
889         u32 dmacfg, addr;
890         char *offtbl = NULL;
891         int i;
892
893         for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
894                 if (pci2id[i].pci_vendor == dev->pdev->vendor &&
895                                 pci2id[i].pci_prod == dev->pdev->device) {
896                         offtbl = pci2id[i].card_id;
897                         break;
898                 }
899         }
900
901         if (offtbl == NULL) {
902                 dprintk("Chip %s: Unknown card!\n", dev->name);
903                 return -ENODEV;
904         }
905
906         dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
907
908         hifn_write_1(dev, HIFN_1_DMA_CNFG,
909                         HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
910                         HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
911         mdelay(1);
912         addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
913         mdelay(1);
914         hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
915         mdelay(1);
916
917         for (i=0; i<12; ++i) {
918                 addr = hifn_next_signature(addr, offtbl[i] + 0x101);
919                 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
920
921                 mdelay(1);
922         }
923         hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
924
925         dprintk("Chip %s: %s.\n", dev->name, pci_name(dev->pdev));
926
927         return 0;
928 }
929
930 static void hifn_init_dma(struct hifn_device *dev)
931 {
932         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
933         u32 dptr = dev->desc_dma;
934         int i;
935
936         for (i=0; i<HIFN_D_CMD_RSIZE; ++i)
937                 dma->cmdr[i].p = __cpu_to_le32(dptr +
938                                 offsetof(struct hifn_dma, command_bufs[i][0]));
939         for (i=0; i<HIFN_D_RES_RSIZE; ++i)
940                 dma->resr[i].p = __cpu_to_le32(dptr +
941                                 offsetof(struct hifn_dma, result_bufs[i][0]));
942
943         /*
944          * Setup LAST descriptors.
945          */
946         dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
947                         offsetof(struct hifn_dma, cmdr[0]));
948         dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
949                         offsetof(struct hifn_dma, srcr[0]));
950         dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
951                         offsetof(struct hifn_dma, dstr[0]));
952         dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
953                         offsetof(struct hifn_dma, resr[0]));
954
955         dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
956         dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
957         dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
958 }
959
960 /*
961  * Initialize the PLL. We need to know the frequency of the reference clock
962  * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
963  * allows us to operate without the risk of overclocking the chip. If it
964  * actually uses 33MHz, the chip will operate at half the speed, this can be
965  * overriden by specifying the frequency as module parameter (pci33).
966  *
967  * Unfortunately the PCI clock is not very suitable since the HIFN needs a
968  * stable clock and the PCI clock frequency may vary, so the default is the
969  * external clock. There is no way to find out its frequency, we default to
970  * 66MHz since according to Mike Ham of HiFn, almost every board in existence
971  * has an external crystal populated at 66MHz.
972  */
973 static void hifn_init_pll(struct hifn_device *dev)
974 {
975         unsigned int freq, m;
976         u32 pllcfg;
977
978         pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
979
980         if (strncmp(hifn_pll_ref, "ext", 3) == 0)
981                 pllcfg |= HIFN_PLL_REF_CLK_PLL;
982         else
983                 pllcfg |= HIFN_PLL_REF_CLK_HBI;
984
985         if (hifn_pll_ref[3] != '\0')
986                 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
987         else {
988                 freq = 66;
989                 printk(KERN_INFO "hifn795x: assuming %uMHz clock speed, "
990                                  "override with hifn_pll_ref=%.3s<frequency>\n",
991                        freq, hifn_pll_ref);
992         }
993
994         m = HIFN_PLL_FCK_MAX / freq;
995
996         pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
997         if (m <= 8)
998                 pllcfg |= HIFN_PLL_IS_1_8;
999         else
1000                 pllcfg |= HIFN_PLL_IS_9_12;
1001
1002         /* Select clock source and enable clock bypass */
1003         hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1004                      HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
1005
1006         /* Let the chip lock to the input clock */
1007         mdelay(10);
1008
1009         /* Disable clock bypass */
1010         hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1011                      HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
1012
1013         /* Switch the engines to the PLL */
1014         hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1015                      HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
1016
1017         /*
1018          * The Fpk_clk runs at half the total speed. Its frequency is needed to
1019          * calculate the minimum time between two reads of the rng. Since 33MHz
1020          * is actually 33.333... we overestimate the frequency here, resulting
1021          * in slightly larger intervals.
1022          */
1023         dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
1024 }
1025
1026 static void hifn_init_registers(struct hifn_device *dev)
1027 {
1028         u32 dptr = dev->desc_dma;
1029
1030         /* Initialization magic... */
1031         hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
1032         hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
1033         hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
1034
1035         /* write all 4 ring address registers */
1036         hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
1037                                 offsetof(struct hifn_dma, cmdr[0]));
1038         hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
1039                                 offsetof(struct hifn_dma, srcr[0]));
1040         hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
1041                                 offsetof(struct hifn_dma, dstr[0]));
1042         hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
1043                                 offsetof(struct hifn_dma, resr[0]));
1044
1045         mdelay(2);
1046 #if 0
1047         hifn_write_1(dev, HIFN_1_DMA_CSR,
1048             HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
1049             HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
1050             HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1051             HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1052             HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1053             HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1054             HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1055             HIFN_DMACSR_S_WAIT |
1056             HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1057             HIFN_DMACSR_C_WAIT |
1058             HIFN_DMACSR_ENGINE |
1059             HIFN_DMACSR_PUBDONE);
1060 #else
1061         hifn_write_1(dev, HIFN_1_DMA_CSR,
1062             HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1063             HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1064             HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1065             HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1066             HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1067             HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1068             HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1069             HIFN_DMACSR_S_WAIT |
1070             HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1071             HIFN_DMACSR_C_WAIT |
1072             HIFN_DMACSR_ENGINE |
1073             HIFN_DMACSR_PUBDONE);
1074 #endif
1075         hifn_read_1(dev, HIFN_1_DMA_CSR);
1076
1077         dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1078             HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1079             HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1080             HIFN_DMAIER_ENGINE;
1081         dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1082
1083         hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1084         hifn_read_1(dev, HIFN_1_DMA_IER);
1085 #if 0
1086         hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1087                     HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1088                     HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1089                     HIFN_PUCNFG_DRAM);
1090 #else
1091         hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1092 #endif
1093         hifn_init_pll(dev);
1094
1095         hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1096         hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1097             HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1098             ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1099             ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1100 }
1101
1102 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1103                 unsigned dlen, unsigned slen, u16 mask, u8 snum)
1104 {
1105         struct hifn_base_command *base_cmd;
1106         u8 *buf_pos = buf;
1107
1108         base_cmd = (struct hifn_base_command *)buf_pos;
1109         base_cmd->masks = __cpu_to_le16(mask);
1110         base_cmd->total_source_count =
1111                 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1112         base_cmd->total_dest_count =
1113                 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1114
1115         dlen >>= 16;
1116         slen >>= 16;
1117         base_cmd->session_num = __cpu_to_le16(snum |
1118             ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1119             ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1120
1121         return sizeof(struct hifn_base_command);
1122 }
1123
1124 static int hifn_setup_crypto_command(struct hifn_device *dev,
1125                 u8 *buf, unsigned dlen, unsigned slen,
1126                 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1127 {
1128         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1129         struct hifn_crypt_command *cry_cmd;
1130         u8 *buf_pos = buf;
1131         u16 cmd_len;
1132
1133         cry_cmd = (struct hifn_crypt_command *)buf_pos;
1134
1135         cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1136         dlen >>= 16;
1137         cry_cmd->masks = __cpu_to_le16(mode |
1138                         ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1139                          HIFN_CRYPT_CMD_SRCLEN_M));
1140         cry_cmd->header_skip = 0;
1141         cry_cmd->reserved = 0;
1142
1143         buf_pos += sizeof(struct hifn_crypt_command);
1144
1145         dma->cmdu++;
1146         if (dma->cmdu > 1) {
1147                 dev->dmareg |= HIFN_DMAIER_C_WAIT;
1148                 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1149         }
1150
1151         if (keylen) {
1152                 memcpy(buf_pos, key, keylen);
1153                 buf_pos += keylen;
1154         }
1155         if (ivsize) {
1156                 memcpy(buf_pos, iv, ivsize);
1157                 buf_pos += ivsize;
1158         }
1159
1160         cmd_len = buf_pos - buf;
1161
1162         return cmd_len;
1163 }
1164
1165 static int hifn_setup_cmd_desc(struct hifn_device *dev,
1166                 struct hifn_context *ctx, struct hifn_request_context *rctx,
1167                 void *priv, unsigned int nbytes)
1168 {
1169         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1170         int cmd_len, sa_idx;
1171         u8 *buf, *buf_pos;
1172         u16 mask;
1173
1174         sa_idx = dma->cmdi;
1175         buf_pos = buf = dma->command_bufs[dma->cmdi];
1176
1177         mask = 0;
1178         switch (rctx->op) {
1179                 case ACRYPTO_OP_DECRYPT:
1180                         mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1181                         break;
1182                 case ACRYPTO_OP_ENCRYPT:
1183                         mask = HIFN_BASE_CMD_CRYPT;
1184                         break;
1185                 case ACRYPTO_OP_HMAC:
1186                         mask = HIFN_BASE_CMD_MAC;
1187                         break;
1188                 default:
1189                         goto err_out;
1190         }
1191
1192         buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1193                         nbytes, mask, dev->snum);
1194
1195         if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1196                 u16 md = 0;
1197
1198                 if (ctx->keysize)
1199                         md |= HIFN_CRYPT_CMD_NEW_KEY;
1200                 if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1201                         md |= HIFN_CRYPT_CMD_NEW_IV;
1202
1203                 switch (rctx->mode) {
1204                         case ACRYPTO_MODE_ECB:
1205                                 md |= HIFN_CRYPT_CMD_MODE_ECB;
1206                                 break;
1207                         case ACRYPTO_MODE_CBC:
1208                                 md |= HIFN_CRYPT_CMD_MODE_CBC;
1209                                 break;
1210                         case ACRYPTO_MODE_CFB:
1211                                 md |= HIFN_CRYPT_CMD_MODE_CFB;
1212                                 break;
1213                         case ACRYPTO_MODE_OFB:
1214                                 md |= HIFN_CRYPT_CMD_MODE_OFB;
1215                                 break;
1216                         default:
1217                                 goto err_out;
1218                 }
1219
1220                 switch (rctx->type) {
1221                         case ACRYPTO_TYPE_AES_128:
1222                                 if (ctx->keysize != 16)
1223                                         goto err_out;
1224                                 md |= HIFN_CRYPT_CMD_KSZ_128 |
1225                                         HIFN_CRYPT_CMD_ALG_AES;
1226                                 break;
1227                         case ACRYPTO_TYPE_AES_192:
1228                                 if (ctx->keysize != 24)
1229                                         goto err_out;
1230                                 md |= HIFN_CRYPT_CMD_KSZ_192 |
1231                                         HIFN_CRYPT_CMD_ALG_AES;
1232                                 break;
1233                         case ACRYPTO_TYPE_AES_256:
1234                                 if (ctx->keysize != 32)
1235                                         goto err_out;
1236                                 md |= HIFN_CRYPT_CMD_KSZ_256 |
1237                                         HIFN_CRYPT_CMD_ALG_AES;
1238                                 break;
1239                         case ACRYPTO_TYPE_3DES:
1240                                 if (ctx->keysize != 24)
1241                                         goto err_out;
1242                                 md |= HIFN_CRYPT_CMD_ALG_3DES;
1243                                 break;
1244                         case ACRYPTO_TYPE_DES:
1245                                 if (ctx->keysize != 8)
1246                                         goto err_out;
1247                                 md |= HIFN_CRYPT_CMD_ALG_DES;
1248                                 break;
1249                         default:
1250                                 goto err_out;
1251                 }
1252
1253                 buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1254                                 nbytes, nbytes, ctx->key, ctx->keysize,
1255                                 rctx->iv, rctx->ivsize, md);
1256         }
1257
1258         dev->sa[sa_idx] = priv;
1259         dev->started++;
1260
1261         cmd_len = buf_pos - buf;
1262         dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1263                         HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1264
1265         if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1266                 dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1267                         HIFN_D_VALID | HIFN_D_LAST |
1268                         HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1269                 dma->cmdi = 0;
1270         } else
1271                 dma->cmdr[dma->cmdi-1].l |= __cpu_to_le32(HIFN_D_VALID);
1272
1273         if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1274                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1275                 dev->flags |= HIFN_FLAG_CMD_BUSY;
1276         }
1277         return 0;
1278
1279 err_out:
1280         return -EINVAL;
1281 }
1282
1283 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1284                 unsigned int offset, unsigned int size, int last)
1285 {
1286         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1287         int idx;
1288         dma_addr_t addr;
1289
1290         addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1291
1292         idx = dma->srci;
1293
1294         dma->srcr[idx].p = __cpu_to_le32(addr);
1295         dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1296                         HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1297
1298         if (++idx == HIFN_D_SRC_RSIZE) {
1299                 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1300                                 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1301                                 (last ? HIFN_D_LAST : 0));
1302                 idx = 0;
1303         }
1304
1305         dma->srci = idx;
1306         dma->srcu++;
1307
1308         if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1309                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1310                 dev->flags |= HIFN_FLAG_SRC_BUSY;
1311         }
1312
1313         return size;
1314 }
1315
1316 static void hifn_setup_res_desc(struct hifn_device *dev)
1317 {
1318         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1319
1320         dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1321                         HIFN_D_VALID | HIFN_D_LAST);
1322         /*
1323          * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1324          *                                      HIFN_D_LAST);
1325          */
1326
1327         if (++dma->resi == HIFN_D_RES_RSIZE) {
1328                 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1329                                 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1330                 dma->resi = 0;
1331         }
1332
1333         dma->resu++;
1334
1335         if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1336                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1337                 dev->flags |= HIFN_FLAG_RES_BUSY;
1338         }
1339 }
1340
1341 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1342                 unsigned offset, unsigned size, int last)
1343 {
1344         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1345         int idx;
1346         dma_addr_t addr;
1347
1348         addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1349
1350         idx = dma->dsti;
1351         dma->dstr[idx].p = __cpu_to_le32(addr);
1352         dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1353                         HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1354
1355         if (++idx == HIFN_D_DST_RSIZE) {
1356                 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1357                                 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1358                                 (last ? HIFN_D_LAST : 0));
1359                 idx = 0;
1360         }
1361         dma->dsti = idx;
1362         dma->dstu++;
1363
1364         if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1365                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1366                 dev->flags |= HIFN_FLAG_DST_BUSY;
1367         }
1368 }
1369
1370 static int hifn_setup_dma(struct hifn_device *dev,
1371                 struct hifn_context *ctx, struct hifn_request_context *rctx,
1372                 struct scatterlist *src, struct scatterlist *dst,
1373                 unsigned int nbytes, void *priv)
1374 {
1375         struct scatterlist *t;
1376         struct page *spage, *dpage;
1377         unsigned int soff, doff;
1378         unsigned int n, len;
1379
1380         n = nbytes;
1381         while (n) {
1382                 spage = sg_page(src);
1383                 soff = src->offset;
1384                 len = min(src->length, n);
1385
1386                 hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1387
1388                 src++;
1389                 n -= len;
1390         }
1391
1392         t = &rctx->walk.cache[0];
1393         n = nbytes;
1394         while (n) {
1395                 if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1396                         BUG_ON(!sg_page(t));
1397                         dpage = sg_page(t);
1398                         doff = 0;
1399                         len = t->length;
1400                 } else {
1401                         BUG_ON(!sg_page(dst));
1402                         dpage = sg_page(dst);
1403                         doff = dst->offset;
1404                         len = dst->length;
1405                 }
1406                 len = min(len, n);
1407
1408                 hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1409
1410                 dst++;
1411                 t++;
1412                 n -= len;
1413         }
1414
1415         hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1416         hifn_setup_res_desc(dev);
1417         return 0;
1418 }
1419
1420 static int ablkcipher_walk_init(struct ablkcipher_walk *w,
1421                 int num, gfp_t gfp_flags)
1422 {
1423         int i;
1424
1425         num = min(ASYNC_SCATTERLIST_CACHE, num);
1426         sg_init_table(w->cache, num);
1427
1428         w->num = 0;
1429         for (i=0; i<num; ++i) {
1430                 struct page *page = alloc_page(gfp_flags);
1431                 struct scatterlist *s;
1432
1433                 if (!page)
1434                         break;
1435
1436                 s = &w->cache[i];
1437
1438                 sg_set_page(s, page, PAGE_SIZE, 0);
1439                 w->num++;
1440         }
1441
1442         return i;
1443 }
1444
1445 static void ablkcipher_walk_exit(struct ablkcipher_walk *w)
1446 {
1447         int i;
1448
1449         for (i=0; i<w->num; ++i) {
1450                 struct scatterlist *s = &w->cache[i];
1451
1452                 __free_page(sg_page(s));
1453
1454                 s->length = 0;
1455         }
1456
1457         w->num = 0;
1458 }
1459
1460 static int ablkcipher_add(unsigned int *drestp, struct scatterlist *dst,
1461                 unsigned int size, unsigned int *nbytesp)
1462 {
1463         unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1464         int idx = 0;
1465
1466         if (drest < size || size > nbytes)
1467                 return -EINVAL;
1468
1469         while (size) {
1470                 copy = min(drest, min(size, dst->length));
1471
1472                 size -= copy;
1473                 drest -= copy;
1474                 nbytes -= copy;
1475
1476                 dprintk("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1477                                 __func__, copy, size, drest, nbytes);
1478
1479                 dst++;
1480                 idx++;
1481         }
1482
1483         *nbytesp = nbytes;
1484         *drestp = drest;
1485
1486         return idx;
1487 }
1488
1489 static int ablkcipher_walk(struct ablkcipher_request *req,
1490                 struct ablkcipher_walk *w)
1491 {
1492         struct scatterlist *dst, *t;
1493         unsigned int nbytes = req->nbytes, offset, copy, diff;
1494         int idx, tidx, err;
1495
1496         tidx = idx = 0;
1497         offset = 0;
1498         while (nbytes) {
1499                 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1500                         return -EINVAL;
1501
1502                 dst = &req->dst[idx];
1503
1504                 dprintk("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1505                         __func__, dst->length, dst->offset, offset, nbytes);
1506
1507                 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1508                     !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1509                     offset) {
1510                         unsigned slen = min(dst->length - offset, nbytes);
1511                         unsigned dlen = PAGE_SIZE;
1512
1513                         t = &w->cache[idx];
1514
1515                         err = ablkcipher_add(&dlen, dst, slen, &nbytes);
1516                         if (err < 0)
1517                                 return err;
1518
1519                         idx += err;
1520
1521                         copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1522                         diff = slen & (HIFN_D_DST_DALIGN - 1);
1523
1524                         if (dlen < nbytes) {
1525                                 /*
1526                                  * Destination page does not have enough space
1527                                  * to put there additional blocksized chunk,
1528                                  * so we mark that page as containing only
1529                                  * blocksize aligned chunks:
1530                                  *      t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1531                                  * and increase number of bytes to be processed
1532                                  * in next chunk:
1533                                  *      nbytes += diff;
1534                                  */
1535                                 nbytes += diff;
1536
1537                                 /*
1538                                  * Temporary of course...
1539                                  * Kick author if you will catch this one.
1540                                  */
1541                                 printk(KERN_ERR "%s: dlen: %u, nbytes: %u,"
1542                                         "slen: %u, offset: %u.\n",
1543                                         __func__, dlen, nbytes, slen, offset);
1544                                 printk(KERN_ERR "%s: please contact author to fix this "
1545                                         "issue, generally you should not catch "
1546                                         "this path under any condition but who "
1547                                         "knows how did you use crypto code.\n"
1548                                         "Thank you.\n", __func__);
1549                                 BUG();
1550                         } else {
1551                                 copy += diff + nbytes;
1552
1553                                 dst = &req->dst[idx];
1554
1555                                 err = ablkcipher_add(&dlen, dst, nbytes, &nbytes);
1556                                 if (err < 0)
1557                                         return err;
1558
1559                                 idx += err;
1560                         }
1561
1562                         t->length = copy;
1563                         t->offset = offset;
1564                 } else {
1565                         nbytes -= min(dst->length, nbytes);
1566                         idx++;
1567                 }
1568
1569                 tidx++;
1570         }
1571
1572         return tidx;
1573 }
1574
1575 static int hifn_setup_session(struct ablkcipher_request *req)
1576 {
1577         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1578         struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1579         struct hifn_device *dev = ctx->dev;
1580         unsigned long dlen, flags;
1581         unsigned int nbytes = req->nbytes, idx = 0;
1582         int err = -EINVAL, sg_num;
1583         struct scatterlist *dst;
1584
1585         if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1586                 goto err_out_exit;
1587
1588         rctx->walk.flags = 0;
1589
1590         while (nbytes) {
1591                 dst = &req->dst[idx];
1592                 dlen = min(dst->length, nbytes);
1593
1594                 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1595                     !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1596                         rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1597
1598                 nbytes -= dlen;
1599                 idx++;
1600         }
1601
1602         if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1603                 err = ablkcipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1604                 if (err < 0)
1605                         return err;
1606         }
1607
1608         sg_num = ablkcipher_walk(req, &rctx->walk);
1609         if (sg_num < 0) {
1610                 err = sg_num;
1611                 goto err_out_exit;
1612         }
1613
1614         spin_lock_irqsave(&dev->lock, flags);
1615         if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1616                 err = -EAGAIN;
1617                 goto err_out;
1618         }
1619
1620         err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->nbytes, req);
1621         if (err)
1622                 goto err_out;
1623
1624         dev->snum++;
1625
1626         dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1627         spin_unlock_irqrestore(&dev->lock, flags);
1628
1629         return 0;
1630
1631 err_out:
1632         spin_unlock_irqrestore(&dev->lock, flags);
1633 err_out_exit:
1634         if (err) {
1635                 printk("%s: iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1636                                 "type: %u, err: %d.\n",
1637                         dev->name, rctx->iv, rctx->ivsize,
1638                         ctx->key, ctx->keysize,
1639                         rctx->mode, rctx->op, rctx->type, err);
1640         }
1641
1642         return err;
1643 }
1644
1645 static int hifn_test(struct hifn_device *dev, int encdec, u8 snum)
1646 {
1647         int n, err;
1648         u8 src[16];
1649         struct hifn_context ctx;
1650         struct hifn_request_context rctx;
1651         u8 fips_aes_ecb_from_zero[16] = {
1652                 0x66, 0xE9, 0x4B, 0xD4,
1653                 0xEF, 0x8A, 0x2C, 0x3B,
1654                 0x88, 0x4C, 0xFA, 0x59,
1655                 0xCA, 0x34, 0x2B, 0x2E};
1656         struct scatterlist sg;
1657
1658         memset(src, 0, sizeof(src));
1659         memset(ctx.key, 0, sizeof(ctx.key));
1660
1661         ctx.dev = dev;
1662         ctx.keysize = 16;
1663         rctx.ivsize = 0;
1664         rctx.iv = NULL;
1665         rctx.op = (encdec)?ACRYPTO_OP_ENCRYPT:ACRYPTO_OP_DECRYPT;
1666         rctx.mode = ACRYPTO_MODE_ECB;
1667         rctx.type = ACRYPTO_TYPE_AES_128;
1668         rctx.walk.cache[0].length = 0;
1669
1670         sg_init_one(&sg, &src, sizeof(src));
1671
1672         err = hifn_setup_dma(dev, &ctx, &rctx, &sg, &sg, sizeof(src), NULL);
1673         if (err)
1674                 goto err_out;
1675
1676         dev->started = 0;
1677         msleep(200);
1678
1679         dprintk("%s: decoded: ", dev->name);
1680         for (n=0; n<sizeof(src); ++n)
1681                 dprintk("%02x ", src[n]);
1682         dprintk("\n");
1683         dprintk("%s: FIPS   : ", dev->name);
1684         for (n=0; n<sizeof(fips_aes_ecb_from_zero); ++n)
1685                 dprintk("%02x ", fips_aes_ecb_from_zero[n]);
1686         dprintk("\n");
1687
1688         if (!memcmp(src, fips_aes_ecb_from_zero, sizeof(fips_aes_ecb_from_zero))) {
1689                 printk(KERN_INFO "%s: AES 128 ECB test has been successfully "
1690                                 "passed.\n", dev->name);
1691                 return 0;
1692         }
1693
1694 err_out:
1695         printk(KERN_INFO "%s: AES 128 ECB test has been failed.\n", dev->name);
1696         return -1;
1697 }
1698
1699 static int hifn_start_device(struct hifn_device *dev)
1700 {
1701         int err;
1702
1703         dev->started = dev->active = 0;
1704         hifn_reset_dma(dev, 1);
1705
1706         err = hifn_enable_crypto(dev);
1707         if (err)
1708                 return err;
1709
1710         hifn_reset_puc(dev);
1711
1712         hifn_init_dma(dev);
1713
1714         hifn_init_registers(dev);
1715
1716         hifn_init_pubrng(dev);
1717
1718         return 0;
1719 }
1720
1721 static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1722                 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1723 {
1724         unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1725         void *daddr;
1726         int idx = 0;
1727
1728         if (srest < size || size > nbytes)
1729                 return -EINVAL;
1730
1731         while (size) {
1732                 copy = min(srest, min(dst->length, size));
1733
1734                 daddr = kmap_atomic(sg_page(dst), KM_IRQ0);
1735                 memcpy(daddr + dst->offset + offset, saddr, copy);
1736                 kunmap_atomic(daddr, KM_IRQ0);
1737
1738                 nbytes -= copy;
1739                 size -= copy;
1740                 srest -= copy;
1741                 saddr += copy;
1742                 offset = 0;
1743
1744                 dprintk("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1745                                 __func__, copy, size, srest, nbytes);
1746
1747                 dst++;
1748                 idx++;
1749         }
1750
1751         *nbytesp = nbytes;
1752         *srestp = srest;
1753
1754         return idx;
1755 }
1756
1757 static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1758 {
1759         unsigned long flags;
1760
1761         spin_lock_irqsave(&dev->lock, flags);
1762         dev->sa[i] = NULL;
1763         dev->started--;
1764         if (dev->started < 0)
1765                 printk("%s: started: %d.\n", __func__, dev->started);
1766         spin_unlock_irqrestore(&dev->lock, flags);
1767         BUG_ON(dev->started < 0);
1768 }
1769
1770 static void hifn_process_ready(struct ablkcipher_request *req, int error)
1771 {
1772         struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1773
1774         if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1775                 unsigned int nbytes = req->nbytes;
1776                 int idx = 0, err;
1777                 struct scatterlist *dst, *t;
1778                 void *saddr;
1779
1780                 while (nbytes) {
1781                         t = &rctx->walk.cache[idx];
1782                         dst = &req->dst[idx];
1783
1784                         dprintk("\n%s: sg_page(t): %p, t->length: %u, "
1785                                 "sg_page(dst): %p, dst->length: %u, "
1786                                 "nbytes: %u.\n",
1787                                 __func__, sg_page(t), t->length,
1788                                 sg_page(dst), dst->length, nbytes);
1789
1790                         if (!t->length) {
1791                                 nbytes -= min(dst->length, nbytes);
1792                                 idx++;
1793                                 continue;
1794                         }
1795
1796                         saddr = kmap_atomic(sg_page(t), KM_SOFTIRQ0);
1797
1798                         err = ablkcipher_get(saddr, &t->length, t->offset,
1799                                         dst, nbytes, &nbytes);
1800                         if (err < 0) {
1801                                 kunmap_atomic(saddr, KM_SOFTIRQ0);
1802                                 break;
1803                         }
1804
1805                         idx += err;
1806                         kunmap_atomic(saddr, KM_SOFTIRQ0);
1807                 }
1808
1809                 ablkcipher_walk_exit(&rctx->walk);
1810         }
1811
1812         req->base.complete(&req->base, error);
1813 }
1814
1815 static void hifn_clear_rings(struct hifn_device *dev, int error)
1816 {
1817         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1818         int i, u;
1819
1820         dprintk("%s: ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1821                         "k: %d.%d.%d.%d.\n",
1822                         dev->name,
1823                         dma->cmdi, dma->srci, dma->dsti, dma->resi,
1824                         dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1825                         dma->cmdk, dma->srck, dma->dstk, dma->resk);
1826
1827         i = dma->resk; u = dma->resu;
1828         while (u != 0) {
1829                 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1830                         break;
1831
1832                 if (dev->sa[i]) {
1833                         dev->success++;
1834                         dev->reset = 0;
1835                         hifn_process_ready(dev->sa[i], error);
1836                         hifn_complete_sa(dev, i);
1837                 }
1838
1839                 if (++i == HIFN_D_RES_RSIZE)
1840                         i = 0;
1841                 u--;
1842         }
1843         dma->resk = i; dma->resu = u;
1844
1845         i = dma->srck; u = dma->srcu;
1846         while (u != 0) {
1847                 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1848                         break;
1849                 if (++i == HIFN_D_SRC_RSIZE)
1850                         i = 0;
1851                 u--;
1852         }
1853         dma->srck = i; dma->srcu = u;
1854
1855         i = dma->cmdk; u = dma->cmdu;
1856         while (u != 0) {
1857                 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1858                         break;
1859                 if (++i == HIFN_D_CMD_RSIZE)
1860                         i = 0;
1861                 u--;
1862         }
1863         dma->cmdk = i; dma->cmdu = u;
1864
1865         i = dma->dstk; u = dma->dstu;
1866         while (u != 0) {
1867                 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1868                         break;
1869                 if (++i == HIFN_D_DST_RSIZE)
1870                         i = 0;
1871                 u--;
1872         }
1873         dma->dstk = i; dma->dstu = u;
1874
1875         dprintk("%s: ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1876                         "k: %d.%d.%d.%d.\n",
1877                         dev->name,
1878                         dma->cmdi, dma->srci, dma->dsti, dma->resi,
1879                         dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1880                         dma->cmdk, dma->srck, dma->dstk, dma->resk);
1881 }
1882
1883 static void hifn_work(struct work_struct *work)
1884 {
1885         struct delayed_work *dw = to_delayed_work(work);
1886         struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1887         unsigned long flags;
1888         int reset = 0;
1889         u32 r = 0;
1890
1891         spin_lock_irqsave(&dev->lock, flags);
1892         if (dev->active == 0) {
1893                 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1894
1895                 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1896                         dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1897                         r |= HIFN_DMACSR_C_CTRL_DIS;
1898                 }
1899                 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1900                         dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1901                         r |= HIFN_DMACSR_S_CTRL_DIS;
1902                 }
1903                 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1904                         dev->flags &= ~HIFN_FLAG_DST_BUSY;
1905                         r |= HIFN_DMACSR_D_CTRL_DIS;
1906                 }
1907                 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1908                         dev->flags &= ~HIFN_FLAG_RES_BUSY;
1909                         r |= HIFN_DMACSR_R_CTRL_DIS;
1910                 }
1911                 if (r)
1912                         hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1913         } else
1914                 dev->active--;
1915
1916         if ((dev->prev_success == dev->success) && dev->started)
1917                 reset = 1;
1918         dev->prev_success = dev->success;
1919         spin_unlock_irqrestore(&dev->lock, flags);
1920
1921         if (reset) {
1922                 if (++dev->reset >= 5) {
1923                         int i;
1924                         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1925
1926                         printk("%s: r: %08x, active: %d, started: %d, "
1927                                 "success: %lu: qlen: %u/%u, reset: %d.\n",
1928                                 dev->name, r, dev->active, dev->started,
1929                                 dev->success, dev->queue.qlen, dev->queue.max_qlen,
1930                                 reset);
1931
1932                         printk("%s: res: ", __func__);
1933                         for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
1934                                 printk("%x.%p ", dma->resr[i].l, dev->sa[i]);
1935                                 if (dev->sa[i]) {
1936                                         hifn_process_ready(dev->sa[i], -ENODEV);
1937                                         hifn_complete_sa(dev, i);
1938                                 }
1939                         }
1940                         printk("\n");
1941
1942                         hifn_reset_dma(dev, 1);
1943                         hifn_stop_device(dev);
1944                         hifn_start_device(dev);
1945                         dev->reset = 0;
1946                 }
1947
1948                 tasklet_schedule(&dev->tasklet);
1949         }
1950
1951         schedule_delayed_work(&dev->work, HZ);
1952 }
1953
1954 static irqreturn_t hifn_interrupt(int irq, void *data)
1955 {
1956         struct hifn_device *dev = (struct hifn_device *)data;
1957         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1958         u32 dmacsr, restart;
1959
1960         dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1961
1962         dprintk("%s: 1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1963                         "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1964                 dev->name, dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1965                 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1966                 dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1967
1968         if ((dmacsr & dev->dmareg) == 0)
1969                 return IRQ_NONE;
1970
1971         hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1972
1973         if (dmacsr & HIFN_DMACSR_ENGINE)
1974                 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1975         if (dmacsr & HIFN_DMACSR_PUBDONE)
1976                 hifn_write_1(dev, HIFN_1_PUB_STATUS,
1977                         hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1978
1979         restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1980         if (restart) {
1981                 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1982
1983                 printk(KERN_WARNING "%s: overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1984                         dev->name, !!(dmacsr & HIFN_DMACSR_R_OVER),
1985                         !!(dmacsr & HIFN_DMACSR_D_OVER),
1986                         puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1987                 if (!!(puisr & HIFN_PUISR_DSTOVER))
1988                         hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1989                 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1990                                         HIFN_DMACSR_D_OVER));
1991         }
1992
1993         restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1994                         HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1995         if (restart) {
1996                 printk(KERN_WARNING "%s: abort: c: %d, s: %d, d: %d, r: %d.\n",
1997                         dev->name, !!(dmacsr & HIFN_DMACSR_C_ABORT),
1998                         !!(dmacsr & HIFN_DMACSR_S_ABORT),
1999                         !!(dmacsr & HIFN_DMACSR_D_ABORT),
2000                         !!(dmacsr & HIFN_DMACSR_R_ABORT));
2001                 hifn_reset_dma(dev, 1);
2002                 hifn_init_dma(dev);
2003                 hifn_init_registers(dev);
2004         }
2005
2006         if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
2007                 dprintk("%s: wait on command.\n", dev->name);
2008                 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
2009                 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
2010         }
2011
2012         tasklet_schedule(&dev->tasklet);
2013
2014         return IRQ_HANDLED;
2015 }
2016
2017 static void hifn_flush(struct hifn_device *dev)
2018 {
2019         unsigned long flags;
2020         struct crypto_async_request *async_req;
2021         struct hifn_context *ctx;
2022         struct ablkcipher_request *req;
2023         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
2024         int i;
2025
2026         for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
2027                 struct hifn_desc *d = &dma->resr[i];
2028
2029                 if (dev->sa[i]) {
2030                         hifn_process_ready(dev->sa[i],
2031                                 (d->l & __cpu_to_le32(HIFN_D_VALID))?-ENODEV:0);
2032                         hifn_complete_sa(dev, i);
2033                 }
2034         }
2035
2036         spin_lock_irqsave(&dev->lock, flags);
2037         while ((async_req = crypto_dequeue_request(&dev->queue))) {
2038                 ctx = crypto_tfm_ctx(async_req->tfm);
2039                 req = container_of(async_req, struct ablkcipher_request, base);
2040                 spin_unlock_irqrestore(&dev->lock, flags);
2041
2042                 hifn_process_ready(req, -ENODEV);
2043
2044                 spin_lock_irqsave(&dev->lock, flags);
2045         }
2046         spin_unlock_irqrestore(&dev->lock, flags);
2047 }
2048
2049 static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
2050                 unsigned int len)
2051 {
2052         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
2053         struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2054         struct hifn_device *dev = ctx->dev;
2055
2056         if (len > HIFN_MAX_CRYPT_KEY_LENGTH) {
2057                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
2058                 return -1;
2059         }
2060
2061         if (len == HIFN_DES_KEY_LENGTH) {
2062                 u32 tmp[DES_EXPKEY_WORDS];
2063                 int ret = des_ekey(tmp, key);
2064                 
2065                 if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
2066                         tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
2067                         return -EINVAL;
2068                 }
2069         }
2070
2071         dev->flags &= ~HIFN_FLAG_OLD_KEY;
2072
2073         memcpy(ctx->key, key, len);
2074         ctx->keysize = len;
2075
2076         return 0;
2077 }
2078
2079 static int hifn_handle_req(struct ablkcipher_request *req)
2080 {
2081         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2082         struct hifn_device *dev = ctx->dev;
2083         int err = -EAGAIN;
2084
2085         if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
2086                 err = hifn_setup_session(req);
2087
2088         if (err == -EAGAIN) {
2089                 unsigned long flags;
2090
2091                 spin_lock_irqsave(&dev->lock, flags);
2092                 err = ablkcipher_enqueue_request(&dev->queue, req);
2093                 spin_unlock_irqrestore(&dev->lock, flags);
2094         }
2095
2096         return err;
2097 }
2098
2099 static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
2100                 u8 type, u8 mode)
2101 {
2102         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2103         struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
2104         unsigned ivsize;
2105
2106         ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
2107
2108         if (req->info && mode != ACRYPTO_MODE_ECB) {
2109                 if (type == ACRYPTO_TYPE_AES_128)
2110                         ivsize = HIFN_AES_IV_LENGTH;
2111                 else if (type == ACRYPTO_TYPE_DES)
2112                         ivsize = HIFN_DES_KEY_LENGTH;
2113                 else if (type == ACRYPTO_TYPE_3DES)
2114                         ivsize = HIFN_3DES_KEY_LENGTH;
2115         }
2116
2117         if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2118                 if (ctx->keysize == 24)
2119                         type = ACRYPTO_TYPE_AES_192;
2120                 else if (ctx->keysize == 32)
2121                         type = ACRYPTO_TYPE_AES_256;
2122         }
2123
2124         rctx->op = op;
2125         rctx->mode = mode;
2126         rctx->type = type;
2127         rctx->iv = req->info;
2128         rctx->ivsize = ivsize;
2129
2130         /*
2131          * HEAVY TODO: needs to kick Herbert XU to write documentation.
2132          * HEAVY TODO: needs to kick Herbert XU to write documentation.
2133          * HEAVY TODO: needs to kick Herbert XU to write documentation.
2134          */
2135
2136         return hifn_handle_req(req);
2137 }
2138
2139 static int hifn_process_queue(struct hifn_device *dev)
2140 {
2141         struct crypto_async_request *async_req, *backlog;
2142         struct hifn_context *ctx;
2143         struct ablkcipher_request *req;
2144         unsigned long flags;
2145         int err = 0;
2146
2147         while (dev->started < HIFN_QUEUE_LENGTH) {
2148                 spin_lock_irqsave(&dev->lock, flags);
2149                 backlog = crypto_get_backlog(&dev->queue);
2150                 async_req = crypto_dequeue_request(&dev->queue);
2151                 spin_unlock_irqrestore(&dev->lock, flags);
2152
2153                 if (!async_req)
2154                         break;
2155
2156                 if (backlog)
2157                         backlog->complete(backlog, -EINPROGRESS);
2158
2159                 ctx = crypto_tfm_ctx(async_req->tfm);
2160                 req = container_of(async_req, struct ablkcipher_request, base);
2161
2162                 err = hifn_handle_req(req);
2163                 if (err)
2164                         break;
2165         }
2166
2167         return err;
2168 }
2169
2170 static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
2171                 u8 type, u8 mode)
2172 {
2173         int err;
2174         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2175         struct hifn_device *dev = ctx->dev;
2176
2177         err = hifn_setup_crypto_req(req, op, type, mode);
2178         if (err)
2179                 return err;
2180
2181         if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2182                 hifn_process_queue(dev);
2183
2184         return -EINPROGRESS;
2185 }
2186
2187 /*
2188  * AES ecryption functions.
2189  */
2190 static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
2191 {
2192         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2193                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2194 }
2195 static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
2196 {
2197         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2198                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2199 }
2200 static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
2201 {
2202         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2203                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2204 }
2205 static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
2206 {
2207         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2208                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2209 }
2210
2211 /*
2212  * AES decryption functions.
2213  */
2214 static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
2215 {
2216         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2217                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2218 }
2219 static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
2220 {
2221         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2222                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2223 }
2224 static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
2225 {
2226         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2227                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2228 }
2229 static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
2230 {
2231         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2232                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2233 }
2234
2235 /*
2236  * DES ecryption functions.
2237  */
2238 static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
2239 {
2240         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2241                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2242 }
2243 static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
2244 {
2245         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2246                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2247 }
2248 static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
2249 {
2250         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2251                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2252 }
2253 static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
2254 {
2255         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2256                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2257 }
2258
2259 /*
2260  * DES decryption functions.
2261  */
2262 static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
2263 {
2264         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2265                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2266 }
2267 static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
2268 {
2269         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2270                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2271 }
2272 static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
2273 {
2274         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2275                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2276 }
2277 static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
2278 {
2279         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2280                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2281 }
2282
2283 /*
2284  * 3DES ecryption functions.
2285  */
2286 static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
2287 {
2288         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2289                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2290 }
2291 static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
2292 {
2293         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2294                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2295 }
2296 static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
2297 {
2298         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2299                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2300 }
2301 static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
2302 {
2303         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2304                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2305 }
2306
2307 /*
2308  * 3DES decryption functions.
2309  */
2310 static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
2311 {
2312         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2313                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2314 }
2315 static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
2316 {
2317         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2318                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2319 }
2320 static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
2321 {
2322         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2323                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2324 }
2325 static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
2326 {
2327         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2328                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2329 }
2330
2331 struct hifn_alg_template
2332 {
2333         char name[CRYPTO_MAX_ALG_NAME];
2334         char drv_name[CRYPTO_MAX_ALG_NAME];
2335         unsigned int bsize;
2336         struct ablkcipher_alg ablkcipher;
2337 };
2338
2339 static struct hifn_alg_template hifn_alg_templates[] = {
2340         /*
2341          * 3DES ECB, CBC, CFB and OFB modes.
2342          */
2343         {
2344                 .name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2345                 .ablkcipher = {
2346                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2347                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2348                         .setkey         =       hifn_setkey,
2349                         .encrypt        =       hifn_encrypt_3des_cfb,
2350                         .decrypt        =       hifn_decrypt_3des_cfb,
2351                 },
2352         },
2353         {
2354                 .name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2355                 .ablkcipher = {
2356                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2357                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2358                         .setkey         =       hifn_setkey,
2359                         .encrypt        =       hifn_encrypt_3des_ofb,
2360                         .decrypt        =       hifn_decrypt_3des_ofb,
2361                 },
2362         },
2363         {
2364                 .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2365                 .ablkcipher = {
2366                         .ivsize         =       HIFN_IV_LENGTH,
2367                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2368                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2369                         .setkey         =       hifn_setkey,
2370                         .encrypt        =       hifn_encrypt_3des_cbc,
2371                         .decrypt        =       hifn_decrypt_3des_cbc,
2372                 },
2373         },
2374         {
2375                 .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2376                 .ablkcipher = {
2377                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2378                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2379                         .setkey         =       hifn_setkey,
2380                         .encrypt        =       hifn_encrypt_3des_ecb,
2381                         .decrypt        =       hifn_decrypt_3des_ecb,
2382                 },
2383         },
2384
2385         /*
2386          * DES ECB, CBC, CFB and OFB modes.
2387          */
2388         {
2389                 .name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2390                 .ablkcipher = {
2391                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2392                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2393                         .setkey         =       hifn_setkey,
2394                         .encrypt        =       hifn_encrypt_des_cfb,
2395                         .decrypt        =       hifn_decrypt_des_cfb,
2396                 },
2397         },
2398         {
2399                 .name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2400                 .ablkcipher = {
2401                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2402                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2403                         .setkey         =       hifn_setkey,
2404                         .encrypt        =       hifn_encrypt_des_ofb,
2405                         .decrypt        =       hifn_decrypt_des_ofb,
2406                 },
2407         },
2408         {
2409                 .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2410                 .ablkcipher = {
2411                         .ivsize         =       HIFN_IV_LENGTH,
2412                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2413                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2414                         .setkey         =       hifn_setkey,
2415                         .encrypt        =       hifn_encrypt_des_cbc,
2416                         .decrypt        =       hifn_decrypt_des_cbc,
2417                 },
2418         },
2419         {
2420                 .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2421                 .ablkcipher = {
2422                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2423                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2424                         .setkey         =       hifn_setkey,
2425                         .encrypt        =       hifn_encrypt_des_ecb,
2426                         .decrypt        =       hifn_decrypt_des_ecb,
2427                 },
2428         },
2429
2430         /*
2431          * AES ECB, CBC, CFB and OFB modes.
2432          */
2433         {
2434                 .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2435                 .ablkcipher = {
2436                         .min_keysize    =       AES_MIN_KEY_SIZE,
2437                         .max_keysize    =       AES_MAX_KEY_SIZE,
2438                         .setkey         =       hifn_setkey,
2439                         .encrypt        =       hifn_encrypt_aes_ecb,
2440                         .decrypt        =       hifn_decrypt_aes_ecb,
2441                 },
2442         },
2443         {
2444                 .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2445                 .ablkcipher = {
2446                         .ivsize         =       HIFN_AES_IV_LENGTH,
2447                         .min_keysize    =       AES_MIN_KEY_SIZE,
2448                         .max_keysize    =       AES_MAX_KEY_SIZE,
2449                         .setkey         =       hifn_setkey,
2450                         .encrypt        =       hifn_encrypt_aes_cbc,
2451                         .decrypt        =       hifn_decrypt_aes_cbc,
2452                 },
2453         },
2454         {
2455                 .name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2456                 .ablkcipher = {
2457                         .min_keysize    =       AES_MIN_KEY_SIZE,
2458                         .max_keysize    =       AES_MAX_KEY_SIZE,
2459                         .setkey         =       hifn_setkey,
2460                         .encrypt        =       hifn_encrypt_aes_cfb,
2461                         .decrypt        =       hifn_decrypt_aes_cfb,
2462                 },
2463         },
2464         {
2465                 .name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2466                 .ablkcipher = {
2467                         .min_keysize    =       AES_MIN_KEY_SIZE,
2468                         .max_keysize    =       AES_MAX_KEY_SIZE,
2469                         .setkey         =       hifn_setkey,
2470                         .encrypt        =       hifn_encrypt_aes_ofb,
2471                         .decrypt        =       hifn_decrypt_aes_ofb,
2472                 },
2473         },
2474 };
2475
2476 static int hifn_cra_init(struct crypto_tfm *tfm)
2477 {
2478         struct crypto_alg *alg = tfm->__crt_alg;
2479         struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2480         struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2481
2482         ctx->dev = ha->dev;
2483         tfm->crt_ablkcipher.reqsize = sizeof(struct hifn_request_context);
2484         return 0;
2485 }
2486
2487 static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
2488 {
2489         struct hifn_crypto_alg *alg;
2490         int err;
2491
2492         alg = kzalloc(sizeof(struct hifn_crypto_alg), GFP_KERNEL);
2493         if (!alg)
2494                 return -ENOMEM;
2495
2496         snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2497         snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2498                  t->drv_name, dev->name);
2499
2500         alg->alg.cra_priority = 300;
2501         alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
2502         alg->alg.cra_blocksize = t->bsize;
2503         alg->alg.cra_ctxsize = sizeof(struct hifn_context);
2504         alg->alg.cra_alignmask = 0;
2505         alg->alg.cra_type = &crypto_ablkcipher_type;
2506         alg->alg.cra_module = THIS_MODULE;
2507         alg->alg.cra_u.ablkcipher = t->ablkcipher;
2508         alg->alg.cra_init = hifn_cra_init;
2509
2510         alg->dev = dev;
2511
2512         list_add_tail(&alg->entry, &dev->alg_list);
2513
2514         err = crypto_register_alg(&alg->alg);
2515         if (err) {
2516                 list_del(&alg->entry);
2517                 kfree(alg);
2518         }
2519
2520         return err;
2521 }
2522
2523 static void hifn_unregister_alg(struct hifn_device *dev)
2524 {
2525         struct hifn_crypto_alg *a, *n;
2526
2527         list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2528                 list_del(&a->entry);
2529                 crypto_unregister_alg(&a->alg);
2530                 kfree(a);
2531         }
2532 }
2533
2534 static int hifn_register_alg(struct hifn_device *dev)
2535 {
2536         int i, err;
2537
2538         for (i=0; i<ARRAY_SIZE(hifn_alg_templates); ++i) {
2539                 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2540                 if (err)
2541                         goto err_out_exit;
2542         }
2543
2544         return 0;
2545
2546 err_out_exit:
2547         hifn_unregister_alg(dev);
2548         return err;
2549 }
2550
2551 static void hifn_tasklet_callback(unsigned long data)
2552 {
2553         struct hifn_device *dev = (struct hifn_device *)data;
2554
2555         /*
2556          * This is ok to call this without lock being held,
2557          * althogh it modifies some parameters used in parallel,
2558          * (like dev->success), but they are used in process
2559          * context or update is atomic (like setting dev->sa[i] to NULL).
2560          */
2561         hifn_clear_rings(dev, 0);
2562
2563         if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2564                 hifn_process_queue(dev);
2565 }
2566
2567 static int __devinit hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2568 {
2569         int err, i;
2570         struct hifn_device *dev;
2571         char name[8];
2572
2573         err = pci_enable_device(pdev);
2574         if (err)
2575                 return err;
2576         pci_set_master(pdev);
2577
2578         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2579         if (err)
2580                 goto err_out_disable_pci_device;
2581
2582         snprintf(name, sizeof(name), "hifn%d",
2583                         atomic_inc_return(&hifn_dev_number)-1);
2584
2585         err = pci_request_regions(pdev, name);
2586         if (err)
2587                 goto err_out_disable_pci_device;
2588
2589         if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2590             pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2591             pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2592                 dprintk("%s: Broken hardware - I/O regions are too small.\n",
2593                                 pci_name(pdev));
2594                 err = -ENODEV;
2595                 goto err_out_free_regions;
2596         }
2597
2598         dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2599                         GFP_KERNEL);
2600         if (!dev) {
2601                 err = -ENOMEM;
2602                 goto err_out_free_regions;
2603         }
2604
2605         INIT_LIST_HEAD(&dev->alg_list);
2606
2607         snprintf(dev->name, sizeof(dev->name), "%s", name);
2608         spin_lock_init(&dev->lock);
2609
2610         for (i=0; i<3; ++i) {
2611                 unsigned long addr, size;
2612
2613                 addr = pci_resource_start(pdev, i);
2614                 size = pci_resource_len(pdev, i);
2615
2616                 dev->bar[i] = ioremap_nocache(addr, size);
2617                 if (!dev->bar[i])
2618                         goto err_out_unmap_bars;
2619         }
2620
2621         dev->desc_virt = pci_alloc_consistent(pdev, sizeof(struct hifn_dma),
2622                         &dev->desc_dma);
2623         if (!dev->desc_virt) {
2624                 dprintk("Failed to allocate descriptor rings.\n");
2625                 goto err_out_unmap_bars;
2626         }
2627         memset(dev->desc_virt, 0, sizeof(struct hifn_dma));
2628
2629         dev->pdev = pdev;
2630         dev->irq = pdev->irq;
2631
2632         for (i=0; i<HIFN_D_RES_RSIZE; ++i)
2633                 dev->sa[i] = NULL;
2634
2635         pci_set_drvdata(pdev, dev);
2636
2637         tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2638
2639         crypto_init_queue(&dev->queue, 1);
2640
2641         err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2642         if (err) {
2643                 dprintk("Failed to request IRQ%d: err: %d.\n", dev->irq, err);
2644                 dev->irq = 0;
2645                 goto err_out_free_desc;
2646         }
2647
2648         err = hifn_start_device(dev);
2649         if (err)
2650                 goto err_out_free_irq;
2651
2652         err = hifn_test(dev, 1, 0);
2653         if (err)
2654                 goto err_out_stop_device;
2655
2656         err = hifn_register_rng(dev);
2657         if (err)
2658                 goto err_out_stop_device;
2659
2660         err = hifn_register_alg(dev);
2661         if (err)
2662                 goto err_out_unregister_rng;
2663
2664         INIT_DELAYED_WORK(&dev->work, hifn_work);
2665         schedule_delayed_work(&dev->work, HZ);
2666
2667         dprintk("HIFN crypto accelerator card at %s has been "
2668                         "successfully registered as %s.\n",
2669                         pci_name(pdev), dev->name);
2670
2671         return 0;
2672
2673 err_out_unregister_rng:
2674         hifn_unregister_rng(dev);
2675 err_out_stop_device:
2676         hifn_reset_dma(dev, 1);
2677         hifn_stop_device(dev);
2678 err_out_free_irq:
2679         free_irq(dev->irq, dev->name);
2680         tasklet_kill(&dev->tasklet);
2681 err_out_free_desc:
2682         pci_free_consistent(pdev, sizeof(struct hifn_dma),
2683                         dev->desc_virt, dev->desc_dma);
2684
2685 err_out_unmap_bars:
2686         for (i=0; i<3; ++i)
2687                 if (dev->bar[i])
2688                         iounmap(dev->bar[i]);
2689
2690 err_out_free_regions:
2691         pci_release_regions(pdev);
2692
2693 err_out_disable_pci_device:
2694         pci_disable_device(pdev);
2695
2696         return err;
2697 }
2698
2699 static void __devexit hifn_remove(struct pci_dev *pdev)
2700 {
2701         int i;
2702         struct hifn_device *dev;
2703
2704         dev = pci_get_drvdata(pdev);
2705
2706         if (dev) {
2707                 cancel_delayed_work(&dev->work);
2708                 flush_scheduled_work();
2709
2710                 hifn_unregister_rng(dev);
2711                 hifn_unregister_alg(dev);
2712                 hifn_reset_dma(dev, 1);
2713                 hifn_stop_device(dev);
2714
2715                 free_irq(dev->irq, dev->name);
2716                 tasklet_kill(&dev->tasklet);
2717
2718                 hifn_flush(dev);
2719
2720                 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2721                                 dev->desc_virt, dev->desc_dma);
2722                 for (i=0; i<3; ++i)
2723                         if (dev->bar[i])
2724                                 iounmap(dev->bar[i]);
2725
2726                 kfree(dev);
2727         }
2728
2729         pci_release_regions(pdev);
2730         pci_disable_device(pdev);
2731 }
2732
2733 static struct pci_device_id hifn_pci_tbl[] = {
2734         { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2735         { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2736         { 0 }
2737 };
2738 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2739
2740 static struct pci_driver hifn_pci_driver = {
2741         .name     = "hifn795x",
2742         .id_table = hifn_pci_tbl,
2743         .probe    = hifn_probe,
2744         .remove   = __devexit_p(hifn_remove),
2745 };
2746
2747 static int __init hifn_init(void)
2748 {
2749         unsigned int freq;
2750         int err;
2751
2752         if (sizeof(dma_addr_t) > 4) {
2753                 printk(KERN_INFO "HIFN supports only 32-bit addresses.\n");
2754                 return -EINVAL;
2755         }
2756
2757         if (strncmp(hifn_pll_ref, "ext", 3) &&
2758             strncmp(hifn_pll_ref, "pci", 3)) {
2759                 printk(KERN_ERR "hifn795x: invalid hifn_pll_ref clock, "
2760                                 "must be pci or ext");
2761                 return -EINVAL;
2762         }
2763
2764         /*
2765          * For the 7955/7956 the reference clock frequency must be in the
2766          * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2767          * but this chip is currently not supported.
2768          */
2769         if (hifn_pll_ref[3] != '\0') {
2770                 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2771                 if (freq < 20 || freq > 100) {
2772                         printk(KERN_ERR "hifn795x: invalid hifn_pll_ref "
2773                                         "frequency, must be in the range "
2774                                         "of 20-100");
2775                         return -EINVAL;
2776                 }
2777         }
2778
2779         err = pci_register_driver(&hifn_pci_driver);
2780         if (err < 0) {
2781                 dprintk("Failed to register PCI driver for %s device.\n",
2782                                 hifn_pci_driver.name);
2783                 return -ENODEV;
2784         }
2785
2786         printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2787                         "has been successfully registered.\n");
2788
2789         return 0;
2790 }
2791
2792 static void __exit hifn_fini(void)
2793 {
2794         pci_unregister_driver(&hifn_pci_driver);
2795
2796         printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2797                         "has been successfully unregistered.\n");
2798 }
2799
2800 module_init(hifn_init);
2801 module_exit(hifn_fini);
2802
2803 MODULE_LICENSE("GPL");
2804 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2805 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");