Merge branch 'master' of ../linux-2.6/
[linux-2.6] / arch / x86 / kernel / efi.c
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *      David Mosberger-Tang <davidm@hpl.hp.com>
9  *      Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *      Fenghua Yu <fenghua.yu@intel.com>
12  *      Bibo Mao <bibo.mao@intel.com>
13  *      Chandramouli Narayanan <mouli@linux.intel.com>
14  *      Huang Ying <ying.huang@intel.com>
15  *
16  * Copied from efi_32.c to eliminate the duplicated code between EFI
17  * 32/64 support code. --ying 2007-10-26
18  *
19  * All EFI Runtime Services are not implemented yet as EFI only
20  * supports physical mode addressing on SoftSDV. This is to be fixed
21  * in a future version.  --drummond 1999-07-20
22  *
23  * Implemented EFI runtime services and virtual mode calls.  --davidm
24  *
25  * Goutham Rao: <goutham.rao@intel.com>
26  *      Skip non-WB memory and ignore empty memory ranges.
27  */
28
29 #include <linux/kernel.h>
30 #include <linux/init.h>
31 #include <linux/efi.h>
32 #include <linux/bootmem.h>
33 #include <linux/spinlock.h>
34 #include <linux/uaccess.h>
35 #include <linux/time.h>
36 #include <linux/io.h>
37 #include <linux/reboot.h>
38 #include <linux/bcd.h>
39
40 #include <asm/setup.h>
41 #include <asm/efi.h>
42 #include <asm/time.h>
43 #include <asm/cacheflush.h>
44 #include <asm/tlbflush.h>
45
46 #define EFI_DEBUG       1
47 #define PFX             "EFI: "
48
49 int efi_enabled;
50 EXPORT_SYMBOL(efi_enabled);
51
52 struct efi efi;
53 EXPORT_SYMBOL(efi);
54
55 struct efi_memory_map memmap;
56
57 static struct efi efi_phys __initdata;
58 static efi_system_table_t efi_systab __initdata;
59
60 static int __init setup_noefi(char *arg)
61 {
62         efi_enabled = 0;
63         return 0;
64 }
65 early_param("noefi", setup_noefi);
66
67 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
68 {
69         return efi_call_virt2(get_time, tm, tc);
70 }
71
72 static efi_status_t virt_efi_set_time(efi_time_t *tm)
73 {
74         return efi_call_virt1(set_time, tm);
75 }
76
77 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
78                                              efi_bool_t *pending,
79                                              efi_time_t *tm)
80 {
81         return efi_call_virt3(get_wakeup_time,
82                               enabled, pending, tm);
83 }
84
85 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
86 {
87         return efi_call_virt2(set_wakeup_time,
88                               enabled, tm);
89 }
90
91 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
92                                           efi_guid_t *vendor,
93                                           u32 *attr,
94                                           unsigned long *data_size,
95                                           void *data)
96 {
97         return efi_call_virt5(get_variable,
98                               name, vendor, attr,
99                               data_size, data);
100 }
101
102 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
103                                                efi_char16_t *name,
104                                                efi_guid_t *vendor)
105 {
106         return efi_call_virt3(get_next_variable,
107                               name_size, name, vendor);
108 }
109
110 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
111                                           efi_guid_t *vendor,
112                                           unsigned long attr,
113                                           unsigned long data_size,
114                                           void *data)
115 {
116         return efi_call_virt5(set_variable,
117                               name, vendor, attr,
118                               data_size, data);
119 }
120
121 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
122 {
123         return efi_call_virt1(get_next_high_mono_count, count);
124 }
125
126 static void virt_efi_reset_system(int reset_type,
127                                   efi_status_t status,
128                                   unsigned long data_size,
129                                   efi_char16_t *data)
130 {
131         efi_call_virt4(reset_system, reset_type, status,
132                        data_size, data);
133 }
134
135 static efi_status_t virt_efi_set_virtual_address_map(
136         unsigned long memory_map_size,
137         unsigned long descriptor_size,
138         u32 descriptor_version,
139         efi_memory_desc_t *virtual_map)
140 {
141         return efi_call_virt4(set_virtual_address_map,
142                               memory_map_size, descriptor_size,
143                               descriptor_version, virtual_map);
144 }
145
146 static efi_status_t __init phys_efi_set_virtual_address_map(
147         unsigned long memory_map_size,
148         unsigned long descriptor_size,
149         u32 descriptor_version,
150         efi_memory_desc_t *virtual_map)
151 {
152         efi_status_t status;
153
154         efi_call_phys_prelog();
155         status = efi_call_phys4(efi_phys.set_virtual_address_map,
156                                 memory_map_size, descriptor_size,
157                                 descriptor_version, virtual_map);
158         efi_call_phys_epilog();
159         return status;
160 }
161
162 static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
163                                              efi_time_cap_t *tc)
164 {
165         efi_status_t status;
166
167         efi_call_phys_prelog();
168         status = efi_call_phys2(efi_phys.get_time, tm, tc);
169         efi_call_phys_epilog();
170         return status;
171 }
172
173 int efi_set_rtc_mmss(unsigned long nowtime)
174 {
175         int real_seconds, real_minutes;
176         efi_status_t    status;
177         efi_time_t      eft;
178         efi_time_cap_t  cap;
179
180         status = efi.get_time(&eft, &cap);
181         if (status != EFI_SUCCESS) {
182                 printk(KERN_ERR "Oops: efitime: can't read time!\n");
183                 return -1;
184         }
185
186         real_seconds = nowtime % 60;
187         real_minutes = nowtime / 60;
188         if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
189                 real_minutes += 30;
190         real_minutes %= 60;
191         eft.minute = real_minutes;
192         eft.second = real_seconds;
193
194         status = efi.set_time(&eft);
195         if (status != EFI_SUCCESS) {
196                 printk(KERN_ERR "Oops: efitime: can't write time!\n");
197                 return -1;
198         }
199         return 0;
200 }
201
202 unsigned long efi_get_time(void)
203 {
204         efi_status_t status;
205         efi_time_t eft;
206         efi_time_cap_t cap;
207
208         status = efi.get_time(&eft, &cap);
209         if (status != EFI_SUCCESS)
210                 printk(KERN_ERR "Oops: efitime: can't read time!\n");
211
212         return mktime(eft.year, eft.month, eft.day, eft.hour,
213                       eft.minute, eft.second);
214 }
215
216 #if EFI_DEBUG
217 static void __init print_efi_memmap(void)
218 {
219         efi_memory_desc_t *md;
220         void *p;
221         int i;
222
223         for (p = memmap.map, i = 0;
224              p < memmap.map_end;
225              p += memmap.desc_size, i++) {
226                 md = p;
227                 printk(KERN_INFO PFX "mem%02u: type=%u, attr=0x%llx, "
228                         "range=[0x%016llx-0x%016llx) (%lluMB)\n",
229                         i, md->type, md->attribute, md->phys_addr,
230                         md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
231                         (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
232         }
233 }
234 #endif  /*  EFI_DEBUG  */
235
236 void __init efi_init(void)
237 {
238         efi_config_table_t *config_tables;
239         efi_runtime_services_t *runtime;
240         efi_char16_t *c16;
241         char vendor[100] = "unknown";
242         int i = 0;
243         void *tmp;
244
245 #ifdef CONFIG_X86_32
246         efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
247         memmap.phys_map = (void *)boot_params.efi_info.efi_memmap;
248 #else
249         efi_phys.systab = (efi_system_table_t *)
250                 (boot_params.efi_info.efi_systab |
251                  ((__u64)boot_params.efi_info.efi_systab_hi<<32));
252         memmap.phys_map = (void *)
253                 (boot_params.efi_info.efi_memmap |
254                  ((__u64)boot_params.efi_info.efi_memmap_hi<<32));
255 #endif
256         memmap.nr_map = boot_params.efi_info.efi_memmap_size /
257                 boot_params.efi_info.efi_memdesc_size;
258         memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
259         memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
260
261         efi.systab = early_ioremap((unsigned long)efi_phys.systab,
262                                    sizeof(efi_system_table_t));
263         if (efi.systab == NULL)
264                 printk(KERN_ERR "Couldn't map the EFI system table!\n");
265         memcpy(&efi_systab, efi.systab, sizeof(efi_system_table_t));
266         early_iounmap(efi.systab, sizeof(efi_system_table_t));
267         efi.systab = &efi_systab;
268
269         /*
270          * Verify the EFI Table
271          */
272         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
273                 printk(KERN_ERR "EFI system table signature incorrect!\n");
274         if ((efi.systab->hdr.revision >> 16) == 0)
275                 printk(KERN_ERR "Warning: EFI system table version "
276                        "%d.%02d, expected 1.00 or greater!\n",
277                        efi.systab->hdr.revision >> 16,
278                        efi.systab->hdr.revision & 0xffff);
279
280         /*
281          * Show what we know for posterity
282          */
283         c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
284         if (c16) {
285                 for (i = 0; i < sizeof(vendor) && *c16; ++i)
286                         vendor[i] = *c16++;
287                 vendor[i] = '\0';
288         } else
289                 printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
290         early_iounmap(tmp, 2);
291
292         printk(KERN_INFO "EFI v%u.%.02u by %s \n",
293                efi.systab->hdr.revision >> 16,
294                efi.systab->hdr.revision & 0xffff, vendor);
295
296         /*
297          * Let's see what config tables the firmware passed to us.
298          */
299         config_tables = early_ioremap(
300                 efi.systab->tables,
301                 efi.systab->nr_tables * sizeof(efi_config_table_t));
302         if (config_tables == NULL)
303                 printk(KERN_ERR "Could not map EFI Configuration Table!\n");
304
305         printk(KERN_INFO);
306         for (i = 0; i < efi.systab->nr_tables; i++) {
307                 if (!efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID)) {
308                         efi.mps = config_tables[i].table;
309                         printk(" MPS=0x%lx ", config_tables[i].table);
310                 } else if (!efi_guidcmp(config_tables[i].guid,
311                                         ACPI_20_TABLE_GUID)) {
312                         efi.acpi20 = config_tables[i].table;
313                         printk(" ACPI 2.0=0x%lx ", config_tables[i].table);
314                 } else if (!efi_guidcmp(config_tables[i].guid,
315                                         ACPI_TABLE_GUID)) {
316                         efi.acpi = config_tables[i].table;
317                         printk(" ACPI=0x%lx ", config_tables[i].table);
318                 } else if (!efi_guidcmp(config_tables[i].guid,
319                                         SMBIOS_TABLE_GUID)) {
320                         efi.smbios = config_tables[i].table;
321                         printk(" SMBIOS=0x%lx ", config_tables[i].table);
322                 } else if (!efi_guidcmp(config_tables[i].guid,
323                                         HCDP_TABLE_GUID)) {
324                         efi.hcdp = config_tables[i].table;
325                         printk(" HCDP=0x%lx ", config_tables[i].table);
326                 } else if (!efi_guidcmp(config_tables[i].guid,
327                                         UGA_IO_PROTOCOL_GUID)) {
328                         efi.uga = config_tables[i].table;
329                         printk(" UGA=0x%lx ", config_tables[i].table);
330                 }
331         }
332         printk("\n");
333         early_iounmap(config_tables,
334                           efi.systab->nr_tables * sizeof(efi_config_table_t));
335
336         /*
337          * Check out the runtime services table. We need to map
338          * the runtime services table so that we can grab the physical
339          * address of several of the EFI runtime functions, needed to
340          * set the firmware into virtual mode.
341          */
342         runtime = early_ioremap((unsigned long)efi.systab->runtime,
343                                 sizeof(efi_runtime_services_t));
344         if (runtime != NULL) {
345                 /*
346                  * We will only need *early* access to the following
347                  * two EFI runtime services before set_virtual_address_map
348                  * is invoked.
349                  */
350                 efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
351                 efi_phys.set_virtual_address_map =
352                         (efi_set_virtual_address_map_t *)
353                         runtime->set_virtual_address_map;
354                 /*
355                  * Make efi_get_time can be called before entering
356                  * virtual mode.
357                  */
358                 efi.get_time = phys_efi_get_time;
359         } else
360                 printk(KERN_ERR "Could not map the EFI runtime service "
361                        "table!\n");
362         early_iounmap(runtime, sizeof(efi_runtime_services_t));
363
364         /* Map the EFI memory map */
365         memmap.map = early_ioremap((unsigned long)memmap.phys_map,
366                                    memmap.nr_map * memmap.desc_size);
367         if (memmap.map == NULL)
368                 printk(KERN_ERR "Could not map the EFI memory map!\n");
369         memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
370         if (memmap.desc_size != sizeof(efi_memory_desc_t))
371                 printk(KERN_WARNING "Kernel-defined memdesc"
372                        "doesn't match the one from EFI!\n");
373
374         /* Setup for EFI runtime service */
375         reboot_type = BOOT_EFI;
376
377 #if EFI_DEBUG
378         print_efi_memmap();
379 #endif
380 }
381
382 static void __init runtime_code_page_mkexec(void)
383 {
384         efi_memory_desc_t *md;
385         void *p;
386
387         /* Make EFI runtime service code area executable */
388         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
389                 md = p;
390
391                 if (md->type != EFI_RUNTIME_SERVICES_CODE)
392                         continue;
393
394                 set_memory_x(md->virt_addr, md->num_pages);
395         }
396 }
397
398 /*
399  * This function will switch the EFI runtime services to virtual mode.
400  * Essentially, look through the EFI memmap and map every region that
401  * has the runtime attribute bit set in its memory descriptor and update
402  * that memory descriptor with the virtual address obtained from ioremap().
403  * This enables the runtime services to be called without having to
404  * thunk back into physical mode for every invocation.
405  */
406 void __init efi_enter_virtual_mode(void)
407 {
408         efi_memory_desc_t *md;
409         efi_status_t status;
410         unsigned long size;
411         u64 end, systab;
412         void *p, *va;
413
414         efi.systab = NULL;
415         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
416                 md = p;
417                 if (!(md->attribute & EFI_MEMORY_RUNTIME))
418                         continue;
419
420                 size = md->num_pages << EFI_PAGE_SHIFT;
421                 end = md->phys_addr + size;
422
423                 if ((end >> PAGE_SHIFT) <= max_pfn_mapped)
424                         va = __va(md->phys_addr);
425                 else
426                         va = efi_ioremap(md->phys_addr, size);
427
428                 md->virt_addr = (u64) (unsigned long) va;
429
430                 if (!va) {
431                         printk(KERN_ERR PFX "ioremap of 0x%llX failed!\n",
432                                (unsigned long long)md->phys_addr);
433                         continue;
434                 }
435
436                 if (!(md->attribute & EFI_MEMORY_WB))
437                         set_memory_uc(md->virt_addr, md->num_pages);
438
439                 systab = (u64) (unsigned long) efi_phys.systab;
440                 if (md->phys_addr <= systab && systab < end) {
441                         systab += md->virt_addr - md->phys_addr;
442                         efi.systab = (efi_system_table_t *) (unsigned long) systab;
443                 }
444         }
445
446         BUG_ON(!efi.systab);
447
448         status = phys_efi_set_virtual_address_map(
449                 memmap.desc_size * memmap.nr_map,
450                 memmap.desc_size,
451                 memmap.desc_version,
452                 memmap.phys_map);
453
454         if (status != EFI_SUCCESS) {
455                 printk(KERN_ALERT "Unable to switch EFI into virtual mode "
456                        "(status=%lx)!\n", status);
457                 panic("EFI call to SetVirtualAddressMap() failed!");
458         }
459
460         /*
461          * Now that EFI is in virtual mode, update the function
462          * pointers in the runtime service table to the new virtual addresses.
463          *
464          * Call EFI services through wrapper functions.
465          */
466         efi.get_time = virt_efi_get_time;
467         efi.set_time = virt_efi_set_time;
468         efi.get_wakeup_time = virt_efi_get_wakeup_time;
469         efi.set_wakeup_time = virt_efi_set_wakeup_time;
470         efi.get_variable = virt_efi_get_variable;
471         efi.get_next_variable = virt_efi_get_next_variable;
472         efi.set_variable = virt_efi_set_variable;
473         efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
474         efi.reset_system = virt_efi_reset_system;
475         efi.set_virtual_address_map = virt_efi_set_virtual_address_map;
476         if (__supported_pte_mask & _PAGE_NX)
477                 runtime_code_page_mkexec();
478         early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
479         memmap.map = NULL;
480 }
481
482 /*
483  * Convenience functions to obtain memory types and attributes
484  */
485 u32 efi_mem_type(unsigned long phys_addr)
486 {
487         efi_memory_desc_t *md;
488         void *p;
489
490         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
491                 md = p;
492                 if ((md->phys_addr <= phys_addr) &&
493                     (phys_addr < (md->phys_addr +
494                                   (md->num_pages << EFI_PAGE_SHIFT))))
495                         return md->type;
496         }
497         return 0;
498 }
499
500 u64 efi_mem_attributes(unsigned long phys_addr)
501 {
502         efi_memory_desc_t *md;
503         void *p;
504
505         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
506                 md = p;
507                 if ((md->phys_addr <= phys_addr) &&
508                     (phys_addr < (md->phys_addr +
509                                   (md->num_pages << EFI_PAGE_SHIFT))))
510                         return md->attribute;
511         }
512         return 0;
513 }