2 * Core of Xen paravirt_ops implementation.
4 * This file contains the xen_paravirt_ops structure itself, and the
6 * - privileged instructions
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
29 #include <xen/interface/xen.h>
30 #include <xen/interface/physdev.h>
31 #include <xen/interface/vcpu.h>
32 #include <xen/interface/sched.h>
33 #include <xen/features.h>
36 #include <asm/paravirt.h>
38 #include <asm/xen/hypercall.h>
39 #include <asm/xen/hypervisor.h>
40 #include <asm/fixmap.h>
41 #include <asm/processor.h>
42 #include <asm/setup.h>
44 #include <asm/pgtable.h>
45 #include <asm/tlbflush.h>
46 #include <asm/reboot.h>
50 #include "multicalls.h"
52 EXPORT_SYMBOL_GPL(hypercall_page);
54 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
55 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
58 * Note about cr3 (pagetable base) values:
60 * xen_cr3 contains the current logical cr3 value; it contains the
61 * last set cr3. This may not be the current effective cr3, because
62 * its update may be being lazily deferred. However, a vcpu looking
63 * at its own cr3 can use this value knowing that it everything will
66 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
67 * hypercall to set the vcpu cr3 is complete (so it may be a little
68 * out of date, but it will never be set early). If one vcpu is
69 * looking at another vcpu's cr3 value, it should use this variable.
71 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
72 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
74 struct start_info *xen_start_info;
75 EXPORT_SYMBOL_GPL(xen_start_info);
77 static /* __initdata */ struct shared_info dummy_shared_info;
80 * Point at some empty memory to start with. We map the real shared_info
81 * page as soon as fixmap is up and running.
83 struct shared_info *HYPERVISOR_shared_info = (void *)&dummy_shared_info;
86 * Flag to determine whether vcpu info placement is available on all
87 * VCPUs. We assume it is to start with, and then set it to zero on
88 * the first failure. This is because it can succeed on some VCPUs
89 * and not others, since it can involve hypervisor memory allocation,
90 * or because the guest failed to guarantee all the appropriate
91 * constraints on all VCPUs (ie buffer can't cross a page boundary).
93 * Note that any particular CPU may be using a placed vcpu structure,
94 * but we can only optimise if the all are.
96 * 0: not available, 1: available
98 static int have_vcpu_info_placement = 0;
100 static void __init xen_vcpu_setup(int cpu)
102 struct vcpu_register_vcpu_info info;
104 struct vcpu_info *vcpup;
106 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
108 if (!have_vcpu_info_placement)
109 return; /* already tested, not available */
111 vcpup = &per_cpu(xen_vcpu_info, cpu);
113 info.mfn = virt_to_mfn(vcpup);
114 info.offset = offset_in_page(vcpup);
116 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
117 cpu, vcpup, info.mfn, info.offset);
119 /* Check to see if the hypervisor will put the vcpu_info
120 structure where we want it, which allows direct access via
121 a percpu-variable. */
122 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
125 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
126 have_vcpu_info_placement = 0;
128 /* This cpu is using the registered vcpu info, even if
129 later ones fail to. */
130 per_cpu(xen_vcpu, cpu) = vcpup;
132 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
137 static void __init xen_banner(void)
139 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
141 printk(KERN_INFO "Hypervisor signature: %s\n", xen_start_info->magic);
144 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
145 unsigned int *cx, unsigned int *dx)
147 unsigned maskedx = ~0;
150 * Mask out inconvenient features, to try and disable as many
151 * unsupported kernel subsystems as possible.
154 maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
155 (1 << X86_FEATURE_ACPI) | /* disable ACPI */
156 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
158 asm(XEN_EMULATE_PREFIX "cpuid"
163 : "0" (*ax), "2" (*cx));
167 static void xen_set_debugreg(int reg, unsigned long val)
169 HYPERVISOR_set_debugreg(reg, val);
172 static unsigned long xen_get_debugreg(int reg)
174 return HYPERVISOR_get_debugreg(reg);
177 static unsigned long xen_save_fl(void)
179 struct vcpu_info *vcpu;
182 vcpu = x86_read_percpu(xen_vcpu);
184 /* flag has opposite sense of mask */
185 flags = !vcpu->evtchn_upcall_mask;
187 /* convert to IF type flag
191 return (-flags) & X86_EFLAGS_IF;
194 static void xen_restore_fl(unsigned long flags)
196 struct vcpu_info *vcpu;
198 /* convert from IF type flag */
199 flags = !(flags & X86_EFLAGS_IF);
201 /* There's a one instruction preempt window here. We need to
202 make sure we're don't switch CPUs between getting the vcpu
203 pointer and updating the mask. */
205 vcpu = x86_read_percpu(xen_vcpu);
206 vcpu->evtchn_upcall_mask = flags;
207 preempt_enable_no_resched();
209 /* Doesn't matter if we get preempted here, because any
210 pending event will get dealt with anyway. */
213 preempt_check_resched();
214 barrier(); /* unmask then check (avoid races) */
215 if (unlikely(vcpu->evtchn_upcall_pending))
216 force_evtchn_callback();
220 static void xen_irq_disable(void)
222 /* There's a one instruction preempt window here. We need to
223 make sure we're don't switch CPUs between getting the vcpu
224 pointer and updating the mask. */
226 x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
227 preempt_enable_no_resched();
230 static void xen_irq_enable(void)
232 struct vcpu_info *vcpu;
234 /* There's a one instruction preempt window here. We need to
235 make sure we're don't switch CPUs between getting the vcpu
236 pointer and updating the mask. */
238 vcpu = x86_read_percpu(xen_vcpu);
239 vcpu->evtchn_upcall_mask = 0;
240 preempt_enable_no_resched();
242 /* Doesn't matter if we get preempted here, because any
243 pending event will get dealt with anyway. */
245 barrier(); /* unmask then check (avoid races) */
246 if (unlikely(vcpu->evtchn_upcall_pending))
247 force_evtchn_callback();
250 static void xen_safe_halt(void)
252 /* Blocking includes an implicit local_irq_enable(). */
253 if (HYPERVISOR_sched_op(SCHEDOP_block, 0) != 0)
257 static void xen_halt(void)
260 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
265 static void xen_leave_lazy(void)
267 paravirt_leave_lazy(paravirt_get_lazy_mode());
271 static unsigned long xen_store_tr(void)
276 static void xen_set_ldt(const void *addr, unsigned entries)
278 unsigned long linear_addr = (unsigned long)addr;
279 struct mmuext_op *op;
280 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
283 op->cmd = MMUEXT_SET_LDT;
285 /* ldt my be vmalloced, use arbitrary_virt_to_machine */
287 maddr = arbitrary_virt_to_machine((unsigned long)addr);
288 linear_addr = (unsigned long)maddr.maddr;
290 op->arg1.linear_addr = linear_addr;
291 op->arg2.nr_ents = entries;
293 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
295 xen_mc_issue(PARAVIRT_LAZY_CPU);
298 static void xen_load_gdt(const struct desc_ptr *dtr)
300 unsigned long *frames;
301 unsigned long va = dtr->address;
302 unsigned int size = dtr->size + 1;
303 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
305 struct multicall_space mcs;
307 /* A GDT can be up to 64k in size, which corresponds to 8192
308 8-byte entries, or 16 4k pages.. */
310 BUG_ON(size > 65536);
311 BUG_ON(va & ~PAGE_MASK);
313 mcs = xen_mc_entry(sizeof(*frames) * pages);
316 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
317 frames[f] = virt_to_mfn(va);
318 make_lowmem_page_readonly((void *)va);
321 MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
323 xen_mc_issue(PARAVIRT_LAZY_CPU);
326 static void load_TLS_descriptor(struct thread_struct *t,
327 unsigned int cpu, unsigned int i)
329 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
330 xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
331 struct multicall_space mc = __xen_mc_entry(0);
333 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
336 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
340 load_TLS_descriptor(t, cpu, 0);
341 load_TLS_descriptor(t, cpu, 1);
342 load_TLS_descriptor(t, cpu, 2);
344 xen_mc_issue(PARAVIRT_LAZY_CPU);
347 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
348 * it means we're in a context switch, and %gs has just been
349 * saved. This means we can zero it out to prevent faults on
350 * exit from the hypervisor if the next process has no %gs.
351 * Either way, it has been saved, and the new value will get
352 * loaded properly. This will go away as soon as Xen has been
353 * modified to not save/restore %gs for normal hypercalls.
355 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
359 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
362 unsigned long lp = (unsigned long)&dt[entrynum];
363 xmaddr_t mach_lp = virt_to_machine(lp);
364 u64 entry = (u64)high << 32 | low;
369 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
375 static int cvt_gate_to_trap(int vector, u32 low, u32 high,
376 struct trap_info *info)
380 type = (high >> 8) & 0x1f;
381 dpl = (high >> 13) & 3;
383 if (type != 0xf && type != 0xe)
386 info->vector = vector;
387 info->address = (high & 0xffff0000) | (low & 0x0000ffff);
388 info->cs = low >> 16;
390 /* interrupt gates clear IF */
397 /* Locations of each CPU's IDT */
398 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
400 /* Set an IDT entry. If the entry is part of the current IDT, then
402 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
404 unsigned long p = (unsigned long)&dt[entrynum];
405 unsigned long start, end;
409 start = __get_cpu_var(idt_desc).address;
410 end = start + __get_cpu_var(idt_desc).size + 1;
414 native_write_idt_entry(dt, entrynum, g);
416 if (p >= start && (p + 8) <= end) {
417 struct trap_info info[2];
418 u32 *desc = (u32 *)g;
422 if (cvt_gate_to_trap(entrynum, desc[0], desc[1], &info[0]))
423 if (HYPERVISOR_set_trap_table(info))
430 static void xen_convert_trap_info(const struct desc_ptr *desc,
431 struct trap_info *traps)
433 unsigned in, out, count;
435 count = (desc->size+1) / 8;
438 for (in = out = 0; in < count; in++) {
439 const u32 *entry = (u32 *)(desc->address + in * 8);
441 if (cvt_gate_to_trap(in, entry[0], entry[1], &traps[out]))
444 traps[out].address = 0;
447 void xen_copy_trap_info(struct trap_info *traps)
449 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
451 xen_convert_trap_info(desc, traps);
454 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
455 hold a spinlock to protect the static traps[] array (static because
456 it avoids allocation, and saves stack space). */
457 static void xen_load_idt(const struct desc_ptr *desc)
459 static DEFINE_SPINLOCK(lock);
460 static struct trap_info traps[257];
464 __get_cpu_var(idt_desc) = *desc;
466 xen_convert_trap_info(desc, traps);
469 if (HYPERVISOR_set_trap_table(traps))
475 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
476 they're handled differently. */
477 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
482 switch ((high >> 8) & 0xff) {
489 xmaddr_t maddr = virt_to_machine(&dt[entry]);
490 u64 desc = (u64)high << 32 | low;
493 if (HYPERVISOR_update_descriptor(maddr.maddr, desc))
502 static void xen_load_sp0(struct tss_struct *tss,
503 struct thread_struct *thread)
505 struct multicall_space mcs = xen_mc_entry(0);
506 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
507 xen_mc_issue(PARAVIRT_LAZY_CPU);
510 static void xen_set_iopl_mask(unsigned mask)
512 struct physdev_set_iopl set_iopl;
514 /* Force the change at ring 0. */
515 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
516 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
519 static void xen_io_delay(void)
523 #ifdef CONFIG_X86_LOCAL_APIC
524 static u32 xen_apic_read(unsigned long reg)
529 static void xen_apic_write(unsigned long reg, u32 val)
531 /* Warn to see if there's any stray references */
536 static void xen_flush_tlb(void)
538 struct mmuext_op *op;
539 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
542 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
543 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
545 xen_mc_issue(PARAVIRT_LAZY_MMU);
548 static void xen_flush_tlb_single(unsigned long addr)
550 struct mmuext_op *op;
551 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
554 op->cmd = MMUEXT_INVLPG_LOCAL;
555 op->arg1.linear_addr = addr & PAGE_MASK;
556 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
558 xen_mc_issue(PARAVIRT_LAZY_MMU);
561 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
568 cpumask_t cpumask = *cpus;
569 struct multicall_space mcs;
572 * A couple of (to be removed) sanity checks:
574 * - current CPU must not be in mask
575 * - mask must exist :)
577 BUG_ON(cpus_empty(cpumask));
578 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
581 /* If a CPU which we ran on has gone down, OK. */
582 cpus_and(cpumask, cpumask, cpu_online_map);
583 if (cpus_empty(cpumask))
586 mcs = xen_mc_entry(sizeof(*args));
588 args->mask = cpumask;
589 args->op.arg2.vcpumask = &args->mask;
591 if (va == TLB_FLUSH_ALL) {
592 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
594 args->op.cmd = MMUEXT_INVLPG_MULTI;
595 args->op.arg1.linear_addr = va;
598 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
600 xen_mc_issue(PARAVIRT_LAZY_MMU);
603 static void xen_write_cr2(unsigned long cr2)
605 x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
608 static unsigned long xen_read_cr2(void)
610 return x86_read_percpu(xen_vcpu)->arch.cr2;
613 static unsigned long xen_read_cr2_direct(void)
615 return x86_read_percpu(xen_vcpu_info.arch.cr2);
618 static void xen_write_cr4(unsigned long cr4)
620 /* Just ignore cr4 changes; Xen doesn't allow us to do
624 static unsigned long xen_read_cr3(void)
626 return x86_read_percpu(xen_cr3);
629 static void set_current_cr3(void *v)
631 x86_write_percpu(xen_current_cr3, (unsigned long)v);
634 static void xen_write_cr3(unsigned long cr3)
636 struct mmuext_op *op;
637 struct multicall_space mcs;
638 unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3));
640 BUG_ON(preemptible());
642 mcs = xen_mc_entry(sizeof(*op)); /* disables interrupts */
644 /* Update while interrupts are disabled, so its atomic with
646 x86_write_percpu(xen_cr3, cr3);
649 op->cmd = MMUEXT_NEW_BASEPTR;
652 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
654 /* Update xen_update_cr3 once the batch has actually
656 xen_mc_callback(set_current_cr3, (void *)cr3);
658 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
661 /* Early in boot, while setting up the initial pagetable, assume
662 everything is pinned. */
663 static __init void xen_alloc_pt_init(struct mm_struct *mm, u32 pfn)
665 BUG_ON(mem_map); /* should only be used early */
666 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
669 static void pin_pagetable_pfn(unsigned level, unsigned long pfn)
673 op.arg1.mfn = pfn_to_mfn(pfn);
674 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
678 /* This needs to make sure the new pte page is pinned iff its being
679 attached to a pinned pagetable. */
680 static void xen_alloc_pt(struct mm_struct *mm, u32 pfn)
682 struct page *page = pfn_to_page(pfn);
684 if (PagePinned(virt_to_page(mm->pgd))) {
687 if (!PageHighMem(page)) {
688 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
689 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
691 /* make sure there are no stray mappings of
697 /* This should never happen until we're OK to use struct page */
698 static void xen_release_pt(u32 pfn)
700 struct page *page = pfn_to_page(pfn);
702 if (PagePinned(page)) {
703 if (!PageHighMem(page)) {
704 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
705 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
710 #ifdef CONFIG_HIGHPTE
711 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
713 pgprot_t prot = PAGE_KERNEL;
715 if (PagePinned(page))
716 prot = PAGE_KERNEL_RO;
718 if (0 && PageHighMem(page))
719 printk("mapping highpte %lx type %d prot %s\n",
720 page_to_pfn(page), type,
721 (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
723 return kmap_atomic_prot(page, type, prot);
727 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
729 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
730 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
731 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
737 /* Init-time set_pte while constructing initial pagetables, which
738 doesn't allow RO pagetable pages to be remapped RW */
739 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
741 pte = mask_rw_pte(ptep, pte);
743 xen_set_pte(ptep, pte);
746 static __init void xen_pagetable_setup_start(pgd_t *base)
748 pgd_t *xen_pgd = (pgd_t *)xen_start_info->pt_base;
750 /* special set_pte for pagetable initialization */
751 pv_mmu_ops.set_pte = xen_set_pte_init;
755 * copy top-level of Xen-supplied pagetable into place. For
756 * !PAE we can use this as-is, but for PAE it is a stand-in
757 * while we copy the pmd pages.
759 memcpy(base, xen_pgd, PTRS_PER_PGD * sizeof(pgd_t));
761 if (PTRS_PER_PMD > 1) {
764 * For PAE, need to allocate new pmds, rather than
765 * share Xen's, since Xen doesn't like pmd's being
766 * shared between address spaces.
768 for (i = 0; i < PTRS_PER_PGD; i++) {
769 if (pgd_val_ma(xen_pgd[i]) & _PAGE_PRESENT) {
770 pmd_t *pmd = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE);
772 memcpy(pmd, (void *)pgd_page_vaddr(xen_pgd[i]),
775 make_lowmem_page_readonly(pmd);
777 set_pgd(&base[i], __pgd(1 + __pa(pmd)));
783 /* make sure zero_page is mapped RO so we can use it in pagetables */
784 make_lowmem_page_readonly(empty_zero_page);
785 make_lowmem_page_readonly(base);
787 * Switch to new pagetable. This is done before
788 * pagetable_init has done anything so that the new pages
789 * added to the table can be prepared properly for Xen.
791 xen_write_cr3(__pa(base));
794 static __init void xen_pagetable_setup_done(pgd_t *base)
796 /* This will work as long as patching hasn't happened yet
798 pv_mmu_ops.alloc_pt = xen_alloc_pt;
799 pv_mmu_ops.set_pte = xen_set_pte;
801 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
803 * Create a mapping for the shared info page.
804 * Should be set_fixmap(), but shared_info is a machine
805 * address with no corresponding pseudo-phys address.
807 set_pte_mfn(fix_to_virt(FIX_PARAVIRT_BOOTMAP),
808 PFN_DOWN(xen_start_info->shared_info),
811 HYPERVISOR_shared_info =
812 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
815 HYPERVISOR_shared_info =
816 (struct shared_info *)__va(xen_start_info->shared_info);
818 /* Actually pin the pagetable down, but we can't set PG_pinned
819 yet because the page structures don't exist yet. */
823 #ifdef CONFIG_X86_PAE
824 level = MMUEXT_PIN_L3_TABLE;
826 level = MMUEXT_PIN_L2_TABLE;
829 pin_pagetable_pfn(level, PFN_DOWN(__pa(base)));
833 /* This is called once we have the cpu_possible_map */
834 void __init xen_setup_vcpu_info_placement(void)
838 for_each_possible_cpu(cpu)
841 /* xen_vcpu_setup managed to place the vcpu_info within the
842 percpu area for all cpus, so make use of it */
843 if (have_vcpu_info_placement) {
844 printk(KERN_INFO "Xen: using vcpu_info placement\n");
846 pv_irq_ops.save_fl = xen_save_fl_direct;
847 pv_irq_ops.restore_fl = xen_restore_fl_direct;
848 pv_irq_ops.irq_disable = xen_irq_disable_direct;
849 pv_irq_ops.irq_enable = xen_irq_enable_direct;
850 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
851 pv_cpu_ops.iret = xen_iret_direct;
855 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
856 unsigned long addr, unsigned len)
858 char *start, *end, *reloc;
861 start = end = reloc = NULL;
863 #define SITE(op, x) \
864 case PARAVIRT_PATCH(op.x): \
865 if (have_vcpu_info_placement) { \
866 start = (char *)xen_##x##_direct; \
867 end = xen_##x##_direct_end; \
868 reloc = xen_##x##_direct_reloc; \
873 SITE(pv_irq_ops, irq_enable);
874 SITE(pv_irq_ops, irq_disable);
875 SITE(pv_irq_ops, save_fl);
876 SITE(pv_irq_ops, restore_fl);
880 if (start == NULL || (end-start) > len)
883 ret = paravirt_patch_insns(insnbuf, len, start, end);
885 /* Note: because reloc is assigned from something that
886 appears to be an array, gcc assumes it's non-null,
887 but doesn't know its relationship with start and
889 if (reloc > start && reloc < end) {
890 int reloc_off = reloc - start;
891 long *relocp = (long *)(insnbuf + reloc_off);
892 long delta = start - (char *)addr;
900 ret = paravirt_patch_default(type, clobbers, insnbuf,
908 static const struct pv_info xen_info __initdata = {
909 .paravirt_enabled = 1,
910 .shared_kernel_pmd = 0,
915 static const struct pv_init_ops xen_init_ops __initdata = {
918 .banner = xen_banner,
919 .memory_setup = xen_memory_setup,
920 .arch_setup = xen_arch_setup,
921 .post_allocator_init = xen_mark_init_mm_pinned,
924 static const struct pv_time_ops xen_time_ops __initdata = {
925 .time_init = xen_time_init,
927 .set_wallclock = xen_set_wallclock,
928 .get_wallclock = xen_get_wallclock,
929 .get_cpu_khz = xen_cpu_khz,
930 .sched_clock = xen_sched_clock,
933 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
936 .set_debugreg = xen_set_debugreg,
937 .get_debugreg = xen_get_debugreg,
941 .read_cr0 = native_read_cr0,
942 .write_cr0 = native_write_cr0,
944 .read_cr4 = native_read_cr4,
945 .read_cr4_safe = native_read_cr4_safe,
946 .write_cr4 = xen_write_cr4,
948 .wbinvd = native_wbinvd,
950 .read_msr = native_read_msr_safe,
951 .write_msr = native_write_msr_safe,
952 .read_tsc = native_read_tsc,
953 .read_pmc = native_read_pmc,
955 .iret = (void *)&hypercall_page[__HYPERVISOR_iret],
956 .irq_enable_syscall_ret = NULL, /* never called */
958 .load_tr_desc = paravirt_nop,
959 .set_ldt = xen_set_ldt,
960 .load_gdt = xen_load_gdt,
961 .load_idt = xen_load_idt,
962 .load_tls = xen_load_tls,
964 .store_gdt = native_store_gdt,
965 .store_idt = native_store_idt,
966 .store_tr = xen_store_tr,
968 .write_ldt_entry = xen_write_ldt_entry,
969 .write_gdt_entry = xen_write_gdt_entry,
970 .write_idt_entry = xen_write_idt_entry,
971 .load_sp0 = xen_load_sp0,
973 .set_iopl_mask = xen_set_iopl_mask,
974 .io_delay = xen_io_delay,
977 .enter = paravirt_enter_lazy_cpu,
978 .leave = xen_leave_lazy,
982 static const struct pv_irq_ops xen_irq_ops __initdata = {
983 .init_IRQ = xen_init_IRQ,
984 .save_fl = xen_save_fl,
985 .restore_fl = xen_restore_fl,
986 .irq_disable = xen_irq_disable,
987 .irq_enable = xen_irq_enable,
988 .safe_halt = xen_safe_halt,
992 static const struct pv_apic_ops xen_apic_ops __initdata = {
993 #ifdef CONFIG_X86_LOCAL_APIC
994 .apic_write = xen_apic_write,
995 .apic_write_atomic = xen_apic_write,
996 .apic_read = xen_apic_read,
997 .setup_boot_clock = paravirt_nop,
998 .setup_secondary_clock = paravirt_nop,
999 .startup_ipi_hook = paravirt_nop,
1003 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1004 .pagetable_setup_start = xen_pagetable_setup_start,
1005 .pagetable_setup_done = xen_pagetable_setup_done,
1007 .read_cr2 = xen_read_cr2,
1008 .write_cr2 = xen_write_cr2,
1010 .read_cr3 = xen_read_cr3,
1011 .write_cr3 = xen_write_cr3,
1013 .flush_tlb_user = xen_flush_tlb,
1014 .flush_tlb_kernel = xen_flush_tlb,
1015 .flush_tlb_single = xen_flush_tlb_single,
1016 .flush_tlb_others = xen_flush_tlb_others,
1018 .pte_update = paravirt_nop,
1019 .pte_update_defer = paravirt_nop,
1021 .alloc_pt = xen_alloc_pt_init,
1022 .release_pt = xen_release_pt,
1023 .alloc_pd = paravirt_nop,
1024 .alloc_pd_clone = paravirt_nop,
1025 .release_pd = paravirt_nop,
1027 #ifdef CONFIG_HIGHPTE
1028 .kmap_atomic_pte = xen_kmap_atomic_pte,
1031 .set_pte = NULL, /* see xen_pagetable_setup_* */
1032 .set_pte_at = xen_set_pte_at,
1033 .set_pmd = xen_set_pmd,
1035 .pte_val = xen_pte_val,
1036 .pgd_val = xen_pgd_val,
1038 .make_pte = xen_make_pte,
1039 .make_pgd = xen_make_pgd,
1041 #ifdef CONFIG_X86_PAE
1042 .set_pte_atomic = xen_set_pte_atomic,
1043 .set_pte_present = xen_set_pte_at,
1044 .set_pud = xen_set_pud,
1045 .pte_clear = xen_pte_clear,
1046 .pmd_clear = xen_pmd_clear,
1048 .make_pmd = xen_make_pmd,
1049 .pmd_val = xen_pmd_val,
1052 .activate_mm = xen_activate_mm,
1053 .dup_mmap = xen_dup_mmap,
1054 .exit_mmap = xen_exit_mmap,
1057 .enter = paravirt_enter_lazy_mmu,
1058 .leave = xen_leave_lazy,
1063 static const struct smp_ops xen_smp_ops __initdata = {
1064 .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
1065 .smp_prepare_cpus = xen_smp_prepare_cpus,
1066 .cpu_up = xen_cpu_up,
1067 .smp_cpus_done = xen_smp_cpus_done,
1069 .smp_send_stop = xen_smp_send_stop,
1070 .smp_send_reschedule = xen_smp_send_reschedule,
1071 .smp_call_function_mask = xen_smp_call_function_mask,
1073 #endif /* CONFIG_SMP */
1075 static void xen_reboot(int reason)
1081 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, reason))
1085 static void xen_restart(char *msg)
1087 xen_reboot(SHUTDOWN_reboot);
1090 static void xen_emergency_restart(void)
1092 xen_reboot(SHUTDOWN_reboot);
1095 static void xen_machine_halt(void)
1097 xen_reboot(SHUTDOWN_poweroff);
1100 static void xen_crash_shutdown(struct pt_regs *regs)
1102 xen_reboot(SHUTDOWN_crash);
1105 static const struct machine_ops __initdata xen_machine_ops = {
1106 .restart = xen_restart,
1107 .halt = xen_machine_halt,
1108 .power_off = xen_machine_halt,
1109 .shutdown = xen_machine_halt,
1110 .crash_shutdown = xen_crash_shutdown,
1111 .emergency_restart = xen_emergency_restart,
1115 static void __init xen_reserve_top(void)
1117 unsigned long top = HYPERVISOR_VIRT_START;
1118 struct xen_platform_parameters pp;
1120 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1121 top = pp.virt_start;
1123 reserve_top_address(-top + 2 * PAGE_SIZE);
1126 /* First C function to be called on Xen boot */
1127 asmlinkage void __init xen_start_kernel(void)
1131 if (!xen_start_info)
1134 BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1136 /* Install Xen paravirt ops */
1138 pv_init_ops = xen_init_ops;
1139 pv_time_ops = xen_time_ops;
1140 pv_cpu_ops = xen_cpu_ops;
1141 pv_irq_ops = xen_irq_ops;
1142 pv_apic_ops = xen_apic_ops;
1143 pv_mmu_ops = xen_mmu_ops;
1145 machine_ops = xen_machine_ops;
1148 smp_ops = xen_smp_ops;
1151 xen_setup_features();
1154 if (!xen_feature(XENFEAT_auto_translated_physmap))
1155 phys_to_machine_mapping = (unsigned long *)xen_start_info->mfn_list;
1157 pgd = (pgd_t *)xen_start_info->pt_base;
1159 init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1161 init_mm.pgd = pgd; /* use the Xen pagetables to start */
1163 /* keep using Xen gdt for now; no urgent need to change it */
1165 x86_write_percpu(xen_cr3, __pa(pgd));
1166 x86_write_percpu(xen_current_cr3, __pa(pgd));
1169 /* Don't do the full vcpu_info placement stuff until we have a
1171 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1173 /* May as well do it now, since there's no good time to call
1175 xen_setup_vcpu_info_placement();
1178 pv_info.kernel_rpl = 1;
1179 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1180 pv_info.kernel_rpl = 0;
1182 /* set the limit of our address space */
1185 /* set up basic CPUID stuff */
1186 cpu_detect(&new_cpu_data);
1187 new_cpu_data.hard_math = 1;
1188 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1190 /* Poke various useful things into boot_params */
1191 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1192 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1193 ? __pa(xen_start_info->mod_start) : 0;
1194 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1196 /* Start the world */