Merge branches 'x86/xen', 'x86/build', 'x86/microcode', 'x86/mm-debug-v2', 'x86/memor...
[linux-2.6] / block / blk-settings.c
1 /*
2  * Functions related to setting various queue properties from drivers
3  */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h>      /* for max_pfn/max_low_pfn */
10
11 #include "blk.h"
12
13 unsigned long blk_max_low_pfn;
14 EXPORT_SYMBOL(blk_max_low_pfn);
15
16 unsigned long blk_max_pfn;
17
18 /**
19  * blk_queue_prep_rq - set a prepare_request function for queue
20  * @q:          queue
21  * @pfn:        prepare_request function
22  *
23  * It's possible for a queue to register a prepare_request callback which
24  * is invoked before the request is handed to the request_fn. The goal of
25  * the function is to prepare a request for I/O, it can be used to build a
26  * cdb from the request data for instance.
27  *
28  */
29 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
30 {
31         q->prep_rq_fn = pfn;
32 }
33 EXPORT_SYMBOL(blk_queue_prep_rq);
34
35 /**
36  * blk_queue_set_discard - set a discard_sectors function for queue
37  * @q:          queue
38  * @dfn:        prepare_discard function
39  *
40  * It's possible for a queue to register a discard callback which is used
41  * to transform a discard request into the appropriate type for the
42  * hardware. If none is registered, then discard requests are failed
43  * with %EOPNOTSUPP.
44  *
45  */
46 void blk_queue_set_discard(struct request_queue *q, prepare_discard_fn *dfn)
47 {
48         q->prepare_discard_fn = dfn;
49 }
50 EXPORT_SYMBOL(blk_queue_set_discard);
51
52 /**
53  * blk_queue_merge_bvec - set a merge_bvec function for queue
54  * @q:          queue
55  * @mbfn:       merge_bvec_fn
56  *
57  * Usually queues have static limitations on the max sectors or segments that
58  * we can put in a request. Stacking drivers may have some settings that
59  * are dynamic, and thus we have to query the queue whether it is ok to
60  * add a new bio_vec to a bio at a given offset or not. If the block device
61  * has such limitations, it needs to register a merge_bvec_fn to control
62  * the size of bio's sent to it. Note that a block device *must* allow a
63  * single page to be added to an empty bio. The block device driver may want
64  * to use the bio_split() function to deal with these bio's. By default
65  * no merge_bvec_fn is defined for a queue, and only the fixed limits are
66  * honored.
67  */
68 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
69 {
70         q->merge_bvec_fn = mbfn;
71 }
72 EXPORT_SYMBOL(blk_queue_merge_bvec);
73
74 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
75 {
76         q->softirq_done_fn = fn;
77 }
78 EXPORT_SYMBOL(blk_queue_softirq_done);
79
80 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
81 {
82         q->rq_timeout = timeout;
83 }
84 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
85
86 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
87 {
88         q->rq_timed_out_fn = fn;
89 }
90 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
91
92 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
93 {
94         q->lld_busy_fn = fn;
95 }
96 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
97
98 /**
99  * blk_queue_make_request - define an alternate make_request function for a device
100  * @q:  the request queue for the device to be affected
101  * @mfn: the alternate make_request function
102  *
103  * Description:
104  *    The normal way for &struct bios to be passed to a device
105  *    driver is for them to be collected into requests on a request
106  *    queue, and then to allow the device driver to select requests
107  *    off that queue when it is ready.  This works well for many block
108  *    devices. However some block devices (typically virtual devices
109  *    such as md or lvm) do not benefit from the processing on the
110  *    request queue, and are served best by having the requests passed
111  *    directly to them.  This can be achieved by providing a function
112  *    to blk_queue_make_request().
113  *
114  * Caveat:
115  *    The driver that does this *must* be able to deal appropriately
116  *    with buffers in "highmemory". This can be accomplished by either calling
117  *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
118  *    blk_queue_bounce() to create a buffer in normal memory.
119  **/
120 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
121 {
122         /*
123          * set defaults
124          */
125         q->nr_requests = BLKDEV_MAX_RQ;
126         blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
127         blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
128         q->make_request_fn = mfn;
129         q->backing_dev_info.ra_pages =
130                         (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
131         q->backing_dev_info.state = 0;
132         q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
133         blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
134         blk_queue_hardsect_size(q, 512);
135         blk_queue_dma_alignment(q, 511);
136         blk_queue_congestion_threshold(q);
137         q->nr_batching = BLK_BATCH_REQ;
138
139         q->unplug_thresh = 4;           /* hmm */
140         q->unplug_delay = (3 * HZ) / 1000;      /* 3 milliseconds */
141         if (q->unplug_delay == 0)
142                 q->unplug_delay = 1;
143
144         INIT_WORK(&q->unplug_work, blk_unplug_work);
145
146         q->unplug_timer.function = blk_unplug_timeout;
147         q->unplug_timer.data = (unsigned long)q;
148
149         /*
150          * by default assume old behaviour and bounce for any highmem page
151          */
152         blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
153 }
154 EXPORT_SYMBOL(blk_queue_make_request);
155
156 /**
157  * blk_queue_bounce_limit - set bounce buffer limit for queue
158  * @q:  the request queue for the device
159  * @dma_addr:   bus address limit
160  *
161  * Description:
162  *    Different hardware can have different requirements as to what pages
163  *    it can do I/O directly to. A low level driver can call
164  *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
165  *    buffers for doing I/O to pages residing above @dma_addr.
166  **/
167 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
168 {
169         unsigned long b_pfn = dma_addr >> PAGE_SHIFT;
170         int dma = 0;
171
172         q->bounce_gfp = GFP_NOIO;
173 #if BITS_PER_LONG == 64
174         /* Assume anything <= 4GB can be handled by IOMMU.
175            Actually some IOMMUs can handle everything, but I don't
176            know of a way to test this here. */
177         if (b_pfn < (min_t(u64, 0x100000000UL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
178                 dma = 1;
179         q->bounce_pfn = max_low_pfn;
180 #else
181         if (b_pfn < blk_max_low_pfn)
182                 dma = 1;
183         q->bounce_pfn = b_pfn;
184 #endif
185         if (dma) {
186                 init_emergency_isa_pool();
187                 q->bounce_gfp = GFP_NOIO | GFP_DMA;
188                 q->bounce_pfn = b_pfn;
189         }
190 }
191 EXPORT_SYMBOL(blk_queue_bounce_limit);
192
193 /**
194  * blk_queue_max_sectors - set max sectors for a request for this queue
195  * @q:  the request queue for the device
196  * @max_sectors:  max sectors in the usual 512b unit
197  *
198  * Description:
199  *    Enables a low level driver to set an upper limit on the size of
200  *    received requests.
201  **/
202 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
203 {
204         if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
205                 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
206                 printk(KERN_INFO "%s: set to minimum %d\n",
207                        __func__, max_sectors);
208         }
209
210         if (BLK_DEF_MAX_SECTORS > max_sectors)
211                 q->max_hw_sectors = q->max_sectors = max_sectors;
212         else {
213                 q->max_sectors = BLK_DEF_MAX_SECTORS;
214                 q->max_hw_sectors = max_sectors;
215         }
216 }
217 EXPORT_SYMBOL(blk_queue_max_sectors);
218
219 /**
220  * blk_queue_max_phys_segments - set max phys segments for a request for this queue
221  * @q:  the request queue for the device
222  * @max_segments:  max number of segments
223  *
224  * Description:
225  *    Enables a low level driver to set an upper limit on the number of
226  *    physical data segments in a request.  This would be the largest sized
227  *    scatter list the driver could handle.
228  **/
229 void blk_queue_max_phys_segments(struct request_queue *q,
230                                  unsigned short max_segments)
231 {
232         if (!max_segments) {
233                 max_segments = 1;
234                 printk(KERN_INFO "%s: set to minimum %d\n",
235                        __func__, max_segments);
236         }
237
238         q->max_phys_segments = max_segments;
239 }
240 EXPORT_SYMBOL(blk_queue_max_phys_segments);
241
242 /**
243  * blk_queue_max_hw_segments - set max hw segments for a request for this queue
244  * @q:  the request queue for the device
245  * @max_segments:  max number of segments
246  *
247  * Description:
248  *    Enables a low level driver to set an upper limit on the number of
249  *    hw data segments in a request.  This would be the largest number of
250  *    address/length pairs the host adapter can actually give at once
251  *    to the device.
252  **/
253 void blk_queue_max_hw_segments(struct request_queue *q,
254                                unsigned short max_segments)
255 {
256         if (!max_segments) {
257                 max_segments = 1;
258                 printk(KERN_INFO "%s: set to minimum %d\n",
259                        __func__, max_segments);
260         }
261
262         q->max_hw_segments = max_segments;
263 }
264 EXPORT_SYMBOL(blk_queue_max_hw_segments);
265
266 /**
267  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
268  * @q:  the request queue for the device
269  * @max_size:  max size of segment in bytes
270  *
271  * Description:
272  *    Enables a low level driver to set an upper limit on the size of a
273  *    coalesced segment
274  **/
275 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
276 {
277         if (max_size < PAGE_CACHE_SIZE) {
278                 max_size = PAGE_CACHE_SIZE;
279                 printk(KERN_INFO "%s: set to minimum %d\n",
280                        __func__, max_size);
281         }
282
283         q->max_segment_size = max_size;
284 }
285 EXPORT_SYMBOL(blk_queue_max_segment_size);
286
287 /**
288  * blk_queue_hardsect_size - set hardware sector size for the queue
289  * @q:  the request queue for the device
290  * @size:  the hardware sector size, in bytes
291  *
292  * Description:
293  *   This should typically be set to the lowest possible sector size
294  *   that the hardware can operate on (possible without reverting to
295  *   even internal read-modify-write operations). Usually the default
296  *   of 512 covers most hardware.
297  **/
298 void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
299 {
300         q->hardsect_size = size;
301 }
302 EXPORT_SYMBOL(blk_queue_hardsect_size);
303
304 /*
305  * Returns the minimum that is _not_ zero, unless both are zero.
306  */
307 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
308
309 /**
310  * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
311  * @t:  the stacking driver (top)
312  * @b:  the underlying device (bottom)
313  **/
314 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
315 {
316         /* zero is "infinity" */
317         t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
318         t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
319
320         t->max_phys_segments = min(t->max_phys_segments, b->max_phys_segments);
321         t->max_hw_segments = min(t->max_hw_segments, b->max_hw_segments);
322         t->max_segment_size = min(t->max_segment_size, b->max_segment_size);
323         t->hardsect_size = max(t->hardsect_size, b->hardsect_size);
324         if (!t->queue_lock)
325                 WARN_ON_ONCE(1);
326         else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
327                 unsigned long flags;
328                 spin_lock_irqsave(t->queue_lock, flags);
329                 queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
330                 spin_unlock_irqrestore(t->queue_lock, flags);
331         }
332 }
333 EXPORT_SYMBOL(blk_queue_stack_limits);
334
335 /**
336  * blk_queue_dma_pad - set pad mask
337  * @q:     the request queue for the device
338  * @mask:  pad mask
339  *
340  * Set dma pad mask.
341  *
342  * Appending pad buffer to a request modifies the last entry of a
343  * scatter list such that it includes the pad buffer.
344  **/
345 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
346 {
347         q->dma_pad_mask = mask;
348 }
349 EXPORT_SYMBOL(blk_queue_dma_pad);
350
351 /**
352  * blk_queue_update_dma_pad - update pad mask
353  * @q:     the request queue for the device
354  * @mask:  pad mask
355  *
356  * Update dma pad mask.
357  *
358  * Appending pad buffer to a request modifies the last entry of a
359  * scatter list such that it includes the pad buffer.
360  **/
361 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
362 {
363         if (mask > q->dma_pad_mask)
364                 q->dma_pad_mask = mask;
365 }
366 EXPORT_SYMBOL(blk_queue_update_dma_pad);
367
368 /**
369  * blk_queue_dma_drain - Set up a drain buffer for excess dma.
370  * @q:  the request queue for the device
371  * @dma_drain_needed: fn which returns non-zero if drain is necessary
372  * @buf:        physically contiguous buffer
373  * @size:       size of the buffer in bytes
374  *
375  * Some devices have excess DMA problems and can't simply discard (or
376  * zero fill) the unwanted piece of the transfer.  They have to have a
377  * real area of memory to transfer it into.  The use case for this is
378  * ATAPI devices in DMA mode.  If the packet command causes a transfer
379  * bigger than the transfer size some HBAs will lock up if there
380  * aren't DMA elements to contain the excess transfer.  What this API
381  * does is adjust the queue so that the buf is always appended
382  * silently to the scatterlist.
383  *
384  * Note: This routine adjusts max_hw_segments to make room for
385  * appending the drain buffer.  If you call
386  * blk_queue_max_hw_segments() or blk_queue_max_phys_segments() after
387  * calling this routine, you must set the limit to one fewer than your
388  * device can support otherwise there won't be room for the drain
389  * buffer.
390  */
391 int blk_queue_dma_drain(struct request_queue *q,
392                                dma_drain_needed_fn *dma_drain_needed,
393                                void *buf, unsigned int size)
394 {
395         if (q->max_hw_segments < 2 || q->max_phys_segments < 2)
396                 return -EINVAL;
397         /* make room for appending the drain */
398         --q->max_hw_segments;
399         --q->max_phys_segments;
400         q->dma_drain_needed = dma_drain_needed;
401         q->dma_drain_buffer = buf;
402         q->dma_drain_size = size;
403
404         return 0;
405 }
406 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
407
408 /**
409  * blk_queue_segment_boundary - set boundary rules for segment merging
410  * @q:  the request queue for the device
411  * @mask:  the memory boundary mask
412  **/
413 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
414 {
415         if (mask < PAGE_CACHE_SIZE - 1) {
416                 mask = PAGE_CACHE_SIZE - 1;
417                 printk(KERN_INFO "%s: set to minimum %lx\n",
418                        __func__, mask);
419         }
420
421         q->seg_boundary_mask = mask;
422 }
423 EXPORT_SYMBOL(blk_queue_segment_boundary);
424
425 /**
426  * blk_queue_dma_alignment - set dma length and memory alignment
427  * @q:     the request queue for the device
428  * @mask:  alignment mask
429  *
430  * description:
431  *    set required memory and length alignment for direct dma transactions.
432  *    this is used when buiding direct io requests for the queue.
433  *
434  **/
435 void blk_queue_dma_alignment(struct request_queue *q, int mask)
436 {
437         q->dma_alignment = mask;
438 }
439 EXPORT_SYMBOL(blk_queue_dma_alignment);
440
441 /**
442  * blk_queue_update_dma_alignment - update dma length and memory alignment
443  * @q:     the request queue for the device
444  * @mask:  alignment mask
445  *
446  * description:
447  *    update required memory and length alignment for direct dma transactions.
448  *    If the requested alignment is larger than the current alignment, then
449  *    the current queue alignment is updated to the new value, otherwise it
450  *    is left alone.  The design of this is to allow multiple objects
451  *    (driver, device, transport etc) to set their respective
452  *    alignments without having them interfere.
453  *
454  **/
455 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
456 {
457         BUG_ON(mask > PAGE_SIZE);
458
459         if (mask > q->dma_alignment)
460                 q->dma_alignment = mask;
461 }
462 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
463
464 static int __init blk_settings_init(void)
465 {
466         blk_max_low_pfn = max_low_pfn - 1;
467         blk_max_pfn = max_pfn - 1;
468         return 0;
469 }
470 subsys_initcall(blk_settings_init);