2 * net/dccp/packet_history.c
4 * Copyright (c) 2007 The University of Aberdeen, Scotland, UK
5 * Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
7 * An implementation of the DCCP protocol
9 * This code has been developed by the University of Waikato WAND
10 * research group. For further information please see http://www.wand.net.nz/
11 * or e-mail Ian McDonald - ian.mcdonald@jandi.co.nz
13 * This code also uses code from Lulea University, rereleased as GPL by its
15 * Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
17 * Changes to meet Linux coding standards, to make it meet latest ccid3 draft
18 * and to make it work as a loadable module in the DCCP stack written by
19 * Arnaldo Carvalho de Melo <acme@conectiva.com.br>.
21 * Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
33 * You should have received a copy of the GNU General Public License
34 * along with this program; if not, write to the Free Software
35 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include "packet_history.h"
41 #include "../../dccp.h"
44 * tfrc_tx_hist_entry - Simple singly-linked TX history list
45 * @next: next oldest entry (LIFO order)
46 * @seqno: sequence number of this entry
47 * @stamp: send time of packet with sequence number @seqno
49 struct tfrc_tx_hist_entry {
50 struct tfrc_tx_hist_entry *next;
56 * Transmitter History Routines
58 static struct kmem_cache *tfrc_tx_hist_slab;
60 int __init tfrc_tx_packet_history_init(void)
62 tfrc_tx_hist_slab = kmem_cache_create("tfrc_tx_hist",
63 sizeof(struct tfrc_tx_hist_entry),
64 0, SLAB_HWCACHE_ALIGN, NULL);
65 return tfrc_tx_hist_slab == NULL ? -ENOBUFS : 0;
68 void tfrc_tx_packet_history_exit(void)
70 if (tfrc_tx_hist_slab != NULL) {
71 kmem_cache_destroy(tfrc_tx_hist_slab);
72 tfrc_tx_hist_slab = NULL;
76 static struct tfrc_tx_hist_entry *
77 tfrc_tx_hist_find_entry(struct tfrc_tx_hist_entry *head, u64 seqno)
79 while (head != NULL && head->seqno != seqno)
85 int tfrc_tx_hist_add(struct tfrc_tx_hist_entry **headp, u64 seqno)
87 struct tfrc_tx_hist_entry *entry = kmem_cache_alloc(tfrc_tx_hist_slab, gfp_any());
92 entry->stamp = ktime_get_real();
97 EXPORT_SYMBOL_GPL(tfrc_tx_hist_add);
99 void tfrc_tx_hist_purge(struct tfrc_tx_hist_entry **headp)
101 struct tfrc_tx_hist_entry *head = *headp;
103 while (head != NULL) {
104 struct tfrc_tx_hist_entry *next = head->next;
106 kmem_cache_free(tfrc_tx_hist_slab, head);
112 EXPORT_SYMBOL_GPL(tfrc_tx_hist_purge);
114 u32 tfrc_tx_hist_rtt(struct tfrc_tx_hist_entry *head, const u64 seqno,
118 struct tfrc_tx_hist_entry *packet = tfrc_tx_hist_find_entry(head, seqno);
120 if (packet != NULL) {
121 rtt = ktime_us_delta(now, packet->stamp);
123 * Garbage-collect older (irrelevant) entries:
125 tfrc_tx_hist_purge(&packet->next);
130 EXPORT_SYMBOL_GPL(tfrc_tx_hist_rtt);
134 * Receiver History Routines
136 static struct kmem_cache *tfrc_rx_hist_slab;
138 int __init tfrc_rx_packet_history_init(void)
140 tfrc_rx_hist_slab = kmem_cache_create("tfrc_rxh_cache",
141 sizeof(struct tfrc_rx_hist_entry),
142 0, SLAB_HWCACHE_ALIGN, NULL);
143 return tfrc_rx_hist_slab == NULL ? -ENOBUFS : 0;
146 void tfrc_rx_packet_history_exit(void)
148 if (tfrc_rx_hist_slab != NULL) {
149 kmem_cache_destroy(tfrc_rx_hist_slab);
150 tfrc_rx_hist_slab = NULL;
154 static inline void tfrc_rx_hist_entry_from_skb(struct tfrc_rx_hist_entry *entry,
155 const struct sk_buff *skb,
158 const struct dccp_hdr *dh = dccp_hdr(skb);
160 entry->tfrchrx_seqno = DCCP_SKB_CB(skb)->dccpd_seq;
161 entry->tfrchrx_ccval = dh->dccph_ccval;
162 entry->tfrchrx_type = dh->dccph_type;
163 entry->tfrchrx_ndp = ndp;
164 entry->tfrchrx_tstamp = ktime_get_real();
167 void tfrc_rx_hist_add_packet(struct tfrc_rx_hist *h,
168 const struct sk_buff *skb,
171 struct tfrc_rx_hist_entry *entry = tfrc_rx_hist_last_rcv(h);
173 tfrc_rx_hist_entry_from_skb(entry, skb, ndp);
175 EXPORT_SYMBOL_GPL(tfrc_rx_hist_add_packet);
177 /* has the packet contained in skb been seen before? */
178 int tfrc_rx_hist_duplicate(struct tfrc_rx_hist *h, struct sk_buff *skb)
180 const u64 seq = DCCP_SKB_CB(skb)->dccpd_seq;
183 if (dccp_delta_seqno(tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno, seq) <= 0)
186 for (i = 1; i <= h->loss_count; i++)
187 if (tfrc_rx_hist_entry(h, i)->tfrchrx_seqno == seq)
192 EXPORT_SYMBOL_GPL(tfrc_rx_hist_duplicate);
194 static void tfrc_rx_hist_swap(struct tfrc_rx_hist *h, const u8 a, const u8 b)
196 const u8 idx_a = tfrc_rx_hist_index(h, a),
197 idx_b = tfrc_rx_hist_index(h, b);
198 struct tfrc_rx_hist_entry *tmp = h->ring[idx_a];
200 h->ring[idx_a] = h->ring[idx_b];
201 h->ring[idx_b] = tmp;
205 * Private helper functions for loss detection.
207 * In the descriptions, `Si' refers to the sequence number of entry number i,
208 * whose NDP count is `Ni' (lower case is used for variables).
209 * Note: All __xxx_loss functions expect that a test against duplicates has been
210 * performed already: the seqno of the skb must not be less than the seqno
211 * of loss_prev; and it must not equal that of any valid history entry.
213 static void __do_track_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u64 n1)
215 u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
216 s1 = DCCP_SKB_CB(skb)->dccpd_seq;
218 if (!dccp_loss_free(s0, s1, n1)) { /* gap between S0 and S1 */
220 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n1);
224 static void __one_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n2)
226 u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
227 s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
228 s2 = DCCP_SKB_CB(skb)->dccpd_seq;
230 if (likely(dccp_delta_seqno(s1, s2) > 0)) { /* S1 < S2 */
232 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n2);
238 if (dccp_loss_free(s0, s2, n2)) {
239 u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
241 if (dccp_loss_free(s2, s1, n1)) {
242 /* hole is filled: S0, S2, and S1 are consecutive */
244 h->loss_start = tfrc_rx_hist_index(h, 1);
246 /* gap between S2 and S1: just update loss_prev */
247 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n2);
249 } else { /* gap between S0 and S2 */
251 * Reorder history to insert S2 between S0 and S1
253 tfrc_rx_hist_swap(h, 0, 3);
254 h->loss_start = tfrc_rx_hist_index(h, 3);
255 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n2);
260 /* return 1 if a new loss event has been identified */
261 static int __two_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n3)
263 u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
264 s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
265 s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
266 s3 = DCCP_SKB_CB(skb)->dccpd_seq;
268 if (likely(dccp_delta_seqno(s2, s3) > 0)) { /* S2 < S3 */
270 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 3), skb, n3);
276 if (dccp_delta_seqno(s1, s3) > 0) { /* S1 < S3 < S2 */
278 * Reorder history to insert S3 between S1 and S2
280 tfrc_rx_hist_swap(h, 2, 3);
281 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n3);
288 if (dccp_loss_free(s0, s3, n3)) {
289 u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
291 if (dccp_loss_free(s3, s1, n1)) {
292 /* hole between S0 and S1 filled by S3 */
293 u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp;
295 if (dccp_loss_free(s1, s2, n2)) {
296 /* entire hole filled by S0, S3, S1, S2 */
297 h->loss_start = tfrc_rx_hist_index(h, 2);
300 /* gap remains between S1 and S2 */
301 h->loss_start = tfrc_rx_hist_index(h, 1);
305 } else /* gap exists between S3 and S1, loss_count stays at 2 */
306 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n3);
312 * The remaining case: S0 < S3 < S1 < S2; gap between S0 and S3
313 * Reorder history to insert S3 between S0 and S1.
315 tfrc_rx_hist_swap(h, 0, 3);
316 h->loss_start = tfrc_rx_hist_index(h, 3);
317 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n3);
323 /* recycle RX history records to continue loss detection if necessary */
324 static void __three_after_loss(struct tfrc_rx_hist *h)
327 * At this stage we know already that there is a gap between S0 and S1
328 * (since S0 was the highest sequence number received before detecting
329 * the loss). To recycle the loss record, it is thus only necessary to
330 * check for other possible gaps between S1/S2 and between S2/S3.
332 u64 s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
333 s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
334 s3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_seqno;
335 u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp,
336 n3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_ndp;
338 if (dccp_loss_free(s1, s2, n2)) {
340 if (dccp_loss_free(s2, s3, n3)) {
341 /* no gap between S2 and S3: entire hole is filled */
342 h->loss_start = tfrc_rx_hist_index(h, 3);
345 /* gap between S2 and S3 */
346 h->loss_start = tfrc_rx_hist_index(h, 2);
350 } else { /* gap between S1 and S2 */
351 h->loss_start = tfrc_rx_hist_index(h, 1);
357 * tfrc_rx_handle_loss - Loss detection and further processing
358 * @h: The non-empty RX history object
359 * @lh: Loss Intervals database to update
360 * @skb: Currently received packet
361 * @ndp: The NDP count belonging to @skb
362 * @calc_first_li: Caller-dependent computation of first loss interval in @lh
363 * @sk: Used by @calc_first_li (see tfrc_lh_interval_add)
364 * Chooses action according to pending loss, updates LI database when a new
365 * loss was detected, and does required post-processing. Returns 1 when caller
366 * should send feedback, 0 otherwise.
367 * Since it also takes care of reordering during loss detection and updates the
368 * records accordingly, the caller should not perform any more RX history
369 * operations when loss_count is greater than 0 after calling this function.
371 int tfrc_rx_handle_loss(struct tfrc_rx_hist *h,
372 struct tfrc_loss_hist *lh,
373 struct sk_buff *skb, const u64 ndp,
374 u32 (*calc_first_li)(struct sock *), struct sock *sk)
378 if (h->loss_count == 0) {
379 __do_track_loss(h, skb, ndp);
380 } else if (h->loss_count == 1) {
381 __one_after_loss(h, skb, ndp);
382 } else if (h->loss_count != 2) {
383 DCCP_BUG("invalid loss_count %d", h->loss_count);
384 } else if (__two_after_loss(h, skb, ndp)) {
386 * Update Loss Interval database and recycle RX records
388 is_new_loss = tfrc_lh_interval_add(lh, h, calc_first_li, sk);
389 __three_after_loss(h);
393 EXPORT_SYMBOL_GPL(tfrc_rx_handle_loss);
395 int tfrc_rx_hist_alloc(struct tfrc_rx_hist *h)
399 for (i = 0; i <= TFRC_NDUPACK; i++) {
400 h->ring[i] = kmem_cache_alloc(tfrc_rx_hist_slab, GFP_ATOMIC);
401 if (h->ring[i] == NULL)
405 h->loss_count = h->loss_start = 0;
410 kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
415 EXPORT_SYMBOL_GPL(tfrc_rx_hist_alloc);
417 void tfrc_rx_hist_purge(struct tfrc_rx_hist *h)
421 for (i = 0; i <= TFRC_NDUPACK; ++i)
422 if (h->ring[i] != NULL) {
423 kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
427 EXPORT_SYMBOL_GPL(tfrc_rx_hist_purge);
430 * tfrc_rx_hist_rtt_last_s - reference entry to compute RTT samples against
432 static inline struct tfrc_rx_hist_entry *
433 tfrc_rx_hist_rtt_last_s(const struct tfrc_rx_hist *h)
439 * tfrc_rx_hist_rtt_prev_s: previously suitable (wrt rtt_last_s) RTT-sampling entry
441 static inline struct tfrc_rx_hist_entry *
442 tfrc_rx_hist_rtt_prev_s(const struct tfrc_rx_hist *h)
444 return h->ring[h->rtt_sample_prev];
448 * tfrc_rx_hist_sample_rtt - Sample RTT from timestamp / CCVal
449 * Based on ideas presented in RFC 4342, 8.1. Returns 0 if it was not able
450 * to compute a sample with given data - calling function should check this.
452 u32 tfrc_rx_hist_sample_rtt(struct tfrc_rx_hist *h, const struct sk_buff *skb)
455 delta_v = SUB16(dccp_hdr(skb)->dccph_ccval,
456 tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
458 if (delta_v < 1 || delta_v > 4) { /* unsuitable CCVal delta */
459 if (h->rtt_sample_prev == 2) { /* previous candidate stored */
460 sample = SUB16(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
461 tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
463 sample = 4 / sample *
464 ktime_us_delta(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_tstamp,
465 tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp);
467 * FIXME: This condition is in principle not
468 * possible but occurs when CCID is used for
469 * two-way data traffic. I have tried to trace
470 * it, but the cause does not seem to be here.
472 DCCP_BUG("please report to dccp@vger.kernel.org"
473 " => prev = %u, last = %u",
474 tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
475 tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
476 } else if (delta_v < 1) {
477 h->rtt_sample_prev = 1;
478 goto keep_ref_for_next_time;
481 } else if (delta_v == 4) /* optimal match */
482 sample = ktime_to_us(net_timedelta(tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp));
483 else { /* suboptimal match */
484 h->rtt_sample_prev = 2;
485 goto keep_ref_for_next_time;
488 if (unlikely(sample > DCCP_SANE_RTT_MAX)) {
489 DCCP_WARN("RTT sample %u too large, using max\n", sample);
490 sample = DCCP_SANE_RTT_MAX;
493 h->rtt_sample_prev = 0; /* use current entry as next reference */
494 keep_ref_for_next_time:
498 EXPORT_SYMBOL_GPL(tfrc_rx_hist_sample_rtt);