Merge branch 'bp-remove-pc-buf' into for-next
[linux-2.6] / arch / s390 / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2006
19  *
20  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21  */
22
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <linux/kdebug.h>
28 #include <linux/uaccess.h>
29 #include <asm/cacheflush.h>
30 #include <asm/sections.h>
31 #include <linux/module.h>
32
33 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
34 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
35
36 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
37
38 int __kprobes arch_prepare_kprobe(struct kprobe *p)
39 {
40         /* Make sure the probe isn't going on a difficult instruction */
41         if (is_prohibited_opcode((kprobe_opcode_t *) p->addr))
42                 return -EINVAL;
43
44         if ((unsigned long)p->addr & 0x01)
45                 return -EINVAL;
46
47         /* Use the get_insn_slot() facility for correctness */
48         if (!(p->ainsn.insn = get_insn_slot()))
49                 return -ENOMEM;
50
51         memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
52
53         get_instruction_type(&p->ainsn);
54         p->opcode = *p->addr;
55         return 0;
56 }
57
58 int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction)
59 {
60         switch (*(__u8 *) instruction) {
61         case 0x0c:      /* bassm */
62         case 0x0b:      /* bsm   */
63         case 0x83:      /* diag  */
64         case 0x44:      /* ex    */
65                 return -EINVAL;
66         }
67         switch (*(__u16 *) instruction) {
68         case 0x0101:    /* pr    */
69         case 0xb25a:    /* bsa   */
70         case 0xb240:    /* bakr  */
71         case 0xb258:    /* bsg   */
72         case 0xb218:    /* pc    */
73         case 0xb228:    /* pt    */
74                 return -EINVAL;
75         }
76         return 0;
77 }
78
79 void __kprobes get_instruction_type(struct arch_specific_insn *ainsn)
80 {
81         /* default fixup method */
82         ainsn->fixup = FIXUP_PSW_NORMAL;
83
84         /* save r1 operand */
85         ainsn->reg = (*ainsn->insn & 0xf0) >> 4;
86
87         /* save the instruction length (pop 5-5) in bytes */
88         switch (*(__u8 *) (ainsn->insn) >> 6) {
89         case 0:
90                 ainsn->ilen = 2;
91                 break;
92         case 1:
93         case 2:
94                 ainsn->ilen = 4;
95                 break;
96         case 3:
97                 ainsn->ilen = 6;
98                 break;
99         }
100
101         switch (*(__u8 *) ainsn->insn) {
102         case 0x05:      /* balr */
103         case 0x0d:      /* basr */
104                 ainsn->fixup = FIXUP_RETURN_REGISTER;
105                 /* if r2 = 0, no branch will be taken */
106                 if ((*ainsn->insn & 0x0f) == 0)
107                         ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN;
108                 break;
109         case 0x06:      /* bctr */
110         case 0x07:      /* bcr  */
111                 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
112                 break;
113         case 0x45:      /* bal  */
114         case 0x4d:      /* bas  */
115                 ainsn->fixup = FIXUP_RETURN_REGISTER;
116                 break;
117         case 0x47:      /* bc   */
118         case 0x46:      /* bct  */
119         case 0x86:      /* bxh  */
120         case 0x87:      /* bxle */
121                 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
122                 break;
123         case 0x82:      /* lpsw */
124                 ainsn->fixup = FIXUP_NOT_REQUIRED;
125                 break;
126         case 0xb2:      /* lpswe */
127                 if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) {
128                         ainsn->fixup = FIXUP_NOT_REQUIRED;
129                 }
130                 break;
131         case 0xa7:      /* bras */
132                 if ((*ainsn->insn & 0x0f) == 0x05) {
133                         ainsn->fixup |= FIXUP_RETURN_REGISTER;
134                 }
135                 break;
136         case 0xc0:
137                 if ((*ainsn->insn & 0x0f) == 0x00  /* larl  */
138                         || (*ainsn->insn & 0x0f) == 0x05) /* brasl */
139                 ainsn->fixup |= FIXUP_RETURN_REGISTER;
140                 break;
141         case 0xeb:
142                 if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 ||   /* bxhg  */
143                         *(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */
144                         ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
145                 }
146                 break;
147         case 0xe3:      /* bctg */
148                 if (*(((__u8 *) ainsn->insn) + 5) == 0x46) {
149                         ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
150                 }
151                 break;
152         }
153 }
154
155 static int __kprobes swap_instruction(void *aref)
156 {
157         struct ins_replace_args *args = aref;
158
159         return probe_kernel_write(args->ptr, &args->new, sizeof(args->new));
160 }
161
162 void __kprobes arch_arm_kprobe(struct kprobe *p)
163 {
164         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
165         unsigned long status = kcb->kprobe_status;
166         struct ins_replace_args args;
167
168         args.ptr = p->addr;
169         args.old = p->opcode;
170         args.new = BREAKPOINT_INSTRUCTION;
171
172         kcb->kprobe_status = KPROBE_SWAP_INST;
173         stop_machine(swap_instruction, &args, NULL);
174         kcb->kprobe_status = status;
175 }
176
177 void __kprobes arch_disarm_kprobe(struct kprobe *p)
178 {
179         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
180         unsigned long status = kcb->kprobe_status;
181         struct ins_replace_args args;
182
183         args.ptr = p->addr;
184         args.old = BREAKPOINT_INSTRUCTION;
185         args.new = p->opcode;
186
187         kcb->kprobe_status = KPROBE_SWAP_INST;
188         stop_machine(swap_instruction, &args, NULL);
189         kcb->kprobe_status = status;
190 }
191
192 void __kprobes arch_remove_kprobe(struct kprobe *p)
193 {
194         if (p->ainsn.insn) {
195                 free_insn_slot(p->ainsn.insn, 0);
196                 p->ainsn.insn = NULL;
197         }
198 }
199
200 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
201 {
202         per_cr_bits kprobe_per_regs[1];
203
204         memset(kprobe_per_regs, 0, sizeof(per_cr_bits));
205         regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE;
206
207         /* Set up the per control reg info, will pass to lctl */
208         kprobe_per_regs[0].em_instruction_fetch = 1;
209         kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn;
210         kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1;
211
212         /* Set the PER control regs, turns on single step for this address */
213         __ctl_load(kprobe_per_regs, 9, 11);
214         regs->psw.mask |= PSW_MASK_PER;
215         regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
216 }
217
218 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
219 {
220         kcb->prev_kprobe.kp = kprobe_running();
221         kcb->prev_kprobe.status = kcb->kprobe_status;
222         kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask;
223         memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl,
224                                         sizeof(kcb->kprobe_saved_ctl));
225 }
226
227 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
228 {
229         __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
230         kcb->kprobe_status = kcb->prev_kprobe.status;
231         kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask;
232         memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl,
233                                         sizeof(kcb->kprobe_saved_ctl));
234 }
235
236 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
237                                                 struct kprobe_ctlblk *kcb)
238 {
239         __get_cpu_var(current_kprobe) = p;
240         /* Save the interrupt and per flags */
241         kcb->kprobe_saved_imask = regs->psw.mask &
242             (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
243         /* Save the control regs that govern PER */
244         __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
245 }
246
247 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
248                                         struct pt_regs *regs)
249 {
250         ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
251
252         /* Replace the return addr with trampoline addr */
253         regs->gprs[14] = (unsigned long)&kretprobe_trampoline;
254 }
255
256 static int __kprobes kprobe_handler(struct pt_regs *regs)
257 {
258         struct kprobe *p;
259         int ret = 0;
260         unsigned long *addr = (unsigned long *)
261                 ((regs->psw.addr & PSW_ADDR_INSN) - 2);
262         struct kprobe_ctlblk *kcb;
263
264         /*
265          * We don't want to be preempted for the entire
266          * duration of kprobe processing
267          */
268         preempt_disable();
269         kcb = get_kprobe_ctlblk();
270
271         /* Check we're not actually recursing */
272         if (kprobe_running()) {
273                 p = get_kprobe(addr);
274                 if (p) {
275                         if (kcb->kprobe_status == KPROBE_HIT_SS &&
276                             *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
277                                 regs->psw.mask &= ~PSW_MASK_PER;
278                                 regs->psw.mask |= kcb->kprobe_saved_imask;
279                                 goto no_kprobe;
280                         }
281                         /* We have reentered the kprobe_handler(), since
282                          * another probe was hit while within the handler.
283                          * We here save the original kprobes variables and
284                          * just single step on the instruction of the new probe
285                          * without calling any user handlers.
286                          */
287                         save_previous_kprobe(kcb);
288                         set_current_kprobe(p, regs, kcb);
289                         kprobes_inc_nmissed_count(p);
290                         prepare_singlestep(p, regs);
291                         kcb->kprobe_status = KPROBE_REENTER;
292                         return 1;
293                 } else {
294                         p = __get_cpu_var(current_kprobe);
295                         if (p->break_handler && p->break_handler(p, regs)) {
296                                 goto ss_probe;
297                         }
298                 }
299                 goto no_kprobe;
300         }
301
302         p = get_kprobe(addr);
303         if (!p)
304                 /*
305                  * No kprobe at this address. The fault has not been
306                  * caused by a kprobe breakpoint. The race of breakpoint
307                  * vs. kprobe remove does not exist because on s390 we
308                  * use stop_machine to arm/disarm the breakpoints.
309                  */
310                 goto no_kprobe;
311
312         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
313         set_current_kprobe(p, regs, kcb);
314         if (p->pre_handler && p->pre_handler(p, regs))
315                 /* handler has already set things up, so skip ss setup */
316                 return 1;
317
318 ss_probe:
319         prepare_singlestep(p, regs);
320         kcb->kprobe_status = KPROBE_HIT_SS;
321         return 1;
322
323 no_kprobe:
324         preempt_enable_no_resched();
325         return ret;
326 }
327
328 /*
329  * Function return probe trampoline:
330  *      - init_kprobes() establishes a probepoint here
331  *      - When the probed function returns, this probe
332  *              causes the handlers to fire
333  */
334 static void __used kretprobe_trampoline_holder(void)
335 {
336         asm volatile(".global kretprobe_trampoline\n"
337                      "kretprobe_trampoline: bcr 0,0\n");
338 }
339
340 /*
341  * Called when the probe at kretprobe trampoline is hit
342  */
343 static int __kprobes trampoline_probe_handler(struct kprobe *p,
344                                               struct pt_regs *regs)
345 {
346         struct kretprobe_instance *ri = NULL;
347         struct hlist_head *head, empty_rp;
348         struct hlist_node *node, *tmp;
349         unsigned long flags, orig_ret_address = 0;
350         unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
351
352         INIT_HLIST_HEAD(&empty_rp);
353         kretprobe_hash_lock(current, &head, &flags);
354
355         /*
356          * It is possible to have multiple instances associated with a given
357          * task either because an multiple functions in the call path
358          * have a return probe installed on them, and/or more than one return
359          * return probe was registered for a target function.
360          *
361          * We can handle this because:
362          *     - instances are always inserted at the head of the list
363          *     - when multiple return probes are registered for the same
364          *       function, the first instance's ret_addr will point to the
365          *       real return address, and all the rest will point to
366          *       kretprobe_trampoline
367          */
368         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
369                 if (ri->task != current)
370                         /* another task is sharing our hash bucket */
371                         continue;
372
373                 if (ri->rp && ri->rp->handler)
374                         ri->rp->handler(ri, regs);
375
376                 orig_ret_address = (unsigned long)ri->ret_addr;
377                 recycle_rp_inst(ri, &empty_rp);
378
379                 if (orig_ret_address != trampoline_address) {
380                         /*
381                          * This is the real return address. Any other
382                          * instances associated with this task are for
383                          * other calls deeper on the call stack
384                          */
385                         break;
386                 }
387         }
388         kretprobe_assert(ri, orig_ret_address, trampoline_address);
389         regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
390
391         reset_current_kprobe();
392         kretprobe_hash_unlock(current, &flags);
393         preempt_enable_no_resched();
394
395         hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
396                 hlist_del(&ri->hlist);
397                 kfree(ri);
398         }
399         /*
400          * By returning a non-zero value, we are telling
401          * kprobe_handler() that we don't want the post_handler
402          * to run (and have re-enabled preemption)
403          */
404         return 1;
405 }
406
407 /*
408  * Called after single-stepping.  p->addr is the address of the
409  * instruction whose first byte has been replaced by the "breakpoint"
410  * instruction.  To avoid the SMP problems that can occur when we
411  * temporarily put back the original opcode to single-step, we
412  * single-stepped a copy of the instruction.  The address of this
413  * copy is p->ainsn.insn.
414  */
415 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
416 {
417         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
418
419         regs->psw.addr &= PSW_ADDR_INSN;
420
421         if (p->ainsn.fixup & FIXUP_PSW_NORMAL)
422                 regs->psw.addr = (unsigned long)p->addr +
423                                 ((unsigned long)regs->psw.addr -
424                                  (unsigned long)p->ainsn.insn);
425
426         if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN)
427                 if ((unsigned long)regs->psw.addr -
428                     (unsigned long)p->ainsn.insn == p->ainsn.ilen)
429                         regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen;
430
431         if (p->ainsn.fixup & FIXUP_RETURN_REGISTER)
432                 regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr +
433                                                 (regs->gprs[p->ainsn.reg] -
434                                                 (unsigned long)p->ainsn.insn))
435                                                 | PSW_ADDR_AMODE;
436
437         regs->psw.addr |= PSW_ADDR_AMODE;
438         /* turn off PER mode */
439         regs->psw.mask &= ~PSW_MASK_PER;
440         /* Restore the original per control regs */
441         __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
442         regs->psw.mask |= kcb->kprobe_saved_imask;
443 }
444
445 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
446 {
447         struct kprobe *cur = kprobe_running();
448         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
449
450         if (!cur)
451                 return 0;
452
453         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
454                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
455                 cur->post_handler(cur, regs, 0);
456         }
457
458         resume_execution(cur, regs);
459
460         /*Restore back the original saved kprobes variables and continue. */
461         if (kcb->kprobe_status == KPROBE_REENTER) {
462                 restore_previous_kprobe(kcb);
463                 goto out;
464         }
465         reset_current_kprobe();
466 out:
467         preempt_enable_no_resched();
468
469         /*
470          * if somebody else is singlestepping across a probe point, psw mask
471          * will have PER set, in which case, continue the remaining processing
472          * of do_single_step, as if this is not a probe hit.
473          */
474         if (regs->psw.mask & PSW_MASK_PER) {
475                 return 0;
476         }
477
478         return 1;
479 }
480
481 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
482 {
483         struct kprobe *cur = kprobe_running();
484         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
485         const struct exception_table_entry *entry;
486
487         switch(kcb->kprobe_status) {
488         case KPROBE_SWAP_INST:
489                 /* We are here because the instruction replacement failed */
490                 return 0;
491         case KPROBE_HIT_SS:
492         case KPROBE_REENTER:
493                 /*
494                  * We are here because the instruction being single
495                  * stepped caused a page fault. We reset the current
496                  * kprobe and the nip points back to the probe address
497                  * and allow the page fault handler to continue as a
498                  * normal page fault.
499                  */
500                 regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE;
501                 regs->psw.mask &= ~PSW_MASK_PER;
502                 regs->psw.mask |= kcb->kprobe_saved_imask;
503                 if (kcb->kprobe_status == KPROBE_REENTER)
504                         restore_previous_kprobe(kcb);
505                 else
506                         reset_current_kprobe();
507                 preempt_enable_no_resched();
508                 break;
509         case KPROBE_HIT_ACTIVE:
510         case KPROBE_HIT_SSDONE:
511                 /*
512                  * We increment the nmissed count for accounting,
513                  * we can also use npre/npostfault count for accouting
514                  * these specific fault cases.
515                  */
516                 kprobes_inc_nmissed_count(cur);
517
518                 /*
519                  * We come here because instructions in the pre/post
520                  * handler caused the page_fault, this could happen
521                  * if handler tries to access user space by
522                  * copy_from_user(), get_user() etc. Let the
523                  * user-specified handler try to fix it first.
524                  */
525                 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
526                         return 1;
527
528                 /*
529                  * In case the user-specified fault handler returned
530                  * zero, try to fix up.
531                  */
532                 entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
533                 if (entry) {
534                         regs->psw.addr = entry->fixup | PSW_ADDR_AMODE;
535                         return 1;
536                 }
537
538                 /*
539                  * fixup_exception() could not handle it,
540                  * Let do_page_fault() fix it.
541                  */
542                 break;
543         default:
544                 break;
545         }
546         return 0;
547 }
548
549 /*
550  * Wrapper routine to for handling exceptions.
551  */
552 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
553                                        unsigned long val, void *data)
554 {
555         struct die_args *args = (struct die_args *)data;
556         int ret = NOTIFY_DONE;
557
558         switch (val) {
559         case DIE_BPT:
560                 if (kprobe_handler(args->regs))
561                         ret = NOTIFY_STOP;
562                 break;
563         case DIE_SSTEP:
564                 if (post_kprobe_handler(args->regs))
565                         ret = NOTIFY_STOP;
566                 break;
567         case DIE_TRAP:
568                 /* kprobe_running() needs smp_processor_id() */
569                 preempt_disable();
570                 if (kprobe_running() &&
571                     kprobe_fault_handler(args->regs, args->trapnr))
572                         ret = NOTIFY_STOP;
573                 preempt_enable();
574                 break;
575         default:
576                 break;
577         }
578         return ret;
579 }
580
581 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
582 {
583         struct jprobe *jp = container_of(p, struct jprobe, kp);
584         unsigned long addr;
585         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
586
587         memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
588
589         /* setup return addr to the jprobe handler routine */
590         regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE;
591
592         /* r14 is the function return address */
593         kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14];
594         /* r15 is the stack pointer */
595         kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15];
596         addr = (unsigned long)kcb->jprobe_saved_r15;
597
598         memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
599                MIN_STACK_SIZE(addr));
600         return 1;
601 }
602
603 void __kprobes jprobe_return(void)
604 {
605         asm volatile(".word 0x0002");
606 }
607
608 void __kprobes jprobe_return_end(void)
609 {
610         asm volatile("bcr 0,0");
611 }
612
613 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
614 {
615         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
616         unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15);
617
618         /* Put the regs back */
619         memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
620         /* put the stack back */
621         memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
622                MIN_STACK_SIZE(stack_addr));
623         preempt_enable_no_resched();
624         return 1;
625 }
626
627 static struct kprobe trampoline_p = {
628         .addr = (kprobe_opcode_t *) & kretprobe_trampoline,
629         .pre_handler = trampoline_probe_handler
630 };
631
632 int __init arch_init_kprobes(void)
633 {
634         return register_kprobe(&trampoline_p);
635 }
636
637 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
638 {
639         if (p->addr == (kprobe_opcode_t *) & kretprobe_trampoline)
640                 return 1;
641         return 0;
642 }