Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[linux-2.6] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include "internal.h"
37
38 /*
39  * FIXME: remove all knowledge of the buffer layer from the core VM
40  */
41 #include <linux/buffer_head.h> /* for generic_osync_inode */
42
43 #include <asm/mman.h>
44
45 static ssize_t
46 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
47         loff_t offset, unsigned long nr_segs);
48
49 /*
50  * Shared mappings implemented 30.11.1994. It's not fully working yet,
51  * though.
52  *
53  * Shared mappings now work. 15.8.1995  Bruno.
54  *
55  * finished 'unifying' the page and buffer cache and SMP-threaded the
56  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57  *
58  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59  */
60
61 /*
62  * Lock ordering:
63  *
64  *  ->i_mmap_lock               (vmtruncate)
65  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
66  *      ->swap_lock             (exclusive_swap_page, others)
67  *        ->mapping->tree_lock
68  *
69  *  ->i_mutex
70  *    ->i_mmap_lock             (truncate->unmap_mapping_range)
71  *
72  *  ->mmap_sem
73  *    ->i_mmap_lock
74  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
75  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
76  *
77  *  ->mmap_sem
78  *    ->lock_page               (access_process_vm)
79  *
80  *  ->i_mutex                   (generic_file_buffered_write)
81  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
82  *
83  *  ->i_mutex
84  *    ->i_alloc_sem             (various)
85  *
86  *  ->inode_lock
87  *    ->sb_lock                 (fs/fs-writeback.c)
88  *    ->mapping->tree_lock      (__sync_single_inode)
89  *
90  *  ->i_mmap_lock
91  *    ->anon_vma.lock           (vma_adjust)
92  *
93  *  ->anon_vma.lock
94  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
95  *
96  *  ->page_table_lock or pte_lock
97  *    ->swap_lock               (try_to_unmap_one)
98  *    ->private_lock            (try_to_unmap_one)
99  *    ->tree_lock               (try_to_unmap_one)
100  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
101  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
102  *    ->private_lock            (page_remove_rmap->set_page_dirty)
103  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
104  *    ->inode_lock              (page_remove_rmap->set_page_dirty)
105  *    ->inode_lock              (zap_pte_range->set_page_dirty)
106  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
107  *
108  *  ->task->proc_lock
109  *    ->dcache_lock             (proc_pid_lookup)
110  */
111
112 /*
113  * Remove a page from the page cache and free it. Caller has to make
114  * sure the page is locked and that nobody else uses it - or that usage
115  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
116  */
117 void __remove_from_page_cache(struct page *page)
118 {
119         struct address_space *mapping = page->mapping;
120
121         mem_cgroup_uncharge_page(page);
122         radix_tree_delete(&mapping->page_tree, page->index);
123         page->mapping = NULL;
124         mapping->nrpages--;
125         __dec_zone_page_state(page, NR_FILE_PAGES);
126         BUG_ON(page_mapped(page));
127
128         /*
129          * Some filesystems seem to re-dirty the page even after
130          * the VM has canceled the dirty bit (eg ext3 journaling).
131          *
132          * Fix it up by doing a final dirty accounting check after
133          * having removed the page entirely.
134          */
135         if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
136                 dec_zone_page_state(page, NR_FILE_DIRTY);
137                 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
138         }
139 }
140
141 void remove_from_page_cache(struct page *page)
142 {
143         struct address_space *mapping = page->mapping;
144
145         BUG_ON(!PageLocked(page));
146
147         write_lock_irq(&mapping->tree_lock);
148         __remove_from_page_cache(page);
149         write_unlock_irq(&mapping->tree_lock);
150 }
151
152 static int sync_page(void *word)
153 {
154         struct address_space *mapping;
155         struct page *page;
156
157         page = container_of((unsigned long *)word, struct page, flags);
158
159         /*
160          * page_mapping() is being called without PG_locked held.
161          * Some knowledge of the state and use of the page is used to
162          * reduce the requirements down to a memory barrier.
163          * The danger here is of a stale page_mapping() return value
164          * indicating a struct address_space different from the one it's
165          * associated with when it is associated with one.
166          * After smp_mb(), it's either the correct page_mapping() for
167          * the page, or an old page_mapping() and the page's own
168          * page_mapping() has gone NULL.
169          * The ->sync_page() address_space operation must tolerate
170          * page_mapping() going NULL. By an amazing coincidence,
171          * this comes about because none of the users of the page
172          * in the ->sync_page() methods make essential use of the
173          * page_mapping(), merely passing the page down to the backing
174          * device's unplug functions when it's non-NULL, which in turn
175          * ignore it for all cases but swap, where only page_private(page) is
176          * of interest. When page_mapping() does go NULL, the entire
177          * call stack gracefully ignores the page and returns.
178          * -- wli
179          */
180         smp_mb();
181         mapping = page_mapping(page);
182         if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
183                 mapping->a_ops->sync_page(page);
184         io_schedule();
185         return 0;
186 }
187
188 static int sync_page_killable(void *word)
189 {
190         sync_page(word);
191         return fatal_signal_pending(current) ? -EINTR : 0;
192 }
193
194 /**
195  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
196  * @mapping:    address space structure to write
197  * @start:      offset in bytes where the range starts
198  * @end:        offset in bytes where the range ends (inclusive)
199  * @sync_mode:  enable synchronous operation
200  *
201  * Start writeback against all of a mapping's dirty pages that lie
202  * within the byte offsets <start, end> inclusive.
203  *
204  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
205  * opposed to a regular memory cleansing writeback.  The difference between
206  * these two operations is that if a dirty page/buffer is encountered, it must
207  * be waited upon, and not just skipped over.
208  */
209 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
210                                 loff_t end, int sync_mode)
211 {
212         int ret;
213         struct writeback_control wbc = {
214                 .sync_mode = sync_mode,
215                 .nr_to_write = mapping->nrpages * 2,
216                 .range_start = start,
217                 .range_end = end,
218         };
219
220         if (!mapping_cap_writeback_dirty(mapping))
221                 return 0;
222
223         ret = do_writepages(mapping, &wbc);
224         return ret;
225 }
226
227 static inline int __filemap_fdatawrite(struct address_space *mapping,
228         int sync_mode)
229 {
230         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
231 }
232
233 int filemap_fdatawrite(struct address_space *mapping)
234 {
235         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
236 }
237 EXPORT_SYMBOL(filemap_fdatawrite);
238
239 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
240                                 loff_t end)
241 {
242         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
243 }
244
245 /**
246  * filemap_flush - mostly a non-blocking flush
247  * @mapping:    target address_space
248  *
249  * This is a mostly non-blocking flush.  Not suitable for data-integrity
250  * purposes - I/O may not be started against all dirty pages.
251  */
252 int filemap_flush(struct address_space *mapping)
253 {
254         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
255 }
256 EXPORT_SYMBOL(filemap_flush);
257
258 /**
259  * wait_on_page_writeback_range - wait for writeback to complete
260  * @mapping:    target address_space
261  * @start:      beginning page index
262  * @end:        ending page index
263  *
264  * Wait for writeback to complete against pages indexed by start->end
265  * inclusive
266  */
267 int wait_on_page_writeback_range(struct address_space *mapping,
268                                 pgoff_t start, pgoff_t end)
269 {
270         struct pagevec pvec;
271         int nr_pages;
272         int ret = 0;
273         pgoff_t index;
274
275         if (end < start)
276                 return 0;
277
278         pagevec_init(&pvec, 0);
279         index = start;
280         while ((index <= end) &&
281                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
282                         PAGECACHE_TAG_WRITEBACK,
283                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
284                 unsigned i;
285
286                 for (i = 0; i < nr_pages; i++) {
287                         struct page *page = pvec.pages[i];
288
289                         /* until radix tree lookup accepts end_index */
290                         if (page->index > end)
291                                 continue;
292
293                         wait_on_page_writeback(page);
294                         if (PageError(page))
295                                 ret = -EIO;
296                 }
297                 pagevec_release(&pvec);
298                 cond_resched();
299         }
300
301         /* Check for outstanding write errors */
302         if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
303                 ret = -ENOSPC;
304         if (test_and_clear_bit(AS_EIO, &mapping->flags))
305                 ret = -EIO;
306
307         return ret;
308 }
309
310 /**
311  * sync_page_range - write and wait on all pages in the passed range
312  * @inode:      target inode
313  * @mapping:    target address_space
314  * @pos:        beginning offset in pages to write
315  * @count:      number of bytes to write
316  *
317  * Write and wait upon all the pages in the passed range.  This is a "data
318  * integrity" operation.  It waits upon in-flight writeout before starting and
319  * waiting upon new writeout.  If there was an IO error, return it.
320  *
321  * We need to re-take i_mutex during the generic_osync_inode list walk because
322  * it is otherwise livelockable.
323  */
324 int sync_page_range(struct inode *inode, struct address_space *mapping,
325                         loff_t pos, loff_t count)
326 {
327         pgoff_t start = pos >> PAGE_CACHE_SHIFT;
328         pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
329         int ret;
330
331         if (!mapping_cap_writeback_dirty(mapping) || !count)
332                 return 0;
333         ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
334         if (ret == 0) {
335                 mutex_lock(&inode->i_mutex);
336                 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
337                 mutex_unlock(&inode->i_mutex);
338         }
339         if (ret == 0)
340                 ret = wait_on_page_writeback_range(mapping, start, end);
341         return ret;
342 }
343 EXPORT_SYMBOL(sync_page_range);
344
345 /**
346  * sync_page_range_nolock - write & wait on all pages in the passed range without locking
347  * @inode:      target inode
348  * @mapping:    target address_space
349  * @pos:        beginning offset in pages to write
350  * @count:      number of bytes to write
351  *
352  * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
353  * as it forces O_SYNC writers to different parts of the same file
354  * to be serialised right until io completion.
355  */
356 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
357                            loff_t pos, loff_t count)
358 {
359         pgoff_t start = pos >> PAGE_CACHE_SHIFT;
360         pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
361         int ret;
362
363         if (!mapping_cap_writeback_dirty(mapping) || !count)
364                 return 0;
365         ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
366         if (ret == 0)
367                 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
368         if (ret == 0)
369                 ret = wait_on_page_writeback_range(mapping, start, end);
370         return ret;
371 }
372 EXPORT_SYMBOL(sync_page_range_nolock);
373
374 /**
375  * filemap_fdatawait - wait for all under-writeback pages to complete
376  * @mapping: address space structure to wait for
377  *
378  * Walk the list of under-writeback pages of the given address space
379  * and wait for all of them.
380  */
381 int filemap_fdatawait(struct address_space *mapping)
382 {
383         loff_t i_size = i_size_read(mapping->host);
384
385         if (i_size == 0)
386                 return 0;
387
388         return wait_on_page_writeback_range(mapping, 0,
389                                 (i_size - 1) >> PAGE_CACHE_SHIFT);
390 }
391 EXPORT_SYMBOL(filemap_fdatawait);
392
393 int filemap_write_and_wait(struct address_space *mapping)
394 {
395         int err = 0;
396
397         if (mapping->nrpages) {
398                 err = filemap_fdatawrite(mapping);
399                 /*
400                  * Even if the above returned error, the pages may be
401                  * written partially (e.g. -ENOSPC), so we wait for it.
402                  * But the -EIO is special case, it may indicate the worst
403                  * thing (e.g. bug) happened, so we avoid waiting for it.
404                  */
405                 if (err != -EIO) {
406                         int err2 = filemap_fdatawait(mapping);
407                         if (!err)
408                                 err = err2;
409                 }
410         }
411         return err;
412 }
413 EXPORT_SYMBOL(filemap_write_and_wait);
414
415 /**
416  * filemap_write_and_wait_range - write out & wait on a file range
417  * @mapping:    the address_space for the pages
418  * @lstart:     offset in bytes where the range starts
419  * @lend:       offset in bytes where the range ends (inclusive)
420  *
421  * Write out and wait upon file offsets lstart->lend, inclusive.
422  *
423  * Note that `lend' is inclusive (describes the last byte to be written) so
424  * that this function can be used to write to the very end-of-file (end = -1).
425  */
426 int filemap_write_and_wait_range(struct address_space *mapping,
427                                  loff_t lstart, loff_t lend)
428 {
429         int err = 0;
430
431         if (mapping->nrpages) {
432                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
433                                                  WB_SYNC_ALL);
434                 /* See comment of filemap_write_and_wait() */
435                 if (err != -EIO) {
436                         int err2 = wait_on_page_writeback_range(mapping,
437                                                 lstart >> PAGE_CACHE_SHIFT,
438                                                 lend >> PAGE_CACHE_SHIFT);
439                         if (!err)
440                                 err = err2;
441                 }
442         }
443         return err;
444 }
445
446 /**
447  * add_to_page_cache - add newly allocated pagecache pages
448  * @page:       page to add
449  * @mapping:    the page's address_space
450  * @offset:     page index
451  * @gfp_mask:   page allocation mode
452  *
453  * This function is used to add newly allocated pagecache pages;
454  * the page is new, so we can just run SetPageLocked() against it.
455  * The other page state flags were set by rmqueue().
456  *
457  * This function does not add the page to the LRU.  The caller must do that.
458  */
459 int add_to_page_cache(struct page *page, struct address_space *mapping,
460                 pgoff_t offset, gfp_t gfp_mask)
461 {
462         int error = mem_cgroup_cache_charge(page, current->mm,
463                                         gfp_mask & ~__GFP_HIGHMEM);
464         if (error)
465                 goto out;
466
467         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
468         if (error == 0) {
469                 write_lock_irq(&mapping->tree_lock);
470                 error = radix_tree_insert(&mapping->page_tree, offset, page);
471                 if (!error) {
472                         page_cache_get(page);
473                         SetPageLocked(page);
474                         page->mapping = mapping;
475                         page->index = offset;
476                         mapping->nrpages++;
477                         __inc_zone_page_state(page, NR_FILE_PAGES);
478                 } else
479                         mem_cgroup_uncharge_page(page);
480
481                 write_unlock_irq(&mapping->tree_lock);
482                 radix_tree_preload_end();
483         } else
484                 mem_cgroup_uncharge_page(page);
485 out:
486         return error;
487 }
488 EXPORT_SYMBOL(add_to_page_cache);
489
490 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
491                                 pgoff_t offset, gfp_t gfp_mask)
492 {
493         int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
494         if (ret == 0)
495                 lru_cache_add(page);
496         return ret;
497 }
498
499 #ifdef CONFIG_NUMA
500 struct page *__page_cache_alloc(gfp_t gfp)
501 {
502         if (cpuset_do_page_mem_spread()) {
503                 int n = cpuset_mem_spread_node();
504                 return alloc_pages_node(n, gfp, 0);
505         }
506         return alloc_pages(gfp, 0);
507 }
508 EXPORT_SYMBOL(__page_cache_alloc);
509 #endif
510
511 static int __sleep_on_page_lock(void *word)
512 {
513         io_schedule();
514         return 0;
515 }
516
517 /*
518  * In order to wait for pages to become available there must be
519  * waitqueues associated with pages. By using a hash table of
520  * waitqueues where the bucket discipline is to maintain all
521  * waiters on the same queue and wake all when any of the pages
522  * become available, and for the woken contexts to check to be
523  * sure the appropriate page became available, this saves space
524  * at a cost of "thundering herd" phenomena during rare hash
525  * collisions.
526  */
527 static wait_queue_head_t *page_waitqueue(struct page *page)
528 {
529         const struct zone *zone = page_zone(page);
530
531         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
532 }
533
534 static inline void wake_up_page(struct page *page, int bit)
535 {
536         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
537 }
538
539 void wait_on_page_bit(struct page *page, int bit_nr)
540 {
541         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
542
543         if (test_bit(bit_nr, &page->flags))
544                 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
545                                                         TASK_UNINTERRUPTIBLE);
546 }
547 EXPORT_SYMBOL(wait_on_page_bit);
548
549 /**
550  * unlock_page - unlock a locked page
551  * @page: the page
552  *
553  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
554  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
555  * mechananism between PageLocked pages and PageWriteback pages is shared.
556  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
557  *
558  * The first mb is necessary to safely close the critical section opened by the
559  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
560  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
561  * parallel wait_on_page_locked()).
562  */
563 void unlock_page(struct page *page)
564 {
565         smp_mb__before_clear_bit();
566         if (!TestClearPageLocked(page))
567                 BUG();
568         smp_mb__after_clear_bit(); 
569         wake_up_page(page, PG_locked);
570 }
571 EXPORT_SYMBOL(unlock_page);
572
573 /**
574  * end_page_writeback - end writeback against a page
575  * @page: the page
576  */
577 void end_page_writeback(struct page *page)
578 {
579         if (TestClearPageReclaim(page))
580                 rotate_reclaimable_page(page);
581
582         if (!test_clear_page_writeback(page))
583                 BUG();
584
585         smp_mb__after_clear_bit();
586         wake_up_page(page, PG_writeback);
587 }
588 EXPORT_SYMBOL(end_page_writeback);
589
590 /**
591  * __lock_page - get a lock on the page, assuming we need to sleep to get it
592  * @page: the page to lock
593  *
594  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
595  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
596  * chances are that on the second loop, the block layer's plug list is empty,
597  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
598  */
599 void __lock_page(struct page *page)
600 {
601         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
602
603         __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
604                                                         TASK_UNINTERRUPTIBLE);
605 }
606 EXPORT_SYMBOL(__lock_page);
607
608 int __lock_page_killable(struct page *page)
609 {
610         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
611
612         return __wait_on_bit_lock(page_waitqueue(page), &wait,
613                                         sync_page_killable, TASK_KILLABLE);
614 }
615
616 /**
617  * __lock_page_nosync - get a lock on the page, without calling sync_page()
618  * @page: the page to lock
619  *
620  * Variant of lock_page that does not require the caller to hold a reference
621  * on the page's mapping.
622  */
623 void __lock_page_nosync(struct page *page)
624 {
625         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
626         __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
627                                                         TASK_UNINTERRUPTIBLE);
628 }
629
630 /**
631  * find_get_page - find and get a page reference
632  * @mapping: the address_space to search
633  * @offset: the page index
634  *
635  * Is there a pagecache struct page at the given (mapping, offset) tuple?
636  * If yes, increment its refcount and return it; if no, return NULL.
637  */
638 struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
639 {
640         struct page *page;
641
642         read_lock_irq(&mapping->tree_lock);
643         page = radix_tree_lookup(&mapping->page_tree, offset);
644         if (page)
645                 page_cache_get(page);
646         read_unlock_irq(&mapping->tree_lock);
647         return page;
648 }
649 EXPORT_SYMBOL(find_get_page);
650
651 /**
652  * find_lock_page - locate, pin and lock a pagecache page
653  * @mapping: the address_space to search
654  * @offset: the page index
655  *
656  * Locates the desired pagecache page, locks it, increments its reference
657  * count and returns its address.
658  *
659  * Returns zero if the page was not present. find_lock_page() may sleep.
660  */
661 struct page *find_lock_page(struct address_space *mapping,
662                                 pgoff_t offset)
663 {
664         struct page *page;
665
666 repeat:
667         read_lock_irq(&mapping->tree_lock);
668         page = radix_tree_lookup(&mapping->page_tree, offset);
669         if (page) {
670                 page_cache_get(page);
671                 if (TestSetPageLocked(page)) {
672                         read_unlock_irq(&mapping->tree_lock);
673                         __lock_page(page);
674
675                         /* Has the page been truncated while we slept? */
676                         if (unlikely(page->mapping != mapping)) {
677                                 unlock_page(page);
678                                 page_cache_release(page);
679                                 goto repeat;
680                         }
681                         VM_BUG_ON(page->index != offset);
682                         goto out;
683                 }
684         }
685         read_unlock_irq(&mapping->tree_lock);
686 out:
687         return page;
688 }
689 EXPORT_SYMBOL(find_lock_page);
690
691 /**
692  * find_or_create_page - locate or add a pagecache page
693  * @mapping: the page's address_space
694  * @index: the page's index into the mapping
695  * @gfp_mask: page allocation mode
696  *
697  * Locates a page in the pagecache.  If the page is not present, a new page
698  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
699  * LRU list.  The returned page is locked and has its reference count
700  * incremented.
701  *
702  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
703  * allocation!
704  *
705  * find_or_create_page() returns the desired page's address, or zero on
706  * memory exhaustion.
707  */
708 struct page *find_or_create_page(struct address_space *mapping,
709                 pgoff_t index, gfp_t gfp_mask)
710 {
711         struct page *page;
712         int err;
713 repeat:
714         page = find_lock_page(mapping, index);
715         if (!page) {
716                 page = __page_cache_alloc(gfp_mask);
717                 if (!page)
718                         return NULL;
719                 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
720                 if (unlikely(err)) {
721                         page_cache_release(page);
722                         page = NULL;
723                         if (err == -EEXIST)
724                                 goto repeat;
725                 }
726         }
727         return page;
728 }
729 EXPORT_SYMBOL(find_or_create_page);
730
731 /**
732  * find_get_pages - gang pagecache lookup
733  * @mapping:    The address_space to search
734  * @start:      The starting page index
735  * @nr_pages:   The maximum number of pages
736  * @pages:      Where the resulting pages are placed
737  *
738  * find_get_pages() will search for and return a group of up to
739  * @nr_pages pages in the mapping.  The pages are placed at @pages.
740  * find_get_pages() takes a reference against the returned pages.
741  *
742  * The search returns a group of mapping-contiguous pages with ascending
743  * indexes.  There may be holes in the indices due to not-present pages.
744  *
745  * find_get_pages() returns the number of pages which were found.
746  */
747 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
748                             unsigned int nr_pages, struct page **pages)
749 {
750         unsigned int i;
751         unsigned int ret;
752
753         read_lock_irq(&mapping->tree_lock);
754         ret = radix_tree_gang_lookup(&mapping->page_tree,
755                                 (void **)pages, start, nr_pages);
756         for (i = 0; i < ret; i++)
757                 page_cache_get(pages[i]);
758         read_unlock_irq(&mapping->tree_lock);
759         return ret;
760 }
761
762 /**
763  * find_get_pages_contig - gang contiguous pagecache lookup
764  * @mapping:    The address_space to search
765  * @index:      The starting page index
766  * @nr_pages:   The maximum number of pages
767  * @pages:      Where the resulting pages are placed
768  *
769  * find_get_pages_contig() works exactly like find_get_pages(), except
770  * that the returned number of pages are guaranteed to be contiguous.
771  *
772  * find_get_pages_contig() returns the number of pages which were found.
773  */
774 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
775                                unsigned int nr_pages, struct page **pages)
776 {
777         unsigned int i;
778         unsigned int ret;
779
780         read_lock_irq(&mapping->tree_lock);
781         ret = radix_tree_gang_lookup(&mapping->page_tree,
782                                 (void **)pages, index, nr_pages);
783         for (i = 0; i < ret; i++) {
784                 if (pages[i]->mapping == NULL || pages[i]->index != index)
785                         break;
786
787                 page_cache_get(pages[i]);
788                 index++;
789         }
790         read_unlock_irq(&mapping->tree_lock);
791         return i;
792 }
793 EXPORT_SYMBOL(find_get_pages_contig);
794
795 /**
796  * find_get_pages_tag - find and return pages that match @tag
797  * @mapping:    the address_space to search
798  * @index:      the starting page index
799  * @tag:        the tag index
800  * @nr_pages:   the maximum number of pages
801  * @pages:      where the resulting pages are placed
802  *
803  * Like find_get_pages, except we only return pages which are tagged with
804  * @tag.   We update @index to index the next page for the traversal.
805  */
806 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
807                         int tag, unsigned int nr_pages, struct page **pages)
808 {
809         unsigned int i;
810         unsigned int ret;
811
812         read_lock_irq(&mapping->tree_lock);
813         ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
814                                 (void **)pages, *index, nr_pages, tag);
815         for (i = 0; i < ret; i++)
816                 page_cache_get(pages[i]);
817         if (ret)
818                 *index = pages[ret - 1]->index + 1;
819         read_unlock_irq(&mapping->tree_lock);
820         return ret;
821 }
822 EXPORT_SYMBOL(find_get_pages_tag);
823
824 /**
825  * grab_cache_page_nowait - returns locked page at given index in given cache
826  * @mapping: target address_space
827  * @index: the page index
828  *
829  * Same as grab_cache_page(), but do not wait if the page is unavailable.
830  * This is intended for speculative data generators, where the data can
831  * be regenerated if the page couldn't be grabbed.  This routine should
832  * be safe to call while holding the lock for another page.
833  *
834  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
835  * and deadlock against the caller's locked page.
836  */
837 struct page *
838 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
839 {
840         struct page *page = find_get_page(mapping, index);
841
842         if (page) {
843                 if (!TestSetPageLocked(page))
844                         return page;
845                 page_cache_release(page);
846                 return NULL;
847         }
848         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
849         if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
850                 page_cache_release(page);
851                 page = NULL;
852         }
853         return page;
854 }
855 EXPORT_SYMBOL(grab_cache_page_nowait);
856
857 /*
858  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
859  * a _large_ part of the i/o request. Imagine the worst scenario:
860  *
861  *      ---R__________________________________________B__________
862  *         ^ reading here                             ^ bad block(assume 4k)
863  *
864  * read(R) => miss => readahead(R...B) => media error => frustrating retries
865  * => failing the whole request => read(R) => read(R+1) =>
866  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
867  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
868  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
869  *
870  * It is going insane. Fix it by quickly scaling down the readahead size.
871  */
872 static void shrink_readahead_size_eio(struct file *filp,
873                                         struct file_ra_state *ra)
874 {
875         if (!ra->ra_pages)
876                 return;
877
878         ra->ra_pages /= 4;
879 }
880
881 /**
882  * do_generic_file_read - generic file read routine
883  * @filp:       the file to read
884  * @ppos:       current file position
885  * @desc:       read_descriptor
886  * @actor:      read method
887  *
888  * This is a generic file read routine, and uses the
889  * mapping->a_ops->readpage() function for the actual low-level stuff.
890  *
891  * This is really ugly. But the goto's actually try to clarify some
892  * of the logic when it comes to error handling etc.
893  */
894 static void do_generic_file_read(struct file *filp, loff_t *ppos,
895                 read_descriptor_t *desc, read_actor_t actor)
896 {
897         struct address_space *mapping = filp->f_mapping;
898         struct inode *inode = mapping->host;
899         struct file_ra_state *ra = &filp->f_ra;
900         pgoff_t index;
901         pgoff_t last_index;
902         pgoff_t prev_index;
903         unsigned long offset;      /* offset into pagecache page */
904         unsigned int prev_offset;
905         int error;
906
907         index = *ppos >> PAGE_CACHE_SHIFT;
908         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
909         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
910         last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
911         offset = *ppos & ~PAGE_CACHE_MASK;
912
913         for (;;) {
914                 struct page *page;
915                 pgoff_t end_index;
916                 loff_t isize;
917                 unsigned long nr, ret;
918
919                 cond_resched();
920 find_page:
921                 page = find_get_page(mapping, index);
922                 if (!page) {
923                         page_cache_sync_readahead(mapping,
924                                         ra, filp,
925                                         index, last_index - index);
926                         page = find_get_page(mapping, index);
927                         if (unlikely(page == NULL))
928                                 goto no_cached_page;
929                 }
930                 if (PageReadahead(page)) {
931                         page_cache_async_readahead(mapping,
932                                         ra, filp, page,
933                                         index, last_index - index);
934                 }
935                 if (!PageUptodate(page))
936                         goto page_not_up_to_date;
937 page_ok:
938                 /*
939                  * i_size must be checked after we know the page is Uptodate.
940                  *
941                  * Checking i_size after the check allows us to calculate
942                  * the correct value for "nr", which means the zero-filled
943                  * part of the page is not copied back to userspace (unless
944                  * another truncate extends the file - this is desired though).
945                  */
946
947                 isize = i_size_read(inode);
948                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
949                 if (unlikely(!isize || index > end_index)) {
950                         page_cache_release(page);
951                         goto out;
952                 }
953
954                 /* nr is the maximum number of bytes to copy from this page */
955                 nr = PAGE_CACHE_SIZE;
956                 if (index == end_index) {
957                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
958                         if (nr <= offset) {
959                                 page_cache_release(page);
960                                 goto out;
961                         }
962                 }
963                 nr = nr - offset;
964
965                 /* If users can be writing to this page using arbitrary
966                  * virtual addresses, take care about potential aliasing
967                  * before reading the page on the kernel side.
968                  */
969                 if (mapping_writably_mapped(mapping))
970                         flush_dcache_page(page);
971
972                 /*
973                  * When a sequential read accesses a page several times,
974                  * only mark it as accessed the first time.
975                  */
976                 if (prev_index != index || offset != prev_offset)
977                         mark_page_accessed(page);
978                 prev_index = index;
979
980                 /*
981                  * Ok, we have the page, and it's up-to-date, so
982                  * now we can copy it to user space...
983                  *
984                  * The actor routine returns how many bytes were actually used..
985                  * NOTE! This may not be the same as how much of a user buffer
986                  * we filled up (we may be padding etc), so we can only update
987                  * "pos" here (the actor routine has to update the user buffer
988                  * pointers and the remaining count).
989                  */
990                 ret = actor(desc, page, offset, nr);
991                 offset += ret;
992                 index += offset >> PAGE_CACHE_SHIFT;
993                 offset &= ~PAGE_CACHE_MASK;
994                 prev_offset = offset;
995
996                 page_cache_release(page);
997                 if (ret == nr && desc->count)
998                         continue;
999                 goto out;
1000
1001 page_not_up_to_date:
1002                 /* Get exclusive access to the page ... */
1003                 if (lock_page_killable(page))
1004                         goto readpage_eio;
1005
1006                 /* Did it get truncated before we got the lock? */
1007                 if (!page->mapping) {
1008                         unlock_page(page);
1009                         page_cache_release(page);
1010                         continue;
1011                 }
1012
1013                 /* Did somebody else fill it already? */
1014                 if (PageUptodate(page)) {
1015                         unlock_page(page);
1016                         goto page_ok;
1017                 }
1018
1019 readpage:
1020                 /* Start the actual read. The read will unlock the page. */
1021                 error = mapping->a_ops->readpage(filp, page);
1022
1023                 if (unlikely(error)) {
1024                         if (error == AOP_TRUNCATED_PAGE) {
1025                                 page_cache_release(page);
1026                                 goto find_page;
1027                         }
1028                         goto readpage_error;
1029                 }
1030
1031                 if (!PageUptodate(page)) {
1032                         if (lock_page_killable(page))
1033                                 goto readpage_eio;
1034                         if (!PageUptodate(page)) {
1035                                 if (page->mapping == NULL) {
1036                                         /*
1037                                          * invalidate_inode_pages got it
1038                                          */
1039                                         unlock_page(page);
1040                                         page_cache_release(page);
1041                                         goto find_page;
1042                                 }
1043                                 unlock_page(page);
1044                                 shrink_readahead_size_eio(filp, ra);
1045                                 goto readpage_eio;
1046                         }
1047                         unlock_page(page);
1048                 }
1049
1050                 goto page_ok;
1051
1052 readpage_eio:
1053                 error = -EIO;
1054 readpage_error:
1055                 /* UHHUH! A synchronous read error occurred. Report it */
1056                 desc->error = error;
1057                 page_cache_release(page);
1058                 goto out;
1059
1060 no_cached_page:
1061                 /*
1062                  * Ok, it wasn't cached, so we need to create a new
1063                  * page..
1064                  */
1065                 page = page_cache_alloc_cold(mapping);
1066                 if (!page) {
1067                         desc->error = -ENOMEM;
1068                         goto out;
1069                 }
1070                 error = add_to_page_cache_lru(page, mapping,
1071                                                 index, GFP_KERNEL);
1072                 if (error) {
1073                         page_cache_release(page);
1074                         if (error == -EEXIST)
1075                                 goto find_page;
1076                         desc->error = error;
1077                         goto out;
1078                 }
1079                 goto readpage;
1080         }
1081
1082 out:
1083         ra->prev_pos = prev_index;
1084         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1085         ra->prev_pos |= prev_offset;
1086
1087         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1088         if (filp)
1089                 file_accessed(filp);
1090 }
1091
1092 int file_read_actor(read_descriptor_t *desc, struct page *page,
1093                         unsigned long offset, unsigned long size)
1094 {
1095         char *kaddr;
1096         unsigned long left, count = desc->count;
1097
1098         if (size > count)
1099                 size = count;
1100
1101         /*
1102          * Faults on the destination of a read are common, so do it before
1103          * taking the kmap.
1104          */
1105         if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1106                 kaddr = kmap_atomic(page, KM_USER0);
1107                 left = __copy_to_user_inatomic(desc->arg.buf,
1108                                                 kaddr + offset, size);
1109                 kunmap_atomic(kaddr, KM_USER0);
1110                 if (left == 0)
1111                         goto success;
1112         }
1113
1114         /* Do it the slow way */
1115         kaddr = kmap(page);
1116         left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1117         kunmap(page);
1118
1119         if (left) {
1120                 size -= left;
1121                 desc->error = -EFAULT;
1122         }
1123 success:
1124         desc->count = count - size;
1125         desc->written += size;
1126         desc->arg.buf += size;
1127         return size;
1128 }
1129
1130 /*
1131  * Performs necessary checks before doing a write
1132  * @iov:        io vector request
1133  * @nr_segs:    number of segments in the iovec
1134  * @count:      number of bytes to write
1135  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1136  *
1137  * Adjust number of segments and amount of bytes to write (nr_segs should be
1138  * properly initialized first). Returns appropriate error code that caller
1139  * should return or zero in case that write should be allowed.
1140  */
1141 int generic_segment_checks(const struct iovec *iov,
1142                         unsigned long *nr_segs, size_t *count, int access_flags)
1143 {
1144         unsigned long   seg;
1145         size_t cnt = 0;
1146         for (seg = 0; seg < *nr_segs; seg++) {
1147                 const struct iovec *iv = &iov[seg];
1148
1149                 /*
1150                  * If any segment has a negative length, or the cumulative
1151                  * length ever wraps negative then return -EINVAL.
1152                  */
1153                 cnt += iv->iov_len;
1154                 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1155                         return -EINVAL;
1156                 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1157                         continue;
1158                 if (seg == 0)
1159                         return -EFAULT;
1160                 *nr_segs = seg;
1161                 cnt -= iv->iov_len;     /* This segment is no good */
1162                 break;
1163         }
1164         *count = cnt;
1165         return 0;
1166 }
1167 EXPORT_SYMBOL(generic_segment_checks);
1168
1169 /**
1170  * generic_file_aio_read - generic filesystem read routine
1171  * @iocb:       kernel I/O control block
1172  * @iov:        io vector request
1173  * @nr_segs:    number of segments in the iovec
1174  * @pos:        current file position
1175  *
1176  * This is the "read()" routine for all filesystems
1177  * that can use the page cache directly.
1178  */
1179 ssize_t
1180 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1181                 unsigned long nr_segs, loff_t pos)
1182 {
1183         struct file *filp = iocb->ki_filp;
1184         ssize_t retval;
1185         unsigned long seg;
1186         size_t count;
1187         loff_t *ppos = &iocb->ki_pos;
1188
1189         count = 0;
1190         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1191         if (retval)
1192                 return retval;
1193
1194         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1195         if (filp->f_flags & O_DIRECT) {
1196                 loff_t size;
1197                 struct address_space *mapping;
1198                 struct inode *inode;
1199
1200                 mapping = filp->f_mapping;
1201                 inode = mapping->host;
1202                 retval = 0;
1203                 if (!count)
1204                         goto out; /* skip atime */
1205                 size = i_size_read(inode);
1206                 if (pos < size) {
1207                         retval = generic_file_direct_IO(READ, iocb,
1208                                                 iov, pos, nr_segs);
1209                         if (retval > 0)
1210                                 *ppos = pos + retval;
1211                 }
1212                 if (likely(retval != 0)) {
1213                         file_accessed(filp);
1214                         goto out;
1215                 }
1216         }
1217
1218         retval = 0;
1219         if (count) {
1220                 for (seg = 0; seg < nr_segs; seg++) {
1221                         read_descriptor_t desc;
1222
1223                         desc.written = 0;
1224                         desc.arg.buf = iov[seg].iov_base;
1225                         desc.count = iov[seg].iov_len;
1226                         if (desc.count == 0)
1227                                 continue;
1228                         desc.error = 0;
1229                         do_generic_file_read(filp,ppos,&desc,file_read_actor);
1230                         retval += desc.written;
1231                         if (desc.error) {
1232                                 retval = retval ?: desc.error;
1233                                 break;
1234                         }
1235                         if (desc.count > 0)
1236                                 break;
1237                 }
1238         }
1239 out:
1240         return retval;
1241 }
1242 EXPORT_SYMBOL(generic_file_aio_read);
1243
1244 static ssize_t
1245 do_readahead(struct address_space *mapping, struct file *filp,
1246              pgoff_t index, unsigned long nr)
1247 {
1248         if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1249                 return -EINVAL;
1250
1251         force_page_cache_readahead(mapping, filp, index,
1252                                         max_sane_readahead(nr));
1253         return 0;
1254 }
1255
1256 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1257 {
1258         ssize_t ret;
1259         struct file *file;
1260
1261         ret = -EBADF;
1262         file = fget(fd);
1263         if (file) {
1264                 if (file->f_mode & FMODE_READ) {
1265                         struct address_space *mapping = file->f_mapping;
1266                         pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1267                         pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1268                         unsigned long len = end - start + 1;
1269                         ret = do_readahead(mapping, file, start, len);
1270                 }
1271                 fput(file);
1272         }
1273         return ret;
1274 }
1275
1276 #ifdef CONFIG_MMU
1277 /**
1278  * page_cache_read - adds requested page to the page cache if not already there
1279  * @file:       file to read
1280  * @offset:     page index
1281  *
1282  * This adds the requested page to the page cache if it isn't already there,
1283  * and schedules an I/O to read in its contents from disk.
1284  */
1285 static int page_cache_read(struct file *file, pgoff_t offset)
1286 {
1287         struct address_space *mapping = file->f_mapping;
1288         struct page *page; 
1289         int ret;
1290
1291         do {
1292                 page = page_cache_alloc_cold(mapping);
1293                 if (!page)
1294                         return -ENOMEM;
1295
1296                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1297                 if (ret == 0)
1298                         ret = mapping->a_ops->readpage(file, page);
1299                 else if (ret == -EEXIST)
1300                         ret = 0; /* losing race to add is OK */
1301
1302                 page_cache_release(page);
1303
1304         } while (ret == AOP_TRUNCATED_PAGE);
1305                 
1306         return ret;
1307 }
1308
1309 #define MMAP_LOTSAMISS  (100)
1310
1311 /**
1312  * filemap_fault - read in file data for page fault handling
1313  * @vma:        vma in which the fault was taken
1314  * @vmf:        struct vm_fault containing details of the fault
1315  *
1316  * filemap_fault() is invoked via the vma operations vector for a
1317  * mapped memory region to read in file data during a page fault.
1318  *
1319  * The goto's are kind of ugly, but this streamlines the normal case of having
1320  * it in the page cache, and handles the special cases reasonably without
1321  * having a lot of duplicated code.
1322  */
1323 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1324 {
1325         int error;
1326         struct file *file = vma->vm_file;
1327         struct address_space *mapping = file->f_mapping;
1328         struct file_ra_state *ra = &file->f_ra;
1329         struct inode *inode = mapping->host;
1330         struct page *page;
1331         pgoff_t size;
1332         int did_readaround = 0;
1333         int ret = 0;
1334
1335         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1336         if (vmf->pgoff >= size)
1337                 return VM_FAULT_SIGBUS;
1338
1339         /* If we don't want any read-ahead, don't bother */
1340         if (VM_RandomReadHint(vma))
1341                 goto no_cached_page;
1342
1343         /*
1344          * Do we have something in the page cache already?
1345          */
1346 retry_find:
1347         page = find_lock_page(mapping, vmf->pgoff);
1348         /*
1349          * For sequential accesses, we use the generic readahead logic.
1350          */
1351         if (VM_SequentialReadHint(vma)) {
1352                 if (!page) {
1353                         page_cache_sync_readahead(mapping, ra, file,
1354                                                            vmf->pgoff, 1);
1355                         page = find_lock_page(mapping, vmf->pgoff);
1356                         if (!page)
1357                                 goto no_cached_page;
1358                 }
1359                 if (PageReadahead(page)) {
1360                         page_cache_async_readahead(mapping, ra, file, page,
1361                                                            vmf->pgoff, 1);
1362                 }
1363         }
1364
1365         if (!page) {
1366                 unsigned long ra_pages;
1367
1368                 ra->mmap_miss++;
1369
1370                 /*
1371                  * Do we miss much more than hit in this file? If so,
1372                  * stop bothering with read-ahead. It will only hurt.
1373                  */
1374                 if (ra->mmap_miss > MMAP_LOTSAMISS)
1375                         goto no_cached_page;
1376
1377                 /*
1378                  * To keep the pgmajfault counter straight, we need to
1379                  * check did_readaround, as this is an inner loop.
1380                  */
1381                 if (!did_readaround) {
1382                         ret = VM_FAULT_MAJOR;
1383                         count_vm_event(PGMAJFAULT);
1384                 }
1385                 did_readaround = 1;
1386                 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1387                 if (ra_pages) {
1388                         pgoff_t start = 0;
1389
1390                         if (vmf->pgoff > ra_pages / 2)
1391                                 start = vmf->pgoff - ra_pages / 2;
1392                         do_page_cache_readahead(mapping, file, start, ra_pages);
1393                 }
1394                 page = find_lock_page(mapping, vmf->pgoff);
1395                 if (!page)
1396                         goto no_cached_page;
1397         }
1398
1399         if (!did_readaround)
1400                 ra->mmap_miss--;
1401
1402         /*
1403          * We have a locked page in the page cache, now we need to check
1404          * that it's up-to-date. If not, it is going to be due to an error.
1405          */
1406         if (unlikely(!PageUptodate(page)))
1407                 goto page_not_uptodate;
1408
1409         /* Must recheck i_size under page lock */
1410         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1411         if (unlikely(vmf->pgoff >= size)) {
1412                 unlock_page(page);
1413                 page_cache_release(page);
1414                 return VM_FAULT_SIGBUS;
1415         }
1416
1417         /*
1418          * Found the page and have a reference on it.
1419          */
1420         mark_page_accessed(page);
1421         ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1422         vmf->page = page;
1423         return ret | VM_FAULT_LOCKED;
1424
1425 no_cached_page:
1426         /*
1427          * We're only likely to ever get here if MADV_RANDOM is in
1428          * effect.
1429          */
1430         error = page_cache_read(file, vmf->pgoff);
1431
1432         /*
1433          * The page we want has now been added to the page cache.
1434          * In the unlikely event that someone removed it in the
1435          * meantime, we'll just come back here and read it again.
1436          */
1437         if (error >= 0)
1438                 goto retry_find;
1439
1440         /*
1441          * An error return from page_cache_read can result if the
1442          * system is low on memory, or a problem occurs while trying
1443          * to schedule I/O.
1444          */
1445         if (error == -ENOMEM)
1446                 return VM_FAULT_OOM;
1447         return VM_FAULT_SIGBUS;
1448
1449 page_not_uptodate:
1450         /* IO error path */
1451         if (!did_readaround) {
1452                 ret = VM_FAULT_MAJOR;
1453                 count_vm_event(PGMAJFAULT);
1454         }
1455
1456         /*
1457          * Umm, take care of errors if the page isn't up-to-date.
1458          * Try to re-read it _once_. We do this synchronously,
1459          * because there really aren't any performance issues here
1460          * and we need to check for errors.
1461          */
1462         ClearPageError(page);
1463         error = mapping->a_ops->readpage(file, page);
1464         page_cache_release(page);
1465
1466         if (!error || error == AOP_TRUNCATED_PAGE)
1467                 goto retry_find;
1468
1469         /* Things didn't work out. Return zero to tell the mm layer so. */
1470         shrink_readahead_size_eio(file, ra);
1471         return VM_FAULT_SIGBUS;
1472 }
1473 EXPORT_SYMBOL(filemap_fault);
1474
1475 struct vm_operations_struct generic_file_vm_ops = {
1476         .fault          = filemap_fault,
1477 };
1478
1479 /* This is used for a general mmap of a disk file */
1480
1481 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1482 {
1483         struct address_space *mapping = file->f_mapping;
1484
1485         if (!mapping->a_ops->readpage)
1486                 return -ENOEXEC;
1487         file_accessed(file);
1488         vma->vm_ops = &generic_file_vm_ops;
1489         vma->vm_flags |= VM_CAN_NONLINEAR;
1490         return 0;
1491 }
1492
1493 /*
1494  * This is for filesystems which do not implement ->writepage.
1495  */
1496 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1497 {
1498         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1499                 return -EINVAL;
1500         return generic_file_mmap(file, vma);
1501 }
1502 #else
1503 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1504 {
1505         return -ENOSYS;
1506 }
1507 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1508 {
1509         return -ENOSYS;
1510 }
1511 #endif /* CONFIG_MMU */
1512
1513 EXPORT_SYMBOL(generic_file_mmap);
1514 EXPORT_SYMBOL(generic_file_readonly_mmap);
1515
1516 static struct page *__read_cache_page(struct address_space *mapping,
1517                                 pgoff_t index,
1518                                 int (*filler)(void *,struct page*),
1519                                 void *data)
1520 {
1521         struct page *page;
1522         int err;
1523 repeat:
1524         page = find_get_page(mapping, index);
1525         if (!page) {
1526                 page = page_cache_alloc_cold(mapping);
1527                 if (!page)
1528                         return ERR_PTR(-ENOMEM);
1529                 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1530                 if (unlikely(err)) {
1531                         page_cache_release(page);
1532                         if (err == -EEXIST)
1533                                 goto repeat;
1534                         /* Presumably ENOMEM for radix tree node */
1535                         return ERR_PTR(err);
1536                 }
1537                 err = filler(data, page);
1538                 if (err < 0) {
1539                         page_cache_release(page);
1540                         page = ERR_PTR(err);
1541                 }
1542         }
1543         return page;
1544 }
1545
1546 /**
1547  * read_cache_page_async - read into page cache, fill it if needed
1548  * @mapping:    the page's address_space
1549  * @index:      the page index
1550  * @filler:     function to perform the read
1551  * @data:       destination for read data
1552  *
1553  * Same as read_cache_page, but don't wait for page to become unlocked
1554  * after submitting it to the filler.
1555  *
1556  * Read into the page cache. If a page already exists, and PageUptodate() is
1557  * not set, try to fill the page but don't wait for it to become unlocked.
1558  *
1559  * If the page does not get brought uptodate, return -EIO.
1560  */
1561 struct page *read_cache_page_async(struct address_space *mapping,
1562                                 pgoff_t index,
1563                                 int (*filler)(void *,struct page*),
1564                                 void *data)
1565 {
1566         struct page *page;
1567         int err;
1568
1569 retry:
1570         page = __read_cache_page(mapping, index, filler, data);
1571         if (IS_ERR(page))
1572                 return page;
1573         if (PageUptodate(page))
1574                 goto out;
1575
1576         lock_page(page);
1577         if (!page->mapping) {
1578                 unlock_page(page);
1579                 page_cache_release(page);
1580                 goto retry;
1581         }
1582         if (PageUptodate(page)) {
1583                 unlock_page(page);
1584                 goto out;
1585         }
1586         err = filler(data, page);
1587         if (err < 0) {
1588                 page_cache_release(page);
1589                 return ERR_PTR(err);
1590         }
1591 out:
1592         mark_page_accessed(page);
1593         return page;
1594 }
1595 EXPORT_SYMBOL(read_cache_page_async);
1596
1597 /**
1598  * read_cache_page - read into page cache, fill it if needed
1599  * @mapping:    the page's address_space
1600  * @index:      the page index
1601  * @filler:     function to perform the read
1602  * @data:       destination for read data
1603  *
1604  * Read into the page cache. If a page already exists, and PageUptodate() is
1605  * not set, try to fill the page then wait for it to become unlocked.
1606  *
1607  * If the page does not get brought uptodate, return -EIO.
1608  */
1609 struct page *read_cache_page(struct address_space *mapping,
1610                                 pgoff_t index,
1611                                 int (*filler)(void *,struct page*),
1612                                 void *data)
1613 {
1614         struct page *page;
1615
1616         page = read_cache_page_async(mapping, index, filler, data);
1617         if (IS_ERR(page))
1618                 goto out;
1619         wait_on_page_locked(page);
1620         if (!PageUptodate(page)) {
1621                 page_cache_release(page);
1622                 page = ERR_PTR(-EIO);
1623         }
1624  out:
1625         return page;
1626 }
1627 EXPORT_SYMBOL(read_cache_page);
1628
1629 /*
1630  * The logic we want is
1631  *
1632  *      if suid or (sgid and xgrp)
1633  *              remove privs
1634  */
1635 int should_remove_suid(struct dentry *dentry)
1636 {
1637         mode_t mode = dentry->d_inode->i_mode;
1638         int kill = 0;
1639
1640         /* suid always must be killed */
1641         if (unlikely(mode & S_ISUID))
1642                 kill = ATTR_KILL_SUID;
1643
1644         /*
1645          * sgid without any exec bits is just a mandatory locking mark; leave
1646          * it alone.  If some exec bits are set, it's a real sgid; kill it.
1647          */
1648         if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1649                 kill |= ATTR_KILL_SGID;
1650
1651         if (unlikely(kill && !capable(CAP_FSETID)))
1652                 return kill;
1653
1654         return 0;
1655 }
1656 EXPORT_SYMBOL(should_remove_suid);
1657
1658 static int __remove_suid(struct dentry *dentry, int kill)
1659 {
1660         struct iattr newattrs;
1661
1662         newattrs.ia_valid = ATTR_FORCE | kill;
1663         return notify_change(dentry, &newattrs);
1664 }
1665
1666 int remove_suid(struct dentry *dentry)
1667 {
1668         int killsuid = should_remove_suid(dentry);
1669         int killpriv = security_inode_need_killpriv(dentry);
1670         int error = 0;
1671
1672         if (killpriv < 0)
1673                 return killpriv;
1674         if (killpriv)
1675                 error = security_inode_killpriv(dentry);
1676         if (!error && killsuid)
1677                 error = __remove_suid(dentry, killsuid);
1678
1679         return error;
1680 }
1681 EXPORT_SYMBOL(remove_suid);
1682
1683 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1684                         const struct iovec *iov, size_t base, size_t bytes)
1685 {
1686         size_t copied = 0, left = 0;
1687
1688         while (bytes) {
1689                 char __user *buf = iov->iov_base + base;
1690                 int copy = min(bytes, iov->iov_len - base);
1691
1692                 base = 0;
1693                 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1694                 copied += copy;
1695                 bytes -= copy;
1696                 vaddr += copy;
1697                 iov++;
1698
1699                 if (unlikely(left))
1700                         break;
1701         }
1702         return copied - left;
1703 }
1704
1705 /*
1706  * Copy as much as we can into the page and return the number of bytes which
1707  * were sucessfully copied.  If a fault is encountered then return the number of
1708  * bytes which were copied.
1709  */
1710 size_t iov_iter_copy_from_user_atomic(struct page *page,
1711                 struct iov_iter *i, unsigned long offset, size_t bytes)
1712 {
1713         char *kaddr;
1714         size_t copied;
1715
1716         BUG_ON(!in_atomic());
1717         kaddr = kmap_atomic(page, KM_USER0);
1718         if (likely(i->nr_segs == 1)) {
1719                 int left;
1720                 char __user *buf = i->iov->iov_base + i->iov_offset;
1721                 left = __copy_from_user_inatomic_nocache(kaddr + offset,
1722                                                         buf, bytes);
1723                 copied = bytes - left;
1724         } else {
1725                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1726                                                 i->iov, i->iov_offset, bytes);
1727         }
1728         kunmap_atomic(kaddr, KM_USER0);
1729
1730         return copied;
1731 }
1732 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1733
1734 /*
1735  * This has the same sideeffects and return value as
1736  * iov_iter_copy_from_user_atomic().
1737  * The difference is that it attempts to resolve faults.
1738  * Page must not be locked.
1739  */
1740 size_t iov_iter_copy_from_user(struct page *page,
1741                 struct iov_iter *i, unsigned long offset, size_t bytes)
1742 {
1743         char *kaddr;
1744         size_t copied;
1745
1746         kaddr = kmap(page);
1747         if (likely(i->nr_segs == 1)) {
1748                 int left;
1749                 char __user *buf = i->iov->iov_base + i->iov_offset;
1750                 left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1751                 copied = bytes - left;
1752         } else {
1753                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1754                                                 i->iov, i->iov_offset, bytes);
1755         }
1756         kunmap(page);
1757         return copied;
1758 }
1759 EXPORT_SYMBOL(iov_iter_copy_from_user);
1760
1761 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1762 {
1763         BUG_ON(i->count < bytes);
1764
1765         if (likely(i->nr_segs == 1)) {
1766                 i->iov_offset += bytes;
1767                 i->count -= bytes;
1768         } else {
1769                 const struct iovec *iov = i->iov;
1770                 size_t base = i->iov_offset;
1771
1772                 /*
1773                  * The !iov->iov_len check ensures we skip over unlikely
1774                  * zero-length segments (without overruning the iovec).
1775                  */
1776                 while (bytes || unlikely(!iov->iov_len && i->count)) {
1777                         int copy;
1778
1779                         copy = min(bytes, iov->iov_len - base);
1780                         BUG_ON(!i->count || i->count < copy);
1781                         i->count -= copy;
1782                         bytes -= copy;
1783                         base += copy;
1784                         if (iov->iov_len == base) {
1785                                 iov++;
1786                                 base = 0;
1787                         }
1788                 }
1789                 i->iov = iov;
1790                 i->iov_offset = base;
1791         }
1792 }
1793 EXPORT_SYMBOL(iov_iter_advance);
1794
1795 /*
1796  * Fault in the first iovec of the given iov_iter, to a maximum length
1797  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1798  * accessed (ie. because it is an invalid address).
1799  *
1800  * writev-intensive code may want this to prefault several iovecs -- that
1801  * would be possible (callers must not rely on the fact that _only_ the
1802  * first iovec will be faulted with the current implementation).
1803  */
1804 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1805 {
1806         char __user *buf = i->iov->iov_base + i->iov_offset;
1807         bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1808         return fault_in_pages_readable(buf, bytes);
1809 }
1810 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1811
1812 /*
1813  * Return the count of just the current iov_iter segment.
1814  */
1815 size_t iov_iter_single_seg_count(struct iov_iter *i)
1816 {
1817         const struct iovec *iov = i->iov;
1818         if (i->nr_segs == 1)
1819                 return i->count;
1820         else
1821                 return min(i->count, iov->iov_len - i->iov_offset);
1822 }
1823 EXPORT_SYMBOL(iov_iter_single_seg_count);
1824
1825 /*
1826  * Performs necessary checks before doing a write
1827  *
1828  * Can adjust writing position or amount of bytes to write.
1829  * Returns appropriate error code that caller should return or
1830  * zero in case that write should be allowed.
1831  */
1832 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1833 {
1834         struct inode *inode = file->f_mapping->host;
1835         unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1836
1837         if (unlikely(*pos < 0))
1838                 return -EINVAL;
1839
1840         if (!isblk) {
1841                 /* FIXME: this is for backwards compatibility with 2.4 */
1842                 if (file->f_flags & O_APPEND)
1843                         *pos = i_size_read(inode);
1844
1845                 if (limit != RLIM_INFINITY) {
1846                         if (*pos >= limit) {
1847                                 send_sig(SIGXFSZ, current, 0);
1848                                 return -EFBIG;
1849                         }
1850                         if (*count > limit - (typeof(limit))*pos) {
1851                                 *count = limit - (typeof(limit))*pos;
1852                         }
1853                 }
1854         }
1855
1856         /*
1857          * LFS rule
1858          */
1859         if (unlikely(*pos + *count > MAX_NON_LFS &&
1860                                 !(file->f_flags & O_LARGEFILE))) {
1861                 if (*pos >= MAX_NON_LFS) {
1862                         return -EFBIG;
1863                 }
1864                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1865                         *count = MAX_NON_LFS - (unsigned long)*pos;
1866                 }
1867         }
1868
1869         /*
1870          * Are we about to exceed the fs block limit ?
1871          *
1872          * If we have written data it becomes a short write.  If we have
1873          * exceeded without writing data we send a signal and return EFBIG.
1874          * Linus frestrict idea will clean these up nicely..
1875          */
1876         if (likely(!isblk)) {
1877                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1878                         if (*count || *pos > inode->i_sb->s_maxbytes) {
1879                                 return -EFBIG;
1880                         }
1881                         /* zero-length writes at ->s_maxbytes are OK */
1882                 }
1883
1884                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1885                         *count = inode->i_sb->s_maxbytes - *pos;
1886         } else {
1887 #ifdef CONFIG_BLOCK
1888                 loff_t isize;
1889                 if (bdev_read_only(I_BDEV(inode)))
1890                         return -EPERM;
1891                 isize = i_size_read(inode);
1892                 if (*pos >= isize) {
1893                         if (*count || *pos > isize)
1894                                 return -ENOSPC;
1895                 }
1896
1897                 if (*pos + *count > isize)
1898                         *count = isize - *pos;
1899 #else
1900                 return -EPERM;
1901 #endif
1902         }
1903         return 0;
1904 }
1905 EXPORT_SYMBOL(generic_write_checks);
1906
1907 int pagecache_write_begin(struct file *file, struct address_space *mapping,
1908                                 loff_t pos, unsigned len, unsigned flags,
1909                                 struct page **pagep, void **fsdata)
1910 {
1911         const struct address_space_operations *aops = mapping->a_ops;
1912
1913         if (aops->write_begin) {
1914                 return aops->write_begin(file, mapping, pos, len, flags,
1915                                                         pagep, fsdata);
1916         } else {
1917                 int ret;
1918                 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1919                 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1920                 struct inode *inode = mapping->host;
1921                 struct page *page;
1922 again:
1923                 page = __grab_cache_page(mapping, index);
1924                 *pagep = page;
1925                 if (!page)
1926                         return -ENOMEM;
1927
1928                 if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1929                         /*
1930                          * There is no way to resolve a short write situation
1931                          * for a !Uptodate page (except by double copying in
1932                          * the caller done by generic_perform_write_2copy).
1933                          *
1934                          * Instead, we have to bring it uptodate here.
1935                          */
1936                         ret = aops->readpage(file, page);
1937                         page_cache_release(page);
1938                         if (ret) {
1939                                 if (ret == AOP_TRUNCATED_PAGE)
1940                                         goto again;
1941                                 return ret;
1942                         }
1943                         goto again;
1944                 }
1945
1946                 ret = aops->prepare_write(file, page, offset, offset+len);
1947                 if (ret) {
1948                         unlock_page(page);
1949                         page_cache_release(page);
1950                         if (pos + len > inode->i_size)
1951                                 vmtruncate(inode, inode->i_size);
1952                 }
1953                 return ret;
1954         }
1955 }
1956 EXPORT_SYMBOL(pagecache_write_begin);
1957
1958 int pagecache_write_end(struct file *file, struct address_space *mapping,
1959                                 loff_t pos, unsigned len, unsigned copied,
1960                                 struct page *page, void *fsdata)
1961 {
1962         const struct address_space_operations *aops = mapping->a_ops;
1963         int ret;
1964
1965         if (aops->write_end) {
1966                 mark_page_accessed(page);
1967                 ret = aops->write_end(file, mapping, pos, len, copied,
1968                                                         page, fsdata);
1969         } else {
1970                 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1971                 struct inode *inode = mapping->host;
1972
1973                 flush_dcache_page(page);
1974                 ret = aops->commit_write(file, page, offset, offset+len);
1975                 unlock_page(page);
1976                 mark_page_accessed(page);
1977                 page_cache_release(page);
1978
1979                 if (ret < 0) {
1980                         if (pos + len > inode->i_size)
1981                                 vmtruncate(inode, inode->i_size);
1982                 } else if (ret > 0)
1983                         ret = min_t(size_t, copied, ret);
1984                 else
1985                         ret = copied;
1986         }
1987
1988         return ret;
1989 }
1990 EXPORT_SYMBOL(pagecache_write_end);
1991
1992 ssize_t
1993 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1994                 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1995                 size_t count, size_t ocount)
1996 {
1997         struct file     *file = iocb->ki_filp;
1998         struct address_space *mapping = file->f_mapping;
1999         struct inode    *inode = mapping->host;
2000         ssize_t         written;
2001
2002         if (count != ocount)
2003                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2004
2005         written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2006         if (written > 0) {
2007                 loff_t end = pos + written;
2008                 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2009                         i_size_write(inode,  end);
2010                         mark_inode_dirty(inode);
2011                 }
2012                 *ppos = end;
2013         }
2014
2015         /*
2016          * Sync the fs metadata but not the minor inode changes and
2017          * of course not the data as we did direct DMA for the IO.
2018          * i_mutex is held, which protects generic_osync_inode() from
2019          * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2020          */
2021         if ((written >= 0 || written == -EIOCBQUEUED) &&
2022             ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2023                 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2024                 if (err < 0)
2025                         written = err;
2026         }
2027         return written;
2028 }
2029 EXPORT_SYMBOL(generic_file_direct_write);
2030
2031 /*
2032  * Find or create a page at the given pagecache position. Return the locked
2033  * page. This function is specifically for buffered writes.
2034  */
2035 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
2036 {
2037         int status;
2038         struct page *page;
2039 repeat:
2040         page = find_lock_page(mapping, index);
2041         if (likely(page))
2042                 return page;
2043
2044         page = page_cache_alloc(mapping);
2045         if (!page)
2046                 return NULL;
2047         status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2048         if (unlikely(status)) {
2049                 page_cache_release(page);
2050                 if (status == -EEXIST)
2051                         goto repeat;
2052                 return NULL;
2053         }
2054         return page;
2055 }
2056 EXPORT_SYMBOL(__grab_cache_page);
2057
2058 static ssize_t generic_perform_write_2copy(struct file *file,
2059                                 struct iov_iter *i, loff_t pos)
2060 {
2061         struct address_space *mapping = file->f_mapping;
2062         const struct address_space_operations *a_ops = mapping->a_ops;
2063         struct inode *inode = mapping->host;
2064         long status = 0;
2065         ssize_t written = 0;
2066
2067         do {
2068                 struct page *src_page;
2069                 struct page *page;
2070                 pgoff_t index;          /* Pagecache index for current page */
2071                 unsigned long offset;   /* Offset into pagecache page */
2072                 unsigned long bytes;    /* Bytes to write to page */
2073                 size_t copied;          /* Bytes copied from user */
2074
2075                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2076                 index = pos >> PAGE_CACHE_SHIFT;
2077                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2078                                                 iov_iter_count(i));
2079
2080                 /*
2081                  * a non-NULL src_page indicates that we're doing the
2082                  * copy via get_user_pages and kmap.
2083                  */
2084                 src_page = NULL;
2085
2086                 /*
2087                  * Bring in the user page that we will copy from _first_.
2088                  * Otherwise there's a nasty deadlock on copying from the
2089                  * same page as we're writing to, without it being marked
2090                  * up-to-date.
2091                  *
2092                  * Not only is this an optimisation, but it is also required
2093                  * to check that the address is actually valid, when atomic
2094                  * usercopies are used, below.
2095                  */
2096                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2097                         status = -EFAULT;
2098                         break;
2099                 }
2100
2101                 page = __grab_cache_page(mapping, index);
2102                 if (!page) {
2103                         status = -ENOMEM;
2104                         break;
2105                 }
2106
2107                 /*
2108                  * non-uptodate pages cannot cope with short copies, and we
2109                  * cannot take a pagefault with the destination page locked.
2110                  * So pin the source page to copy it.
2111                  */
2112                 if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2113                         unlock_page(page);
2114
2115                         src_page = alloc_page(GFP_KERNEL);
2116                         if (!src_page) {
2117                                 page_cache_release(page);
2118                                 status = -ENOMEM;
2119                                 break;
2120                         }
2121
2122                         /*
2123                          * Cannot get_user_pages with a page locked for the
2124                          * same reason as we can't take a page fault with a
2125                          * page locked (as explained below).
2126                          */
2127                         copied = iov_iter_copy_from_user(src_page, i,
2128                                                                 offset, bytes);
2129                         if (unlikely(copied == 0)) {
2130                                 status = -EFAULT;
2131                                 page_cache_release(page);
2132                                 page_cache_release(src_page);
2133                                 break;
2134                         }
2135                         bytes = copied;
2136
2137                         lock_page(page);
2138                         /*
2139                          * Can't handle the page going uptodate here, because
2140                          * that means we would use non-atomic usercopies, which
2141                          * zero out the tail of the page, which can cause
2142                          * zeroes to become transiently visible. We could just
2143                          * use a non-zeroing copy, but the APIs aren't too
2144                          * consistent.
2145                          */
2146                         if (unlikely(!page->mapping || PageUptodate(page))) {
2147                                 unlock_page(page);
2148                                 page_cache_release(page);
2149                                 page_cache_release(src_page);
2150                                 continue;
2151                         }
2152                 }
2153
2154                 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2155                 if (unlikely(status))
2156                         goto fs_write_aop_error;
2157
2158                 if (!src_page) {
2159                         /*
2160                          * Must not enter the pagefault handler here, because
2161                          * we hold the page lock, so we might recursively
2162                          * deadlock on the same lock, or get an ABBA deadlock
2163                          * against a different lock, or against the mmap_sem
2164                          * (which nests outside the page lock).  So increment
2165                          * preempt count, and use _atomic usercopies.
2166                          *
2167                          * The page is uptodate so we are OK to encounter a
2168                          * short copy: if unmodified parts of the page are
2169                          * marked dirty and written out to disk, it doesn't
2170                          * really matter.
2171                          */
2172                         pagefault_disable();
2173                         copied = iov_iter_copy_from_user_atomic(page, i,
2174                                                                 offset, bytes);
2175                         pagefault_enable();
2176                 } else {
2177                         void *src, *dst;
2178                         src = kmap_atomic(src_page, KM_USER0);
2179                         dst = kmap_atomic(page, KM_USER1);
2180                         memcpy(dst + offset, src + offset, bytes);
2181                         kunmap_atomic(dst, KM_USER1);
2182                         kunmap_atomic(src, KM_USER0);
2183                         copied = bytes;
2184                 }
2185                 flush_dcache_page(page);
2186
2187                 status = a_ops->commit_write(file, page, offset, offset+bytes);
2188                 if (unlikely(status < 0))
2189                         goto fs_write_aop_error;
2190                 if (unlikely(status > 0)) /* filesystem did partial write */
2191                         copied = min_t(size_t, copied, status);
2192
2193                 unlock_page(page);
2194                 mark_page_accessed(page);
2195                 page_cache_release(page);
2196                 if (src_page)
2197                         page_cache_release(src_page);
2198
2199                 iov_iter_advance(i, copied);
2200                 pos += copied;
2201                 written += copied;
2202
2203                 balance_dirty_pages_ratelimited(mapping);
2204                 cond_resched();
2205                 continue;
2206
2207 fs_write_aop_error:
2208                 unlock_page(page);
2209                 page_cache_release(page);
2210                 if (src_page)
2211                         page_cache_release(src_page);
2212
2213                 /*
2214                  * prepare_write() may have instantiated a few blocks
2215                  * outside i_size.  Trim these off again. Don't need
2216                  * i_size_read because we hold i_mutex.
2217                  */
2218                 if (pos + bytes > inode->i_size)
2219                         vmtruncate(inode, inode->i_size);
2220                 break;
2221         } while (iov_iter_count(i));
2222
2223         return written ? written : status;
2224 }
2225
2226 static ssize_t generic_perform_write(struct file *file,
2227                                 struct iov_iter *i, loff_t pos)
2228 {
2229         struct address_space *mapping = file->f_mapping;
2230         const struct address_space_operations *a_ops = mapping->a_ops;
2231         long status = 0;
2232         ssize_t written = 0;
2233         unsigned int flags = 0;
2234
2235         /*
2236          * Copies from kernel address space cannot fail (NFSD is a big user).
2237          */
2238         if (segment_eq(get_fs(), KERNEL_DS))
2239                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2240
2241         do {
2242                 struct page *page;
2243                 pgoff_t index;          /* Pagecache index for current page */
2244                 unsigned long offset;   /* Offset into pagecache page */
2245                 unsigned long bytes;    /* Bytes to write to page */
2246                 size_t copied;          /* Bytes copied from user */
2247                 void *fsdata;
2248
2249                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2250                 index = pos >> PAGE_CACHE_SHIFT;
2251                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2252                                                 iov_iter_count(i));
2253
2254 again:
2255
2256                 /*
2257                  * Bring in the user page that we will copy from _first_.
2258                  * Otherwise there's a nasty deadlock on copying from the
2259                  * same page as we're writing to, without it being marked
2260                  * up-to-date.
2261                  *
2262                  * Not only is this an optimisation, but it is also required
2263                  * to check that the address is actually valid, when atomic
2264                  * usercopies are used, below.
2265                  */
2266                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2267                         status = -EFAULT;
2268                         break;
2269                 }
2270
2271                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2272                                                 &page, &fsdata);
2273                 if (unlikely(status))
2274                         break;
2275
2276                 pagefault_disable();
2277                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2278                 pagefault_enable();
2279                 flush_dcache_page(page);
2280
2281                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2282                                                 page, fsdata);
2283                 if (unlikely(status < 0))
2284                         break;
2285                 copied = status;
2286
2287                 cond_resched();
2288
2289                 iov_iter_advance(i, copied);
2290                 if (unlikely(copied == 0)) {
2291                         /*
2292                          * If we were unable to copy any data at all, we must
2293                          * fall back to a single segment length write.
2294                          *
2295                          * If we didn't fallback here, we could livelock
2296                          * because not all segments in the iov can be copied at
2297                          * once without a pagefault.
2298                          */
2299                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2300                                                 iov_iter_single_seg_count(i));
2301                         goto again;
2302                 }
2303                 pos += copied;
2304                 written += copied;
2305
2306                 balance_dirty_pages_ratelimited(mapping);
2307
2308         } while (iov_iter_count(i));
2309
2310         return written ? written : status;
2311 }
2312
2313 ssize_t
2314 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2315                 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2316                 size_t count, ssize_t written)
2317 {
2318         struct file *file = iocb->ki_filp;
2319         struct address_space *mapping = file->f_mapping;
2320         const struct address_space_operations *a_ops = mapping->a_ops;
2321         struct inode *inode = mapping->host;
2322         ssize_t status;
2323         struct iov_iter i;
2324
2325         iov_iter_init(&i, iov, nr_segs, count, written);
2326         if (a_ops->write_begin)
2327                 status = generic_perform_write(file, &i, pos);
2328         else
2329                 status = generic_perform_write_2copy(file, &i, pos);
2330
2331         if (likely(status >= 0)) {
2332                 written += status;
2333                 *ppos = pos + status;
2334
2335                 /*
2336                  * For now, when the user asks for O_SYNC, we'll actually give
2337                  * O_DSYNC
2338                  */
2339                 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2340                         if (!a_ops->writepage || !is_sync_kiocb(iocb))
2341                                 status = generic_osync_inode(inode, mapping,
2342                                                 OSYNC_METADATA|OSYNC_DATA);
2343                 }
2344         }
2345         
2346         /*
2347          * If we get here for O_DIRECT writes then we must have fallen through
2348          * to buffered writes (block instantiation inside i_size).  So we sync
2349          * the file data here, to try to honour O_DIRECT expectations.
2350          */
2351         if (unlikely(file->f_flags & O_DIRECT) && written)
2352                 status = filemap_write_and_wait(mapping);
2353
2354         return written ? written : status;
2355 }
2356 EXPORT_SYMBOL(generic_file_buffered_write);
2357
2358 static ssize_t
2359 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2360                                 unsigned long nr_segs, loff_t *ppos)
2361 {
2362         struct file *file = iocb->ki_filp;
2363         struct address_space * mapping = file->f_mapping;
2364         size_t ocount;          /* original count */
2365         size_t count;           /* after file limit checks */
2366         struct inode    *inode = mapping->host;
2367         loff_t          pos;
2368         ssize_t         written;
2369         ssize_t         err;
2370
2371         ocount = 0;
2372         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2373         if (err)
2374                 return err;
2375
2376         count = ocount;
2377         pos = *ppos;
2378
2379         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2380
2381         /* We can write back this queue in page reclaim */
2382         current->backing_dev_info = mapping->backing_dev_info;
2383         written = 0;
2384
2385         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2386         if (err)
2387                 goto out;
2388
2389         if (count == 0)
2390                 goto out;
2391
2392         err = remove_suid(file->f_path.dentry);
2393         if (err)
2394                 goto out;
2395
2396         file_update_time(file);
2397
2398         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2399         if (unlikely(file->f_flags & O_DIRECT)) {
2400                 loff_t endbyte;
2401                 ssize_t written_buffered;
2402
2403                 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2404                                                         ppos, count, ocount);
2405                 if (written < 0 || written == count)
2406                         goto out;
2407                 /*
2408                  * direct-io write to a hole: fall through to buffered I/O
2409                  * for completing the rest of the request.
2410                  */
2411                 pos += written;
2412                 count -= written;
2413                 written_buffered = generic_file_buffered_write(iocb, iov,
2414                                                 nr_segs, pos, ppos, count,
2415                                                 written);
2416                 /*
2417                  * If generic_file_buffered_write() retuned a synchronous error
2418                  * then we want to return the number of bytes which were
2419                  * direct-written, or the error code if that was zero.  Note
2420                  * that this differs from normal direct-io semantics, which
2421                  * will return -EFOO even if some bytes were written.
2422                  */
2423                 if (written_buffered < 0) {
2424                         err = written_buffered;
2425                         goto out;
2426                 }
2427
2428                 /*
2429                  * We need to ensure that the page cache pages are written to
2430                  * disk and invalidated to preserve the expected O_DIRECT
2431                  * semantics.
2432                  */
2433                 endbyte = pos + written_buffered - written - 1;
2434                 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2435                                             SYNC_FILE_RANGE_WAIT_BEFORE|
2436                                             SYNC_FILE_RANGE_WRITE|
2437                                             SYNC_FILE_RANGE_WAIT_AFTER);
2438                 if (err == 0) {
2439                         written = written_buffered;
2440                         invalidate_mapping_pages(mapping,
2441                                                  pos >> PAGE_CACHE_SHIFT,
2442                                                  endbyte >> PAGE_CACHE_SHIFT);
2443                 } else {
2444                         /*
2445                          * We don't know how much we wrote, so just return
2446                          * the number of bytes which were direct-written
2447                          */
2448                 }
2449         } else {
2450                 written = generic_file_buffered_write(iocb, iov, nr_segs,
2451                                 pos, ppos, count, written);
2452         }
2453 out:
2454         current->backing_dev_info = NULL;
2455         return written ? written : err;
2456 }
2457
2458 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2459                 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2460 {
2461         struct file *file = iocb->ki_filp;
2462         struct address_space *mapping = file->f_mapping;
2463         struct inode *inode = mapping->host;
2464         ssize_t ret;
2465
2466         BUG_ON(iocb->ki_pos != pos);
2467
2468         ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2469                         &iocb->ki_pos);
2470
2471         if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2472                 ssize_t err;
2473
2474                 err = sync_page_range_nolock(inode, mapping, pos, ret);
2475                 if (err < 0)
2476                         ret = err;
2477         }
2478         return ret;
2479 }
2480 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2481
2482 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2483                 unsigned long nr_segs, loff_t pos)
2484 {
2485         struct file *file = iocb->ki_filp;
2486         struct address_space *mapping = file->f_mapping;
2487         struct inode *inode = mapping->host;
2488         ssize_t ret;
2489
2490         BUG_ON(iocb->ki_pos != pos);
2491
2492         mutex_lock(&inode->i_mutex);
2493         ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2494                         &iocb->ki_pos);
2495         mutex_unlock(&inode->i_mutex);
2496
2497         if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2498                 ssize_t err;
2499
2500                 err = sync_page_range(inode, mapping, pos, ret);
2501                 if (err < 0)
2502                         ret = err;
2503         }
2504         return ret;
2505 }
2506 EXPORT_SYMBOL(generic_file_aio_write);
2507
2508 /*
2509  * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2510  * went wrong during pagecache shootdown.
2511  */
2512 static ssize_t
2513 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2514         loff_t offset, unsigned long nr_segs)
2515 {
2516         struct file *file = iocb->ki_filp;
2517         struct address_space *mapping = file->f_mapping;
2518         ssize_t retval;
2519         size_t write_len;
2520         pgoff_t end = 0; /* silence gcc */
2521
2522         /*
2523          * If it's a write, unmap all mmappings of the file up-front.  This
2524          * will cause any pte dirty bits to be propagated into the pageframes
2525          * for the subsequent filemap_write_and_wait().
2526          */
2527         if (rw == WRITE) {
2528                 write_len = iov_length(iov, nr_segs);
2529                 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2530                 if (mapping_mapped(mapping))
2531                         unmap_mapping_range(mapping, offset, write_len, 0);
2532         }
2533
2534         retval = filemap_write_and_wait(mapping);
2535         if (retval)
2536                 goto out;
2537
2538         /*
2539          * After a write we want buffered reads to be sure to go to disk to get
2540          * the new data.  We invalidate clean cached page from the region we're
2541          * about to write.  We do this *before* the write so that we can return
2542          * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2543          */
2544         if (rw == WRITE && mapping->nrpages) {
2545                 retval = invalidate_inode_pages2_range(mapping,
2546                                         offset >> PAGE_CACHE_SHIFT, end);
2547                 if (retval)
2548                         goto out;
2549         }
2550
2551         retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2552
2553         /*
2554          * Finally, try again to invalidate clean pages which might have been
2555          * cached by non-direct readahead, or faulted in by get_user_pages()
2556          * if the source of the write was an mmap'ed region of the file
2557          * we're writing.  Either one is a pretty crazy thing to do,
2558          * so we don't support it 100%.  If this invalidation
2559          * fails, tough, the write still worked...
2560          */
2561         if (rw == WRITE && mapping->nrpages) {
2562                 invalidate_inode_pages2_range(mapping, offset >> PAGE_CACHE_SHIFT, end);
2563         }
2564 out:
2565         return retval;
2566 }
2567
2568 /**
2569  * try_to_release_page() - release old fs-specific metadata on a page
2570  *
2571  * @page: the page which the kernel is trying to free
2572  * @gfp_mask: memory allocation flags (and I/O mode)
2573  *
2574  * The address_space is to try to release any data against the page
2575  * (presumably at page->private).  If the release was successful, return `1'.
2576  * Otherwise return zero.
2577  *
2578  * The @gfp_mask argument specifies whether I/O may be performed to release
2579  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2580  *
2581  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2582  */
2583 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2584 {
2585         struct address_space * const mapping = page->mapping;
2586
2587         BUG_ON(!PageLocked(page));
2588         if (PageWriteback(page))
2589                 return 0;
2590
2591         if (mapping && mapping->a_ops->releasepage)
2592                 return mapping->a_ops->releasepage(page, gfp_mask);
2593         return try_to_free_buffers(page);
2594 }
2595
2596 EXPORT_SYMBOL(try_to_release_page);