Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[linux-2.6] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54
55 #include <asm/pgalloc.h>
56 #include <asm/uaccess.h>
57 #include <asm/tlb.h>
58 #include <asm/tlbflush.h>
59 #include <asm/pgtable.h>
60
61 #include <linux/swapops.h>
62 #include <linux/elf.h>
63
64 #ifndef CONFIG_NEED_MULTIPLE_NODES
65 /* use the per-pgdat data instead for discontigmem - mbligh */
66 unsigned long max_mapnr;
67 struct page *mem_map;
68
69 EXPORT_SYMBOL(max_mapnr);
70 EXPORT_SYMBOL(mem_map);
71 #endif
72
73 unsigned long num_physpages;
74 /*
75  * A number of key systems in x86 including ioremap() rely on the assumption
76  * that high_memory defines the upper bound on direct map memory, then end
77  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
78  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
79  * and ZONE_HIGHMEM.
80  */
81 void * high_memory;
82
83 EXPORT_SYMBOL(num_physpages);
84 EXPORT_SYMBOL(high_memory);
85
86 /*
87  * Randomize the address space (stacks, mmaps, brk, etc.).
88  *
89  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
90  *   as ancient (libc5 based) binaries can segfault. )
91  */
92 int randomize_va_space __read_mostly =
93 #ifdef CONFIG_COMPAT_BRK
94                                         1;
95 #else
96                                         2;
97 #endif
98
99 static int __init disable_randmaps(char *s)
100 {
101         randomize_va_space = 0;
102         return 1;
103 }
104 __setup("norandmaps", disable_randmaps);
105
106
107 /*
108  * If a p?d_bad entry is found while walking page tables, report
109  * the error, before resetting entry to p?d_none.  Usually (but
110  * very seldom) called out from the p?d_none_or_clear_bad macros.
111  */
112
113 void pgd_clear_bad(pgd_t *pgd)
114 {
115         pgd_ERROR(*pgd);
116         pgd_clear(pgd);
117 }
118
119 void pud_clear_bad(pud_t *pud)
120 {
121         pud_ERROR(*pud);
122         pud_clear(pud);
123 }
124
125 void pmd_clear_bad(pmd_t *pmd)
126 {
127         pmd_ERROR(*pmd);
128         pmd_clear(pmd);
129 }
130
131 /*
132  * Note: this doesn't free the actual pages themselves. That
133  * has been handled earlier when unmapping all the memory regions.
134  */
135 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
136 {
137         pgtable_t token = pmd_pgtable(*pmd);
138         pmd_clear(pmd);
139         pte_free_tlb(tlb, token);
140         tlb->mm->nr_ptes--;
141 }
142
143 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
144                                 unsigned long addr, unsigned long end,
145                                 unsigned long floor, unsigned long ceiling)
146 {
147         pmd_t *pmd;
148         unsigned long next;
149         unsigned long start;
150
151         start = addr;
152         pmd = pmd_offset(pud, addr);
153         do {
154                 next = pmd_addr_end(addr, end);
155                 if (pmd_none_or_clear_bad(pmd))
156                         continue;
157                 free_pte_range(tlb, pmd);
158         } while (pmd++, addr = next, addr != end);
159
160         start &= PUD_MASK;
161         if (start < floor)
162                 return;
163         if (ceiling) {
164                 ceiling &= PUD_MASK;
165                 if (!ceiling)
166                         return;
167         }
168         if (end - 1 > ceiling - 1)
169                 return;
170
171         pmd = pmd_offset(pud, start);
172         pud_clear(pud);
173         pmd_free_tlb(tlb, pmd);
174 }
175
176 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
177                                 unsigned long addr, unsigned long end,
178                                 unsigned long floor, unsigned long ceiling)
179 {
180         pud_t *pud;
181         unsigned long next;
182         unsigned long start;
183
184         start = addr;
185         pud = pud_offset(pgd, addr);
186         do {
187                 next = pud_addr_end(addr, end);
188                 if (pud_none_or_clear_bad(pud))
189                         continue;
190                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
191         } while (pud++, addr = next, addr != end);
192
193         start &= PGDIR_MASK;
194         if (start < floor)
195                 return;
196         if (ceiling) {
197                 ceiling &= PGDIR_MASK;
198                 if (!ceiling)
199                         return;
200         }
201         if (end - 1 > ceiling - 1)
202                 return;
203
204         pud = pud_offset(pgd, start);
205         pgd_clear(pgd);
206         pud_free_tlb(tlb, pud);
207 }
208
209 /*
210  * This function frees user-level page tables of a process.
211  *
212  * Must be called with pagetable lock held.
213  */
214 void free_pgd_range(struct mmu_gather **tlb,
215                         unsigned long addr, unsigned long end,
216                         unsigned long floor, unsigned long ceiling)
217 {
218         pgd_t *pgd;
219         unsigned long next;
220         unsigned long start;
221
222         /*
223          * The next few lines have given us lots of grief...
224          *
225          * Why are we testing PMD* at this top level?  Because often
226          * there will be no work to do at all, and we'd prefer not to
227          * go all the way down to the bottom just to discover that.
228          *
229          * Why all these "- 1"s?  Because 0 represents both the bottom
230          * of the address space and the top of it (using -1 for the
231          * top wouldn't help much: the masks would do the wrong thing).
232          * The rule is that addr 0 and floor 0 refer to the bottom of
233          * the address space, but end 0 and ceiling 0 refer to the top
234          * Comparisons need to use "end - 1" and "ceiling - 1" (though
235          * that end 0 case should be mythical).
236          *
237          * Wherever addr is brought up or ceiling brought down, we must
238          * be careful to reject "the opposite 0" before it confuses the
239          * subsequent tests.  But what about where end is brought down
240          * by PMD_SIZE below? no, end can't go down to 0 there.
241          *
242          * Whereas we round start (addr) and ceiling down, by different
243          * masks at different levels, in order to test whether a table
244          * now has no other vmas using it, so can be freed, we don't
245          * bother to round floor or end up - the tests don't need that.
246          */
247
248         addr &= PMD_MASK;
249         if (addr < floor) {
250                 addr += PMD_SIZE;
251                 if (!addr)
252                         return;
253         }
254         if (ceiling) {
255                 ceiling &= PMD_MASK;
256                 if (!ceiling)
257                         return;
258         }
259         if (end - 1 > ceiling - 1)
260                 end -= PMD_SIZE;
261         if (addr > end - 1)
262                 return;
263
264         start = addr;
265         pgd = pgd_offset((*tlb)->mm, addr);
266         do {
267                 next = pgd_addr_end(addr, end);
268                 if (pgd_none_or_clear_bad(pgd))
269                         continue;
270                 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
271         } while (pgd++, addr = next, addr != end);
272 }
273
274 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
275                 unsigned long floor, unsigned long ceiling)
276 {
277         while (vma) {
278                 struct vm_area_struct *next = vma->vm_next;
279                 unsigned long addr = vma->vm_start;
280
281                 /*
282                  * Hide vma from rmap and vmtruncate before freeing pgtables
283                  */
284                 anon_vma_unlink(vma);
285                 unlink_file_vma(vma);
286
287                 if (is_vm_hugetlb_page(vma)) {
288                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
289                                 floor, next? next->vm_start: ceiling);
290                 } else {
291                         /*
292                          * Optimization: gather nearby vmas into one call down
293                          */
294                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
295                                && !is_vm_hugetlb_page(next)) {
296                                 vma = next;
297                                 next = vma->vm_next;
298                                 anon_vma_unlink(vma);
299                                 unlink_file_vma(vma);
300                         }
301                         free_pgd_range(tlb, addr, vma->vm_end,
302                                 floor, next? next->vm_start: ceiling);
303                 }
304                 vma = next;
305         }
306 }
307
308 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
309 {
310         pgtable_t new = pte_alloc_one(mm, address);
311         if (!new)
312                 return -ENOMEM;
313
314         spin_lock(&mm->page_table_lock);
315         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
316                 mm->nr_ptes++;
317                 pmd_populate(mm, pmd, new);
318                 new = NULL;
319         }
320         spin_unlock(&mm->page_table_lock);
321         if (new)
322                 pte_free(mm, new);
323         return 0;
324 }
325
326 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
327 {
328         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
329         if (!new)
330                 return -ENOMEM;
331
332         spin_lock(&init_mm.page_table_lock);
333         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
334                 pmd_populate_kernel(&init_mm, pmd, new);
335                 new = NULL;
336         }
337         spin_unlock(&init_mm.page_table_lock);
338         if (new)
339                 pte_free_kernel(&init_mm, new);
340         return 0;
341 }
342
343 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
344 {
345         if (file_rss)
346                 add_mm_counter(mm, file_rss, file_rss);
347         if (anon_rss)
348                 add_mm_counter(mm, anon_rss, anon_rss);
349 }
350
351 /*
352  * This function is called to print an error when a bad pte
353  * is found. For example, we might have a PFN-mapped pte in
354  * a region that doesn't allow it.
355  *
356  * The calling function must still handle the error.
357  */
358 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
359 {
360         printk(KERN_ERR "Bad pte = %08llx, process = %s, "
361                         "vm_flags = %lx, vaddr = %lx\n",
362                 (long long)pte_val(pte),
363                 (vma->vm_mm == current->mm ? current->comm : "???"),
364                 vma->vm_flags, vaddr);
365         dump_stack();
366 }
367
368 static inline int is_cow_mapping(unsigned int flags)
369 {
370         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
371 }
372
373 /*
374  * vm_normal_page -- This function gets the "struct page" associated with a pte.
375  *
376  * "Special" mappings do not wish to be associated with a "struct page" (either
377  * it doesn't exist, or it exists but they don't want to touch it). In this
378  * case, NULL is returned here. "Normal" mappings do have a struct page.
379  *
380  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
381  * pte bit, in which case this function is trivial. Secondly, an architecture
382  * may not have a spare pte bit, which requires a more complicated scheme,
383  * described below.
384  *
385  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
386  * special mapping (even if there are underlying and valid "struct pages").
387  * COWed pages of a VM_PFNMAP are always normal.
388  *
389  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
390  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
391  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
392  * mapping will always honor the rule
393  *
394  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
395  *
396  * And for normal mappings this is false.
397  *
398  * This restricts such mappings to be a linear translation from virtual address
399  * to pfn. To get around this restriction, we allow arbitrary mappings so long
400  * as the vma is not a COW mapping; in that case, we know that all ptes are
401  * special (because none can have been COWed).
402  *
403  *
404  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
405  *
406  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
407  * page" backing, however the difference is that _all_ pages with a struct
408  * page (that is, those where pfn_valid is true) are refcounted and considered
409  * normal pages by the VM. The disadvantage is that pages are refcounted
410  * (which can be slower and simply not an option for some PFNMAP users). The
411  * advantage is that we don't have to follow the strict linearity rule of
412  * PFNMAP mappings in order to support COWable mappings.
413  *
414  */
415 #ifdef __HAVE_ARCH_PTE_SPECIAL
416 # define HAVE_PTE_SPECIAL 1
417 #else
418 # define HAVE_PTE_SPECIAL 0
419 #endif
420 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
421                                 pte_t pte)
422 {
423         unsigned long pfn;
424
425         if (HAVE_PTE_SPECIAL) {
426                 if (likely(!pte_special(pte))) {
427                         VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
428                         return pte_page(pte);
429                 }
430                 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
431                 return NULL;
432         }
433
434         /* !HAVE_PTE_SPECIAL case follows: */
435
436         pfn = pte_pfn(pte);
437
438         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
439                 if (vma->vm_flags & VM_MIXEDMAP) {
440                         if (!pfn_valid(pfn))
441                                 return NULL;
442                         goto out;
443                 } else {
444                         unsigned long off;
445                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
446                         if (pfn == vma->vm_pgoff + off)
447                                 return NULL;
448                         if (!is_cow_mapping(vma->vm_flags))
449                                 return NULL;
450                 }
451         }
452
453         VM_BUG_ON(!pfn_valid(pfn));
454
455         /*
456          * NOTE! We still have PageReserved() pages in the page tables.
457          *
458          * eg. VDSO mappings can cause them to exist.
459          */
460 out:
461         return pfn_to_page(pfn);
462 }
463
464 /*
465  * copy one vm_area from one task to the other. Assumes the page tables
466  * already present in the new task to be cleared in the whole range
467  * covered by this vma.
468  */
469
470 static inline void
471 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
472                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
473                 unsigned long addr, int *rss)
474 {
475         unsigned long vm_flags = vma->vm_flags;
476         pte_t pte = *src_pte;
477         struct page *page;
478
479         /* pte contains position in swap or file, so copy. */
480         if (unlikely(!pte_present(pte))) {
481                 if (!pte_file(pte)) {
482                         swp_entry_t entry = pte_to_swp_entry(pte);
483
484                         swap_duplicate(entry);
485                         /* make sure dst_mm is on swapoff's mmlist. */
486                         if (unlikely(list_empty(&dst_mm->mmlist))) {
487                                 spin_lock(&mmlist_lock);
488                                 if (list_empty(&dst_mm->mmlist))
489                                         list_add(&dst_mm->mmlist,
490                                                  &src_mm->mmlist);
491                                 spin_unlock(&mmlist_lock);
492                         }
493                         if (is_write_migration_entry(entry) &&
494                                         is_cow_mapping(vm_flags)) {
495                                 /*
496                                  * COW mappings require pages in both parent
497                                  * and child to be set to read.
498                                  */
499                                 make_migration_entry_read(&entry);
500                                 pte = swp_entry_to_pte(entry);
501                                 set_pte_at(src_mm, addr, src_pte, pte);
502                         }
503                 }
504                 goto out_set_pte;
505         }
506
507         /*
508          * If it's a COW mapping, write protect it both
509          * in the parent and the child
510          */
511         if (is_cow_mapping(vm_flags)) {
512                 ptep_set_wrprotect(src_mm, addr, src_pte);
513                 pte = pte_wrprotect(pte);
514         }
515
516         /*
517          * If it's a shared mapping, mark it clean in
518          * the child
519          */
520         if (vm_flags & VM_SHARED)
521                 pte = pte_mkclean(pte);
522         pte = pte_mkold(pte);
523
524         page = vm_normal_page(vma, addr, pte);
525         if (page) {
526                 get_page(page);
527                 page_dup_rmap(page, vma, addr);
528                 rss[!!PageAnon(page)]++;
529         }
530
531 out_set_pte:
532         set_pte_at(dst_mm, addr, dst_pte, pte);
533 }
534
535 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
536                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
537                 unsigned long addr, unsigned long end)
538 {
539         pte_t *src_pte, *dst_pte;
540         spinlock_t *src_ptl, *dst_ptl;
541         int progress = 0;
542         int rss[2];
543
544 again:
545         rss[1] = rss[0] = 0;
546         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
547         if (!dst_pte)
548                 return -ENOMEM;
549         src_pte = pte_offset_map_nested(src_pmd, addr);
550         src_ptl = pte_lockptr(src_mm, src_pmd);
551         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
552         arch_enter_lazy_mmu_mode();
553
554         do {
555                 /*
556                  * We are holding two locks at this point - either of them
557                  * could generate latencies in another task on another CPU.
558                  */
559                 if (progress >= 32) {
560                         progress = 0;
561                         if (need_resched() ||
562                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
563                                 break;
564                 }
565                 if (pte_none(*src_pte)) {
566                         progress++;
567                         continue;
568                 }
569                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
570                 progress += 8;
571         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
572
573         arch_leave_lazy_mmu_mode();
574         spin_unlock(src_ptl);
575         pte_unmap_nested(src_pte - 1);
576         add_mm_rss(dst_mm, rss[0], rss[1]);
577         pte_unmap_unlock(dst_pte - 1, dst_ptl);
578         cond_resched();
579         if (addr != end)
580                 goto again;
581         return 0;
582 }
583
584 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
585                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
586                 unsigned long addr, unsigned long end)
587 {
588         pmd_t *src_pmd, *dst_pmd;
589         unsigned long next;
590
591         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
592         if (!dst_pmd)
593                 return -ENOMEM;
594         src_pmd = pmd_offset(src_pud, addr);
595         do {
596                 next = pmd_addr_end(addr, end);
597                 if (pmd_none_or_clear_bad(src_pmd))
598                         continue;
599                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
600                                                 vma, addr, next))
601                         return -ENOMEM;
602         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
603         return 0;
604 }
605
606 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
607                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
608                 unsigned long addr, unsigned long end)
609 {
610         pud_t *src_pud, *dst_pud;
611         unsigned long next;
612
613         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
614         if (!dst_pud)
615                 return -ENOMEM;
616         src_pud = pud_offset(src_pgd, addr);
617         do {
618                 next = pud_addr_end(addr, end);
619                 if (pud_none_or_clear_bad(src_pud))
620                         continue;
621                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
622                                                 vma, addr, next))
623                         return -ENOMEM;
624         } while (dst_pud++, src_pud++, addr = next, addr != end);
625         return 0;
626 }
627
628 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
629                 struct vm_area_struct *vma)
630 {
631         pgd_t *src_pgd, *dst_pgd;
632         unsigned long next;
633         unsigned long addr = vma->vm_start;
634         unsigned long end = vma->vm_end;
635
636         /*
637          * Don't copy ptes where a page fault will fill them correctly.
638          * Fork becomes much lighter when there are big shared or private
639          * readonly mappings. The tradeoff is that copy_page_range is more
640          * efficient than faulting.
641          */
642         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
643                 if (!vma->anon_vma)
644                         return 0;
645         }
646
647         if (is_vm_hugetlb_page(vma))
648                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
649
650         dst_pgd = pgd_offset(dst_mm, addr);
651         src_pgd = pgd_offset(src_mm, addr);
652         do {
653                 next = pgd_addr_end(addr, end);
654                 if (pgd_none_or_clear_bad(src_pgd))
655                         continue;
656                 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
657                                                 vma, addr, next))
658                         return -ENOMEM;
659         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
660         return 0;
661 }
662
663 static unsigned long zap_pte_range(struct mmu_gather *tlb,
664                                 struct vm_area_struct *vma, pmd_t *pmd,
665                                 unsigned long addr, unsigned long end,
666                                 long *zap_work, struct zap_details *details)
667 {
668         struct mm_struct *mm = tlb->mm;
669         pte_t *pte;
670         spinlock_t *ptl;
671         int file_rss = 0;
672         int anon_rss = 0;
673
674         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
675         arch_enter_lazy_mmu_mode();
676         do {
677                 pte_t ptent = *pte;
678                 if (pte_none(ptent)) {
679                         (*zap_work)--;
680                         continue;
681                 }
682
683                 (*zap_work) -= PAGE_SIZE;
684
685                 if (pte_present(ptent)) {
686                         struct page *page;
687
688                         page = vm_normal_page(vma, addr, ptent);
689                         if (unlikely(details) && page) {
690                                 /*
691                                  * unmap_shared_mapping_pages() wants to
692                                  * invalidate cache without truncating:
693                                  * unmap shared but keep private pages.
694                                  */
695                                 if (details->check_mapping &&
696                                     details->check_mapping != page->mapping)
697                                         continue;
698                                 /*
699                                  * Each page->index must be checked when
700                                  * invalidating or truncating nonlinear.
701                                  */
702                                 if (details->nonlinear_vma &&
703                                     (page->index < details->first_index ||
704                                      page->index > details->last_index))
705                                         continue;
706                         }
707                         ptent = ptep_get_and_clear_full(mm, addr, pte,
708                                                         tlb->fullmm);
709                         tlb_remove_tlb_entry(tlb, pte, addr);
710                         if (unlikely(!page))
711                                 continue;
712                         if (unlikely(details) && details->nonlinear_vma
713                             && linear_page_index(details->nonlinear_vma,
714                                                 addr) != page->index)
715                                 set_pte_at(mm, addr, pte,
716                                            pgoff_to_pte(page->index));
717                         if (PageAnon(page))
718                                 anon_rss--;
719                         else {
720                                 if (pte_dirty(ptent))
721                                         set_page_dirty(page);
722                                 if (pte_young(ptent))
723                                         SetPageReferenced(page);
724                                 file_rss--;
725                         }
726                         page_remove_rmap(page, vma);
727                         tlb_remove_page(tlb, page);
728                         continue;
729                 }
730                 /*
731                  * If details->check_mapping, we leave swap entries;
732                  * if details->nonlinear_vma, we leave file entries.
733                  */
734                 if (unlikely(details))
735                         continue;
736                 if (!pte_file(ptent))
737                         free_swap_and_cache(pte_to_swp_entry(ptent));
738                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
739         } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
740
741         add_mm_rss(mm, file_rss, anon_rss);
742         arch_leave_lazy_mmu_mode();
743         pte_unmap_unlock(pte - 1, ptl);
744
745         return addr;
746 }
747
748 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
749                                 struct vm_area_struct *vma, pud_t *pud,
750                                 unsigned long addr, unsigned long end,
751                                 long *zap_work, struct zap_details *details)
752 {
753         pmd_t *pmd;
754         unsigned long next;
755
756         pmd = pmd_offset(pud, addr);
757         do {
758                 next = pmd_addr_end(addr, end);
759                 if (pmd_none_or_clear_bad(pmd)) {
760                         (*zap_work)--;
761                         continue;
762                 }
763                 next = zap_pte_range(tlb, vma, pmd, addr, next,
764                                                 zap_work, details);
765         } while (pmd++, addr = next, (addr != end && *zap_work > 0));
766
767         return addr;
768 }
769
770 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
771                                 struct vm_area_struct *vma, pgd_t *pgd,
772                                 unsigned long addr, unsigned long end,
773                                 long *zap_work, struct zap_details *details)
774 {
775         pud_t *pud;
776         unsigned long next;
777
778         pud = pud_offset(pgd, addr);
779         do {
780                 next = pud_addr_end(addr, end);
781                 if (pud_none_or_clear_bad(pud)) {
782                         (*zap_work)--;
783                         continue;
784                 }
785                 next = zap_pmd_range(tlb, vma, pud, addr, next,
786                                                 zap_work, details);
787         } while (pud++, addr = next, (addr != end && *zap_work > 0));
788
789         return addr;
790 }
791
792 static unsigned long unmap_page_range(struct mmu_gather *tlb,
793                                 struct vm_area_struct *vma,
794                                 unsigned long addr, unsigned long end,
795                                 long *zap_work, struct zap_details *details)
796 {
797         pgd_t *pgd;
798         unsigned long next;
799
800         if (details && !details->check_mapping && !details->nonlinear_vma)
801                 details = NULL;
802
803         BUG_ON(addr >= end);
804         tlb_start_vma(tlb, vma);
805         pgd = pgd_offset(vma->vm_mm, addr);
806         do {
807                 next = pgd_addr_end(addr, end);
808                 if (pgd_none_or_clear_bad(pgd)) {
809                         (*zap_work)--;
810                         continue;
811                 }
812                 next = zap_pud_range(tlb, vma, pgd, addr, next,
813                                                 zap_work, details);
814         } while (pgd++, addr = next, (addr != end && *zap_work > 0));
815         tlb_end_vma(tlb, vma);
816
817         return addr;
818 }
819
820 #ifdef CONFIG_PREEMPT
821 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
822 #else
823 /* No preempt: go for improved straight-line efficiency */
824 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
825 #endif
826
827 /**
828  * unmap_vmas - unmap a range of memory covered by a list of vma's
829  * @tlbp: address of the caller's struct mmu_gather
830  * @vma: the starting vma
831  * @start_addr: virtual address at which to start unmapping
832  * @end_addr: virtual address at which to end unmapping
833  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
834  * @details: details of nonlinear truncation or shared cache invalidation
835  *
836  * Returns the end address of the unmapping (restart addr if interrupted).
837  *
838  * Unmap all pages in the vma list.
839  *
840  * We aim to not hold locks for too long (for scheduling latency reasons).
841  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
842  * return the ending mmu_gather to the caller.
843  *
844  * Only addresses between `start' and `end' will be unmapped.
845  *
846  * The VMA list must be sorted in ascending virtual address order.
847  *
848  * unmap_vmas() assumes that the caller will flush the whole unmapped address
849  * range after unmap_vmas() returns.  So the only responsibility here is to
850  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
851  * drops the lock and schedules.
852  */
853 unsigned long unmap_vmas(struct mmu_gather **tlbp,
854                 struct vm_area_struct *vma, unsigned long start_addr,
855                 unsigned long end_addr, unsigned long *nr_accounted,
856                 struct zap_details *details)
857 {
858         long zap_work = ZAP_BLOCK_SIZE;
859         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
860         int tlb_start_valid = 0;
861         unsigned long start = start_addr;
862         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
863         int fullmm = (*tlbp)->fullmm;
864
865         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
866                 unsigned long end;
867
868                 start = max(vma->vm_start, start_addr);
869                 if (start >= vma->vm_end)
870                         continue;
871                 end = min(vma->vm_end, end_addr);
872                 if (end <= vma->vm_start)
873                         continue;
874
875                 if (vma->vm_flags & VM_ACCOUNT)
876                         *nr_accounted += (end - start) >> PAGE_SHIFT;
877
878                 while (start != end) {
879                         if (!tlb_start_valid) {
880                                 tlb_start = start;
881                                 tlb_start_valid = 1;
882                         }
883
884                         if (unlikely(is_vm_hugetlb_page(vma))) {
885                                 unmap_hugepage_range(vma, start, end);
886                                 zap_work -= (end - start) /
887                                                 (HPAGE_SIZE / PAGE_SIZE);
888                                 start = end;
889                         } else
890                                 start = unmap_page_range(*tlbp, vma,
891                                                 start, end, &zap_work, details);
892
893                         if (zap_work > 0) {
894                                 BUG_ON(start != end);
895                                 break;
896                         }
897
898                         tlb_finish_mmu(*tlbp, tlb_start, start);
899
900                         if (need_resched() ||
901                                 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
902                                 if (i_mmap_lock) {
903                                         *tlbp = NULL;
904                                         goto out;
905                                 }
906                                 cond_resched();
907                         }
908
909                         *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
910                         tlb_start_valid = 0;
911                         zap_work = ZAP_BLOCK_SIZE;
912                 }
913         }
914 out:
915         return start;   /* which is now the end (or restart) address */
916 }
917
918 /**
919  * zap_page_range - remove user pages in a given range
920  * @vma: vm_area_struct holding the applicable pages
921  * @address: starting address of pages to zap
922  * @size: number of bytes to zap
923  * @details: details of nonlinear truncation or shared cache invalidation
924  */
925 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
926                 unsigned long size, struct zap_details *details)
927 {
928         struct mm_struct *mm = vma->vm_mm;
929         struct mmu_gather *tlb;
930         unsigned long end = address + size;
931         unsigned long nr_accounted = 0;
932
933         lru_add_drain();
934         tlb = tlb_gather_mmu(mm, 0);
935         update_hiwater_rss(mm);
936         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
937         if (tlb)
938                 tlb_finish_mmu(tlb, address, end);
939         return end;
940 }
941
942 /*
943  * Do a quick page-table lookup for a single page.
944  */
945 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
946                         unsigned int flags)
947 {
948         pgd_t *pgd;
949         pud_t *pud;
950         pmd_t *pmd;
951         pte_t *ptep, pte;
952         spinlock_t *ptl;
953         struct page *page;
954         struct mm_struct *mm = vma->vm_mm;
955
956         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
957         if (!IS_ERR(page)) {
958                 BUG_ON(flags & FOLL_GET);
959                 goto out;
960         }
961
962         page = NULL;
963         pgd = pgd_offset(mm, address);
964         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
965                 goto no_page_table;
966
967         pud = pud_offset(pgd, address);
968         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
969                 goto no_page_table;
970         
971         pmd = pmd_offset(pud, address);
972         if (pmd_none(*pmd))
973                 goto no_page_table;
974
975         if (pmd_huge(*pmd)) {
976                 BUG_ON(flags & FOLL_GET);
977                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
978                 goto out;
979         }
980
981         if (unlikely(pmd_bad(*pmd)))
982                 goto no_page_table;
983
984         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
985         if (!ptep)
986                 goto out;
987
988         pte = *ptep;
989         if (!pte_present(pte))
990                 goto unlock;
991         if ((flags & FOLL_WRITE) && !pte_write(pte))
992                 goto unlock;
993         page = vm_normal_page(vma, address, pte);
994         if (unlikely(!page))
995                 goto unlock;
996
997         if (flags & FOLL_GET)
998                 get_page(page);
999         if (flags & FOLL_TOUCH) {
1000                 if ((flags & FOLL_WRITE) &&
1001                     !pte_dirty(pte) && !PageDirty(page))
1002                         set_page_dirty(page);
1003                 mark_page_accessed(page);
1004         }
1005 unlock:
1006         pte_unmap_unlock(ptep, ptl);
1007 out:
1008         return page;
1009
1010 no_page_table:
1011         /*
1012          * When core dumping an enormous anonymous area that nobody
1013          * has touched so far, we don't want to allocate page tables.
1014          */
1015         if (flags & FOLL_ANON) {
1016                 page = ZERO_PAGE(0);
1017                 if (flags & FOLL_GET)
1018                         get_page(page);
1019                 BUG_ON(flags & FOLL_WRITE);
1020         }
1021         return page;
1022 }
1023
1024 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1025                 unsigned long start, int len, int write, int force,
1026                 struct page **pages, struct vm_area_struct **vmas)
1027 {
1028         int i;
1029         unsigned int vm_flags;
1030
1031         if (len <= 0)
1032                 return 0;
1033         /* 
1034          * Require read or write permissions.
1035          * If 'force' is set, we only require the "MAY" flags.
1036          */
1037         vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1038         vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1039         i = 0;
1040
1041         do {
1042                 struct vm_area_struct *vma;
1043                 unsigned int foll_flags;
1044
1045                 vma = find_extend_vma(mm, start);
1046                 if (!vma && in_gate_area(tsk, start)) {
1047                         unsigned long pg = start & PAGE_MASK;
1048                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1049                         pgd_t *pgd;
1050                         pud_t *pud;
1051                         pmd_t *pmd;
1052                         pte_t *pte;
1053                         if (write) /* user gate pages are read-only */
1054                                 return i ? : -EFAULT;
1055                         if (pg > TASK_SIZE)
1056                                 pgd = pgd_offset_k(pg);
1057                         else
1058                                 pgd = pgd_offset_gate(mm, pg);
1059                         BUG_ON(pgd_none(*pgd));
1060                         pud = pud_offset(pgd, pg);
1061                         BUG_ON(pud_none(*pud));
1062                         pmd = pmd_offset(pud, pg);
1063                         if (pmd_none(*pmd))
1064                                 return i ? : -EFAULT;
1065                         pte = pte_offset_map(pmd, pg);
1066                         if (pte_none(*pte)) {
1067                                 pte_unmap(pte);
1068                                 return i ? : -EFAULT;
1069                         }
1070                         if (pages) {
1071                                 struct page *page = vm_normal_page(gate_vma, start, *pte);
1072                                 pages[i] = page;
1073                                 if (page)
1074                                         get_page(page);
1075                         }
1076                         pte_unmap(pte);
1077                         if (vmas)
1078                                 vmas[i] = gate_vma;
1079                         i++;
1080                         start += PAGE_SIZE;
1081                         len--;
1082                         continue;
1083                 }
1084
1085                 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1086                                 || !(vm_flags & vma->vm_flags))
1087                         return i ? : -EFAULT;
1088
1089                 if (is_vm_hugetlb_page(vma)) {
1090                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1091                                                 &start, &len, i, write);
1092                         continue;
1093                 }
1094
1095                 foll_flags = FOLL_TOUCH;
1096                 if (pages)
1097                         foll_flags |= FOLL_GET;
1098                 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1099                     (!vma->vm_ops || !vma->vm_ops->fault))
1100                         foll_flags |= FOLL_ANON;
1101
1102                 do {
1103                         struct page *page;
1104
1105                         /*
1106                          * If tsk is ooming, cut off its access to large memory
1107                          * allocations. It has a pending SIGKILL, but it can't
1108                          * be processed until returning to user space.
1109                          */
1110                         if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1111                                 return -ENOMEM;
1112
1113                         if (write)
1114                                 foll_flags |= FOLL_WRITE;
1115
1116                         cond_resched();
1117                         while (!(page = follow_page(vma, start, foll_flags))) {
1118                                 int ret;
1119                                 ret = handle_mm_fault(mm, vma, start,
1120                                                 foll_flags & FOLL_WRITE);
1121                                 if (ret & VM_FAULT_ERROR) {
1122                                         if (ret & VM_FAULT_OOM)
1123                                                 return i ? i : -ENOMEM;
1124                                         else if (ret & VM_FAULT_SIGBUS)
1125                                                 return i ? i : -EFAULT;
1126                                         BUG();
1127                                 }
1128                                 if (ret & VM_FAULT_MAJOR)
1129                                         tsk->maj_flt++;
1130                                 else
1131                                         tsk->min_flt++;
1132
1133                                 /*
1134                                  * The VM_FAULT_WRITE bit tells us that
1135                                  * do_wp_page has broken COW when necessary,
1136                                  * even if maybe_mkwrite decided not to set
1137                                  * pte_write. We can thus safely do subsequent
1138                                  * page lookups as if they were reads.
1139                                  */
1140                                 if (ret & VM_FAULT_WRITE)
1141                                         foll_flags &= ~FOLL_WRITE;
1142
1143                                 cond_resched();
1144                         }
1145                         if (pages) {
1146                                 pages[i] = page;
1147
1148                                 flush_anon_page(vma, page, start);
1149                                 flush_dcache_page(page);
1150                         }
1151                         if (vmas)
1152                                 vmas[i] = vma;
1153                         i++;
1154                         start += PAGE_SIZE;
1155                         len--;
1156                 } while (len && start < vma->vm_end);
1157         } while (len);
1158         return i;
1159 }
1160 EXPORT_SYMBOL(get_user_pages);
1161
1162 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1163                         spinlock_t **ptl)
1164 {
1165         pgd_t * pgd = pgd_offset(mm, addr);
1166         pud_t * pud = pud_alloc(mm, pgd, addr);
1167         if (pud) {
1168                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1169                 if (pmd)
1170                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1171         }
1172         return NULL;
1173 }
1174
1175 /*
1176  * This is the old fallback for page remapping.
1177  *
1178  * For historical reasons, it only allows reserved pages. Only
1179  * old drivers should use this, and they needed to mark their
1180  * pages reserved for the old functions anyway.
1181  */
1182 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1183                         struct page *page, pgprot_t prot)
1184 {
1185         struct mm_struct *mm = vma->vm_mm;
1186         int retval;
1187         pte_t *pte;
1188         spinlock_t *ptl;
1189
1190         retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
1191         if (retval)
1192                 goto out;
1193
1194         retval = -EINVAL;
1195         if (PageAnon(page))
1196                 goto out_uncharge;
1197         retval = -ENOMEM;
1198         flush_dcache_page(page);
1199         pte = get_locked_pte(mm, addr, &ptl);
1200         if (!pte)
1201                 goto out_uncharge;
1202         retval = -EBUSY;
1203         if (!pte_none(*pte))
1204                 goto out_unlock;
1205
1206         /* Ok, finally just insert the thing.. */
1207         get_page(page);
1208         inc_mm_counter(mm, file_rss);
1209         page_add_file_rmap(page);
1210         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1211
1212         retval = 0;
1213         pte_unmap_unlock(pte, ptl);
1214         return retval;
1215 out_unlock:
1216         pte_unmap_unlock(pte, ptl);
1217 out_uncharge:
1218         mem_cgroup_uncharge_page(page);
1219 out:
1220         return retval;
1221 }
1222
1223 /**
1224  * vm_insert_page - insert single page into user vma
1225  * @vma: user vma to map to
1226  * @addr: target user address of this page
1227  * @page: source kernel page
1228  *
1229  * This allows drivers to insert individual pages they've allocated
1230  * into a user vma.
1231  *
1232  * The page has to be a nice clean _individual_ kernel allocation.
1233  * If you allocate a compound page, you need to have marked it as
1234  * such (__GFP_COMP), or manually just split the page up yourself
1235  * (see split_page()).
1236  *
1237  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1238  * took an arbitrary page protection parameter. This doesn't allow
1239  * that. Your vma protection will have to be set up correctly, which
1240  * means that if you want a shared writable mapping, you'd better
1241  * ask for a shared writable mapping!
1242  *
1243  * The page does not need to be reserved.
1244  */
1245 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1246                         struct page *page)
1247 {
1248         if (addr < vma->vm_start || addr >= vma->vm_end)
1249                 return -EFAULT;
1250         if (!page_count(page))
1251                 return -EINVAL;
1252         vma->vm_flags |= VM_INSERTPAGE;
1253         return insert_page(vma, addr, page, vma->vm_page_prot);
1254 }
1255 EXPORT_SYMBOL(vm_insert_page);
1256
1257 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1258                         unsigned long pfn, pgprot_t prot)
1259 {
1260         struct mm_struct *mm = vma->vm_mm;
1261         int retval;
1262         pte_t *pte, entry;
1263         spinlock_t *ptl;
1264
1265         retval = -ENOMEM;
1266         pte = get_locked_pte(mm, addr, &ptl);
1267         if (!pte)
1268                 goto out;
1269         retval = -EBUSY;
1270         if (!pte_none(*pte))
1271                 goto out_unlock;
1272
1273         /* Ok, finally just insert the thing.. */
1274         entry = pte_mkspecial(pfn_pte(pfn, prot));
1275         set_pte_at(mm, addr, pte, entry);
1276         update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1277
1278         retval = 0;
1279 out_unlock:
1280         pte_unmap_unlock(pte, ptl);
1281 out:
1282         return retval;
1283 }
1284
1285 /**
1286  * vm_insert_pfn - insert single pfn into user vma
1287  * @vma: user vma to map to
1288  * @addr: target user address of this page
1289  * @pfn: source kernel pfn
1290  *
1291  * Similar to vm_inert_page, this allows drivers to insert individual pages
1292  * they've allocated into a user vma. Same comments apply.
1293  *
1294  * This function should only be called from a vm_ops->fault handler, and
1295  * in that case the handler should return NULL.
1296  */
1297 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1298                         unsigned long pfn)
1299 {
1300         /*
1301          * Technically, architectures with pte_special can avoid all these
1302          * restrictions (same for remap_pfn_range).  However we would like
1303          * consistency in testing and feature parity among all, so we should
1304          * try to keep these invariants in place for everybody.
1305          */
1306         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1307         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1308                                                 (VM_PFNMAP|VM_MIXEDMAP));
1309         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1310         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1311
1312         if (addr < vma->vm_start || addr >= vma->vm_end)
1313                 return -EFAULT;
1314         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1315 }
1316 EXPORT_SYMBOL(vm_insert_pfn);
1317
1318 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1319                         unsigned long pfn)
1320 {
1321         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1322
1323         if (addr < vma->vm_start || addr >= vma->vm_end)
1324                 return -EFAULT;
1325
1326         /*
1327          * If we don't have pte special, then we have to use the pfn_valid()
1328          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1329          * refcount the page if pfn_valid is true (hence insert_page rather
1330          * than insert_pfn).
1331          */
1332         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1333                 struct page *page;
1334
1335                 page = pfn_to_page(pfn);
1336                 return insert_page(vma, addr, page, vma->vm_page_prot);
1337         }
1338         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1339 }
1340 EXPORT_SYMBOL(vm_insert_mixed);
1341
1342 /*
1343  * maps a range of physical memory into the requested pages. the old
1344  * mappings are removed. any references to nonexistent pages results
1345  * in null mappings (currently treated as "copy-on-access")
1346  */
1347 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1348                         unsigned long addr, unsigned long end,
1349                         unsigned long pfn, pgprot_t prot)
1350 {
1351         pte_t *pte;
1352         spinlock_t *ptl;
1353
1354         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1355         if (!pte)
1356                 return -ENOMEM;
1357         arch_enter_lazy_mmu_mode();
1358         do {
1359                 BUG_ON(!pte_none(*pte));
1360                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1361                 pfn++;
1362         } while (pte++, addr += PAGE_SIZE, addr != end);
1363         arch_leave_lazy_mmu_mode();
1364         pte_unmap_unlock(pte - 1, ptl);
1365         return 0;
1366 }
1367
1368 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1369                         unsigned long addr, unsigned long end,
1370                         unsigned long pfn, pgprot_t prot)
1371 {
1372         pmd_t *pmd;
1373         unsigned long next;
1374
1375         pfn -= addr >> PAGE_SHIFT;
1376         pmd = pmd_alloc(mm, pud, addr);
1377         if (!pmd)
1378                 return -ENOMEM;
1379         do {
1380                 next = pmd_addr_end(addr, end);
1381                 if (remap_pte_range(mm, pmd, addr, next,
1382                                 pfn + (addr >> PAGE_SHIFT), prot))
1383                         return -ENOMEM;
1384         } while (pmd++, addr = next, addr != end);
1385         return 0;
1386 }
1387
1388 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1389                         unsigned long addr, unsigned long end,
1390                         unsigned long pfn, pgprot_t prot)
1391 {
1392         pud_t *pud;
1393         unsigned long next;
1394
1395         pfn -= addr >> PAGE_SHIFT;
1396         pud = pud_alloc(mm, pgd, addr);
1397         if (!pud)
1398                 return -ENOMEM;
1399         do {
1400                 next = pud_addr_end(addr, end);
1401                 if (remap_pmd_range(mm, pud, addr, next,
1402                                 pfn + (addr >> PAGE_SHIFT), prot))
1403                         return -ENOMEM;
1404         } while (pud++, addr = next, addr != end);
1405         return 0;
1406 }
1407
1408 /**
1409  * remap_pfn_range - remap kernel memory to userspace
1410  * @vma: user vma to map to
1411  * @addr: target user address to start at
1412  * @pfn: physical address of kernel memory
1413  * @size: size of map area
1414  * @prot: page protection flags for this mapping
1415  *
1416  *  Note: this is only safe if the mm semaphore is held when called.
1417  */
1418 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1419                     unsigned long pfn, unsigned long size, pgprot_t prot)
1420 {
1421         pgd_t *pgd;
1422         unsigned long next;
1423         unsigned long end = addr + PAGE_ALIGN(size);
1424         struct mm_struct *mm = vma->vm_mm;
1425         int err;
1426
1427         /*
1428          * Physically remapped pages are special. Tell the
1429          * rest of the world about it:
1430          *   VM_IO tells people not to look at these pages
1431          *      (accesses can have side effects).
1432          *   VM_RESERVED is specified all over the place, because
1433          *      in 2.4 it kept swapout's vma scan off this vma; but
1434          *      in 2.6 the LRU scan won't even find its pages, so this
1435          *      flag means no more than count its pages in reserved_vm,
1436          *      and omit it from core dump, even when VM_IO turned off.
1437          *   VM_PFNMAP tells the core MM that the base pages are just
1438          *      raw PFN mappings, and do not have a "struct page" associated
1439          *      with them.
1440          *
1441          * There's a horrible special case to handle copy-on-write
1442          * behaviour that some programs depend on. We mark the "original"
1443          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1444          */
1445         if (is_cow_mapping(vma->vm_flags)) {
1446                 if (addr != vma->vm_start || end != vma->vm_end)
1447                         return -EINVAL;
1448                 vma->vm_pgoff = pfn;
1449         }
1450
1451         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1452
1453         BUG_ON(addr >= end);
1454         pfn -= addr >> PAGE_SHIFT;
1455         pgd = pgd_offset(mm, addr);
1456         flush_cache_range(vma, addr, end);
1457         do {
1458                 next = pgd_addr_end(addr, end);
1459                 err = remap_pud_range(mm, pgd, addr, next,
1460                                 pfn + (addr >> PAGE_SHIFT), prot);
1461                 if (err)
1462                         break;
1463         } while (pgd++, addr = next, addr != end);
1464         return err;
1465 }
1466 EXPORT_SYMBOL(remap_pfn_range);
1467
1468 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1469                                      unsigned long addr, unsigned long end,
1470                                      pte_fn_t fn, void *data)
1471 {
1472         pte_t *pte;
1473         int err;
1474         pgtable_t token;
1475         spinlock_t *uninitialized_var(ptl);
1476
1477         pte = (mm == &init_mm) ?
1478                 pte_alloc_kernel(pmd, addr) :
1479                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1480         if (!pte)
1481                 return -ENOMEM;
1482
1483         BUG_ON(pmd_huge(*pmd));
1484
1485         token = pmd_pgtable(*pmd);
1486
1487         do {
1488                 err = fn(pte, token, addr, data);
1489                 if (err)
1490                         break;
1491         } while (pte++, addr += PAGE_SIZE, addr != end);
1492
1493         if (mm != &init_mm)
1494                 pte_unmap_unlock(pte-1, ptl);
1495         return err;
1496 }
1497
1498 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1499                                      unsigned long addr, unsigned long end,
1500                                      pte_fn_t fn, void *data)
1501 {
1502         pmd_t *pmd;
1503         unsigned long next;
1504         int err;
1505
1506         pmd = pmd_alloc(mm, pud, addr);
1507         if (!pmd)
1508                 return -ENOMEM;
1509         do {
1510                 next = pmd_addr_end(addr, end);
1511                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1512                 if (err)
1513                         break;
1514         } while (pmd++, addr = next, addr != end);
1515         return err;
1516 }
1517
1518 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1519                                      unsigned long addr, unsigned long end,
1520                                      pte_fn_t fn, void *data)
1521 {
1522         pud_t *pud;
1523         unsigned long next;
1524         int err;
1525
1526         pud = pud_alloc(mm, pgd, addr);
1527         if (!pud)
1528                 return -ENOMEM;
1529         do {
1530                 next = pud_addr_end(addr, end);
1531                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1532                 if (err)
1533                         break;
1534         } while (pud++, addr = next, addr != end);
1535         return err;
1536 }
1537
1538 /*
1539  * Scan a region of virtual memory, filling in page tables as necessary
1540  * and calling a provided function on each leaf page table.
1541  */
1542 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1543                         unsigned long size, pte_fn_t fn, void *data)
1544 {
1545         pgd_t *pgd;
1546         unsigned long next;
1547         unsigned long end = addr + size;
1548         int err;
1549
1550         BUG_ON(addr >= end);
1551         pgd = pgd_offset(mm, addr);
1552         do {
1553                 next = pgd_addr_end(addr, end);
1554                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1555                 if (err)
1556                         break;
1557         } while (pgd++, addr = next, addr != end);
1558         return err;
1559 }
1560 EXPORT_SYMBOL_GPL(apply_to_page_range);
1561
1562 /*
1563  * handle_pte_fault chooses page fault handler according to an entry
1564  * which was read non-atomically.  Before making any commitment, on
1565  * those architectures or configurations (e.g. i386 with PAE) which
1566  * might give a mix of unmatched parts, do_swap_page and do_file_page
1567  * must check under lock before unmapping the pte and proceeding
1568  * (but do_wp_page is only called after already making such a check;
1569  * and do_anonymous_page and do_no_page can safely check later on).
1570  */
1571 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1572                                 pte_t *page_table, pte_t orig_pte)
1573 {
1574         int same = 1;
1575 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1576         if (sizeof(pte_t) > sizeof(unsigned long)) {
1577                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1578                 spin_lock(ptl);
1579                 same = pte_same(*page_table, orig_pte);
1580                 spin_unlock(ptl);
1581         }
1582 #endif
1583         pte_unmap(page_table);
1584         return same;
1585 }
1586
1587 /*
1588  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1589  * servicing faults for write access.  In the normal case, do always want
1590  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1591  * that do not have writing enabled, when used by access_process_vm.
1592  */
1593 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1594 {
1595         if (likely(vma->vm_flags & VM_WRITE))
1596                 pte = pte_mkwrite(pte);
1597         return pte;
1598 }
1599
1600 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1601 {
1602         /*
1603          * If the source page was a PFN mapping, we don't have
1604          * a "struct page" for it. We do a best-effort copy by
1605          * just copying from the original user address. If that
1606          * fails, we just zero-fill it. Live with it.
1607          */
1608         if (unlikely(!src)) {
1609                 void *kaddr = kmap_atomic(dst, KM_USER0);
1610                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1611
1612                 /*
1613                  * This really shouldn't fail, because the page is there
1614                  * in the page tables. But it might just be unreadable,
1615                  * in which case we just give up and fill the result with
1616                  * zeroes.
1617                  */
1618                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1619                         memset(kaddr, 0, PAGE_SIZE);
1620                 kunmap_atomic(kaddr, KM_USER0);
1621                 flush_dcache_page(dst);
1622         } else
1623                 copy_user_highpage(dst, src, va, vma);
1624 }
1625
1626 /*
1627  * This routine handles present pages, when users try to write
1628  * to a shared page. It is done by copying the page to a new address
1629  * and decrementing the shared-page counter for the old page.
1630  *
1631  * Note that this routine assumes that the protection checks have been
1632  * done by the caller (the low-level page fault routine in most cases).
1633  * Thus we can safely just mark it writable once we've done any necessary
1634  * COW.
1635  *
1636  * We also mark the page dirty at this point even though the page will
1637  * change only once the write actually happens. This avoids a few races,
1638  * and potentially makes it more efficient.
1639  *
1640  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1641  * but allow concurrent faults), with pte both mapped and locked.
1642  * We return with mmap_sem still held, but pte unmapped and unlocked.
1643  */
1644 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1645                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1646                 spinlock_t *ptl, pte_t orig_pte)
1647 {
1648         struct page *old_page, *new_page;
1649         pte_t entry;
1650         int reuse = 0, ret = 0;
1651         int page_mkwrite = 0;
1652         struct page *dirty_page = NULL;
1653
1654         old_page = vm_normal_page(vma, address, orig_pte);
1655         if (!old_page)
1656                 goto gotten;
1657
1658         /*
1659          * Take out anonymous pages first, anonymous shared vmas are
1660          * not dirty accountable.
1661          */
1662         if (PageAnon(old_page)) {
1663                 if (!TestSetPageLocked(old_page)) {
1664                         reuse = can_share_swap_page(old_page);
1665                         unlock_page(old_page);
1666                 }
1667         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1668                                         (VM_WRITE|VM_SHARED))) {
1669                 /*
1670                  * Only catch write-faults on shared writable pages,
1671                  * read-only shared pages can get COWed by
1672                  * get_user_pages(.write=1, .force=1).
1673                  */
1674                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1675                         /*
1676                          * Notify the address space that the page is about to
1677                          * become writable so that it can prohibit this or wait
1678                          * for the page to get into an appropriate state.
1679                          *
1680                          * We do this without the lock held, so that it can
1681                          * sleep if it needs to.
1682                          */
1683                         page_cache_get(old_page);
1684                         pte_unmap_unlock(page_table, ptl);
1685
1686                         if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1687                                 goto unwritable_page;
1688
1689                         /*
1690                          * Since we dropped the lock we need to revalidate
1691                          * the PTE as someone else may have changed it.  If
1692                          * they did, we just return, as we can count on the
1693                          * MMU to tell us if they didn't also make it writable.
1694                          */
1695                         page_table = pte_offset_map_lock(mm, pmd, address,
1696                                                          &ptl);
1697                         page_cache_release(old_page);
1698                         if (!pte_same(*page_table, orig_pte))
1699                                 goto unlock;
1700
1701                         page_mkwrite = 1;
1702                 }
1703                 dirty_page = old_page;
1704                 get_page(dirty_page);
1705                 reuse = 1;
1706         }
1707
1708         if (reuse) {
1709                 flush_cache_page(vma, address, pte_pfn(orig_pte));
1710                 entry = pte_mkyoung(orig_pte);
1711                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1712                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1713                         update_mmu_cache(vma, address, entry);
1714                 ret |= VM_FAULT_WRITE;
1715                 goto unlock;
1716         }
1717
1718         /*
1719          * Ok, we need to copy. Oh, well..
1720          */
1721         page_cache_get(old_page);
1722 gotten:
1723         pte_unmap_unlock(page_table, ptl);
1724
1725         if (unlikely(anon_vma_prepare(vma)))
1726                 goto oom;
1727         VM_BUG_ON(old_page == ZERO_PAGE(0));
1728         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1729         if (!new_page)
1730                 goto oom;
1731         cow_user_page(new_page, old_page, address, vma);
1732         __SetPageUptodate(new_page);
1733
1734         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1735                 goto oom_free_new;
1736
1737         /*
1738          * Re-check the pte - we dropped the lock
1739          */
1740         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1741         if (likely(pte_same(*page_table, orig_pte))) {
1742                 if (old_page) {
1743                         page_remove_rmap(old_page, vma);
1744                         if (!PageAnon(old_page)) {
1745                                 dec_mm_counter(mm, file_rss);
1746                                 inc_mm_counter(mm, anon_rss);
1747                         }
1748                 } else
1749                         inc_mm_counter(mm, anon_rss);
1750                 flush_cache_page(vma, address, pte_pfn(orig_pte));
1751                 entry = mk_pte(new_page, vma->vm_page_prot);
1752                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1753                 /*
1754                  * Clear the pte entry and flush it first, before updating the
1755                  * pte with the new entry. This will avoid a race condition
1756                  * seen in the presence of one thread doing SMC and another
1757                  * thread doing COW.
1758                  */
1759                 ptep_clear_flush(vma, address, page_table);
1760                 set_pte_at(mm, address, page_table, entry);
1761                 update_mmu_cache(vma, address, entry);
1762                 lru_cache_add_active(new_page);
1763                 page_add_new_anon_rmap(new_page, vma, address);
1764
1765                 /* Free the old page.. */
1766                 new_page = old_page;
1767                 ret |= VM_FAULT_WRITE;
1768         } else
1769                 mem_cgroup_uncharge_page(new_page);
1770
1771         if (new_page)
1772                 page_cache_release(new_page);
1773         if (old_page)
1774                 page_cache_release(old_page);
1775 unlock:
1776         pte_unmap_unlock(page_table, ptl);
1777         if (dirty_page) {
1778                 if (vma->vm_file)
1779                         file_update_time(vma->vm_file);
1780
1781                 /*
1782                  * Yes, Virginia, this is actually required to prevent a race
1783                  * with clear_page_dirty_for_io() from clearing the page dirty
1784                  * bit after it clear all dirty ptes, but before a racing
1785                  * do_wp_page installs a dirty pte.
1786                  *
1787                  * do_no_page is protected similarly.
1788                  */
1789                 wait_on_page_locked(dirty_page);
1790                 set_page_dirty_balance(dirty_page, page_mkwrite);
1791                 put_page(dirty_page);
1792         }
1793         return ret;
1794 oom_free_new:
1795         page_cache_release(new_page);
1796 oom:
1797         if (old_page)
1798                 page_cache_release(old_page);
1799         return VM_FAULT_OOM;
1800
1801 unwritable_page:
1802         page_cache_release(old_page);
1803         return VM_FAULT_SIGBUS;
1804 }
1805
1806 /*
1807  * Helper functions for unmap_mapping_range().
1808  *
1809  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1810  *
1811  * We have to restart searching the prio_tree whenever we drop the lock,
1812  * since the iterator is only valid while the lock is held, and anyway
1813  * a later vma might be split and reinserted earlier while lock dropped.
1814  *
1815  * The list of nonlinear vmas could be handled more efficiently, using
1816  * a placeholder, but handle it in the same way until a need is shown.
1817  * It is important to search the prio_tree before nonlinear list: a vma
1818  * may become nonlinear and be shifted from prio_tree to nonlinear list
1819  * while the lock is dropped; but never shifted from list to prio_tree.
1820  *
1821  * In order to make forward progress despite restarting the search,
1822  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1823  * quickly skip it next time around.  Since the prio_tree search only
1824  * shows us those vmas affected by unmapping the range in question, we
1825  * can't efficiently keep all vmas in step with mapping->truncate_count:
1826  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1827  * mapping->truncate_count and vma->vm_truncate_count are protected by
1828  * i_mmap_lock.
1829  *
1830  * In order to make forward progress despite repeatedly restarting some
1831  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1832  * and restart from that address when we reach that vma again.  It might
1833  * have been split or merged, shrunk or extended, but never shifted: so
1834  * restart_addr remains valid so long as it remains in the vma's range.
1835  * unmap_mapping_range forces truncate_count to leap over page-aligned
1836  * values so we can save vma's restart_addr in its truncate_count field.
1837  */
1838 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1839
1840 static void reset_vma_truncate_counts(struct address_space *mapping)
1841 {
1842         struct vm_area_struct *vma;
1843         struct prio_tree_iter iter;
1844
1845         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1846                 vma->vm_truncate_count = 0;
1847         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1848                 vma->vm_truncate_count = 0;
1849 }
1850
1851 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1852                 unsigned long start_addr, unsigned long end_addr,
1853                 struct zap_details *details)
1854 {
1855         unsigned long restart_addr;
1856         int need_break;
1857
1858         /*
1859          * files that support invalidating or truncating portions of the
1860          * file from under mmaped areas must have their ->fault function
1861          * return a locked page (and set VM_FAULT_LOCKED in the return).
1862          * This provides synchronisation against concurrent unmapping here.
1863          */
1864
1865 again:
1866         restart_addr = vma->vm_truncate_count;
1867         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1868                 start_addr = restart_addr;
1869                 if (start_addr >= end_addr) {
1870                         /* Top of vma has been split off since last time */
1871                         vma->vm_truncate_count = details->truncate_count;
1872                         return 0;
1873                 }
1874         }
1875
1876         restart_addr = zap_page_range(vma, start_addr,
1877                                         end_addr - start_addr, details);
1878         need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1879
1880         if (restart_addr >= end_addr) {
1881                 /* We have now completed this vma: mark it so */
1882                 vma->vm_truncate_count = details->truncate_count;
1883                 if (!need_break)
1884                         return 0;
1885         } else {
1886                 /* Note restart_addr in vma's truncate_count field */
1887                 vma->vm_truncate_count = restart_addr;
1888                 if (!need_break)
1889                         goto again;
1890         }
1891
1892         spin_unlock(details->i_mmap_lock);
1893         cond_resched();
1894         spin_lock(details->i_mmap_lock);
1895         return -EINTR;
1896 }
1897
1898 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1899                                             struct zap_details *details)
1900 {
1901         struct vm_area_struct *vma;
1902         struct prio_tree_iter iter;
1903         pgoff_t vba, vea, zba, zea;
1904
1905 restart:
1906         vma_prio_tree_foreach(vma, &iter, root,
1907                         details->first_index, details->last_index) {
1908                 /* Skip quickly over those we have already dealt with */
1909                 if (vma->vm_truncate_count == details->truncate_count)
1910                         continue;
1911
1912                 vba = vma->vm_pgoff;
1913                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1914                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1915                 zba = details->first_index;
1916                 if (zba < vba)
1917                         zba = vba;
1918                 zea = details->last_index;
1919                 if (zea > vea)
1920                         zea = vea;
1921
1922                 if (unmap_mapping_range_vma(vma,
1923                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1924                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1925                                 details) < 0)
1926                         goto restart;
1927         }
1928 }
1929
1930 static inline void unmap_mapping_range_list(struct list_head *head,
1931                                             struct zap_details *details)
1932 {
1933         struct vm_area_struct *vma;
1934
1935         /*
1936          * In nonlinear VMAs there is no correspondence between virtual address
1937          * offset and file offset.  So we must perform an exhaustive search
1938          * across *all* the pages in each nonlinear VMA, not just the pages
1939          * whose virtual address lies outside the file truncation point.
1940          */
1941 restart:
1942         list_for_each_entry(vma, head, shared.vm_set.list) {
1943                 /* Skip quickly over those we have already dealt with */
1944                 if (vma->vm_truncate_count == details->truncate_count)
1945                         continue;
1946                 details->nonlinear_vma = vma;
1947                 if (unmap_mapping_range_vma(vma, vma->vm_start,
1948                                         vma->vm_end, details) < 0)
1949                         goto restart;
1950         }
1951 }
1952
1953 /**
1954  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1955  * @mapping: the address space containing mmaps to be unmapped.
1956  * @holebegin: byte in first page to unmap, relative to the start of
1957  * the underlying file.  This will be rounded down to a PAGE_SIZE
1958  * boundary.  Note that this is different from vmtruncate(), which
1959  * must keep the partial page.  In contrast, we must get rid of
1960  * partial pages.
1961  * @holelen: size of prospective hole in bytes.  This will be rounded
1962  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1963  * end of the file.
1964  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1965  * but 0 when invalidating pagecache, don't throw away private data.
1966  */
1967 void unmap_mapping_range(struct address_space *mapping,
1968                 loff_t const holebegin, loff_t const holelen, int even_cows)
1969 {
1970         struct zap_details details;
1971         pgoff_t hba = holebegin >> PAGE_SHIFT;
1972         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1973
1974         /* Check for overflow. */
1975         if (sizeof(holelen) > sizeof(hlen)) {
1976                 long long holeend =
1977                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1978                 if (holeend & ~(long long)ULONG_MAX)
1979                         hlen = ULONG_MAX - hba + 1;
1980         }
1981
1982         details.check_mapping = even_cows? NULL: mapping;
1983         details.nonlinear_vma = NULL;
1984         details.first_index = hba;
1985         details.last_index = hba + hlen - 1;
1986         if (details.last_index < details.first_index)
1987                 details.last_index = ULONG_MAX;
1988         details.i_mmap_lock = &mapping->i_mmap_lock;
1989
1990         spin_lock(&mapping->i_mmap_lock);
1991
1992         /* Protect against endless unmapping loops */
1993         mapping->truncate_count++;
1994         if (unlikely(is_restart_addr(mapping->truncate_count))) {
1995                 if (mapping->truncate_count == 0)
1996                         reset_vma_truncate_counts(mapping);
1997                 mapping->truncate_count++;
1998         }
1999         details.truncate_count = mapping->truncate_count;
2000
2001         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2002                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2003         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2004                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2005         spin_unlock(&mapping->i_mmap_lock);
2006 }
2007 EXPORT_SYMBOL(unmap_mapping_range);
2008
2009 /**
2010  * vmtruncate - unmap mappings "freed" by truncate() syscall
2011  * @inode: inode of the file used
2012  * @offset: file offset to start truncating
2013  *
2014  * NOTE! We have to be ready to update the memory sharing
2015  * between the file and the memory map for a potential last
2016  * incomplete page.  Ugly, but necessary.
2017  */
2018 int vmtruncate(struct inode * inode, loff_t offset)
2019 {
2020         if (inode->i_size < offset) {
2021                 unsigned long limit;
2022
2023                 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2024                 if (limit != RLIM_INFINITY && offset > limit)
2025                         goto out_sig;
2026                 if (offset > inode->i_sb->s_maxbytes)
2027                         goto out_big;
2028                 i_size_write(inode, offset);
2029         } else {
2030                 struct address_space *mapping = inode->i_mapping;
2031
2032                 /*
2033                  * truncation of in-use swapfiles is disallowed - it would
2034                  * cause subsequent swapout to scribble on the now-freed
2035                  * blocks.
2036                  */
2037                 if (IS_SWAPFILE(inode))
2038                         return -ETXTBSY;
2039                 i_size_write(inode, offset);
2040
2041                 /*
2042                  * unmap_mapping_range is called twice, first simply for
2043                  * efficiency so that truncate_inode_pages does fewer
2044                  * single-page unmaps.  However after this first call, and
2045                  * before truncate_inode_pages finishes, it is possible for
2046                  * private pages to be COWed, which remain after
2047                  * truncate_inode_pages finishes, hence the second
2048                  * unmap_mapping_range call must be made for correctness.
2049                  */
2050                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2051                 truncate_inode_pages(mapping, offset);
2052                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2053         }
2054
2055         if (inode->i_op && inode->i_op->truncate)
2056                 inode->i_op->truncate(inode);
2057         return 0;
2058
2059 out_sig:
2060         send_sig(SIGXFSZ, current, 0);
2061 out_big:
2062         return -EFBIG;
2063 }
2064 EXPORT_SYMBOL(vmtruncate);
2065
2066 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2067 {
2068         struct address_space *mapping = inode->i_mapping;
2069
2070         /*
2071          * If the underlying filesystem is not going to provide
2072          * a way to truncate a range of blocks (punch a hole) -
2073          * we should return failure right now.
2074          */
2075         if (!inode->i_op || !inode->i_op->truncate_range)
2076                 return -ENOSYS;
2077
2078         mutex_lock(&inode->i_mutex);
2079         down_write(&inode->i_alloc_sem);
2080         unmap_mapping_range(mapping, offset, (end - offset), 1);
2081         truncate_inode_pages_range(mapping, offset, end);
2082         unmap_mapping_range(mapping, offset, (end - offset), 1);
2083         inode->i_op->truncate_range(inode, offset, end);
2084         up_write(&inode->i_alloc_sem);
2085         mutex_unlock(&inode->i_mutex);
2086
2087         return 0;
2088 }
2089
2090 /*
2091  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2092  * but allow concurrent faults), and pte mapped but not yet locked.
2093  * We return with mmap_sem still held, but pte unmapped and unlocked.
2094  */
2095 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2096                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2097                 int write_access, pte_t orig_pte)
2098 {
2099         spinlock_t *ptl;
2100         struct page *page;
2101         swp_entry_t entry;
2102         pte_t pte;
2103         int ret = 0;
2104
2105         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2106                 goto out;
2107
2108         entry = pte_to_swp_entry(orig_pte);
2109         if (is_migration_entry(entry)) {
2110                 migration_entry_wait(mm, pmd, address);
2111                 goto out;
2112         }
2113         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2114         page = lookup_swap_cache(entry);
2115         if (!page) {
2116                 grab_swap_token(); /* Contend for token _before_ read-in */
2117                 page = swapin_readahead(entry,
2118                                         GFP_HIGHUSER_MOVABLE, vma, address);
2119                 if (!page) {
2120                         /*
2121                          * Back out if somebody else faulted in this pte
2122                          * while we released the pte lock.
2123                          */
2124                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2125                         if (likely(pte_same(*page_table, orig_pte)))
2126                                 ret = VM_FAULT_OOM;
2127                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2128                         goto unlock;
2129                 }
2130
2131                 /* Had to read the page from swap area: Major fault */
2132                 ret = VM_FAULT_MAJOR;
2133                 count_vm_event(PGMAJFAULT);
2134         }
2135
2136         if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2137                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2138                 ret = VM_FAULT_OOM;
2139                 goto out;
2140         }
2141
2142         mark_page_accessed(page);
2143         lock_page(page);
2144         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2145
2146         /*
2147          * Back out if somebody else already faulted in this pte.
2148          */
2149         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2150         if (unlikely(!pte_same(*page_table, orig_pte)))
2151                 goto out_nomap;
2152
2153         if (unlikely(!PageUptodate(page))) {
2154                 ret = VM_FAULT_SIGBUS;
2155                 goto out_nomap;
2156         }
2157
2158         /* The page isn't present yet, go ahead with the fault. */
2159
2160         inc_mm_counter(mm, anon_rss);
2161         pte = mk_pte(page, vma->vm_page_prot);
2162         if (write_access && can_share_swap_page(page)) {
2163                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2164                 write_access = 0;
2165         }
2166
2167         flush_icache_page(vma, page);
2168         set_pte_at(mm, address, page_table, pte);
2169         page_add_anon_rmap(page, vma, address);
2170
2171         swap_free(entry);
2172         if (vm_swap_full())
2173                 remove_exclusive_swap_page(page);
2174         unlock_page(page);
2175
2176         if (write_access) {
2177                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2178                 if (ret & VM_FAULT_ERROR)
2179                         ret &= VM_FAULT_ERROR;
2180                 goto out;
2181         }
2182
2183         /* No need to invalidate - it was non-present before */
2184         update_mmu_cache(vma, address, pte);
2185 unlock:
2186         pte_unmap_unlock(page_table, ptl);
2187 out:
2188         return ret;
2189 out_nomap:
2190         mem_cgroup_uncharge_page(page);
2191         pte_unmap_unlock(page_table, ptl);
2192         unlock_page(page);
2193         page_cache_release(page);
2194         return ret;
2195 }
2196
2197 /*
2198  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2199  * but allow concurrent faults), and pte mapped but not yet locked.
2200  * We return with mmap_sem still held, but pte unmapped and unlocked.
2201  */
2202 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2203                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2204                 int write_access)
2205 {
2206         struct page *page;
2207         spinlock_t *ptl;
2208         pte_t entry;
2209
2210         /* Allocate our own private page. */
2211         pte_unmap(page_table);
2212
2213         if (unlikely(anon_vma_prepare(vma)))
2214                 goto oom;
2215         page = alloc_zeroed_user_highpage_movable(vma, address);
2216         if (!page)
2217                 goto oom;
2218         __SetPageUptodate(page);
2219
2220         if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2221                 goto oom_free_page;
2222
2223         entry = mk_pte(page, vma->vm_page_prot);
2224         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2225
2226         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2227         if (!pte_none(*page_table))
2228                 goto release;
2229         inc_mm_counter(mm, anon_rss);
2230         lru_cache_add_active(page);
2231         page_add_new_anon_rmap(page, vma, address);
2232         set_pte_at(mm, address, page_table, entry);
2233
2234         /* No need to invalidate - it was non-present before */
2235         update_mmu_cache(vma, address, entry);
2236 unlock:
2237         pte_unmap_unlock(page_table, ptl);
2238         return 0;
2239 release:
2240         mem_cgroup_uncharge_page(page);
2241         page_cache_release(page);
2242         goto unlock;
2243 oom_free_page:
2244         page_cache_release(page);
2245 oom:
2246         return VM_FAULT_OOM;
2247 }
2248
2249 /*
2250  * __do_fault() tries to create a new page mapping. It aggressively
2251  * tries to share with existing pages, but makes a separate copy if
2252  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2253  * the next page fault.
2254  *
2255  * As this is called only for pages that do not currently exist, we
2256  * do not need to flush old virtual caches or the TLB.
2257  *
2258  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2259  * but allow concurrent faults), and pte neither mapped nor locked.
2260  * We return with mmap_sem still held, but pte unmapped and unlocked.
2261  */
2262 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2263                 unsigned long address, pmd_t *pmd,
2264                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2265 {
2266         pte_t *page_table;
2267         spinlock_t *ptl;
2268         struct page *page;
2269         pte_t entry;
2270         int anon = 0;
2271         struct page *dirty_page = NULL;
2272         struct vm_fault vmf;
2273         int ret;
2274         int page_mkwrite = 0;
2275
2276         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2277         vmf.pgoff = pgoff;
2278         vmf.flags = flags;
2279         vmf.page = NULL;
2280
2281         BUG_ON(vma->vm_flags & VM_PFNMAP);
2282
2283         ret = vma->vm_ops->fault(vma, &vmf);
2284         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2285                 return ret;
2286
2287         /*
2288          * For consistency in subsequent calls, make the faulted page always
2289          * locked.
2290          */
2291         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2292                 lock_page(vmf.page);
2293         else
2294                 VM_BUG_ON(!PageLocked(vmf.page));
2295
2296         /*
2297          * Should we do an early C-O-W break?
2298          */
2299         page = vmf.page;
2300         if (flags & FAULT_FLAG_WRITE) {
2301                 if (!(vma->vm_flags & VM_SHARED)) {
2302                         anon = 1;
2303                         if (unlikely(anon_vma_prepare(vma))) {
2304                                 ret = VM_FAULT_OOM;
2305                                 goto out;
2306                         }
2307                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2308                                                 vma, address);
2309                         if (!page) {
2310                                 ret = VM_FAULT_OOM;
2311                                 goto out;
2312                         }
2313                         copy_user_highpage(page, vmf.page, address, vma);
2314                         __SetPageUptodate(page);
2315                 } else {
2316                         /*
2317                          * If the page will be shareable, see if the backing
2318                          * address space wants to know that the page is about
2319                          * to become writable
2320                          */
2321                         if (vma->vm_ops->page_mkwrite) {
2322                                 unlock_page(page);
2323                                 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2324                                         ret = VM_FAULT_SIGBUS;
2325                                         anon = 1; /* no anon but release vmf.page */
2326                                         goto out_unlocked;
2327                                 }
2328                                 lock_page(page);
2329                                 /*
2330                                  * XXX: this is not quite right (racy vs
2331                                  * invalidate) to unlock and relock the page
2332                                  * like this, however a better fix requires
2333                                  * reworking page_mkwrite locking API, which
2334                                  * is better done later.
2335                                  */
2336                                 if (!page->mapping) {
2337                                         ret = 0;
2338                                         anon = 1; /* no anon but release vmf.page */
2339                                         goto out;
2340                                 }
2341                                 page_mkwrite = 1;
2342                         }
2343                 }
2344
2345         }
2346
2347         if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2348                 ret = VM_FAULT_OOM;
2349                 goto out;
2350         }
2351
2352         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2353
2354         /*
2355          * This silly early PAGE_DIRTY setting removes a race
2356          * due to the bad i386 page protection. But it's valid
2357          * for other architectures too.
2358          *
2359          * Note that if write_access is true, we either now have
2360          * an exclusive copy of the page, or this is a shared mapping,
2361          * so we can make it writable and dirty to avoid having to
2362          * handle that later.
2363          */
2364         /* Only go through if we didn't race with anybody else... */
2365         if (likely(pte_same(*page_table, orig_pte))) {
2366                 flush_icache_page(vma, page);
2367                 entry = mk_pte(page, vma->vm_page_prot);
2368                 if (flags & FAULT_FLAG_WRITE)
2369                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2370                 set_pte_at(mm, address, page_table, entry);
2371                 if (anon) {
2372                         inc_mm_counter(mm, anon_rss);
2373                         lru_cache_add_active(page);
2374                         page_add_new_anon_rmap(page, vma, address);
2375                 } else {
2376                         inc_mm_counter(mm, file_rss);
2377                         page_add_file_rmap(page);
2378                         if (flags & FAULT_FLAG_WRITE) {
2379                                 dirty_page = page;
2380                                 get_page(dirty_page);
2381                         }
2382                 }
2383
2384                 /* no need to invalidate: a not-present page won't be cached */
2385                 update_mmu_cache(vma, address, entry);
2386         } else {
2387                 mem_cgroup_uncharge_page(page);
2388                 if (anon)
2389                         page_cache_release(page);
2390                 else
2391                         anon = 1; /* no anon but release faulted_page */
2392         }
2393
2394         pte_unmap_unlock(page_table, ptl);
2395
2396 out:
2397         unlock_page(vmf.page);
2398 out_unlocked:
2399         if (anon)
2400                 page_cache_release(vmf.page);
2401         else if (dirty_page) {
2402                 if (vma->vm_file)
2403                         file_update_time(vma->vm_file);
2404
2405                 set_page_dirty_balance(dirty_page, page_mkwrite);
2406                 put_page(dirty_page);
2407         }
2408
2409         return ret;
2410 }
2411
2412 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2413                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2414                 int write_access, pte_t orig_pte)
2415 {
2416         pgoff_t pgoff = (((address & PAGE_MASK)
2417                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2418         unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2419
2420         pte_unmap(page_table);
2421         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2422 }
2423
2424
2425 /*
2426  * do_no_pfn() tries to create a new page mapping for a page without
2427  * a struct_page backing it
2428  *
2429  * As this is called only for pages that do not currently exist, we
2430  * do not need to flush old virtual caches or the TLB.
2431  *
2432  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2433  * but allow concurrent faults), and pte mapped but not yet locked.
2434  * We return with mmap_sem still held, but pte unmapped and unlocked.
2435  *
2436  * It is expected that the ->nopfn handler always returns the same pfn
2437  * for a given virtual mapping.
2438  *
2439  * Mark this `noinline' to prevent it from bloating the main pagefault code.
2440  */
2441 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2442                      unsigned long address, pte_t *page_table, pmd_t *pmd,
2443                      int write_access)
2444 {
2445         spinlock_t *ptl;
2446         pte_t entry;
2447         unsigned long pfn;
2448
2449         pte_unmap(page_table);
2450         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2451         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2452
2453         pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2454
2455         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2456
2457         if (unlikely(pfn == NOPFN_OOM))
2458                 return VM_FAULT_OOM;
2459         else if (unlikely(pfn == NOPFN_SIGBUS))
2460                 return VM_FAULT_SIGBUS;
2461         else if (unlikely(pfn == NOPFN_REFAULT))
2462                 return 0;
2463
2464         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2465
2466         /* Only go through if we didn't race with anybody else... */
2467         if (pte_none(*page_table)) {
2468                 entry = pfn_pte(pfn, vma->vm_page_prot);
2469                 if (write_access)
2470                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2471                 set_pte_at(mm, address, page_table, entry);
2472         }
2473         pte_unmap_unlock(page_table, ptl);
2474         return 0;
2475 }
2476
2477 /*
2478  * Fault of a previously existing named mapping. Repopulate the pte
2479  * from the encoded file_pte if possible. This enables swappable
2480  * nonlinear vmas.
2481  *
2482  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2483  * but allow concurrent faults), and pte mapped but not yet locked.
2484  * We return with mmap_sem still held, but pte unmapped and unlocked.
2485  */
2486 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2487                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2488                 int write_access, pte_t orig_pte)
2489 {
2490         unsigned int flags = FAULT_FLAG_NONLINEAR |
2491                                 (write_access ? FAULT_FLAG_WRITE : 0);
2492         pgoff_t pgoff;
2493
2494         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2495                 return 0;
2496
2497         if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2498                         !(vma->vm_flags & VM_CAN_NONLINEAR))) {
2499                 /*
2500                  * Page table corrupted: show pte and kill process.
2501                  */
2502                 print_bad_pte(vma, orig_pte, address);
2503                 return VM_FAULT_OOM;
2504         }
2505
2506         pgoff = pte_to_pgoff(orig_pte);
2507         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2508 }
2509
2510 /*
2511  * These routines also need to handle stuff like marking pages dirty
2512  * and/or accessed for architectures that don't do it in hardware (most
2513  * RISC architectures).  The early dirtying is also good on the i386.
2514  *
2515  * There is also a hook called "update_mmu_cache()" that architectures
2516  * with external mmu caches can use to update those (ie the Sparc or
2517  * PowerPC hashed page tables that act as extended TLBs).
2518  *
2519  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2520  * but allow concurrent faults), and pte mapped but not yet locked.
2521  * We return with mmap_sem still held, but pte unmapped and unlocked.
2522  */
2523 static inline int handle_pte_fault(struct mm_struct *mm,
2524                 struct vm_area_struct *vma, unsigned long address,
2525                 pte_t *pte, pmd_t *pmd, int write_access)
2526 {
2527         pte_t entry;
2528         spinlock_t *ptl;
2529
2530         entry = *pte;
2531         if (!pte_present(entry)) {
2532                 if (pte_none(entry)) {
2533                         if (vma->vm_ops) {
2534                                 if (likely(vma->vm_ops->fault))
2535                                         return do_linear_fault(mm, vma, address,
2536                                                 pte, pmd, write_access, entry);
2537                                 if (unlikely(vma->vm_ops->nopfn))
2538                                         return do_no_pfn(mm, vma, address, pte,
2539                                                          pmd, write_access);
2540                         }
2541                         return do_anonymous_page(mm, vma, address,
2542                                                  pte, pmd, write_access);
2543                 }
2544                 if (pte_file(entry))
2545                         return do_nonlinear_fault(mm, vma, address,
2546                                         pte, pmd, write_access, entry);
2547                 return do_swap_page(mm, vma, address,
2548                                         pte, pmd, write_access, entry);
2549         }
2550
2551         ptl = pte_lockptr(mm, pmd);
2552         spin_lock(ptl);
2553         if (unlikely(!pte_same(*pte, entry)))
2554                 goto unlock;
2555         if (write_access) {
2556                 if (!pte_write(entry))
2557                         return do_wp_page(mm, vma, address,
2558                                         pte, pmd, ptl, entry);
2559                 entry = pte_mkdirty(entry);
2560         }
2561         entry = pte_mkyoung(entry);
2562         if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2563                 update_mmu_cache(vma, address, entry);
2564         } else {
2565                 /*
2566                  * This is needed only for protection faults but the arch code
2567                  * is not yet telling us if this is a protection fault or not.
2568                  * This still avoids useless tlb flushes for .text page faults
2569                  * with threads.
2570                  */
2571                 if (write_access)
2572                         flush_tlb_page(vma, address);
2573         }
2574 unlock:
2575         pte_unmap_unlock(pte, ptl);
2576         return 0;
2577 }
2578
2579 /*
2580  * By the time we get here, we already hold the mm semaphore
2581  */
2582 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2583                 unsigned long address, int write_access)
2584 {
2585         pgd_t *pgd;
2586         pud_t *pud;
2587         pmd_t *pmd;
2588         pte_t *pte;
2589
2590         __set_current_state(TASK_RUNNING);
2591
2592         count_vm_event(PGFAULT);
2593
2594         if (unlikely(is_vm_hugetlb_page(vma)))
2595                 return hugetlb_fault(mm, vma, address, write_access);
2596
2597         pgd = pgd_offset(mm, address);
2598         pud = pud_alloc(mm, pgd, address);
2599         if (!pud)
2600                 return VM_FAULT_OOM;
2601         pmd = pmd_alloc(mm, pud, address);
2602         if (!pmd)
2603                 return VM_FAULT_OOM;
2604         pte = pte_alloc_map(mm, pmd, address);
2605         if (!pte)
2606                 return VM_FAULT_OOM;
2607
2608         return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2609 }
2610
2611 #ifndef __PAGETABLE_PUD_FOLDED
2612 /*
2613  * Allocate page upper directory.
2614  * We've already handled the fast-path in-line.
2615  */
2616 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2617 {
2618         pud_t *new = pud_alloc_one(mm, address);
2619         if (!new)
2620                 return -ENOMEM;
2621
2622         spin_lock(&mm->page_table_lock);
2623         if (pgd_present(*pgd))          /* Another has populated it */
2624                 pud_free(mm, new);
2625         else
2626                 pgd_populate(mm, pgd, new);
2627         spin_unlock(&mm->page_table_lock);
2628         return 0;
2629 }
2630 #endif /* __PAGETABLE_PUD_FOLDED */
2631
2632 #ifndef __PAGETABLE_PMD_FOLDED
2633 /*
2634  * Allocate page middle directory.
2635  * We've already handled the fast-path in-line.
2636  */
2637 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2638 {
2639         pmd_t *new = pmd_alloc_one(mm, address);
2640         if (!new)
2641                 return -ENOMEM;
2642
2643         spin_lock(&mm->page_table_lock);
2644 #ifndef __ARCH_HAS_4LEVEL_HACK
2645         if (pud_present(*pud))          /* Another has populated it */
2646                 pmd_free(mm, new);
2647         else
2648                 pud_populate(mm, pud, new);
2649 #else
2650         if (pgd_present(*pud))          /* Another has populated it */
2651                 pmd_free(mm, new);
2652         else
2653                 pgd_populate(mm, pud, new);
2654 #endif /* __ARCH_HAS_4LEVEL_HACK */
2655         spin_unlock(&mm->page_table_lock);
2656         return 0;
2657 }
2658 #endif /* __PAGETABLE_PMD_FOLDED */
2659
2660 int make_pages_present(unsigned long addr, unsigned long end)
2661 {
2662         int ret, len, write;
2663         struct vm_area_struct * vma;
2664
2665         vma = find_vma(current->mm, addr);
2666         if (!vma)
2667                 return -1;
2668         write = (vma->vm_flags & VM_WRITE) != 0;
2669         BUG_ON(addr >= end);
2670         BUG_ON(end > vma->vm_end);
2671         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2672         ret = get_user_pages(current, current->mm, addr,
2673                         len, write, 0, NULL, NULL);
2674         if (ret < 0)
2675                 return ret;
2676         return ret == len ? 0 : -1;
2677 }
2678
2679 #if !defined(__HAVE_ARCH_GATE_AREA)
2680
2681 #if defined(AT_SYSINFO_EHDR)
2682 static struct vm_area_struct gate_vma;
2683
2684 static int __init gate_vma_init(void)
2685 {
2686         gate_vma.vm_mm = NULL;
2687         gate_vma.vm_start = FIXADDR_USER_START;
2688         gate_vma.vm_end = FIXADDR_USER_END;
2689         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2690         gate_vma.vm_page_prot = __P101;
2691         /*
2692          * Make sure the vDSO gets into every core dump.
2693          * Dumping its contents makes post-mortem fully interpretable later
2694          * without matching up the same kernel and hardware config to see
2695          * what PC values meant.
2696          */
2697         gate_vma.vm_flags |= VM_ALWAYSDUMP;
2698         return 0;
2699 }
2700 __initcall(gate_vma_init);
2701 #endif
2702
2703 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2704 {
2705 #ifdef AT_SYSINFO_EHDR
2706         return &gate_vma;
2707 #else
2708         return NULL;
2709 #endif
2710 }
2711
2712 int in_gate_area_no_task(unsigned long addr)
2713 {
2714 #ifdef AT_SYSINFO_EHDR
2715         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2716                 return 1;
2717 #endif
2718         return 0;
2719 }
2720
2721 #endif  /* __HAVE_ARCH_GATE_AREA */
2722
2723 /*
2724  * Access another process' address space.
2725  * Source/target buffer must be kernel space,
2726  * Do not walk the page table directly, use get_user_pages
2727  */
2728 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2729 {
2730         struct mm_struct *mm;
2731         struct vm_area_struct *vma;
2732         struct page *page;
2733         void *old_buf = buf;
2734
2735         mm = get_task_mm(tsk);
2736         if (!mm)
2737                 return 0;
2738
2739         down_read(&mm->mmap_sem);
2740         /* ignore errors, just check how much was successfully transferred */
2741         while (len) {
2742                 int bytes, ret, offset;
2743                 void *maddr;
2744
2745                 ret = get_user_pages(tsk, mm, addr, 1,
2746                                 write, 1, &page, &vma);
2747                 if (ret <= 0)
2748                         break;
2749
2750                 bytes = len;
2751                 offset = addr & (PAGE_SIZE-1);
2752                 if (bytes > PAGE_SIZE-offset)
2753                         bytes = PAGE_SIZE-offset;
2754
2755                 maddr = kmap(page);
2756                 if (write) {
2757                         copy_to_user_page(vma, page, addr,
2758                                           maddr + offset, buf, bytes);
2759                         set_page_dirty_lock(page);
2760                 } else {
2761                         copy_from_user_page(vma, page, addr,
2762                                             buf, maddr + offset, bytes);
2763                 }
2764                 kunmap(page);
2765                 page_cache_release(page);
2766                 len -= bytes;
2767                 buf += bytes;
2768                 addr += bytes;
2769         }
2770         up_read(&mm->mmap_sem);
2771         mmput(mm);
2772
2773         return buf - old_buf;
2774 }
2775
2776 /*
2777  * Print the name of a VMA.
2778  */
2779 void print_vma_addr(char *prefix, unsigned long ip)
2780 {
2781         struct mm_struct *mm = current->mm;
2782         struct vm_area_struct *vma;
2783
2784         /*
2785          * Do not print if we are in atomic
2786          * contexts (in exception stacks, etc.):
2787          */
2788         if (preempt_count())
2789                 return;
2790
2791         down_read(&mm->mmap_sem);
2792         vma = find_vma(mm, ip);
2793         if (vma && vma->vm_file) {
2794                 struct file *f = vma->vm_file;
2795                 char *buf = (char *)__get_free_page(GFP_KERNEL);
2796                 if (buf) {
2797                         char *p, *s;
2798
2799                         p = d_path(&f->f_path, buf, PAGE_SIZE);
2800                         if (IS_ERR(p))
2801                                 p = "?";
2802                         s = strrchr(p, '/');
2803                         if (s)
2804                                 p = s+1;
2805                         printk("%s%s[%lx+%lx]", prefix, p,
2806                                         vma->vm_start,
2807                                         vma->vm_end - vma->vm_start);
2808                         free_page((unsigned long)buf);
2809                 }
2810         }
2811         up_read(&current->mm->mmap_sem);
2812 }