4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
55 #include <asm/pgalloc.h>
56 #include <asm/uaccess.h>
58 #include <asm/tlbflush.h>
59 #include <asm/pgtable.h>
61 #include <linux/swapops.h>
62 #include <linux/elf.h>
64 #ifndef CONFIG_NEED_MULTIPLE_NODES
65 /* use the per-pgdat data instead for discontigmem - mbligh */
66 unsigned long max_mapnr;
69 EXPORT_SYMBOL(max_mapnr);
70 EXPORT_SYMBOL(mem_map);
73 unsigned long num_physpages;
75 * A number of key systems in x86 including ioremap() rely on the assumption
76 * that high_memory defines the upper bound on direct map memory, then end
77 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
78 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
83 EXPORT_SYMBOL(num_physpages);
84 EXPORT_SYMBOL(high_memory);
87 * Randomize the address space (stacks, mmaps, brk, etc.).
89 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
90 * as ancient (libc5 based) binaries can segfault. )
92 int randomize_va_space __read_mostly =
93 #ifdef CONFIG_COMPAT_BRK
99 static int __init disable_randmaps(char *s)
101 randomize_va_space = 0;
104 __setup("norandmaps", disable_randmaps);
108 * If a p?d_bad entry is found while walking page tables, report
109 * the error, before resetting entry to p?d_none. Usually (but
110 * very seldom) called out from the p?d_none_or_clear_bad macros.
113 void pgd_clear_bad(pgd_t *pgd)
119 void pud_clear_bad(pud_t *pud)
125 void pmd_clear_bad(pmd_t *pmd)
132 * Note: this doesn't free the actual pages themselves. That
133 * has been handled earlier when unmapping all the memory regions.
135 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
137 pgtable_t token = pmd_pgtable(*pmd);
139 pte_free_tlb(tlb, token);
143 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
144 unsigned long addr, unsigned long end,
145 unsigned long floor, unsigned long ceiling)
152 pmd = pmd_offset(pud, addr);
154 next = pmd_addr_end(addr, end);
155 if (pmd_none_or_clear_bad(pmd))
157 free_pte_range(tlb, pmd);
158 } while (pmd++, addr = next, addr != end);
168 if (end - 1 > ceiling - 1)
171 pmd = pmd_offset(pud, start);
173 pmd_free_tlb(tlb, pmd);
176 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
177 unsigned long addr, unsigned long end,
178 unsigned long floor, unsigned long ceiling)
185 pud = pud_offset(pgd, addr);
187 next = pud_addr_end(addr, end);
188 if (pud_none_or_clear_bad(pud))
190 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
191 } while (pud++, addr = next, addr != end);
197 ceiling &= PGDIR_MASK;
201 if (end - 1 > ceiling - 1)
204 pud = pud_offset(pgd, start);
206 pud_free_tlb(tlb, pud);
210 * This function frees user-level page tables of a process.
212 * Must be called with pagetable lock held.
214 void free_pgd_range(struct mmu_gather **tlb,
215 unsigned long addr, unsigned long end,
216 unsigned long floor, unsigned long ceiling)
223 * The next few lines have given us lots of grief...
225 * Why are we testing PMD* at this top level? Because often
226 * there will be no work to do at all, and we'd prefer not to
227 * go all the way down to the bottom just to discover that.
229 * Why all these "- 1"s? Because 0 represents both the bottom
230 * of the address space and the top of it (using -1 for the
231 * top wouldn't help much: the masks would do the wrong thing).
232 * The rule is that addr 0 and floor 0 refer to the bottom of
233 * the address space, but end 0 and ceiling 0 refer to the top
234 * Comparisons need to use "end - 1" and "ceiling - 1" (though
235 * that end 0 case should be mythical).
237 * Wherever addr is brought up or ceiling brought down, we must
238 * be careful to reject "the opposite 0" before it confuses the
239 * subsequent tests. But what about where end is brought down
240 * by PMD_SIZE below? no, end can't go down to 0 there.
242 * Whereas we round start (addr) and ceiling down, by different
243 * masks at different levels, in order to test whether a table
244 * now has no other vmas using it, so can be freed, we don't
245 * bother to round floor or end up - the tests don't need that.
259 if (end - 1 > ceiling - 1)
265 pgd = pgd_offset((*tlb)->mm, addr);
267 next = pgd_addr_end(addr, end);
268 if (pgd_none_or_clear_bad(pgd))
270 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
271 } while (pgd++, addr = next, addr != end);
274 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
275 unsigned long floor, unsigned long ceiling)
278 struct vm_area_struct *next = vma->vm_next;
279 unsigned long addr = vma->vm_start;
282 * Hide vma from rmap and vmtruncate before freeing pgtables
284 anon_vma_unlink(vma);
285 unlink_file_vma(vma);
287 if (is_vm_hugetlb_page(vma)) {
288 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
289 floor, next? next->vm_start: ceiling);
292 * Optimization: gather nearby vmas into one call down
294 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
295 && !is_vm_hugetlb_page(next)) {
298 anon_vma_unlink(vma);
299 unlink_file_vma(vma);
301 free_pgd_range(tlb, addr, vma->vm_end,
302 floor, next? next->vm_start: ceiling);
308 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
310 pgtable_t new = pte_alloc_one(mm, address);
314 spin_lock(&mm->page_table_lock);
315 if (!pmd_present(*pmd)) { /* Has another populated it ? */
317 pmd_populate(mm, pmd, new);
320 spin_unlock(&mm->page_table_lock);
326 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
328 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
332 spin_lock(&init_mm.page_table_lock);
333 if (!pmd_present(*pmd)) { /* Has another populated it ? */
334 pmd_populate_kernel(&init_mm, pmd, new);
337 spin_unlock(&init_mm.page_table_lock);
339 pte_free_kernel(&init_mm, new);
343 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
346 add_mm_counter(mm, file_rss, file_rss);
348 add_mm_counter(mm, anon_rss, anon_rss);
352 * This function is called to print an error when a bad pte
353 * is found. For example, we might have a PFN-mapped pte in
354 * a region that doesn't allow it.
356 * The calling function must still handle the error.
358 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
360 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
361 "vm_flags = %lx, vaddr = %lx\n",
362 (long long)pte_val(pte),
363 (vma->vm_mm == current->mm ? current->comm : "???"),
364 vma->vm_flags, vaddr);
368 static inline int is_cow_mapping(unsigned int flags)
370 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
374 * vm_normal_page -- This function gets the "struct page" associated with a pte.
376 * "Special" mappings do not wish to be associated with a "struct page" (either
377 * it doesn't exist, or it exists but they don't want to touch it). In this
378 * case, NULL is returned here. "Normal" mappings do have a struct page.
380 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
381 * pte bit, in which case this function is trivial. Secondly, an architecture
382 * may not have a spare pte bit, which requires a more complicated scheme,
385 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
386 * special mapping (even if there are underlying and valid "struct pages").
387 * COWed pages of a VM_PFNMAP are always normal.
389 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
390 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
391 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
392 * mapping will always honor the rule
394 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
396 * And for normal mappings this is false.
398 * This restricts such mappings to be a linear translation from virtual address
399 * to pfn. To get around this restriction, we allow arbitrary mappings so long
400 * as the vma is not a COW mapping; in that case, we know that all ptes are
401 * special (because none can have been COWed).
404 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
406 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
407 * page" backing, however the difference is that _all_ pages with a struct
408 * page (that is, those where pfn_valid is true) are refcounted and considered
409 * normal pages by the VM. The disadvantage is that pages are refcounted
410 * (which can be slower and simply not an option for some PFNMAP users). The
411 * advantage is that we don't have to follow the strict linearity rule of
412 * PFNMAP mappings in order to support COWable mappings.
415 #ifdef __HAVE_ARCH_PTE_SPECIAL
416 # define HAVE_PTE_SPECIAL 1
418 # define HAVE_PTE_SPECIAL 0
420 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
425 if (HAVE_PTE_SPECIAL) {
426 if (likely(!pte_special(pte))) {
427 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
428 return pte_page(pte);
430 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
434 /* !HAVE_PTE_SPECIAL case follows: */
438 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
439 if (vma->vm_flags & VM_MIXEDMAP) {
445 off = (addr - vma->vm_start) >> PAGE_SHIFT;
446 if (pfn == vma->vm_pgoff + off)
448 if (!is_cow_mapping(vma->vm_flags))
453 VM_BUG_ON(!pfn_valid(pfn));
456 * NOTE! We still have PageReserved() pages in the page tables.
458 * eg. VDSO mappings can cause them to exist.
461 return pfn_to_page(pfn);
465 * copy one vm_area from one task to the other. Assumes the page tables
466 * already present in the new task to be cleared in the whole range
467 * covered by this vma.
471 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
472 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
473 unsigned long addr, int *rss)
475 unsigned long vm_flags = vma->vm_flags;
476 pte_t pte = *src_pte;
479 /* pte contains position in swap or file, so copy. */
480 if (unlikely(!pte_present(pte))) {
481 if (!pte_file(pte)) {
482 swp_entry_t entry = pte_to_swp_entry(pte);
484 swap_duplicate(entry);
485 /* make sure dst_mm is on swapoff's mmlist. */
486 if (unlikely(list_empty(&dst_mm->mmlist))) {
487 spin_lock(&mmlist_lock);
488 if (list_empty(&dst_mm->mmlist))
489 list_add(&dst_mm->mmlist,
491 spin_unlock(&mmlist_lock);
493 if (is_write_migration_entry(entry) &&
494 is_cow_mapping(vm_flags)) {
496 * COW mappings require pages in both parent
497 * and child to be set to read.
499 make_migration_entry_read(&entry);
500 pte = swp_entry_to_pte(entry);
501 set_pte_at(src_mm, addr, src_pte, pte);
508 * If it's a COW mapping, write protect it both
509 * in the parent and the child
511 if (is_cow_mapping(vm_flags)) {
512 ptep_set_wrprotect(src_mm, addr, src_pte);
513 pte = pte_wrprotect(pte);
517 * If it's a shared mapping, mark it clean in
520 if (vm_flags & VM_SHARED)
521 pte = pte_mkclean(pte);
522 pte = pte_mkold(pte);
524 page = vm_normal_page(vma, addr, pte);
527 page_dup_rmap(page, vma, addr);
528 rss[!!PageAnon(page)]++;
532 set_pte_at(dst_mm, addr, dst_pte, pte);
535 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
536 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
537 unsigned long addr, unsigned long end)
539 pte_t *src_pte, *dst_pte;
540 spinlock_t *src_ptl, *dst_ptl;
546 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
549 src_pte = pte_offset_map_nested(src_pmd, addr);
550 src_ptl = pte_lockptr(src_mm, src_pmd);
551 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
552 arch_enter_lazy_mmu_mode();
556 * We are holding two locks at this point - either of them
557 * could generate latencies in another task on another CPU.
559 if (progress >= 32) {
561 if (need_resched() ||
562 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
565 if (pte_none(*src_pte)) {
569 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
571 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
573 arch_leave_lazy_mmu_mode();
574 spin_unlock(src_ptl);
575 pte_unmap_nested(src_pte - 1);
576 add_mm_rss(dst_mm, rss[0], rss[1]);
577 pte_unmap_unlock(dst_pte - 1, dst_ptl);
584 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
585 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
586 unsigned long addr, unsigned long end)
588 pmd_t *src_pmd, *dst_pmd;
591 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
594 src_pmd = pmd_offset(src_pud, addr);
596 next = pmd_addr_end(addr, end);
597 if (pmd_none_or_clear_bad(src_pmd))
599 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
602 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
606 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
607 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
608 unsigned long addr, unsigned long end)
610 pud_t *src_pud, *dst_pud;
613 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
616 src_pud = pud_offset(src_pgd, addr);
618 next = pud_addr_end(addr, end);
619 if (pud_none_or_clear_bad(src_pud))
621 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
624 } while (dst_pud++, src_pud++, addr = next, addr != end);
628 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
629 struct vm_area_struct *vma)
631 pgd_t *src_pgd, *dst_pgd;
633 unsigned long addr = vma->vm_start;
634 unsigned long end = vma->vm_end;
637 * Don't copy ptes where a page fault will fill them correctly.
638 * Fork becomes much lighter when there are big shared or private
639 * readonly mappings. The tradeoff is that copy_page_range is more
640 * efficient than faulting.
642 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
647 if (is_vm_hugetlb_page(vma))
648 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
650 dst_pgd = pgd_offset(dst_mm, addr);
651 src_pgd = pgd_offset(src_mm, addr);
653 next = pgd_addr_end(addr, end);
654 if (pgd_none_or_clear_bad(src_pgd))
656 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
659 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
663 static unsigned long zap_pte_range(struct mmu_gather *tlb,
664 struct vm_area_struct *vma, pmd_t *pmd,
665 unsigned long addr, unsigned long end,
666 long *zap_work, struct zap_details *details)
668 struct mm_struct *mm = tlb->mm;
674 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
675 arch_enter_lazy_mmu_mode();
678 if (pte_none(ptent)) {
683 (*zap_work) -= PAGE_SIZE;
685 if (pte_present(ptent)) {
688 page = vm_normal_page(vma, addr, ptent);
689 if (unlikely(details) && page) {
691 * unmap_shared_mapping_pages() wants to
692 * invalidate cache without truncating:
693 * unmap shared but keep private pages.
695 if (details->check_mapping &&
696 details->check_mapping != page->mapping)
699 * Each page->index must be checked when
700 * invalidating or truncating nonlinear.
702 if (details->nonlinear_vma &&
703 (page->index < details->first_index ||
704 page->index > details->last_index))
707 ptent = ptep_get_and_clear_full(mm, addr, pte,
709 tlb_remove_tlb_entry(tlb, pte, addr);
712 if (unlikely(details) && details->nonlinear_vma
713 && linear_page_index(details->nonlinear_vma,
714 addr) != page->index)
715 set_pte_at(mm, addr, pte,
716 pgoff_to_pte(page->index));
720 if (pte_dirty(ptent))
721 set_page_dirty(page);
722 if (pte_young(ptent))
723 SetPageReferenced(page);
726 page_remove_rmap(page, vma);
727 tlb_remove_page(tlb, page);
731 * If details->check_mapping, we leave swap entries;
732 * if details->nonlinear_vma, we leave file entries.
734 if (unlikely(details))
736 if (!pte_file(ptent))
737 free_swap_and_cache(pte_to_swp_entry(ptent));
738 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
739 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
741 add_mm_rss(mm, file_rss, anon_rss);
742 arch_leave_lazy_mmu_mode();
743 pte_unmap_unlock(pte - 1, ptl);
748 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
749 struct vm_area_struct *vma, pud_t *pud,
750 unsigned long addr, unsigned long end,
751 long *zap_work, struct zap_details *details)
756 pmd = pmd_offset(pud, addr);
758 next = pmd_addr_end(addr, end);
759 if (pmd_none_or_clear_bad(pmd)) {
763 next = zap_pte_range(tlb, vma, pmd, addr, next,
765 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
770 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
771 struct vm_area_struct *vma, pgd_t *pgd,
772 unsigned long addr, unsigned long end,
773 long *zap_work, struct zap_details *details)
778 pud = pud_offset(pgd, addr);
780 next = pud_addr_end(addr, end);
781 if (pud_none_or_clear_bad(pud)) {
785 next = zap_pmd_range(tlb, vma, pud, addr, next,
787 } while (pud++, addr = next, (addr != end && *zap_work > 0));
792 static unsigned long unmap_page_range(struct mmu_gather *tlb,
793 struct vm_area_struct *vma,
794 unsigned long addr, unsigned long end,
795 long *zap_work, struct zap_details *details)
800 if (details && !details->check_mapping && !details->nonlinear_vma)
804 tlb_start_vma(tlb, vma);
805 pgd = pgd_offset(vma->vm_mm, addr);
807 next = pgd_addr_end(addr, end);
808 if (pgd_none_or_clear_bad(pgd)) {
812 next = zap_pud_range(tlb, vma, pgd, addr, next,
814 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
815 tlb_end_vma(tlb, vma);
820 #ifdef CONFIG_PREEMPT
821 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
823 /* No preempt: go for improved straight-line efficiency */
824 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
828 * unmap_vmas - unmap a range of memory covered by a list of vma's
829 * @tlbp: address of the caller's struct mmu_gather
830 * @vma: the starting vma
831 * @start_addr: virtual address at which to start unmapping
832 * @end_addr: virtual address at which to end unmapping
833 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
834 * @details: details of nonlinear truncation or shared cache invalidation
836 * Returns the end address of the unmapping (restart addr if interrupted).
838 * Unmap all pages in the vma list.
840 * We aim to not hold locks for too long (for scheduling latency reasons).
841 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
842 * return the ending mmu_gather to the caller.
844 * Only addresses between `start' and `end' will be unmapped.
846 * The VMA list must be sorted in ascending virtual address order.
848 * unmap_vmas() assumes that the caller will flush the whole unmapped address
849 * range after unmap_vmas() returns. So the only responsibility here is to
850 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
851 * drops the lock and schedules.
853 unsigned long unmap_vmas(struct mmu_gather **tlbp,
854 struct vm_area_struct *vma, unsigned long start_addr,
855 unsigned long end_addr, unsigned long *nr_accounted,
856 struct zap_details *details)
858 long zap_work = ZAP_BLOCK_SIZE;
859 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
860 int tlb_start_valid = 0;
861 unsigned long start = start_addr;
862 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
863 int fullmm = (*tlbp)->fullmm;
865 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
868 start = max(vma->vm_start, start_addr);
869 if (start >= vma->vm_end)
871 end = min(vma->vm_end, end_addr);
872 if (end <= vma->vm_start)
875 if (vma->vm_flags & VM_ACCOUNT)
876 *nr_accounted += (end - start) >> PAGE_SHIFT;
878 while (start != end) {
879 if (!tlb_start_valid) {
884 if (unlikely(is_vm_hugetlb_page(vma))) {
885 unmap_hugepage_range(vma, start, end);
886 zap_work -= (end - start) /
887 (HPAGE_SIZE / PAGE_SIZE);
890 start = unmap_page_range(*tlbp, vma,
891 start, end, &zap_work, details);
894 BUG_ON(start != end);
898 tlb_finish_mmu(*tlbp, tlb_start, start);
900 if (need_resched() ||
901 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
909 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
911 zap_work = ZAP_BLOCK_SIZE;
915 return start; /* which is now the end (or restart) address */
919 * zap_page_range - remove user pages in a given range
920 * @vma: vm_area_struct holding the applicable pages
921 * @address: starting address of pages to zap
922 * @size: number of bytes to zap
923 * @details: details of nonlinear truncation or shared cache invalidation
925 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
926 unsigned long size, struct zap_details *details)
928 struct mm_struct *mm = vma->vm_mm;
929 struct mmu_gather *tlb;
930 unsigned long end = address + size;
931 unsigned long nr_accounted = 0;
934 tlb = tlb_gather_mmu(mm, 0);
935 update_hiwater_rss(mm);
936 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
938 tlb_finish_mmu(tlb, address, end);
943 * Do a quick page-table lookup for a single page.
945 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
954 struct mm_struct *mm = vma->vm_mm;
956 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
958 BUG_ON(flags & FOLL_GET);
963 pgd = pgd_offset(mm, address);
964 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
967 pud = pud_offset(pgd, address);
968 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
971 pmd = pmd_offset(pud, address);
975 if (pmd_huge(*pmd)) {
976 BUG_ON(flags & FOLL_GET);
977 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
981 if (unlikely(pmd_bad(*pmd)))
984 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
989 if (!pte_present(pte))
991 if ((flags & FOLL_WRITE) && !pte_write(pte))
993 page = vm_normal_page(vma, address, pte);
997 if (flags & FOLL_GET)
999 if (flags & FOLL_TOUCH) {
1000 if ((flags & FOLL_WRITE) &&
1001 !pte_dirty(pte) && !PageDirty(page))
1002 set_page_dirty(page);
1003 mark_page_accessed(page);
1006 pte_unmap_unlock(ptep, ptl);
1012 * When core dumping an enormous anonymous area that nobody
1013 * has touched so far, we don't want to allocate page tables.
1015 if (flags & FOLL_ANON) {
1016 page = ZERO_PAGE(0);
1017 if (flags & FOLL_GET)
1019 BUG_ON(flags & FOLL_WRITE);
1024 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1025 unsigned long start, int len, int write, int force,
1026 struct page **pages, struct vm_area_struct **vmas)
1029 unsigned int vm_flags;
1034 * Require read or write permissions.
1035 * If 'force' is set, we only require the "MAY" flags.
1037 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1038 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1042 struct vm_area_struct *vma;
1043 unsigned int foll_flags;
1045 vma = find_extend_vma(mm, start);
1046 if (!vma && in_gate_area(tsk, start)) {
1047 unsigned long pg = start & PAGE_MASK;
1048 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1053 if (write) /* user gate pages are read-only */
1054 return i ? : -EFAULT;
1056 pgd = pgd_offset_k(pg);
1058 pgd = pgd_offset_gate(mm, pg);
1059 BUG_ON(pgd_none(*pgd));
1060 pud = pud_offset(pgd, pg);
1061 BUG_ON(pud_none(*pud));
1062 pmd = pmd_offset(pud, pg);
1064 return i ? : -EFAULT;
1065 pte = pte_offset_map(pmd, pg);
1066 if (pte_none(*pte)) {
1068 return i ? : -EFAULT;
1071 struct page *page = vm_normal_page(gate_vma, start, *pte);
1085 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1086 || !(vm_flags & vma->vm_flags))
1087 return i ? : -EFAULT;
1089 if (is_vm_hugetlb_page(vma)) {
1090 i = follow_hugetlb_page(mm, vma, pages, vmas,
1091 &start, &len, i, write);
1095 foll_flags = FOLL_TOUCH;
1097 foll_flags |= FOLL_GET;
1098 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1099 (!vma->vm_ops || !vma->vm_ops->fault))
1100 foll_flags |= FOLL_ANON;
1106 * If tsk is ooming, cut off its access to large memory
1107 * allocations. It has a pending SIGKILL, but it can't
1108 * be processed until returning to user space.
1110 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1114 foll_flags |= FOLL_WRITE;
1117 while (!(page = follow_page(vma, start, foll_flags))) {
1119 ret = handle_mm_fault(mm, vma, start,
1120 foll_flags & FOLL_WRITE);
1121 if (ret & VM_FAULT_ERROR) {
1122 if (ret & VM_FAULT_OOM)
1123 return i ? i : -ENOMEM;
1124 else if (ret & VM_FAULT_SIGBUS)
1125 return i ? i : -EFAULT;
1128 if (ret & VM_FAULT_MAJOR)
1134 * The VM_FAULT_WRITE bit tells us that
1135 * do_wp_page has broken COW when necessary,
1136 * even if maybe_mkwrite decided not to set
1137 * pte_write. We can thus safely do subsequent
1138 * page lookups as if they were reads.
1140 if (ret & VM_FAULT_WRITE)
1141 foll_flags &= ~FOLL_WRITE;
1148 flush_anon_page(vma, page, start);
1149 flush_dcache_page(page);
1156 } while (len && start < vma->vm_end);
1160 EXPORT_SYMBOL(get_user_pages);
1162 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1165 pgd_t * pgd = pgd_offset(mm, addr);
1166 pud_t * pud = pud_alloc(mm, pgd, addr);
1168 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1170 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1176 * This is the old fallback for page remapping.
1178 * For historical reasons, it only allows reserved pages. Only
1179 * old drivers should use this, and they needed to mark their
1180 * pages reserved for the old functions anyway.
1182 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1183 struct page *page, pgprot_t prot)
1185 struct mm_struct *mm = vma->vm_mm;
1190 retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
1198 flush_dcache_page(page);
1199 pte = get_locked_pte(mm, addr, &ptl);
1203 if (!pte_none(*pte))
1206 /* Ok, finally just insert the thing.. */
1208 inc_mm_counter(mm, file_rss);
1209 page_add_file_rmap(page);
1210 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1213 pte_unmap_unlock(pte, ptl);
1216 pte_unmap_unlock(pte, ptl);
1218 mem_cgroup_uncharge_page(page);
1224 * vm_insert_page - insert single page into user vma
1225 * @vma: user vma to map to
1226 * @addr: target user address of this page
1227 * @page: source kernel page
1229 * This allows drivers to insert individual pages they've allocated
1232 * The page has to be a nice clean _individual_ kernel allocation.
1233 * If you allocate a compound page, you need to have marked it as
1234 * such (__GFP_COMP), or manually just split the page up yourself
1235 * (see split_page()).
1237 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1238 * took an arbitrary page protection parameter. This doesn't allow
1239 * that. Your vma protection will have to be set up correctly, which
1240 * means that if you want a shared writable mapping, you'd better
1241 * ask for a shared writable mapping!
1243 * The page does not need to be reserved.
1245 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1248 if (addr < vma->vm_start || addr >= vma->vm_end)
1250 if (!page_count(page))
1252 vma->vm_flags |= VM_INSERTPAGE;
1253 return insert_page(vma, addr, page, vma->vm_page_prot);
1255 EXPORT_SYMBOL(vm_insert_page);
1257 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1258 unsigned long pfn, pgprot_t prot)
1260 struct mm_struct *mm = vma->vm_mm;
1266 pte = get_locked_pte(mm, addr, &ptl);
1270 if (!pte_none(*pte))
1273 /* Ok, finally just insert the thing.. */
1274 entry = pte_mkspecial(pfn_pte(pfn, prot));
1275 set_pte_at(mm, addr, pte, entry);
1276 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1280 pte_unmap_unlock(pte, ptl);
1286 * vm_insert_pfn - insert single pfn into user vma
1287 * @vma: user vma to map to
1288 * @addr: target user address of this page
1289 * @pfn: source kernel pfn
1291 * Similar to vm_inert_page, this allows drivers to insert individual pages
1292 * they've allocated into a user vma. Same comments apply.
1294 * This function should only be called from a vm_ops->fault handler, and
1295 * in that case the handler should return NULL.
1297 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1301 * Technically, architectures with pte_special can avoid all these
1302 * restrictions (same for remap_pfn_range). However we would like
1303 * consistency in testing and feature parity among all, so we should
1304 * try to keep these invariants in place for everybody.
1306 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1307 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1308 (VM_PFNMAP|VM_MIXEDMAP));
1309 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1310 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1312 if (addr < vma->vm_start || addr >= vma->vm_end)
1314 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1316 EXPORT_SYMBOL(vm_insert_pfn);
1318 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1321 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1323 if (addr < vma->vm_start || addr >= vma->vm_end)
1327 * If we don't have pte special, then we have to use the pfn_valid()
1328 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1329 * refcount the page if pfn_valid is true (hence insert_page rather
1332 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1335 page = pfn_to_page(pfn);
1336 return insert_page(vma, addr, page, vma->vm_page_prot);
1338 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1340 EXPORT_SYMBOL(vm_insert_mixed);
1343 * maps a range of physical memory into the requested pages. the old
1344 * mappings are removed. any references to nonexistent pages results
1345 * in null mappings (currently treated as "copy-on-access")
1347 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1348 unsigned long addr, unsigned long end,
1349 unsigned long pfn, pgprot_t prot)
1354 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1357 arch_enter_lazy_mmu_mode();
1359 BUG_ON(!pte_none(*pte));
1360 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1362 } while (pte++, addr += PAGE_SIZE, addr != end);
1363 arch_leave_lazy_mmu_mode();
1364 pte_unmap_unlock(pte - 1, ptl);
1368 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1369 unsigned long addr, unsigned long end,
1370 unsigned long pfn, pgprot_t prot)
1375 pfn -= addr >> PAGE_SHIFT;
1376 pmd = pmd_alloc(mm, pud, addr);
1380 next = pmd_addr_end(addr, end);
1381 if (remap_pte_range(mm, pmd, addr, next,
1382 pfn + (addr >> PAGE_SHIFT), prot))
1384 } while (pmd++, addr = next, addr != end);
1388 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1389 unsigned long addr, unsigned long end,
1390 unsigned long pfn, pgprot_t prot)
1395 pfn -= addr >> PAGE_SHIFT;
1396 pud = pud_alloc(mm, pgd, addr);
1400 next = pud_addr_end(addr, end);
1401 if (remap_pmd_range(mm, pud, addr, next,
1402 pfn + (addr >> PAGE_SHIFT), prot))
1404 } while (pud++, addr = next, addr != end);
1409 * remap_pfn_range - remap kernel memory to userspace
1410 * @vma: user vma to map to
1411 * @addr: target user address to start at
1412 * @pfn: physical address of kernel memory
1413 * @size: size of map area
1414 * @prot: page protection flags for this mapping
1416 * Note: this is only safe if the mm semaphore is held when called.
1418 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1419 unsigned long pfn, unsigned long size, pgprot_t prot)
1423 unsigned long end = addr + PAGE_ALIGN(size);
1424 struct mm_struct *mm = vma->vm_mm;
1428 * Physically remapped pages are special. Tell the
1429 * rest of the world about it:
1430 * VM_IO tells people not to look at these pages
1431 * (accesses can have side effects).
1432 * VM_RESERVED is specified all over the place, because
1433 * in 2.4 it kept swapout's vma scan off this vma; but
1434 * in 2.6 the LRU scan won't even find its pages, so this
1435 * flag means no more than count its pages in reserved_vm,
1436 * and omit it from core dump, even when VM_IO turned off.
1437 * VM_PFNMAP tells the core MM that the base pages are just
1438 * raw PFN mappings, and do not have a "struct page" associated
1441 * There's a horrible special case to handle copy-on-write
1442 * behaviour that some programs depend on. We mark the "original"
1443 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1445 if (is_cow_mapping(vma->vm_flags)) {
1446 if (addr != vma->vm_start || end != vma->vm_end)
1448 vma->vm_pgoff = pfn;
1451 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1453 BUG_ON(addr >= end);
1454 pfn -= addr >> PAGE_SHIFT;
1455 pgd = pgd_offset(mm, addr);
1456 flush_cache_range(vma, addr, end);
1458 next = pgd_addr_end(addr, end);
1459 err = remap_pud_range(mm, pgd, addr, next,
1460 pfn + (addr >> PAGE_SHIFT), prot);
1463 } while (pgd++, addr = next, addr != end);
1466 EXPORT_SYMBOL(remap_pfn_range);
1468 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1469 unsigned long addr, unsigned long end,
1470 pte_fn_t fn, void *data)
1475 spinlock_t *uninitialized_var(ptl);
1477 pte = (mm == &init_mm) ?
1478 pte_alloc_kernel(pmd, addr) :
1479 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1483 BUG_ON(pmd_huge(*pmd));
1485 token = pmd_pgtable(*pmd);
1488 err = fn(pte, token, addr, data);
1491 } while (pte++, addr += PAGE_SIZE, addr != end);
1494 pte_unmap_unlock(pte-1, ptl);
1498 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1499 unsigned long addr, unsigned long end,
1500 pte_fn_t fn, void *data)
1506 pmd = pmd_alloc(mm, pud, addr);
1510 next = pmd_addr_end(addr, end);
1511 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1514 } while (pmd++, addr = next, addr != end);
1518 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1519 unsigned long addr, unsigned long end,
1520 pte_fn_t fn, void *data)
1526 pud = pud_alloc(mm, pgd, addr);
1530 next = pud_addr_end(addr, end);
1531 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1534 } while (pud++, addr = next, addr != end);
1539 * Scan a region of virtual memory, filling in page tables as necessary
1540 * and calling a provided function on each leaf page table.
1542 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1543 unsigned long size, pte_fn_t fn, void *data)
1547 unsigned long end = addr + size;
1550 BUG_ON(addr >= end);
1551 pgd = pgd_offset(mm, addr);
1553 next = pgd_addr_end(addr, end);
1554 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1557 } while (pgd++, addr = next, addr != end);
1560 EXPORT_SYMBOL_GPL(apply_to_page_range);
1563 * handle_pte_fault chooses page fault handler according to an entry
1564 * which was read non-atomically. Before making any commitment, on
1565 * those architectures or configurations (e.g. i386 with PAE) which
1566 * might give a mix of unmatched parts, do_swap_page and do_file_page
1567 * must check under lock before unmapping the pte and proceeding
1568 * (but do_wp_page is only called after already making such a check;
1569 * and do_anonymous_page and do_no_page can safely check later on).
1571 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1572 pte_t *page_table, pte_t orig_pte)
1575 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1576 if (sizeof(pte_t) > sizeof(unsigned long)) {
1577 spinlock_t *ptl = pte_lockptr(mm, pmd);
1579 same = pte_same(*page_table, orig_pte);
1583 pte_unmap(page_table);
1588 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1589 * servicing faults for write access. In the normal case, do always want
1590 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1591 * that do not have writing enabled, when used by access_process_vm.
1593 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1595 if (likely(vma->vm_flags & VM_WRITE))
1596 pte = pte_mkwrite(pte);
1600 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1603 * If the source page was a PFN mapping, we don't have
1604 * a "struct page" for it. We do a best-effort copy by
1605 * just copying from the original user address. If that
1606 * fails, we just zero-fill it. Live with it.
1608 if (unlikely(!src)) {
1609 void *kaddr = kmap_atomic(dst, KM_USER0);
1610 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1613 * This really shouldn't fail, because the page is there
1614 * in the page tables. But it might just be unreadable,
1615 * in which case we just give up and fill the result with
1618 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1619 memset(kaddr, 0, PAGE_SIZE);
1620 kunmap_atomic(kaddr, KM_USER0);
1621 flush_dcache_page(dst);
1623 copy_user_highpage(dst, src, va, vma);
1627 * This routine handles present pages, when users try to write
1628 * to a shared page. It is done by copying the page to a new address
1629 * and decrementing the shared-page counter for the old page.
1631 * Note that this routine assumes that the protection checks have been
1632 * done by the caller (the low-level page fault routine in most cases).
1633 * Thus we can safely just mark it writable once we've done any necessary
1636 * We also mark the page dirty at this point even though the page will
1637 * change only once the write actually happens. This avoids a few races,
1638 * and potentially makes it more efficient.
1640 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1641 * but allow concurrent faults), with pte both mapped and locked.
1642 * We return with mmap_sem still held, but pte unmapped and unlocked.
1644 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1645 unsigned long address, pte_t *page_table, pmd_t *pmd,
1646 spinlock_t *ptl, pte_t orig_pte)
1648 struct page *old_page, *new_page;
1650 int reuse = 0, ret = 0;
1651 int page_mkwrite = 0;
1652 struct page *dirty_page = NULL;
1654 old_page = vm_normal_page(vma, address, orig_pte);
1659 * Take out anonymous pages first, anonymous shared vmas are
1660 * not dirty accountable.
1662 if (PageAnon(old_page)) {
1663 if (!TestSetPageLocked(old_page)) {
1664 reuse = can_share_swap_page(old_page);
1665 unlock_page(old_page);
1667 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1668 (VM_WRITE|VM_SHARED))) {
1670 * Only catch write-faults on shared writable pages,
1671 * read-only shared pages can get COWed by
1672 * get_user_pages(.write=1, .force=1).
1674 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1676 * Notify the address space that the page is about to
1677 * become writable so that it can prohibit this or wait
1678 * for the page to get into an appropriate state.
1680 * We do this without the lock held, so that it can
1681 * sleep if it needs to.
1683 page_cache_get(old_page);
1684 pte_unmap_unlock(page_table, ptl);
1686 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1687 goto unwritable_page;
1690 * Since we dropped the lock we need to revalidate
1691 * the PTE as someone else may have changed it. If
1692 * they did, we just return, as we can count on the
1693 * MMU to tell us if they didn't also make it writable.
1695 page_table = pte_offset_map_lock(mm, pmd, address,
1697 page_cache_release(old_page);
1698 if (!pte_same(*page_table, orig_pte))
1703 dirty_page = old_page;
1704 get_page(dirty_page);
1709 flush_cache_page(vma, address, pte_pfn(orig_pte));
1710 entry = pte_mkyoung(orig_pte);
1711 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1712 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1713 update_mmu_cache(vma, address, entry);
1714 ret |= VM_FAULT_WRITE;
1719 * Ok, we need to copy. Oh, well..
1721 page_cache_get(old_page);
1723 pte_unmap_unlock(page_table, ptl);
1725 if (unlikely(anon_vma_prepare(vma)))
1727 VM_BUG_ON(old_page == ZERO_PAGE(0));
1728 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1731 cow_user_page(new_page, old_page, address, vma);
1732 __SetPageUptodate(new_page);
1734 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1738 * Re-check the pte - we dropped the lock
1740 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1741 if (likely(pte_same(*page_table, orig_pte))) {
1743 page_remove_rmap(old_page, vma);
1744 if (!PageAnon(old_page)) {
1745 dec_mm_counter(mm, file_rss);
1746 inc_mm_counter(mm, anon_rss);
1749 inc_mm_counter(mm, anon_rss);
1750 flush_cache_page(vma, address, pte_pfn(orig_pte));
1751 entry = mk_pte(new_page, vma->vm_page_prot);
1752 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1754 * Clear the pte entry and flush it first, before updating the
1755 * pte with the new entry. This will avoid a race condition
1756 * seen in the presence of one thread doing SMC and another
1759 ptep_clear_flush(vma, address, page_table);
1760 set_pte_at(mm, address, page_table, entry);
1761 update_mmu_cache(vma, address, entry);
1762 lru_cache_add_active(new_page);
1763 page_add_new_anon_rmap(new_page, vma, address);
1765 /* Free the old page.. */
1766 new_page = old_page;
1767 ret |= VM_FAULT_WRITE;
1769 mem_cgroup_uncharge_page(new_page);
1772 page_cache_release(new_page);
1774 page_cache_release(old_page);
1776 pte_unmap_unlock(page_table, ptl);
1779 file_update_time(vma->vm_file);
1782 * Yes, Virginia, this is actually required to prevent a race
1783 * with clear_page_dirty_for_io() from clearing the page dirty
1784 * bit after it clear all dirty ptes, but before a racing
1785 * do_wp_page installs a dirty pte.
1787 * do_no_page is protected similarly.
1789 wait_on_page_locked(dirty_page);
1790 set_page_dirty_balance(dirty_page, page_mkwrite);
1791 put_page(dirty_page);
1795 page_cache_release(new_page);
1798 page_cache_release(old_page);
1799 return VM_FAULT_OOM;
1802 page_cache_release(old_page);
1803 return VM_FAULT_SIGBUS;
1807 * Helper functions for unmap_mapping_range().
1809 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1811 * We have to restart searching the prio_tree whenever we drop the lock,
1812 * since the iterator is only valid while the lock is held, and anyway
1813 * a later vma might be split and reinserted earlier while lock dropped.
1815 * The list of nonlinear vmas could be handled more efficiently, using
1816 * a placeholder, but handle it in the same way until a need is shown.
1817 * It is important to search the prio_tree before nonlinear list: a vma
1818 * may become nonlinear and be shifted from prio_tree to nonlinear list
1819 * while the lock is dropped; but never shifted from list to prio_tree.
1821 * In order to make forward progress despite restarting the search,
1822 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1823 * quickly skip it next time around. Since the prio_tree search only
1824 * shows us those vmas affected by unmapping the range in question, we
1825 * can't efficiently keep all vmas in step with mapping->truncate_count:
1826 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1827 * mapping->truncate_count and vma->vm_truncate_count are protected by
1830 * In order to make forward progress despite repeatedly restarting some
1831 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1832 * and restart from that address when we reach that vma again. It might
1833 * have been split or merged, shrunk or extended, but never shifted: so
1834 * restart_addr remains valid so long as it remains in the vma's range.
1835 * unmap_mapping_range forces truncate_count to leap over page-aligned
1836 * values so we can save vma's restart_addr in its truncate_count field.
1838 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1840 static void reset_vma_truncate_counts(struct address_space *mapping)
1842 struct vm_area_struct *vma;
1843 struct prio_tree_iter iter;
1845 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1846 vma->vm_truncate_count = 0;
1847 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1848 vma->vm_truncate_count = 0;
1851 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1852 unsigned long start_addr, unsigned long end_addr,
1853 struct zap_details *details)
1855 unsigned long restart_addr;
1859 * files that support invalidating or truncating portions of the
1860 * file from under mmaped areas must have their ->fault function
1861 * return a locked page (and set VM_FAULT_LOCKED in the return).
1862 * This provides synchronisation against concurrent unmapping here.
1866 restart_addr = vma->vm_truncate_count;
1867 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1868 start_addr = restart_addr;
1869 if (start_addr >= end_addr) {
1870 /* Top of vma has been split off since last time */
1871 vma->vm_truncate_count = details->truncate_count;
1876 restart_addr = zap_page_range(vma, start_addr,
1877 end_addr - start_addr, details);
1878 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1880 if (restart_addr >= end_addr) {
1881 /* We have now completed this vma: mark it so */
1882 vma->vm_truncate_count = details->truncate_count;
1886 /* Note restart_addr in vma's truncate_count field */
1887 vma->vm_truncate_count = restart_addr;
1892 spin_unlock(details->i_mmap_lock);
1894 spin_lock(details->i_mmap_lock);
1898 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1899 struct zap_details *details)
1901 struct vm_area_struct *vma;
1902 struct prio_tree_iter iter;
1903 pgoff_t vba, vea, zba, zea;
1906 vma_prio_tree_foreach(vma, &iter, root,
1907 details->first_index, details->last_index) {
1908 /* Skip quickly over those we have already dealt with */
1909 if (vma->vm_truncate_count == details->truncate_count)
1912 vba = vma->vm_pgoff;
1913 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1914 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1915 zba = details->first_index;
1918 zea = details->last_index;
1922 if (unmap_mapping_range_vma(vma,
1923 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1924 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1930 static inline void unmap_mapping_range_list(struct list_head *head,
1931 struct zap_details *details)
1933 struct vm_area_struct *vma;
1936 * In nonlinear VMAs there is no correspondence between virtual address
1937 * offset and file offset. So we must perform an exhaustive search
1938 * across *all* the pages in each nonlinear VMA, not just the pages
1939 * whose virtual address lies outside the file truncation point.
1942 list_for_each_entry(vma, head, shared.vm_set.list) {
1943 /* Skip quickly over those we have already dealt with */
1944 if (vma->vm_truncate_count == details->truncate_count)
1946 details->nonlinear_vma = vma;
1947 if (unmap_mapping_range_vma(vma, vma->vm_start,
1948 vma->vm_end, details) < 0)
1954 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1955 * @mapping: the address space containing mmaps to be unmapped.
1956 * @holebegin: byte in first page to unmap, relative to the start of
1957 * the underlying file. This will be rounded down to a PAGE_SIZE
1958 * boundary. Note that this is different from vmtruncate(), which
1959 * must keep the partial page. In contrast, we must get rid of
1961 * @holelen: size of prospective hole in bytes. This will be rounded
1962 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1964 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1965 * but 0 when invalidating pagecache, don't throw away private data.
1967 void unmap_mapping_range(struct address_space *mapping,
1968 loff_t const holebegin, loff_t const holelen, int even_cows)
1970 struct zap_details details;
1971 pgoff_t hba = holebegin >> PAGE_SHIFT;
1972 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1974 /* Check for overflow. */
1975 if (sizeof(holelen) > sizeof(hlen)) {
1977 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1978 if (holeend & ~(long long)ULONG_MAX)
1979 hlen = ULONG_MAX - hba + 1;
1982 details.check_mapping = even_cows? NULL: mapping;
1983 details.nonlinear_vma = NULL;
1984 details.first_index = hba;
1985 details.last_index = hba + hlen - 1;
1986 if (details.last_index < details.first_index)
1987 details.last_index = ULONG_MAX;
1988 details.i_mmap_lock = &mapping->i_mmap_lock;
1990 spin_lock(&mapping->i_mmap_lock);
1992 /* Protect against endless unmapping loops */
1993 mapping->truncate_count++;
1994 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1995 if (mapping->truncate_count == 0)
1996 reset_vma_truncate_counts(mapping);
1997 mapping->truncate_count++;
1999 details.truncate_count = mapping->truncate_count;
2001 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2002 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2003 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2004 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2005 spin_unlock(&mapping->i_mmap_lock);
2007 EXPORT_SYMBOL(unmap_mapping_range);
2010 * vmtruncate - unmap mappings "freed" by truncate() syscall
2011 * @inode: inode of the file used
2012 * @offset: file offset to start truncating
2014 * NOTE! We have to be ready to update the memory sharing
2015 * between the file and the memory map for a potential last
2016 * incomplete page. Ugly, but necessary.
2018 int vmtruncate(struct inode * inode, loff_t offset)
2020 if (inode->i_size < offset) {
2021 unsigned long limit;
2023 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2024 if (limit != RLIM_INFINITY && offset > limit)
2026 if (offset > inode->i_sb->s_maxbytes)
2028 i_size_write(inode, offset);
2030 struct address_space *mapping = inode->i_mapping;
2033 * truncation of in-use swapfiles is disallowed - it would
2034 * cause subsequent swapout to scribble on the now-freed
2037 if (IS_SWAPFILE(inode))
2039 i_size_write(inode, offset);
2042 * unmap_mapping_range is called twice, first simply for
2043 * efficiency so that truncate_inode_pages does fewer
2044 * single-page unmaps. However after this first call, and
2045 * before truncate_inode_pages finishes, it is possible for
2046 * private pages to be COWed, which remain after
2047 * truncate_inode_pages finishes, hence the second
2048 * unmap_mapping_range call must be made for correctness.
2050 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2051 truncate_inode_pages(mapping, offset);
2052 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2055 if (inode->i_op && inode->i_op->truncate)
2056 inode->i_op->truncate(inode);
2060 send_sig(SIGXFSZ, current, 0);
2064 EXPORT_SYMBOL(vmtruncate);
2066 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2068 struct address_space *mapping = inode->i_mapping;
2071 * If the underlying filesystem is not going to provide
2072 * a way to truncate a range of blocks (punch a hole) -
2073 * we should return failure right now.
2075 if (!inode->i_op || !inode->i_op->truncate_range)
2078 mutex_lock(&inode->i_mutex);
2079 down_write(&inode->i_alloc_sem);
2080 unmap_mapping_range(mapping, offset, (end - offset), 1);
2081 truncate_inode_pages_range(mapping, offset, end);
2082 unmap_mapping_range(mapping, offset, (end - offset), 1);
2083 inode->i_op->truncate_range(inode, offset, end);
2084 up_write(&inode->i_alloc_sem);
2085 mutex_unlock(&inode->i_mutex);
2091 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2092 * but allow concurrent faults), and pte mapped but not yet locked.
2093 * We return with mmap_sem still held, but pte unmapped and unlocked.
2095 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2096 unsigned long address, pte_t *page_table, pmd_t *pmd,
2097 int write_access, pte_t orig_pte)
2105 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2108 entry = pte_to_swp_entry(orig_pte);
2109 if (is_migration_entry(entry)) {
2110 migration_entry_wait(mm, pmd, address);
2113 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2114 page = lookup_swap_cache(entry);
2116 grab_swap_token(); /* Contend for token _before_ read-in */
2117 page = swapin_readahead(entry,
2118 GFP_HIGHUSER_MOVABLE, vma, address);
2121 * Back out if somebody else faulted in this pte
2122 * while we released the pte lock.
2124 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2125 if (likely(pte_same(*page_table, orig_pte)))
2127 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2131 /* Had to read the page from swap area: Major fault */
2132 ret = VM_FAULT_MAJOR;
2133 count_vm_event(PGMAJFAULT);
2136 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2137 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2142 mark_page_accessed(page);
2144 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2147 * Back out if somebody else already faulted in this pte.
2149 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2150 if (unlikely(!pte_same(*page_table, orig_pte)))
2153 if (unlikely(!PageUptodate(page))) {
2154 ret = VM_FAULT_SIGBUS;
2158 /* The page isn't present yet, go ahead with the fault. */
2160 inc_mm_counter(mm, anon_rss);
2161 pte = mk_pte(page, vma->vm_page_prot);
2162 if (write_access && can_share_swap_page(page)) {
2163 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2167 flush_icache_page(vma, page);
2168 set_pte_at(mm, address, page_table, pte);
2169 page_add_anon_rmap(page, vma, address);
2173 remove_exclusive_swap_page(page);
2177 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2178 if (ret & VM_FAULT_ERROR)
2179 ret &= VM_FAULT_ERROR;
2183 /* No need to invalidate - it was non-present before */
2184 update_mmu_cache(vma, address, pte);
2186 pte_unmap_unlock(page_table, ptl);
2190 mem_cgroup_uncharge_page(page);
2191 pte_unmap_unlock(page_table, ptl);
2193 page_cache_release(page);
2198 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2199 * but allow concurrent faults), and pte mapped but not yet locked.
2200 * We return with mmap_sem still held, but pte unmapped and unlocked.
2202 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2203 unsigned long address, pte_t *page_table, pmd_t *pmd,
2210 /* Allocate our own private page. */
2211 pte_unmap(page_table);
2213 if (unlikely(anon_vma_prepare(vma)))
2215 page = alloc_zeroed_user_highpage_movable(vma, address);
2218 __SetPageUptodate(page);
2220 if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2223 entry = mk_pte(page, vma->vm_page_prot);
2224 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2226 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2227 if (!pte_none(*page_table))
2229 inc_mm_counter(mm, anon_rss);
2230 lru_cache_add_active(page);
2231 page_add_new_anon_rmap(page, vma, address);
2232 set_pte_at(mm, address, page_table, entry);
2234 /* No need to invalidate - it was non-present before */
2235 update_mmu_cache(vma, address, entry);
2237 pte_unmap_unlock(page_table, ptl);
2240 mem_cgroup_uncharge_page(page);
2241 page_cache_release(page);
2244 page_cache_release(page);
2246 return VM_FAULT_OOM;
2250 * __do_fault() tries to create a new page mapping. It aggressively
2251 * tries to share with existing pages, but makes a separate copy if
2252 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2253 * the next page fault.
2255 * As this is called only for pages that do not currently exist, we
2256 * do not need to flush old virtual caches or the TLB.
2258 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2259 * but allow concurrent faults), and pte neither mapped nor locked.
2260 * We return with mmap_sem still held, but pte unmapped and unlocked.
2262 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2263 unsigned long address, pmd_t *pmd,
2264 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2271 struct page *dirty_page = NULL;
2272 struct vm_fault vmf;
2274 int page_mkwrite = 0;
2276 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2281 BUG_ON(vma->vm_flags & VM_PFNMAP);
2283 ret = vma->vm_ops->fault(vma, &vmf);
2284 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2288 * For consistency in subsequent calls, make the faulted page always
2291 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2292 lock_page(vmf.page);
2294 VM_BUG_ON(!PageLocked(vmf.page));
2297 * Should we do an early C-O-W break?
2300 if (flags & FAULT_FLAG_WRITE) {
2301 if (!(vma->vm_flags & VM_SHARED)) {
2303 if (unlikely(anon_vma_prepare(vma))) {
2307 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2313 copy_user_highpage(page, vmf.page, address, vma);
2314 __SetPageUptodate(page);
2317 * If the page will be shareable, see if the backing
2318 * address space wants to know that the page is about
2319 * to become writable
2321 if (vma->vm_ops->page_mkwrite) {
2323 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2324 ret = VM_FAULT_SIGBUS;
2325 anon = 1; /* no anon but release vmf.page */
2330 * XXX: this is not quite right (racy vs
2331 * invalidate) to unlock and relock the page
2332 * like this, however a better fix requires
2333 * reworking page_mkwrite locking API, which
2334 * is better done later.
2336 if (!page->mapping) {
2338 anon = 1; /* no anon but release vmf.page */
2347 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2352 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2355 * This silly early PAGE_DIRTY setting removes a race
2356 * due to the bad i386 page protection. But it's valid
2357 * for other architectures too.
2359 * Note that if write_access is true, we either now have
2360 * an exclusive copy of the page, or this is a shared mapping,
2361 * so we can make it writable and dirty to avoid having to
2362 * handle that later.
2364 /* Only go through if we didn't race with anybody else... */
2365 if (likely(pte_same(*page_table, orig_pte))) {
2366 flush_icache_page(vma, page);
2367 entry = mk_pte(page, vma->vm_page_prot);
2368 if (flags & FAULT_FLAG_WRITE)
2369 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2370 set_pte_at(mm, address, page_table, entry);
2372 inc_mm_counter(mm, anon_rss);
2373 lru_cache_add_active(page);
2374 page_add_new_anon_rmap(page, vma, address);
2376 inc_mm_counter(mm, file_rss);
2377 page_add_file_rmap(page);
2378 if (flags & FAULT_FLAG_WRITE) {
2380 get_page(dirty_page);
2384 /* no need to invalidate: a not-present page won't be cached */
2385 update_mmu_cache(vma, address, entry);
2387 mem_cgroup_uncharge_page(page);
2389 page_cache_release(page);
2391 anon = 1; /* no anon but release faulted_page */
2394 pte_unmap_unlock(page_table, ptl);
2397 unlock_page(vmf.page);
2400 page_cache_release(vmf.page);
2401 else if (dirty_page) {
2403 file_update_time(vma->vm_file);
2405 set_page_dirty_balance(dirty_page, page_mkwrite);
2406 put_page(dirty_page);
2412 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2413 unsigned long address, pte_t *page_table, pmd_t *pmd,
2414 int write_access, pte_t orig_pte)
2416 pgoff_t pgoff = (((address & PAGE_MASK)
2417 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2418 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2420 pte_unmap(page_table);
2421 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2426 * do_no_pfn() tries to create a new page mapping for a page without
2427 * a struct_page backing it
2429 * As this is called only for pages that do not currently exist, we
2430 * do not need to flush old virtual caches or the TLB.
2432 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2433 * but allow concurrent faults), and pte mapped but not yet locked.
2434 * We return with mmap_sem still held, but pte unmapped and unlocked.
2436 * It is expected that the ->nopfn handler always returns the same pfn
2437 * for a given virtual mapping.
2439 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2441 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2442 unsigned long address, pte_t *page_table, pmd_t *pmd,
2449 pte_unmap(page_table);
2450 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2451 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2453 pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2455 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2457 if (unlikely(pfn == NOPFN_OOM))
2458 return VM_FAULT_OOM;
2459 else if (unlikely(pfn == NOPFN_SIGBUS))
2460 return VM_FAULT_SIGBUS;
2461 else if (unlikely(pfn == NOPFN_REFAULT))
2464 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2466 /* Only go through if we didn't race with anybody else... */
2467 if (pte_none(*page_table)) {
2468 entry = pfn_pte(pfn, vma->vm_page_prot);
2470 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2471 set_pte_at(mm, address, page_table, entry);
2473 pte_unmap_unlock(page_table, ptl);
2478 * Fault of a previously existing named mapping. Repopulate the pte
2479 * from the encoded file_pte if possible. This enables swappable
2482 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2483 * but allow concurrent faults), and pte mapped but not yet locked.
2484 * We return with mmap_sem still held, but pte unmapped and unlocked.
2486 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2487 unsigned long address, pte_t *page_table, pmd_t *pmd,
2488 int write_access, pte_t orig_pte)
2490 unsigned int flags = FAULT_FLAG_NONLINEAR |
2491 (write_access ? FAULT_FLAG_WRITE : 0);
2494 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2497 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2498 !(vma->vm_flags & VM_CAN_NONLINEAR))) {
2500 * Page table corrupted: show pte and kill process.
2502 print_bad_pte(vma, orig_pte, address);
2503 return VM_FAULT_OOM;
2506 pgoff = pte_to_pgoff(orig_pte);
2507 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2511 * These routines also need to handle stuff like marking pages dirty
2512 * and/or accessed for architectures that don't do it in hardware (most
2513 * RISC architectures). The early dirtying is also good on the i386.
2515 * There is also a hook called "update_mmu_cache()" that architectures
2516 * with external mmu caches can use to update those (ie the Sparc or
2517 * PowerPC hashed page tables that act as extended TLBs).
2519 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2520 * but allow concurrent faults), and pte mapped but not yet locked.
2521 * We return with mmap_sem still held, but pte unmapped and unlocked.
2523 static inline int handle_pte_fault(struct mm_struct *mm,
2524 struct vm_area_struct *vma, unsigned long address,
2525 pte_t *pte, pmd_t *pmd, int write_access)
2531 if (!pte_present(entry)) {
2532 if (pte_none(entry)) {
2534 if (likely(vma->vm_ops->fault))
2535 return do_linear_fault(mm, vma, address,
2536 pte, pmd, write_access, entry);
2537 if (unlikely(vma->vm_ops->nopfn))
2538 return do_no_pfn(mm, vma, address, pte,
2541 return do_anonymous_page(mm, vma, address,
2542 pte, pmd, write_access);
2544 if (pte_file(entry))
2545 return do_nonlinear_fault(mm, vma, address,
2546 pte, pmd, write_access, entry);
2547 return do_swap_page(mm, vma, address,
2548 pte, pmd, write_access, entry);
2551 ptl = pte_lockptr(mm, pmd);
2553 if (unlikely(!pte_same(*pte, entry)))
2556 if (!pte_write(entry))
2557 return do_wp_page(mm, vma, address,
2558 pte, pmd, ptl, entry);
2559 entry = pte_mkdirty(entry);
2561 entry = pte_mkyoung(entry);
2562 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2563 update_mmu_cache(vma, address, entry);
2566 * This is needed only for protection faults but the arch code
2567 * is not yet telling us if this is a protection fault or not.
2568 * This still avoids useless tlb flushes for .text page faults
2572 flush_tlb_page(vma, address);
2575 pte_unmap_unlock(pte, ptl);
2580 * By the time we get here, we already hold the mm semaphore
2582 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2583 unsigned long address, int write_access)
2590 __set_current_state(TASK_RUNNING);
2592 count_vm_event(PGFAULT);
2594 if (unlikely(is_vm_hugetlb_page(vma)))
2595 return hugetlb_fault(mm, vma, address, write_access);
2597 pgd = pgd_offset(mm, address);
2598 pud = pud_alloc(mm, pgd, address);
2600 return VM_FAULT_OOM;
2601 pmd = pmd_alloc(mm, pud, address);
2603 return VM_FAULT_OOM;
2604 pte = pte_alloc_map(mm, pmd, address);
2606 return VM_FAULT_OOM;
2608 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2611 #ifndef __PAGETABLE_PUD_FOLDED
2613 * Allocate page upper directory.
2614 * We've already handled the fast-path in-line.
2616 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2618 pud_t *new = pud_alloc_one(mm, address);
2622 spin_lock(&mm->page_table_lock);
2623 if (pgd_present(*pgd)) /* Another has populated it */
2626 pgd_populate(mm, pgd, new);
2627 spin_unlock(&mm->page_table_lock);
2630 #endif /* __PAGETABLE_PUD_FOLDED */
2632 #ifndef __PAGETABLE_PMD_FOLDED
2634 * Allocate page middle directory.
2635 * We've already handled the fast-path in-line.
2637 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2639 pmd_t *new = pmd_alloc_one(mm, address);
2643 spin_lock(&mm->page_table_lock);
2644 #ifndef __ARCH_HAS_4LEVEL_HACK
2645 if (pud_present(*pud)) /* Another has populated it */
2648 pud_populate(mm, pud, new);
2650 if (pgd_present(*pud)) /* Another has populated it */
2653 pgd_populate(mm, pud, new);
2654 #endif /* __ARCH_HAS_4LEVEL_HACK */
2655 spin_unlock(&mm->page_table_lock);
2658 #endif /* __PAGETABLE_PMD_FOLDED */
2660 int make_pages_present(unsigned long addr, unsigned long end)
2662 int ret, len, write;
2663 struct vm_area_struct * vma;
2665 vma = find_vma(current->mm, addr);
2668 write = (vma->vm_flags & VM_WRITE) != 0;
2669 BUG_ON(addr >= end);
2670 BUG_ON(end > vma->vm_end);
2671 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2672 ret = get_user_pages(current, current->mm, addr,
2673 len, write, 0, NULL, NULL);
2676 return ret == len ? 0 : -1;
2679 #if !defined(__HAVE_ARCH_GATE_AREA)
2681 #if defined(AT_SYSINFO_EHDR)
2682 static struct vm_area_struct gate_vma;
2684 static int __init gate_vma_init(void)
2686 gate_vma.vm_mm = NULL;
2687 gate_vma.vm_start = FIXADDR_USER_START;
2688 gate_vma.vm_end = FIXADDR_USER_END;
2689 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2690 gate_vma.vm_page_prot = __P101;
2692 * Make sure the vDSO gets into every core dump.
2693 * Dumping its contents makes post-mortem fully interpretable later
2694 * without matching up the same kernel and hardware config to see
2695 * what PC values meant.
2697 gate_vma.vm_flags |= VM_ALWAYSDUMP;
2700 __initcall(gate_vma_init);
2703 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2705 #ifdef AT_SYSINFO_EHDR
2712 int in_gate_area_no_task(unsigned long addr)
2714 #ifdef AT_SYSINFO_EHDR
2715 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2721 #endif /* __HAVE_ARCH_GATE_AREA */
2724 * Access another process' address space.
2725 * Source/target buffer must be kernel space,
2726 * Do not walk the page table directly, use get_user_pages
2728 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2730 struct mm_struct *mm;
2731 struct vm_area_struct *vma;
2733 void *old_buf = buf;
2735 mm = get_task_mm(tsk);
2739 down_read(&mm->mmap_sem);
2740 /* ignore errors, just check how much was successfully transferred */
2742 int bytes, ret, offset;
2745 ret = get_user_pages(tsk, mm, addr, 1,
2746 write, 1, &page, &vma);
2751 offset = addr & (PAGE_SIZE-1);
2752 if (bytes > PAGE_SIZE-offset)
2753 bytes = PAGE_SIZE-offset;
2757 copy_to_user_page(vma, page, addr,
2758 maddr + offset, buf, bytes);
2759 set_page_dirty_lock(page);
2761 copy_from_user_page(vma, page, addr,
2762 buf, maddr + offset, bytes);
2765 page_cache_release(page);
2770 up_read(&mm->mmap_sem);
2773 return buf - old_buf;
2777 * Print the name of a VMA.
2779 void print_vma_addr(char *prefix, unsigned long ip)
2781 struct mm_struct *mm = current->mm;
2782 struct vm_area_struct *vma;
2785 * Do not print if we are in atomic
2786 * contexts (in exception stacks, etc.):
2788 if (preempt_count())
2791 down_read(&mm->mmap_sem);
2792 vma = find_vma(mm, ip);
2793 if (vma && vma->vm_file) {
2794 struct file *f = vma->vm_file;
2795 char *buf = (char *)__get_free_page(GFP_KERNEL);
2799 p = d_path(&f->f_path, buf, PAGE_SIZE);
2802 s = strrchr(p, '/');
2805 printk("%s%s[%lx+%lx]", prefix, p,
2807 vma->vm_end - vma->vm_start);
2808 free_page((unsigned long)buf);
2811 up_read(¤t->mm->mmap_sem);