Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes...
[linux-2.6] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
51
52 #define DRV_VERSION "1.3.16-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56                                 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60         [board_82575] = &e1000_82575_info,
61 };
62
63 static struct pci_device_id igb_pci_tbl[] = {
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
68         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
69         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
70         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
71         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
72         /* required last entry */
73         {0, }
74 };
75
76 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
77
78 void igb_reset(struct igb_adapter *);
79 static int igb_setup_all_tx_resources(struct igb_adapter *);
80 static int igb_setup_all_rx_resources(struct igb_adapter *);
81 static void igb_free_all_tx_resources(struct igb_adapter *);
82 static void igb_free_all_rx_resources(struct igb_adapter *);
83 void igb_update_stats(struct igb_adapter *);
84 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
85 static void __devexit igb_remove(struct pci_dev *pdev);
86 static int igb_sw_init(struct igb_adapter *);
87 static int igb_open(struct net_device *);
88 static int igb_close(struct net_device *);
89 static void igb_configure_tx(struct igb_adapter *);
90 static void igb_configure_rx(struct igb_adapter *);
91 static void igb_setup_rctl(struct igb_adapter *);
92 static void igb_clean_all_tx_rings(struct igb_adapter *);
93 static void igb_clean_all_rx_rings(struct igb_adapter *);
94 static void igb_clean_tx_ring(struct igb_ring *);
95 static void igb_clean_rx_ring(struct igb_ring *);
96 static void igb_set_multi(struct net_device *);
97 static void igb_update_phy_info(unsigned long);
98 static void igb_watchdog(unsigned long);
99 static void igb_watchdog_task(struct work_struct *);
100 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
101                                   struct igb_ring *);
102 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
103 static struct net_device_stats *igb_get_stats(struct net_device *);
104 static int igb_change_mtu(struct net_device *, int);
105 static int igb_set_mac(struct net_device *, void *);
106 static irqreturn_t igb_intr(int irq, void *);
107 static irqreturn_t igb_intr_msi(int irq, void *);
108 static irqreturn_t igb_msix_other(int irq, void *);
109 static irqreturn_t igb_msix_rx(int irq, void *);
110 static irqreturn_t igb_msix_tx(int irq, void *);
111 #ifdef CONFIG_IGB_DCA
112 static void igb_update_rx_dca(struct igb_ring *);
113 static void igb_update_tx_dca(struct igb_ring *);
114 static void igb_setup_dca(struct igb_adapter *);
115 #endif /* CONFIG_IGB_DCA */
116 static bool igb_clean_tx_irq(struct igb_ring *);
117 static int igb_poll(struct napi_struct *, int);
118 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
119 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
120 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
121 static void igb_tx_timeout(struct net_device *);
122 static void igb_reset_task(struct work_struct *);
123 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
124 static void igb_vlan_rx_add_vid(struct net_device *, u16);
125 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
126 static void igb_restore_vlan(struct igb_adapter *);
127 static void igb_ping_all_vfs(struct igb_adapter *);
128 static void igb_msg_task(struct igb_adapter *);
129 static int igb_rcv_msg_from_vf(struct igb_adapter *, u32);
130 static inline void igb_set_rah_pool(struct e1000_hw *, int , int);
131 static void igb_set_mc_list_pools(struct igb_adapter *, int, u16);
132 static void igb_vmm_control(struct igb_adapter *);
133 static inline void igb_set_vmolr(struct e1000_hw *, int);
134 static inline int igb_set_vf_rlpml(struct igb_adapter *, int, int);
135 static int igb_set_vf_mac(struct igb_adapter *adapter, int, unsigned char *);
136 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
137
138 #ifdef CONFIG_PM
139 static int igb_suspend(struct pci_dev *, pm_message_t);
140 static int igb_resume(struct pci_dev *);
141 #endif
142 static void igb_shutdown(struct pci_dev *);
143 #ifdef CONFIG_IGB_DCA
144 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
145 static struct notifier_block dca_notifier = {
146         .notifier_call  = igb_notify_dca,
147         .next           = NULL,
148         .priority       = 0
149 };
150 #endif
151 #ifdef CONFIG_NET_POLL_CONTROLLER
152 /* for netdump / net console */
153 static void igb_netpoll(struct net_device *);
154 #endif
155
156 #ifdef CONFIG_PCI_IOV
157 static ssize_t igb_set_num_vfs(struct device *, struct device_attribute *,
158                                const char *, size_t);
159 static ssize_t igb_show_num_vfs(struct device *, struct device_attribute *,
160                                char *);
161 DEVICE_ATTR(num_vfs, S_IRUGO | S_IWUSR, igb_show_num_vfs, igb_set_num_vfs);
162 #endif
163 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
164                      pci_channel_state_t);
165 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
166 static void igb_io_resume(struct pci_dev *);
167
168 static struct pci_error_handlers igb_err_handler = {
169         .error_detected = igb_io_error_detected,
170         .slot_reset = igb_io_slot_reset,
171         .resume = igb_io_resume,
172 };
173
174
175 static struct pci_driver igb_driver = {
176         .name     = igb_driver_name,
177         .id_table = igb_pci_tbl,
178         .probe    = igb_probe,
179         .remove   = __devexit_p(igb_remove),
180 #ifdef CONFIG_PM
181         /* Power Managment Hooks */
182         .suspend  = igb_suspend,
183         .resume   = igb_resume,
184 #endif
185         .shutdown = igb_shutdown,
186         .err_handler = &igb_err_handler
187 };
188
189 static int global_quad_port_a; /* global quad port a indication */
190
191 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
192 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
193 MODULE_LICENSE("GPL");
194 MODULE_VERSION(DRV_VERSION);
195
196 /**
197  * Scale the NIC clock cycle by a large factor so that
198  * relatively small clock corrections can be added or
199  * substracted at each clock tick. The drawbacks of a
200  * large factor are a) that the clock register overflows
201  * more quickly (not such a big deal) and b) that the
202  * increment per tick has to fit into 24 bits.
203  *
204  * Note that
205  *   TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
206  *             IGB_TSYNC_SCALE
207  *   TIMINCA += TIMINCA * adjustment [ppm] / 1e9
208  *
209  * The base scale factor is intentionally a power of two
210  * so that the division in %struct timecounter can be done with
211  * a shift.
212  */
213 #define IGB_TSYNC_SHIFT (19)
214 #define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)
215
216 /**
217  * The duration of one clock cycle of the NIC.
218  *
219  * @todo This hard-coded value is part of the specification and might change
220  * in future hardware revisions. Add revision check.
221  */
222 #define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16
223
224 #if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
225 # error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
226 #endif
227
228 /**
229  * igb_read_clock - read raw cycle counter (to be used by time counter)
230  */
231 static cycle_t igb_read_clock(const struct cyclecounter *tc)
232 {
233         struct igb_adapter *adapter =
234                 container_of(tc, struct igb_adapter, cycles);
235         struct e1000_hw *hw = &adapter->hw;
236         u64 stamp;
237
238         stamp =  rd32(E1000_SYSTIML);
239         stamp |= (u64)rd32(E1000_SYSTIMH) << 32ULL;
240
241         return stamp;
242 }
243
244 #ifdef DEBUG
245 /**
246  * igb_get_hw_dev_name - return device name string
247  * used by hardware layer to print debugging information
248  **/
249 char *igb_get_hw_dev_name(struct e1000_hw *hw)
250 {
251         struct igb_adapter *adapter = hw->back;
252         return adapter->netdev->name;
253 }
254
255 /**
256  * igb_get_time_str - format current NIC and system time as string
257  */
258 static char *igb_get_time_str(struct igb_adapter *adapter,
259                               char buffer[160])
260 {
261         cycle_t hw = adapter->cycles.read(&adapter->cycles);
262         struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
263         struct timespec sys;
264         struct timespec delta;
265         getnstimeofday(&sys);
266
267         delta = timespec_sub(nic, sys);
268
269         sprintf(buffer,
270                 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
271                 hw,
272                 (long)nic.tv_sec, nic.tv_nsec,
273                 (long)sys.tv_sec, sys.tv_nsec,
274                 (long)delta.tv_sec, delta.tv_nsec);
275
276         return buffer;
277 }
278 #endif
279
280 /**
281  * igb_desc_unused - calculate if we have unused descriptors
282  **/
283 static int igb_desc_unused(struct igb_ring *ring)
284 {
285         if (ring->next_to_clean > ring->next_to_use)
286                 return ring->next_to_clean - ring->next_to_use - 1;
287
288         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
289 }
290
291 /**
292  * igb_init_module - Driver Registration Routine
293  *
294  * igb_init_module is the first routine called when the driver is
295  * loaded. All it does is register with the PCI subsystem.
296  **/
297 static int __init igb_init_module(void)
298 {
299         int ret;
300         printk(KERN_INFO "%s - version %s\n",
301                igb_driver_string, igb_driver_version);
302
303         printk(KERN_INFO "%s\n", igb_copyright);
304
305         global_quad_port_a = 0;
306
307 #ifdef CONFIG_IGB_DCA
308         dca_register_notify(&dca_notifier);
309 #endif
310
311         ret = pci_register_driver(&igb_driver);
312         return ret;
313 }
314
315 module_init(igb_init_module);
316
317 /**
318  * igb_exit_module - Driver Exit Cleanup Routine
319  *
320  * igb_exit_module is called just before the driver is removed
321  * from memory.
322  **/
323 static void __exit igb_exit_module(void)
324 {
325 #ifdef CONFIG_IGB_DCA
326         dca_unregister_notify(&dca_notifier);
327 #endif
328         pci_unregister_driver(&igb_driver);
329 }
330
331 module_exit(igb_exit_module);
332
333 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
334 /**
335  * igb_cache_ring_register - Descriptor ring to register mapping
336  * @adapter: board private structure to initialize
337  *
338  * Once we know the feature-set enabled for the device, we'll cache
339  * the register offset the descriptor ring is assigned to.
340  **/
341 static void igb_cache_ring_register(struct igb_adapter *adapter)
342 {
343         int i;
344         unsigned int rbase_offset = adapter->vfs_allocated_count;
345
346         switch (adapter->hw.mac.type) {
347         case e1000_82576:
348                 /* The queues are allocated for virtualization such that VF 0
349                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
350                  * In order to avoid collision we start at the first free queue
351                  * and continue consuming queues in the same sequence
352                  */
353                 for (i = 0; i < adapter->num_rx_queues; i++)
354                         adapter->rx_ring[i].reg_idx = rbase_offset +
355                                                       Q_IDX_82576(i);
356                 for (i = 0; i < adapter->num_tx_queues; i++)
357                         adapter->tx_ring[i].reg_idx = rbase_offset +
358                                                       Q_IDX_82576(i);
359                 break;
360         case e1000_82575:
361         default:
362                 for (i = 0; i < adapter->num_rx_queues; i++)
363                         adapter->rx_ring[i].reg_idx = i;
364                 for (i = 0; i < adapter->num_tx_queues; i++)
365                         adapter->tx_ring[i].reg_idx = i;
366                 break;
367         }
368 }
369
370 /**
371  * igb_alloc_queues - Allocate memory for all rings
372  * @adapter: board private structure to initialize
373  *
374  * We allocate one ring per queue at run-time since we don't know the
375  * number of queues at compile-time.
376  **/
377 static int igb_alloc_queues(struct igb_adapter *adapter)
378 {
379         int i;
380
381         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
382                                    sizeof(struct igb_ring), GFP_KERNEL);
383         if (!adapter->tx_ring)
384                 return -ENOMEM;
385
386         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
387                                    sizeof(struct igb_ring), GFP_KERNEL);
388         if (!adapter->rx_ring) {
389                 kfree(adapter->tx_ring);
390                 return -ENOMEM;
391         }
392
393         adapter->rx_ring->buddy = adapter->tx_ring;
394
395         for (i = 0; i < adapter->num_tx_queues; i++) {
396                 struct igb_ring *ring = &(adapter->tx_ring[i]);
397                 ring->count = adapter->tx_ring_count;
398                 ring->adapter = adapter;
399                 ring->queue_index = i;
400         }
401         for (i = 0; i < adapter->num_rx_queues; i++) {
402                 struct igb_ring *ring = &(adapter->rx_ring[i]);
403                 ring->count = adapter->rx_ring_count;
404                 ring->adapter = adapter;
405                 ring->queue_index = i;
406                 ring->itr_register = E1000_ITR;
407
408                 /* set a default napi handler for each rx_ring */
409                 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
410         }
411
412         igb_cache_ring_register(adapter);
413         return 0;
414 }
415
416 static void igb_free_queues(struct igb_adapter *adapter)
417 {
418         int i;
419
420         for (i = 0; i < adapter->num_rx_queues; i++)
421                 netif_napi_del(&adapter->rx_ring[i].napi);
422
423         adapter->num_rx_queues = 0;
424         adapter->num_tx_queues = 0;
425
426         kfree(adapter->tx_ring);
427         kfree(adapter->rx_ring);
428 }
429
430 #define IGB_N0_QUEUE -1
431 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
432                               int tx_queue, int msix_vector)
433 {
434         u32 msixbm = 0;
435         struct e1000_hw *hw = &adapter->hw;
436         u32 ivar, index;
437
438         switch (hw->mac.type) {
439         case e1000_82575:
440                 /* The 82575 assigns vectors using a bitmask, which matches the
441                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
442                    or more queues to a vector, we write the appropriate bits
443                    into the MSIXBM register for that vector. */
444                 if (rx_queue > IGB_N0_QUEUE) {
445                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
446                         adapter->rx_ring[rx_queue].eims_value = msixbm;
447                 }
448                 if (tx_queue > IGB_N0_QUEUE) {
449                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
450                         adapter->tx_ring[tx_queue].eims_value =
451                                   E1000_EICR_TX_QUEUE0 << tx_queue;
452                 }
453                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
454                 break;
455         case e1000_82576:
456                 /* 82576 uses a table-based method for assigning vectors.
457                    Each queue has a single entry in the table to which we write
458                    a vector number along with a "valid" bit.  Sadly, the layout
459                    of the table is somewhat counterintuitive. */
460                 if (rx_queue > IGB_N0_QUEUE) {
461                         index = (rx_queue >> 1) + adapter->vfs_allocated_count;
462                         ivar = array_rd32(E1000_IVAR0, index);
463                         if (rx_queue & 0x1) {
464                                 /* vector goes into third byte of register */
465                                 ivar = ivar & 0xFF00FFFF;
466                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
467                         } else {
468                                 /* vector goes into low byte of register */
469                                 ivar = ivar & 0xFFFFFF00;
470                                 ivar |= msix_vector | E1000_IVAR_VALID;
471                         }
472                         adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
473                         array_wr32(E1000_IVAR0, index, ivar);
474                 }
475                 if (tx_queue > IGB_N0_QUEUE) {
476                         index = (tx_queue >> 1) + adapter->vfs_allocated_count;
477                         ivar = array_rd32(E1000_IVAR0, index);
478                         if (tx_queue & 0x1) {
479                                 /* vector goes into high byte of register */
480                                 ivar = ivar & 0x00FFFFFF;
481                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
482                         } else {
483                                 /* vector goes into second byte of register */
484                                 ivar = ivar & 0xFFFF00FF;
485                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
486                         }
487                         adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
488                         array_wr32(E1000_IVAR0, index, ivar);
489                 }
490                 break;
491         default:
492                 BUG();
493                 break;
494         }
495 }
496
497 /**
498  * igb_configure_msix - Configure MSI-X hardware
499  *
500  * igb_configure_msix sets up the hardware to properly
501  * generate MSI-X interrupts.
502  **/
503 static void igb_configure_msix(struct igb_adapter *adapter)
504 {
505         u32 tmp;
506         int i, vector = 0;
507         struct e1000_hw *hw = &adapter->hw;
508
509         adapter->eims_enable_mask = 0;
510         if (hw->mac.type == e1000_82576)
511                 /* Turn on MSI-X capability first, or our settings
512                  * won't stick.  And it will take days to debug. */
513                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
514                                    E1000_GPIE_PBA | E1000_GPIE_EIAME |
515                                    E1000_GPIE_NSICR);
516
517         for (i = 0; i < adapter->num_tx_queues; i++) {
518                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
519                 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
520                 adapter->eims_enable_mask |= tx_ring->eims_value;
521                 if (tx_ring->itr_val)
522                         writel(tx_ring->itr_val,
523                                hw->hw_addr + tx_ring->itr_register);
524                 else
525                         writel(1, hw->hw_addr + tx_ring->itr_register);
526         }
527
528         for (i = 0; i < adapter->num_rx_queues; i++) {
529                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
530                 rx_ring->buddy = NULL;
531                 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
532                 adapter->eims_enable_mask |= rx_ring->eims_value;
533                 if (rx_ring->itr_val)
534                         writel(rx_ring->itr_val,
535                                hw->hw_addr + rx_ring->itr_register);
536                 else
537                         writel(1, hw->hw_addr + rx_ring->itr_register);
538         }
539
540
541         /* set vector for other causes, i.e. link changes */
542         switch (hw->mac.type) {
543         case e1000_82575:
544                 array_wr32(E1000_MSIXBM(0), vector++,
545                                       E1000_EIMS_OTHER);
546
547                 tmp = rd32(E1000_CTRL_EXT);
548                 /* enable MSI-X PBA support*/
549                 tmp |= E1000_CTRL_EXT_PBA_CLR;
550
551                 /* Auto-Mask interrupts upon ICR read. */
552                 tmp |= E1000_CTRL_EXT_EIAME;
553                 tmp |= E1000_CTRL_EXT_IRCA;
554
555                 wr32(E1000_CTRL_EXT, tmp);
556                 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
557                 adapter->eims_other = E1000_EIMS_OTHER;
558
559                 break;
560
561         case e1000_82576:
562                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
563                 wr32(E1000_IVAR_MISC, tmp);
564
565                 adapter->eims_enable_mask = (1 << (vector)) - 1;
566                 adapter->eims_other = 1 << (vector - 1);
567                 break;
568         default:
569                 /* do nothing, since nothing else supports MSI-X */
570                 break;
571         } /* switch (hw->mac.type) */
572         wrfl();
573 }
574
575 /**
576  * igb_request_msix - Initialize MSI-X interrupts
577  *
578  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
579  * kernel.
580  **/
581 static int igb_request_msix(struct igb_adapter *adapter)
582 {
583         struct net_device *netdev = adapter->netdev;
584         int i, err = 0, vector = 0;
585
586         vector = 0;
587
588         for (i = 0; i < adapter->num_tx_queues; i++) {
589                 struct igb_ring *ring = &(adapter->tx_ring[i]);
590                 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
591                 err = request_irq(adapter->msix_entries[vector].vector,
592                                   &igb_msix_tx, 0, ring->name,
593                                   &(adapter->tx_ring[i]));
594                 if (err)
595                         goto out;
596                 ring->itr_register = E1000_EITR(0) + (vector << 2);
597                 ring->itr_val = 976; /* ~4000 ints/sec */
598                 vector++;
599         }
600         for (i = 0; i < adapter->num_rx_queues; i++) {
601                 struct igb_ring *ring = &(adapter->rx_ring[i]);
602                 if (strlen(netdev->name) < (IFNAMSIZ - 5))
603                         sprintf(ring->name, "%s-rx-%d", netdev->name, i);
604                 else
605                         memcpy(ring->name, netdev->name, IFNAMSIZ);
606                 err = request_irq(adapter->msix_entries[vector].vector,
607                                   &igb_msix_rx, 0, ring->name,
608                                   &(adapter->rx_ring[i]));
609                 if (err)
610                         goto out;
611                 ring->itr_register = E1000_EITR(0) + (vector << 2);
612                 ring->itr_val = adapter->itr;
613                 vector++;
614         }
615
616         err = request_irq(adapter->msix_entries[vector].vector,
617                           &igb_msix_other, 0, netdev->name, netdev);
618         if (err)
619                 goto out;
620
621         igb_configure_msix(adapter);
622         return 0;
623 out:
624         return err;
625 }
626
627 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
628 {
629         if (adapter->msix_entries) {
630                 pci_disable_msix(adapter->pdev);
631                 kfree(adapter->msix_entries);
632                 adapter->msix_entries = NULL;
633         } else if (adapter->flags & IGB_FLAG_HAS_MSI)
634                 pci_disable_msi(adapter->pdev);
635         return;
636 }
637
638
639 /**
640  * igb_set_interrupt_capability - set MSI or MSI-X if supported
641  *
642  * Attempt to configure interrupts using the best available
643  * capabilities of the hardware and kernel.
644  **/
645 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
646 {
647         int err;
648         int numvecs, i;
649
650         /* Number of supported queues. */
651         /* Having more queues than CPUs doesn't make sense. */
652         adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
653         adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
654
655         numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
656         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
657                                         GFP_KERNEL);
658         if (!adapter->msix_entries)
659                 goto msi_only;
660
661         for (i = 0; i < numvecs; i++)
662                 adapter->msix_entries[i].entry = i;
663
664         err = pci_enable_msix(adapter->pdev,
665                               adapter->msix_entries,
666                               numvecs);
667         if (err == 0)
668                 goto out;
669
670         igb_reset_interrupt_capability(adapter);
671
672         /* If we can't do MSI-X, try MSI */
673 msi_only:
674         adapter->num_rx_queues = 1;
675         adapter->num_tx_queues = 1;
676         if (!pci_enable_msi(adapter->pdev))
677                 adapter->flags |= IGB_FLAG_HAS_MSI;
678 out:
679         /* Notify the stack of the (possibly) reduced Tx Queue count. */
680         adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
681         return;
682 }
683
684 /**
685  * igb_request_irq - initialize interrupts
686  *
687  * Attempts to configure interrupts using the best available
688  * capabilities of the hardware and kernel.
689  **/
690 static int igb_request_irq(struct igb_adapter *adapter)
691 {
692         struct net_device *netdev = adapter->netdev;
693         struct e1000_hw *hw = &adapter->hw;
694         int err = 0;
695
696         if (adapter->msix_entries) {
697                 err = igb_request_msix(adapter);
698                 if (!err)
699                         goto request_done;
700                 /* fall back to MSI */
701                 igb_reset_interrupt_capability(adapter);
702                 if (!pci_enable_msi(adapter->pdev))
703                         adapter->flags |= IGB_FLAG_HAS_MSI;
704                 igb_free_all_tx_resources(adapter);
705                 igb_free_all_rx_resources(adapter);
706                 adapter->num_rx_queues = 1;
707                 igb_alloc_queues(adapter);
708         } else {
709                 switch (hw->mac.type) {
710                 case e1000_82575:
711                         wr32(E1000_MSIXBM(0),
712                              (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
713                         break;
714                 case e1000_82576:
715                         wr32(E1000_IVAR0, E1000_IVAR_VALID);
716                         break;
717                 default:
718                         break;
719                 }
720         }
721
722         if (adapter->flags & IGB_FLAG_HAS_MSI) {
723                 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
724                                   netdev->name, netdev);
725                 if (!err)
726                         goto request_done;
727                 /* fall back to legacy interrupts */
728                 igb_reset_interrupt_capability(adapter);
729                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
730         }
731
732         err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
733                           netdev->name, netdev);
734
735         if (err)
736                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
737                         err);
738
739 request_done:
740         return err;
741 }
742
743 static void igb_free_irq(struct igb_adapter *adapter)
744 {
745         struct net_device *netdev = adapter->netdev;
746
747         if (adapter->msix_entries) {
748                 int vector = 0, i;
749
750                 for (i = 0; i < adapter->num_tx_queues; i++)
751                         free_irq(adapter->msix_entries[vector++].vector,
752                                 &(adapter->tx_ring[i]));
753                 for (i = 0; i < adapter->num_rx_queues; i++)
754                         free_irq(adapter->msix_entries[vector++].vector,
755                                 &(adapter->rx_ring[i]));
756
757                 free_irq(adapter->msix_entries[vector++].vector, netdev);
758                 return;
759         }
760
761         free_irq(adapter->pdev->irq, netdev);
762 }
763
764 /**
765  * igb_irq_disable - Mask off interrupt generation on the NIC
766  * @adapter: board private structure
767  **/
768 static void igb_irq_disable(struct igb_adapter *adapter)
769 {
770         struct e1000_hw *hw = &adapter->hw;
771
772         if (adapter->msix_entries) {
773                 wr32(E1000_EIAM, 0);
774                 wr32(E1000_EIMC, ~0);
775                 wr32(E1000_EIAC, 0);
776         }
777
778         wr32(E1000_IAM, 0);
779         wr32(E1000_IMC, ~0);
780         wrfl();
781         synchronize_irq(adapter->pdev->irq);
782 }
783
784 /**
785  * igb_irq_enable - Enable default interrupt generation settings
786  * @adapter: board private structure
787  **/
788 static void igb_irq_enable(struct igb_adapter *adapter)
789 {
790         struct e1000_hw *hw = &adapter->hw;
791
792         if (adapter->msix_entries) {
793                 wr32(E1000_EIAC, adapter->eims_enable_mask);
794                 wr32(E1000_EIAM, adapter->eims_enable_mask);
795                 wr32(E1000_EIMS, adapter->eims_enable_mask);
796                 if (adapter->vfs_allocated_count)
797                         wr32(E1000_MBVFIMR, 0xFF);
798                 wr32(E1000_IMS, (E1000_IMS_LSC | E1000_IMS_VMMB |
799                                  E1000_IMS_DOUTSYNC));
800         } else {
801                 wr32(E1000_IMS, IMS_ENABLE_MASK);
802                 wr32(E1000_IAM, IMS_ENABLE_MASK);
803         }
804 }
805
806 static void igb_update_mng_vlan(struct igb_adapter *adapter)
807 {
808         struct net_device *netdev = adapter->netdev;
809         u16 vid = adapter->hw.mng_cookie.vlan_id;
810         u16 old_vid = adapter->mng_vlan_id;
811         if (adapter->vlgrp) {
812                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
813                         if (adapter->hw.mng_cookie.status &
814                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
815                                 igb_vlan_rx_add_vid(netdev, vid);
816                                 adapter->mng_vlan_id = vid;
817                         } else
818                                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
819
820                         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
821                                         (vid != old_vid) &&
822                             !vlan_group_get_device(adapter->vlgrp, old_vid))
823                                 igb_vlan_rx_kill_vid(netdev, old_vid);
824                 } else
825                         adapter->mng_vlan_id = vid;
826         }
827 }
828
829 /**
830  * igb_release_hw_control - release control of the h/w to f/w
831  * @adapter: address of board private structure
832  *
833  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
834  * For ASF and Pass Through versions of f/w this means that the
835  * driver is no longer loaded.
836  *
837  **/
838 static void igb_release_hw_control(struct igb_adapter *adapter)
839 {
840         struct e1000_hw *hw = &adapter->hw;
841         u32 ctrl_ext;
842
843         /* Let firmware take over control of h/w */
844         ctrl_ext = rd32(E1000_CTRL_EXT);
845         wr32(E1000_CTRL_EXT,
846                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
847 }
848
849
850 /**
851  * igb_get_hw_control - get control of the h/w from f/w
852  * @adapter: address of board private structure
853  *
854  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
855  * For ASF and Pass Through versions of f/w this means that
856  * the driver is loaded.
857  *
858  **/
859 static void igb_get_hw_control(struct igb_adapter *adapter)
860 {
861         struct e1000_hw *hw = &adapter->hw;
862         u32 ctrl_ext;
863
864         /* Let firmware know the driver has taken over */
865         ctrl_ext = rd32(E1000_CTRL_EXT);
866         wr32(E1000_CTRL_EXT,
867                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
868 }
869
870 /**
871  * igb_configure - configure the hardware for RX and TX
872  * @adapter: private board structure
873  **/
874 static void igb_configure(struct igb_adapter *adapter)
875 {
876         struct net_device *netdev = adapter->netdev;
877         int i;
878
879         igb_get_hw_control(adapter);
880         igb_set_multi(netdev);
881
882         igb_restore_vlan(adapter);
883
884         igb_configure_tx(adapter);
885         igb_setup_rctl(adapter);
886         igb_configure_rx(adapter);
887
888         igb_rx_fifo_flush_82575(&adapter->hw);
889
890         /* call igb_desc_unused which always leaves
891          * at least 1 descriptor unused to make sure
892          * next_to_use != next_to_clean */
893         for (i = 0; i < adapter->num_rx_queues; i++) {
894                 struct igb_ring *ring = &adapter->rx_ring[i];
895                 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
896         }
897
898
899         adapter->tx_queue_len = netdev->tx_queue_len;
900 }
901
902
903 /**
904  * igb_up - Open the interface and prepare it to handle traffic
905  * @adapter: board private structure
906  **/
907
908 int igb_up(struct igb_adapter *adapter)
909 {
910         struct e1000_hw *hw = &adapter->hw;
911         int i;
912
913         /* hardware has been reset, we need to reload some things */
914         igb_configure(adapter);
915
916         clear_bit(__IGB_DOWN, &adapter->state);
917
918         for (i = 0; i < adapter->num_rx_queues; i++)
919                 napi_enable(&adapter->rx_ring[i].napi);
920         if (adapter->msix_entries)
921                 igb_configure_msix(adapter);
922
923         igb_vmm_control(adapter);
924         igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
925         igb_set_vmolr(hw, adapter->vfs_allocated_count);
926
927         /* Clear any pending interrupts. */
928         rd32(E1000_ICR);
929         igb_irq_enable(adapter);
930
931         /* Fire a link change interrupt to start the watchdog. */
932         wr32(E1000_ICS, E1000_ICS_LSC);
933         return 0;
934 }
935
936 void igb_down(struct igb_adapter *adapter)
937 {
938         struct e1000_hw *hw = &adapter->hw;
939         struct net_device *netdev = adapter->netdev;
940         u32 tctl, rctl;
941         int i;
942
943         /* signal that we're down so the interrupt handler does not
944          * reschedule our watchdog timer */
945         set_bit(__IGB_DOWN, &adapter->state);
946
947         /* disable receives in the hardware */
948         rctl = rd32(E1000_RCTL);
949         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
950         /* flush and sleep below */
951
952         netif_tx_stop_all_queues(netdev);
953
954         /* disable transmits in the hardware */
955         tctl = rd32(E1000_TCTL);
956         tctl &= ~E1000_TCTL_EN;
957         wr32(E1000_TCTL, tctl);
958         /* flush both disables and wait for them to finish */
959         wrfl();
960         msleep(10);
961
962         for (i = 0; i < adapter->num_rx_queues; i++)
963                 napi_disable(&adapter->rx_ring[i].napi);
964
965         igb_irq_disable(adapter);
966
967         del_timer_sync(&adapter->watchdog_timer);
968         del_timer_sync(&adapter->phy_info_timer);
969
970         netdev->tx_queue_len = adapter->tx_queue_len;
971         netif_carrier_off(netdev);
972
973         /* record the stats before reset*/
974         igb_update_stats(adapter);
975
976         adapter->link_speed = 0;
977         adapter->link_duplex = 0;
978
979         if (!pci_channel_offline(adapter->pdev))
980                 igb_reset(adapter);
981         igb_clean_all_tx_rings(adapter);
982         igb_clean_all_rx_rings(adapter);
983 }
984
985 void igb_reinit_locked(struct igb_adapter *adapter)
986 {
987         WARN_ON(in_interrupt());
988         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
989                 msleep(1);
990         igb_down(adapter);
991         igb_up(adapter);
992         clear_bit(__IGB_RESETTING, &adapter->state);
993 }
994
995 void igb_reset(struct igb_adapter *adapter)
996 {
997         struct e1000_hw *hw = &adapter->hw;
998         struct e1000_mac_info *mac = &hw->mac;
999         struct e1000_fc_info *fc = &hw->fc;
1000         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1001         u16 hwm;
1002
1003         /* Repartition Pba for greater than 9k mtu
1004          * To take effect CTRL.RST is required.
1005          */
1006         switch (mac->type) {
1007         case e1000_82576:
1008                 pba = E1000_PBA_64K;
1009                 break;
1010         case e1000_82575:
1011         default:
1012                 pba = E1000_PBA_34K;
1013                 break;
1014         }
1015
1016         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1017             (mac->type < e1000_82576)) {
1018                 /* adjust PBA for jumbo frames */
1019                 wr32(E1000_PBA, pba);
1020
1021                 /* To maintain wire speed transmits, the Tx FIFO should be
1022                  * large enough to accommodate two full transmit packets,
1023                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1024                  * the Rx FIFO should be large enough to accommodate at least
1025                  * one full receive packet and is similarly rounded up and
1026                  * expressed in KB. */
1027                 pba = rd32(E1000_PBA);
1028                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1029                 tx_space = pba >> 16;
1030                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1031                 pba &= 0xffff;
1032                 /* the tx fifo also stores 16 bytes of information about the tx
1033                  * but don't include ethernet FCS because hardware appends it */
1034                 min_tx_space = (adapter->max_frame_size +
1035                                 sizeof(union e1000_adv_tx_desc) -
1036                                 ETH_FCS_LEN) * 2;
1037                 min_tx_space = ALIGN(min_tx_space, 1024);
1038                 min_tx_space >>= 10;
1039                 /* software strips receive CRC, so leave room for it */
1040                 min_rx_space = adapter->max_frame_size;
1041                 min_rx_space = ALIGN(min_rx_space, 1024);
1042                 min_rx_space >>= 10;
1043
1044                 /* If current Tx allocation is less than the min Tx FIFO size,
1045                  * and the min Tx FIFO size is less than the current Rx FIFO
1046                  * allocation, take space away from current Rx allocation */
1047                 if (tx_space < min_tx_space &&
1048                     ((min_tx_space - tx_space) < pba)) {
1049                         pba = pba - (min_tx_space - tx_space);
1050
1051                         /* if short on rx space, rx wins and must trump tx
1052                          * adjustment */
1053                         if (pba < min_rx_space)
1054                                 pba = min_rx_space;
1055                 }
1056                 wr32(E1000_PBA, pba);
1057         }
1058
1059         /* flow control settings */
1060         /* The high water mark must be low enough to fit one full frame
1061          * (or the size used for early receive) above it in the Rx FIFO.
1062          * Set it to the lower of:
1063          * - 90% of the Rx FIFO size, or
1064          * - the full Rx FIFO size minus one full frame */
1065         hwm = min(((pba << 10) * 9 / 10),
1066                         ((pba << 10) - 2 * adapter->max_frame_size));
1067
1068         if (mac->type < e1000_82576) {
1069                 fc->high_water = hwm & 0xFFF8;  /* 8-byte granularity */
1070                 fc->low_water = fc->high_water - 8;
1071         } else {
1072                 fc->high_water = hwm & 0xFFF0;  /* 16-byte granularity */
1073                 fc->low_water = fc->high_water - 16;
1074         }
1075         fc->pause_time = 0xFFFF;
1076         fc->send_xon = 1;
1077         fc->type = fc->original_type;
1078
1079         /* disable receive for all VFs and wait one second */
1080         if (adapter->vfs_allocated_count) {
1081                 int i;
1082                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1083                         adapter->vf_data[i].clear_to_send = false;
1084
1085                 /* ping all the active vfs to let them know we are going down */
1086                         igb_ping_all_vfs(adapter);
1087
1088                 /* disable transmits and receives */
1089                 wr32(E1000_VFRE, 0);
1090                 wr32(E1000_VFTE, 0);
1091         }
1092
1093         /* Allow time for pending master requests to run */
1094         adapter->hw.mac.ops.reset_hw(&adapter->hw);
1095         wr32(E1000_WUC, 0);
1096
1097         if (adapter->hw.mac.ops.init_hw(&adapter->hw))
1098                 dev_err(&adapter->pdev->dev, "Hardware Error\n");
1099
1100         igb_update_mng_vlan(adapter);
1101
1102         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1103         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1104
1105         igb_reset_adaptive(&adapter->hw);
1106         igb_get_phy_info(&adapter->hw);
1107 }
1108
1109 static const struct net_device_ops igb_netdev_ops = {
1110         .ndo_open               = igb_open,
1111         .ndo_stop               = igb_close,
1112         .ndo_start_xmit         = igb_xmit_frame_adv,
1113         .ndo_get_stats          = igb_get_stats,
1114         .ndo_set_multicast_list = igb_set_multi,
1115         .ndo_set_mac_address    = igb_set_mac,
1116         .ndo_change_mtu         = igb_change_mtu,
1117         .ndo_do_ioctl           = igb_ioctl,
1118         .ndo_tx_timeout         = igb_tx_timeout,
1119         .ndo_validate_addr      = eth_validate_addr,
1120         .ndo_vlan_rx_register   = igb_vlan_rx_register,
1121         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
1122         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
1123 #ifdef CONFIG_NET_POLL_CONTROLLER
1124         .ndo_poll_controller    = igb_netpoll,
1125 #endif
1126 };
1127
1128 /**
1129  * igb_probe - Device Initialization Routine
1130  * @pdev: PCI device information struct
1131  * @ent: entry in igb_pci_tbl
1132  *
1133  * Returns 0 on success, negative on failure
1134  *
1135  * igb_probe initializes an adapter identified by a pci_dev structure.
1136  * The OS initialization, configuring of the adapter private structure,
1137  * and a hardware reset occur.
1138  **/
1139 static int __devinit igb_probe(struct pci_dev *pdev,
1140                                const struct pci_device_id *ent)
1141 {
1142         struct net_device *netdev;
1143         struct igb_adapter *adapter;
1144         struct e1000_hw *hw;
1145         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1146         unsigned long mmio_start, mmio_len;
1147         int err, pci_using_dac;
1148         u16 eeprom_data = 0;
1149         u16 eeprom_apme_mask = IGB_EEPROM_APME;
1150         u32 part_num;
1151
1152         err = pci_enable_device_mem(pdev);
1153         if (err)
1154                 return err;
1155
1156         pci_using_dac = 0;
1157         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1158         if (!err) {
1159                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1160                 if (!err)
1161                         pci_using_dac = 1;
1162         } else {
1163                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1164                 if (err) {
1165                         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1166                         if (err) {
1167                                 dev_err(&pdev->dev, "No usable DMA "
1168                                         "configuration, aborting\n");
1169                                 goto err_dma;
1170                         }
1171                 }
1172         }
1173
1174         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1175                                            IORESOURCE_MEM),
1176                                            igb_driver_name);
1177         if (err)
1178                 goto err_pci_reg;
1179
1180         err = pci_enable_pcie_error_reporting(pdev);
1181         if (err) {
1182                 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1183                         "0x%x\n", err);
1184                 /* non-fatal, continue */
1185         }
1186
1187         pci_set_master(pdev);
1188         pci_save_state(pdev);
1189
1190         err = -ENOMEM;
1191         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1192                                    IGB_ABS_MAX_TX_QUEUES);
1193         if (!netdev)
1194                 goto err_alloc_etherdev;
1195
1196         SET_NETDEV_DEV(netdev, &pdev->dev);
1197
1198         pci_set_drvdata(pdev, netdev);
1199         adapter = netdev_priv(netdev);
1200         adapter->netdev = netdev;
1201         adapter->pdev = pdev;
1202         hw = &adapter->hw;
1203         hw->back = adapter;
1204         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1205
1206         mmio_start = pci_resource_start(pdev, 0);
1207         mmio_len = pci_resource_len(pdev, 0);
1208
1209         err = -EIO;
1210         hw->hw_addr = ioremap(mmio_start, mmio_len);
1211         if (!hw->hw_addr)
1212                 goto err_ioremap;
1213
1214         netdev->netdev_ops = &igb_netdev_ops;
1215         igb_set_ethtool_ops(netdev);
1216         netdev->watchdog_timeo = 5 * HZ;
1217
1218         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1219
1220         netdev->mem_start = mmio_start;
1221         netdev->mem_end = mmio_start + mmio_len;
1222
1223         /* PCI config space info */
1224         hw->vendor_id = pdev->vendor;
1225         hw->device_id = pdev->device;
1226         hw->revision_id = pdev->revision;
1227         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1228         hw->subsystem_device_id = pdev->subsystem_device;
1229
1230         /* setup the private structure */
1231         hw->back = adapter;
1232         /* Copy the default MAC, PHY and NVM function pointers */
1233         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1234         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1235         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1236         /* Initialize skew-specific constants */
1237         err = ei->get_invariants(hw);
1238         if (err)
1239                 goto err_sw_init;
1240
1241         /* setup the private structure */
1242         err = igb_sw_init(adapter);
1243         if (err)
1244                 goto err_sw_init;
1245
1246         igb_get_bus_info_pcie(hw);
1247
1248         /* set flags */
1249         switch (hw->mac.type) {
1250         case e1000_82575:
1251                 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1252                 break;
1253         case e1000_82576:
1254         default:
1255                 break;
1256         }
1257
1258         hw->phy.autoneg_wait_to_complete = false;
1259         hw->mac.adaptive_ifs = true;
1260
1261         /* Copper options */
1262         if (hw->phy.media_type == e1000_media_type_copper) {
1263                 hw->phy.mdix = AUTO_ALL_MODES;
1264                 hw->phy.disable_polarity_correction = false;
1265                 hw->phy.ms_type = e1000_ms_hw_default;
1266         }
1267
1268         if (igb_check_reset_block(hw))
1269                 dev_info(&pdev->dev,
1270                         "PHY reset is blocked due to SOL/IDER session.\n");
1271
1272         netdev->features = NETIF_F_SG |
1273                            NETIF_F_IP_CSUM |
1274                            NETIF_F_HW_VLAN_TX |
1275                            NETIF_F_HW_VLAN_RX |
1276                            NETIF_F_HW_VLAN_FILTER;
1277
1278         netdev->features |= NETIF_F_IPV6_CSUM;
1279         netdev->features |= NETIF_F_TSO;
1280         netdev->features |= NETIF_F_TSO6;
1281
1282         netdev->features |= NETIF_F_GRO;
1283
1284         netdev->vlan_features |= NETIF_F_TSO;
1285         netdev->vlan_features |= NETIF_F_TSO6;
1286         netdev->vlan_features |= NETIF_F_IP_CSUM;
1287         netdev->vlan_features |= NETIF_F_SG;
1288
1289         if (pci_using_dac)
1290                 netdev->features |= NETIF_F_HIGHDMA;
1291
1292         adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1293
1294         /* before reading the NVM, reset the controller to put the device in a
1295          * known good starting state */
1296         hw->mac.ops.reset_hw(hw);
1297
1298         /* make sure the NVM is good */
1299         if (igb_validate_nvm_checksum(hw) < 0) {
1300                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1301                 err = -EIO;
1302                 goto err_eeprom;
1303         }
1304
1305         /* copy the MAC address out of the NVM */
1306         if (hw->mac.ops.read_mac_addr(hw))
1307                 dev_err(&pdev->dev, "NVM Read Error\n");
1308
1309         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1310         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1311
1312         if (!is_valid_ether_addr(netdev->perm_addr)) {
1313                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1314                 err = -EIO;
1315                 goto err_eeprom;
1316         }
1317
1318         setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1319                     (unsigned long) adapter);
1320         setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1321                     (unsigned long) adapter);
1322
1323         INIT_WORK(&adapter->reset_task, igb_reset_task);
1324         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1325
1326         /* Initialize link properties that are user-changeable */
1327         adapter->fc_autoneg = true;
1328         hw->mac.autoneg = true;
1329         hw->phy.autoneg_advertised = 0x2f;
1330
1331         hw->fc.original_type = e1000_fc_default;
1332         hw->fc.type = e1000_fc_default;
1333
1334         adapter->itr_setting = IGB_DEFAULT_ITR;
1335         adapter->itr = IGB_START_ITR;
1336
1337         igb_validate_mdi_setting(hw);
1338
1339         adapter->rx_csum = 1;
1340
1341         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1342          * enable the ACPI Magic Packet filter
1343          */
1344
1345         if (hw->bus.func == 0)
1346                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1347         else if (hw->bus.func == 1)
1348                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1349
1350         if (eeprom_data & eeprom_apme_mask)
1351                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1352
1353         /* now that we have the eeprom settings, apply the special cases where
1354          * the eeprom may be wrong or the board simply won't support wake on
1355          * lan on a particular port */
1356         switch (pdev->device) {
1357         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1358                 adapter->eeprom_wol = 0;
1359                 break;
1360         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1361         case E1000_DEV_ID_82576_FIBER:
1362         case E1000_DEV_ID_82576_SERDES:
1363                 /* Wake events only supported on port A for dual fiber
1364                  * regardless of eeprom setting */
1365                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1366                         adapter->eeprom_wol = 0;
1367                 break;
1368         case E1000_DEV_ID_82576_QUAD_COPPER:
1369                 /* if quad port adapter, disable WoL on all but port A */
1370                 if (global_quad_port_a != 0)
1371                         adapter->eeprom_wol = 0;
1372                 else
1373                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1374                 /* Reset for multiple quad port adapters */
1375                 if (++global_quad_port_a == 4)
1376                         global_quad_port_a = 0;
1377                 break;
1378         }
1379
1380         /* initialize the wol settings based on the eeprom settings */
1381         adapter->wol = adapter->eeprom_wol;
1382         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1383
1384         /* reset the hardware with the new settings */
1385         igb_reset(adapter);
1386
1387         /* let the f/w know that the h/w is now under the control of the
1388          * driver. */
1389         igb_get_hw_control(adapter);
1390
1391         /* tell the stack to leave us alone until igb_open() is called */
1392         netif_carrier_off(netdev);
1393         netif_tx_stop_all_queues(netdev);
1394
1395         strcpy(netdev->name, "eth%d");
1396         err = register_netdev(netdev);
1397         if (err)
1398                 goto err_register;
1399
1400 #ifdef CONFIG_PCI_IOV
1401         /* since iov functionality isn't critical to base device function we
1402          * can accept failure.  If it fails we don't allow iov to be enabled */
1403         if (hw->mac.type == e1000_82576) {
1404                 err = pci_enable_sriov(pdev, 0);
1405                 if (!err)
1406                         err = device_create_file(&netdev->dev,
1407                                                  &dev_attr_num_vfs);
1408                 if (err)
1409                         dev_err(&pdev->dev, "Failed to initialize IOV\n");
1410         }
1411
1412 #endif
1413 #ifdef CONFIG_IGB_DCA
1414         if (dca_add_requester(&pdev->dev) == 0) {
1415                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1416                 dev_info(&pdev->dev, "DCA enabled\n");
1417                 /* Always use CB2 mode, difference is masked
1418                  * in the CB driver. */
1419                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
1420                 igb_setup_dca(adapter);
1421         }
1422 #endif
1423
1424         /*
1425          * Initialize hardware timer: we keep it running just in case
1426          * that some program needs it later on.
1427          */
1428         memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1429         adapter->cycles.read = igb_read_clock;
1430         adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1431         adapter->cycles.mult = 1;
1432         adapter->cycles.shift = IGB_TSYNC_SHIFT;
1433         wr32(E1000_TIMINCA,
1434              (1<<24) |
1435              IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS * IGB_TSYNC_SCALE);
1436 #if 0
1437         /*
1438          * Avoid rollover while we initialize by resetting the time counter.
1439          */
1440         wr32(E1000_SYSTIML, 0x00000000);
1441         wr32(E1000_SYSTIMH, 0x00000000);
1442 #else
1443         /*
1444          * Set registers so that rollover occurs soon to test this.
1445          */
1446         wr32(E1000_SYSTIML, 0x00000000);
1447         wr32(E1000_SYSTIMH, 0xFF800000);
1448 #endif
1449         wrfl();
1450         timecounter_init(&adapter->clock,
1451                          &adapter->cycles,
1452                          ktime_to_ns(ktime_get_real()));
1453
1454         /*
1455          * Synchronize our NIC clock against system wall clock. NIC
1456          * time stamp reading requires ~3us per sample, each sample
1457          * was pretty stable even under load => only require 10
1458          * samples for each offset comparison.
1459          */
1460         memset(&adapter->compare, 0, sizeof(adapter->compare));
1461         adapter->compare.source = &adapter->clock;
1462         adapter->compare.target = ktime_get_real;
1463         adapter->compare.num_samples = 10;
1464         timecompare_update(&adapter->compare, 0);
1465
1466 #ifdef DEBUG
1467         {
1468                 char buffer[160];
1469                 printk(KERN_DEBUG
1470                         "igb: %s: hw %p initialized timer\n",
1471                         igb_get_time_str(adapter, buffer),
1472                         &adapter->hw);
1473         }
1474 #endif
1475
1476         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1477         /* print bus type/speed/width info */
1478         dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1479                  netdev->name,
1480                  ((hw->bus.speed == e1000_bus_speed_2500)
1481                   ? "2.5Gb/s" : "unknown"),
1482                  ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1483                   (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1484                   (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1485                    "unknown"),
1486                  netdev->dev_addr);
1487
1488         igb_read_part_num(hw, &part_num);
1489         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1490                 (part_num >> 8), (part_num & 0xff));
1491
1492         dev_info(&pdev->dev,
1493                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1494                 adapter->msix_entries ? "MSI-X" :
1495                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1496                 adapter->num_rx_queues, adapter->num_tx_queues);
1497
1498         return 0;
1499
1500 err_register:
1501         igb_release_hw_control(adapter);
1502 err_eeprom:
1503         if (!igb_check_reset_block(hw))
1504                 igb_reset_phy(hw);
1505
1506         if (hw->flash_address)
1507                 iounmap(hw->flash_address);
1508
1509         igb_free_queues(adapter);
1510 err_sw_init:
1511         iounmap(hw->hw_addr);
1512 err_ioremap:
1513         free_netdev(netdev);
1514 err_alloc_etherdev:
1515         pci_release_selected_regions(pdev, pci_select_bars(pdev,
1516                                      IORESOURCE_MEM));
1517 err_pci_reg:
1518 err_dma:
1519         pci_disable_device(pdev);
1520         return err;
1521 }
1522
1523 /**
1524  * igb_remove - Device Removal Routine
1525  * @pdev: PCI device information struct
1526  *
1527  * igb_remove is called by the PCI subsystem to alert the driver
1528  * that it should release a PCI device.  The could be caused by a
1529  * Hot-Plug event, or because the driver is going to be removed from
1530  * memory.
1531  **/
1532 static void __devexit igb_remove(struct pci_dev *pdev)
1533 {
1534         struct net_device *netdev = pci_get_drvdata(pdev);
1535         struct igb_adapter *adapter = netdev_priv(netdev);
1536         struct e1000_hw *hw = &adapter->hw;
1537         int err;
1538
1539         /* flush_scheduled work may reschedule our watchdog task, so
1540          * explicitly disable watchdog tasks from being rescheduled  */
1541         set_bit(__IGB_DOWN, &adapter->state);
1542         del_timer_sync(&adapter->watchdog_timer);
1543         del_timer_sync(&adapter->phy_info_timer);
1544
1545         flush_scheduled_work();
1546
1547 #ifdef CONFIG_IGB_DCA
1548         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1549                 dev_info(&pdev->dev, "DCA disabled\n");
1550                 dca_remove_requester(&pdev->dev);
1551                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1552                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1553         }
1554 #endif
1555
1556         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1557          * would have already happened in close and is redundant. */
1558         igb_release_hw_control(adapter);
1559
1560         unregister_netdev(netdev);
1561
1562         if (!igb_check_reset_block(&adapter->hw))
1563                 igb_reset_phy(&adapter->hw);
1564
1565         igb_reset_interrupt_capability(adapter);
1566
1567         igb_free_queues(adapter);
1568
1569 #ifdef CONFIG_PCI_IOV
1570         /* reclaim resources allocated to VFs */
1571         if (adapter->vf_data) {
1572                 /* disable iov and allow time for transactions to clear */
1573                 pci_disable_sriov(pdev);
1574                 msleep(500);
1575
1576                 kfree(adapter->vf_data);
1577                 adapter->vf_data = NULL;
1578                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1579                 msleep(100);
1580                 dev_info(&pdev->dev, "IOV Disabled\n");
1581         }
1582 #endif
1583         iounmap(hw->hw_addr);
1584         if (hw->flash_address)
1585                 iounmap(hw->flash_address);
1586         pci_release_selected_regions(pdev, pci_select_bars(pdev,
1587                                      IORESOURCE_MEM));
1588
1589         free_netdev(netdev);
1590
1591         err = pci_disable_pcie_error_reporting(pdev);
1592         if (err)
1593                 dev_err(&pdev->dev,
1594                         "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1595
1596         pci_disable_device(pdev);
1597 }
1598
1599 /**
1600  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1601  * @adapter: board private structure to initialize
1602  *
1603  * igb_sw_init initializes the Adapter private data structure.
1604  * Fields are initialized based on PCI device information and
1605  * OS network device settings (MTU size).
1606  **/
1607 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1608 {
1609         struct e1000_hw *hw = &adapter->hw;
1610         struct net_device *netdev = adapter->netdev;
1611         struct pci_dev *pdev = adapter->pdev;
1612
1613         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1614
1615         adapter->tx_ring_count = IGB_DEFAULT_TXD;
1616         adapter->rx_ring_count = IGB_DEFAULT_RXD;
1617         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1618         adapter->rx_ps_hdr_size = 0; /* disable packet split */
1619         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1620         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1621
1622         /* This call may decrease the number of queues depending on
1623          * interrupt mode. */
1624         igb_set_interrupt_capability(adapter);
1625
1626         if (igb_alloc_queues(adapter)) {
1627                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1628                 return -ENOMEM;
1629         }
1630
1631         /* Explicitly disable IRQ since the NIC can be in any state. */
1632         igb_irq_disable(adapter);
1633
1634         set_bit(__IGB_DOWN, &adapter->state);
1635         return 0;
1636 }
1637
1638 /**
1639  * igb_open - Called when a network interface is made active
1640  * @netdev: network interface device structure
1641  *
1642  * Returns 0 on success, negative value on failure
1643  *
1644  * The open entry point is called when a network interface is made
1645  * active by the system (IFF_UP).  At this point all resources needed
1646  * for transmit and receive operations are allocated, the interrupt
1647  * handler is registered with the OS, the watchdog timer is started,
1648  * and the stack is notified that the interface is ready.
1649  **/
1650 static int igb_open(struct net_device *netdev)
1651 {
1652         struct igb_adapter *adapter = netdev_priv(netdev);
1653         struct e1000_hw *hw = &adapter->hw;
1654         int err;
1655         int i;
1656
1657         /* disallow open during test */
1658         if (test_bit(__IGB_TESTING, &adapter->state))
1659                 return -EBUSY;
1660
1661         /* allocate transmit descriptors */
1662         err = igb_setup_all_tx_resources(adapter);
1663         if (err)
1664                 goto err_setup_tx;
1665
1666         /* allocate receive descriptors */
1667         err = igb_setup_all_rx_resources(adapter);
1668         if (err)
1669                 goto err_setup_rx;
1670
1671         /* e1000_power_up_phy(adapter); */
1672
1673         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1674         if ((adapter->hw.mng_cookie.status &
1675              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1676                 igb_update_mng_vlan(adapter);
1677
1678         /* before we allocate an interrupt, we must be ready to handle it.
1679          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1680          * as soon as we call pci_request_irq, so we have to setup our
1681          * clean_rx handler before we do so.  */
1682         igb_configure(adapter);
1683
1684         igb_vmm_control(adapter);
1685         igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
1686         igb_set_vmolr(hw, adapter->vfs_allocated_count);
1687
1688         err = igb_request_irq(adapter);
1689         if (err)
1690                 goto err_req_irq;
1691
1692         /* From here on the code is the same as igb_up() */
1693         clear_bit(__IGB_DOWN, &adapter->state);
1694
1695         for (i = 0; i < adapter->num_rx_queues; i++)
1696                 napi_enable(&adapter->rx_ring[i].napi);
1697
1698         /* Clear any pending interrupts. */
1699         rd32(E1000_ICR);
1700
1701         igb_irq_enable(adapter);
1702
1703         netif_tx_start_all_queues(netdev);
1704
1705         /* Fire a link status change interrupt to start the watchdog. */
1706         wr32(E1000_ICS, E1000_ICS_LSC);
1707
1708         return 0;
1709
1710 err_req_irq:
1711         igb_release_hw_control(adapter);
1712         /* e1000_power_down_phy(adapter); */
1713         igb_free_all_rx_resources(adapter);
1714 err_setup_rx:
1715         igb_free_all_tx_resources(adapter);
1716 err_setup_tx:
1717         igb_reset(adapter);
1718
1719         return err;
1720 }
1721
1722 /**
1723  * igb_close - Disables a network interface
1724  * @netdev: network interface device structure
1725  *
1726  * Returns 0, this is not allowed to fail
1727  *
1728  * The close entry point is called when an interface is de-activated
1729  * by the OS.  The hardware is still under the driver's control, but
1730  * needs to be disabled.  A global MAC reset is issued to stop the
1731  * hardware, and all transmit and receive resources are freed.
1732  **/
1733 static int igb_close(struct net_device *netdev)
1734 {
1735         struct igb_adapter *adapter = netdev_priv(netdev);
1736
1737         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1738         igb_down(adapter);
1739
1740         igb_free_irq(adapter);
1741
1742         igb_free_all_tx_resources(adapter);
1743         igb_free_all_rx_resources(adapter);
1744
1745         /* kill manageability vlan ID if supported, but not if a vlan with
1746          * the same ID is registered on the host OS (let 8021q kill it) */
1747         if ((adapter->hw.mng_cookie.status &
1748                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1749              !(adapter->vlgrp &&
1750                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1751                 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1752
1753         return 0;
1754 }
1755
1756 /**
1757  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1758  * @adapter: board private structure
1759  * @tx_ring: tx descriptor ring (for a specific queue) to setup
1760  *
1761  * Return 0 on success, negative on failure
1762  **/
1763 int igb_setup_tx_resources(struct igb_adapter *adapter,
1764                            struct igb_ring *tx_ring)
1765 {
1766         struct pci_dev *pdev = adapter->pdev;
1767         int size;
1768
1769         size = sizeof(struct igb_buffer) * tx_ring->count;
1770         tx_ring->buffer_info = vmalloc(size);
1771         if (!tx_ring->buffer_info)
1772                 goto err;
1773         memset(tx_ring->buffer_info, 0, size);
1774
1775         /* round up to nearest 4K */
1776         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1777         tx_ring->size = ALIGN(tx_ring->size, 4096);
1778
1779         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1780                                              &tx_ring->dma);
1781
1782         if (!tx_ring->desc)
1783                 goto err;
1784
1785         tx_ring->adapter = adapter;
1786         tx_ring->next_to_use = 0;
1787         tx_ring->next_to_clean = 0;
1788         return 0;
1789
1790 err:
1791         vfree(tx_ring->buffer_info);
1792         dev_err(&adapter->pdev->dev,
1793                 "Unable to allocate memory for the transmit descriptor ring\n");
1794         return -ENOMEM;
1795 }
1796
1797 /**
1798  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1799  *                                (Descriptors) for all queues
1800  * @adapter: board private structure
1801  *
1802  * Return 0 on success, negative on failure
1803  **/
1804 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1805 {
1806         int i, err = 0;
1807         int r_idx;
1808
1809         for (i = 0; i < adapter->num_tx_queues; i++) {
1810                 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1811                 if (err) {
1812                         dev_err(&adapter->pdev->dev,
1813                                 "Allocation for Tx Queue %u failed\n", i);
1814                         for (i--; i >= 0; i--)
1815                                 igb_free_tx_resources(&adapter->tx_ring[i]);
1816                         break;
1817                 }
1818         }
1819
1820         for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1821                 r_idx = i % adapter->num_tx_queues;
1822                 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1823         }
1824         return err;
1825 }
1826
1827 /**
1828  * igb_configure_tx - Configure transmit Unit after Reset
1829  * @adapter: board private structure
1830  *
1831  * Configure the Tx unit of the MAC after a reset.
1832  **/
1833 static void igb_configure_tx(struct igb_adapter *adapter)
1834 {
1835         u64 tdba;
1836         struct e1000_hw *hw = &adapter->hw;
1837         u32 tctl;
1838         u32 txdctl, txctrl;
1839         int i, j;
1840
1841         for (i = 0; i < adapter->num_tx_queues; i++) {
1842                 struct igb_ring *ring = &adapter->tx_ring[i];
1843                 j = ring->reg_idx;
1844                 wr32(E1000_TDLEN(j),
1845                      ring->count * sizeof(union e1000_adv_tx_desc));
1846                 tdba = ring->dma;
1847                 wr32(E1000_TDBAL(j),
1848                      tdba & 0x00000000ffffffffULL);
1849                 wr32(E1000_TDBAH(j), tdba >> 32);
1850
1851                 ring->head = E1000_TDH(j);
1852                 ring->tail = E1000_TDT(j);
1853                 writel(0, hw->hw_addr + ring->tail);
1854                 writel(0, hw->hw_addr + ring->head);
1855                 txdctl = rd32(E1000_TXDCTL(j));
1856                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1857                 wr32(E1000_TXDCTL(j), txdctl);
1858
1859                 /* Turn off Relaxed Ordering on head write-backs.  The
1860                  * writebacks MUST be delivered in order or it will
1861                  * completely screw up our bookeeping.
1862                  */
1863                 txctrl = rd32(E1000_DCA_TXCTRL(j));
1864                 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1865                 wr32(E1000_DCA_TXCTRL(j), txctrl);
1866         }
1867
1868         /* disable queue 0 to prevent tail bump w/o re-configuration */
1869         if (adapter->vfs_allocated_count)
1870                 wr32(E1000_TXDCTL(0), 0);
1871
1872         /* Program the Transmit Control Register */
1873         tctl = rd32(E1000_TCTL);
1874         tctl &= ~E1000_TCTL_CT;
1875         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1876                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1877
1878         igb_config_collision_dist(hw);
1879
1880         /* Setup Transmit Descriptor Settings for eop descriptor */
1881         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1882
1883         /* Enable transmits */
1884         tctl |= E1000_TCTL_EN;
1885
1886         wr32(E1000_TCTL, tctl);
1887 }
1888
1889 /**
1890  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1891  * @adapter: board private structure
1892  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
1893  *
1894  * Returns 0 on success, negative on failure
1895  **/
1896 int igb_setup_rx_resources(struct igb_adapter *adapter,
1897                            struct igb_ring *rx_ring)
1898 {
1899         struct pci_dev *pdev = adapter->pdev;
1900         int size, desc_len;
1901
1902         size = sizeof(struct igb_buffer) * rx_ring->count;
1903         rx_ring->buffer_info = vmalloc(size);
1904         if (!rx_ring->buffer_info)
1905                 goto err;
1906         memset(rx_ring->buffer_info, 0, size);
1907
1908         desc_len = sizeof(union e1000_adv_rx_desc);
1909
1910         /* Round up to nearest 4K */
1911         rx_ring->size = rx_ring->count * desc_len;
1912         rx_ring->size = ALIGN(rx_ring->size, 4096);
1913
1914         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1915                                              &rx_ring->dma);
1916
1917         if (!rx_ring->desc)
1918                 goto err;
1919
1920         rx_ring->next_to_clean = 0;
1921         rx_ring->next_to_use = 0;
1922
1923         rx_ring->adapter = adapter;
1924
1925         return 0;
1926
1927 err:
1928         vfree(rx_ring->buffer_info);
1929         dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1930                 "the receive descriptor ring\n");
1931         return -ENOMEM;
1932 }
1933
1934 /**
1935  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1936  *                                (Descriptors) for all queues
1937  * @adapter: board private structure
1938  *
1939  * Return 0 on success, negative on failure
1940  **/
1941 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1942 {
1943         int i, err = 0;
1944
1945         for (i = 0; i < adapter->num_rx_queues; i++) {
1946                 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1947                 if (err) {
1948                         dev_err(&adapter->pdev->dev,
1949                                 "Allocation for Rx Queue %u failed\n", i);
1950                         for (i--; i >= 0; i--)
1951                                 igb_free_rx_resources(&adapter->rx_ring[i]);
1952                         break;
1953                 }
1954         }
1955
1956         return err;
1957 }
1958
1959 /**
1960  * igb_setup_rctl - configure the receive control registers
1961  * @adapter: Board private structure
1962  **/
1963 static void igb_setup_rctl(struct igb_adapter *adapter)
1964 {
1965         struct e1000_hw *hw = &adapter->hw;
1966         u32 rctl;
1967         u32 srrctl = 0;
1968         int i, j;
1969
1970         rctl = rd32(E1000_RCTL);
1971
1972         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1973         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1974
1975         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1976                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1977
1978         /*
1979          * enable stripping of CRC. It's unlikely this will break BMC
1980          * redirection as it did with e1000. Newer features require
1981          * that the HW strips the CRC.
1982          */
1983         rctl |= E1000_RCTL_SECRC;
1984
1985         /*
1986          * disable store bad packets and clear size bits.
1987          */
1988         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
1989
1990         /* enable LPE when to prevent packets larger than max_frame_size */
1991                 rctl |= E1000_RCTL_LPE;
1992
1993         /* Setup buffer sizes */
1994         switch (adapter->rx_buffer_len) {
1995         case IGB_RXBUFFER_256:
1996                 rctl |= E1000_RCTL_SZ_256;
1997                 break;
1998         case IGB_RXBUFFER_512:
1999                 rctl |= E1000_RCTL_SZ_512;
2000                 break;
2001         default:
2002                 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
2003                          >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2004                 break;
2005         }
2006
2007         /* 82575 and greater support packet-split where the protocol
2008          * header is placed in skb->data and the packet data is
2009          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2010          * In the case of a non-split, skb->data is linearly filled,
2011          * followed by the page buffers.  Therefore, skb->data is
2012          * sized to hold the largest protocol header.
2013          */
2014         /* allocations using alloc_page take too long for regular MTU
2015          * so only enable packet split for jumbo frames */
2016         if (adapter->netdev->mtu > ETH_DATA_LEN) {
2017                 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
2018                 srrctl |= adapter->rx_ps_hdr_size <<
2019                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2020                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2021         } else {
2022                 adapter->rx_ps_hdr_size = 0;
2023                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2024         }
2025
2026         /* Attention!!!  For SR-IOV PF driver operations you must enable
2027          * queue drop for all VF and PF queues to prevent head of line blocking
2028          * if an un-trusted VF does not provide descriptors to hardware.
2029          */
2030         if (adapter->vfs_allocated_count) {
2031                 u32 vmolr;
2032
2033                 j = adapter->rx_ring[0].reg_idx;
2034
2035                 /* set all queue drop enable bits */
2036                 wr32(E1000_QDE, ALL_QUEUES);
2037                 srrctl |= E1000_SRRCTL_DROP_EN;
2038
2039                 /* disable queue 0 to prevent tail write w/o re-config */
2040                 wr32(E1000_RXDCTL(0), 0);
2041
2042                 vmolr = rd32(E1000_VMOLR(j));
2043                 if (rctl & E1000_RCTL_LPE)
2044                         vmolr |= E1000_VMOLR_LPE;
2045                 if (adapter->num_rx_queues > 0)
2046                         vmolr |= E1000_VMOLR_RSSE;
2047                 wr32(E1000_VMOLR(j), vmolr);
2048         }
2049
2050         for (i = 0; i < adapter->num_rx_queues; i++) {
2051                 j = adapter->rx_ring[i].reg_idx;
2052                 wr32(E1000_SRRCTL(j), srrctl);
2053         }
2054
2055         wr32(E1000_RCTL, rctl);
2056 }
2057
2058 /**
2059  * igb_rlpml_set - set maximum receive packet size
2060  * @adapter: board private structure
2061  *
2062  * Configure maximum receivable packet size.
2063  **/
2064 static void igb_rlpml_set(struct igb_adapter *adapter)
2065 {
2066         u32 max_frame_size = adapter->max_frame_size;
2067         struct e1000_hw *hw = &adapter->hw;
2068         u16 pf_id = adapter->vfs_allocated_count;
2069
2070         if (adapter->vlgrp)
2071                 max_frame_size += VLAN_TAG_SIZE;
2072
2073         /* if vfs are enabled we set RLPML to the largest possible request
2074          * size and set the VMOLR RLPML to the size we need */
2075         if (pf_id) {
2076                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2077                 max_frame_size = MAX_STD_JUMBO_FRAME_SIZE + VLAN_TAG_SIZE;
2078         }
2079
2080         wr32(E1000_RLPML, max_frame_size);
2081 }
2082
2083 /**
2084  * igb_configure_vt_default_pool - Configure VT default pool
2085  * @adapter: board private structure
2086  *
2087  * Configure the default pool
2088  **/
2089 static void igb_configure_vt_default_pool(struct igb_adapter *adapter)
2090 {
2091         struct e1000_hw *hw = &adapter->hw;
2092         u16 pf_id = adapter->vfs_allocated_count;
2093         u32 vtctl;
2094
2095         /* not in sr-iov mode - do nothing */
2096         if (!pf_id)
2097                 return;
2098
2099         vtctl = rd32(E1000_VT_CTL);
2100         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2101                    E1000_VT_CTL_DISABLE_DEF_POOL);
2102         vtctl |= pf_id << E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2103         wr32(E1000_VT_CTL, vtctl);
2104 }
2105
2106 /**
2107  * igb_configure_rx - Configure receive Unit after Reset
2108  * @adapter: board private structure
2109  *
2110  * Configure the Rx unit of the MAC after a reset.
2111  **/
2112 static void igb_configure_rx(struct igb_adapter *adapter)
2113 {
2114         u64 rdba;
2115         struct e1000_hw *hw = &adapter->hw;
2116         u32 rctl, rxcsum;
2117         u32 rxdctl;
2118         int i;
2119
2120         /* disable receives while setting up the descriptors */
2121         rctl = rd32(E1000_RCTL);
2122         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2123         wrfl();
2124         mdelay(10);
2125
2126         if (adapter->itr_setting > 3)
2127                 wr32(E1000_ITR, adapter->itr);
2128
2129         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2130          * the Base and Length of the Rx Descriptor Ring */
2131         for (i = 0; i < adapter->num_rx_queues; i++) {
2132                 struct igb_ring *ring = &adapter->rx_ring[i];
2133                 int j = ring->reg_idx;
2134                 rdba = ring->dma;
2135                 wr32(E1000_RDBAL(j),
2136                      rdba & 0x00000000ffffffffULL);
2137                 wr32(E1000_RDBAH(j), rdba >> 32);
2138                 wr32(E1000_RDLEN(j),
2139                      ring->count * sizeof(union e1000_adv_rx_desc));
2140
2141                 ring->head = E1000_RDH(j);
2142                 ring->tail = E1000_RDT(j);
2143                 writel(0, hw->hw_addr + ring->tail);
2144                 writel(0, hw->hw_addr + ring->head);
2145
2146                 rxdctl = rd32(E1000_RXDCTL(j));
2147                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2148                 rxdctl &= 0xFFF00000;
2149                 rxdctl |= IGB_RX_PTHRESH;
2150                 rxdctl |= IGB_RX_HTHRESH << 8;
2151                 rxdctl |= IGB_RX_WTHRESH << 16;
2152                 wr32(E1000_RXDCTL(j), rxdctl);
2153         }
2154
2155         if (adapter->num_rx_queues > 1) {
2156                 u32 random[10];
2157                 u32 mrqc;
2158                 u32 j, shift;
2159                 union e1000_reta {
2160                         u32 dword;
2161                         u8  bytes[4];
2162                 } reta;
2163
2164                 get_random_bytes(&random[0], 40);
2165
2166                 if (hw->mac.type >= e1000_82576)
2167                         shift = 0;
2168                 else
2169                         shift = 6;
2170                 for (j = 0; j < (32 * 4); j++) {
2171                         reta.bytes[j & 3] =
2172                                 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
2173                         if ((j & 3) == 3)
2174                                 writel(reta.dword,
2175                                        hw->hw_addr + E1000_RETA(0) + (j & ~3));
2176                 }
2177                 if (adapter->vfs_allocated_count)
2178                         mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2179                 else
2180                         mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2181
2182                 /* Fill out hash function seeds */
2183                 for (j = 0; j < 10; j++)
2184                         array_wr32(E1000_RSSRK(0), j, random[j]);
2185
2186                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2187                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
2188                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2189                          E1000_MRQC_RSS_FIELD_IPV6_TCP);
2190                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2191                          E1000_MRQC_RSS_FIELD_IPV6_UDP);
2192                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2193                          E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2194
2195
2196                 wr32(E1000_MRQC, mrqc);
2197
2198                 /* Multiqueue and raw packet checksumming are mutually
2199                  * exclusive.  Note that this not the same as TCP/IP
2200                  * checksumming, which works fine. */
2201                 rxcsum = rd32(E1000_RXCSUM);
2202                 rxcsum |= E1000_RXCSUM_PCSD;
2203                 wr32(E1000_RXCSUM, rxcsum);
2204         } else {
2205                 /* Enable multi-queue for sr-iov */
2206                 if (adapter->vfs_allocated_count)
2207                         wr32(E1000_MRQC, E1000_MRQC_ENABLE_VMDQ);
2208                 /* Enable Receive Checksum Offload for TCP and UDP */
2209                 rxcsum = rd32(E1000_RXCSUM);
2210                 if (adapter->rx_csum)
2211                         rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPPCSE;
2212                 else
2213                         rxcsum &= ~(E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPPCSE);
2214
2215                 wr32(E1000_RXCSUM, rxcsum);
2216         }
2217
2218         /* Set the default pool for the PF's first queue */
2219         igb_configure_vt_default_pool(adapter);
2220
2221         igb_rlpml_set(adapter);
2222
2223         /* Enable Receives */
2224         wr32(E1000_RCTL, rctl);
2225 }
2226
2227 /**
2228  * igb_free_tx_resources - Free Tx Resources per Queue
2229  * @tx_ring: Tx descriptor ring for a specific queue
2230  *
2231  * Free all transmit software resources
2232  **/
2233 void igb_free_tx_resources(struct igb_ring *tx_ring)
2234 {
2235         struct pci_dev *pdev = tx_ring->adapter->pdev;
2236
2237         igb_clean_tx_ring(tx_ring);
2238
2239         vfree(tx_ring->buffer_info);
2240         tx_ring->buffer_info = NULL;
2241
2242         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2243
2244         tx_ring->desc = NULL;
2245 }
2246
2247 /**
2248  * igb_free_all_tx_resources - Free Tx Resources for All Queues
2249  * @adapter: board private structure
2250  *
2251  * Free all transmit software resources
2252  **/
2253 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2254 {
2255         int i;
2256
2257         for (i = 0; i < adapter->num_tx_queues; i++)
2258                 igb_free_tx_resources(&adapter->tx_ring[i]);
2259 }
2260
2261 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2262                                            struct igb_buffer *buffer_info)
2263 {
2264         buffer_info->dma = 0;
2265         if (buffer_info->skb) {
2266                 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
2267                               DMA_TO_DEVICE);
2268                 dev_kfree_skb_any(buffer_info->skb);
2269                 buffer_info->skb = NULL;
2270         }
2271         buffer_info->time_stamp = 0;
2272         /* buffer_info must be completely set up in the transmit path */
2273 }
2274
2275 /**
2276  * igb_clean_tx_ring - Free Tx Buffers
2277  * @tx_ring: ring to be cleaned
2278  **/
2279 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2280 {
2281         struct igb_adapter *adapter = tx_ring->adapter;
2282         struct igb_buffer *buffer_info;
2283         unsigned long size;
2284         unsigned int i;
2285
2286         if (!tx_ring->buffer_info)
2287                 return;
2288         /* Free all the Tx ring sk_buffs */
2289
2290         for (i = 0; i < tx_ring->count; i++) {
2291                 buffer_info = &tx_ring->buffer_info[i];
2292                 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2293         }
2294
2295         size = sizeof(struct igb_buffer) * tx_ring->count;
2296         memset(tx_ring->buffer_info, 0, size);
2297
2298         /* Zero out the descriptor ring */
2299
2300         memset(tx_ring->desc, 0, tx_ring->size);
2301
2302         tx_ring->next_to_use = 0;
2303         tx_ring->next_to_clean = 0;
2304
2305         writel(0, adapter->hw.hw_addr + tx_ring->head);
2306         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2307 }
2308
2309 /**
2310  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2311  * @adapter: board private structure
2312  **/
2313 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2314 {
2315         int i;
2316
2317         for (i = 0; i < adapter->num_tx_queues; i++)
2318                 igb_clean_tx_ring(&adapter->tx_ring[i]);
2319 }
2320
2321 /**
2322  * igb_free_rx_resources - Free Rx Resources
2323  * @rx_ring: ring to clean the resources from
2324  *
2325  * Free all receive software resources
2326  **/
2327 void igb_free_rx_resources(struct igb_ring *rx_ring)
2328 {
2329         struct pci_dev *pdev = rx_ring->adapter->pdev;
2330
2331         igb_clean_rx_ring(rx_ring);
2332
2333         vfree(rx_ring->buffer_info);
2334         rx_ring->buffer_info = NULL;
2335
2336         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2337
2338         rx_ring->desc = NULL;
2339 }
2340
2341 /**
2342  * igb_free_all_rx_resources - Free Rx Resources for All Queues
2343  * @adapter: board private structure
2344  *
2345  * Free all receive software resources
2346  **/
2347 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2348 {
2349         int i;
2350
2351         for (i = 0; i < adapter->num_rx_queues; i++)
2352                 igb_free_rx_resources(&adapter->rx_ring[i]);
2353 }
2354
2355 /**
2356  * igb_clean_rx_ring - Free Rx Buffers per Queue
2357  * @rx_ring: ring to free buffers from
2358  **/
2359 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2360 {
2361         struct igb_adapter *adapter = rx_ring->adapter;
2362         struct igb_buffer *buffer_info;
2363         struct pci_dev *pdev = adapter->pdev;
2364         unsigned long size;
2365         unsigned int i;
2366
2367         if (!rx_ring->buffer_info)
2368                 return;
2369         /* Free all the Rx ring sk_buffs */
2370         for (i = 0; i < rx_ring->count; i++) {
2371                 buffer_info = &rx_ring->buffer_info[i];
2372                 if (buffer_info->dma) {
2373                         if (adapter->rx_ps_hdr_size)
2374                                 pci_unmap_single(pdev, buffer_info->dma,
2375                                                  adapter->rx_ps_hdr_size,
2376                                                  PCI_DMA_FROMDEVICE);
2377                         else
2378                                 pci_unmap_single(pdev, buffer_info->dma,
2379                                                  adapter->rx_buffer_len,
2380                                                  PCI_DMA_FROMDEVICE);
2381                         buffer_info->dma = 0;
2382                 }
2383
2384                 if (buffer_info->skb) {
2385                         dev_kfree_skb(buffer_info->skb);
2386                         buffer_info->skb = NULL;
2387                 }
2388                 if (buffer_info->page) {
2389                         if (buffer_info->page_dma)
2390                                 pci_unmap_page(pdev, buffer_info->page_dma,
2391                                                PAGE_SIZE / 2,
2392                                                PCI_DMA_FROMDEVICE);
2393                         put_page(buffer_info->page);
2394                         buffer_info->page = NULL;
2395                         buffer_info->page_dma = 0;
2396                         buffer_info->page_offset = 0;
2397                 }
2398         }
2399
2400         size = sizeof(struct igb_buffer) * rx_ring->count;
2401         memset(rx_ring->buffer_info, 0, size);
2402
2403         /* Zero out the descriptor ring */
2404         memset(rx_ring->desc, 0, rx_ring->size);
2405
2406         rx_ring->next_to_clean = 0;
2407         rx_ring->next_to_use = 0;
2408
2409         writel(0, adapter->hw.hw_addr + rx_ring->head);
2410         writel(0, adapter->hw.hw_addr + rx_ring->tail);
2411 }
2412
2413 /**
2414  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2415  * @adapter: board private structure
2416  **/
2417 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2418 {
2419         int i;
2420
2421         for (i = 0; i < adapter->num_rx_queues; i++)
2422                 igb_clean_rx_ring(&adapter->rx_ring[i]);
2423 }
2424
2425 /**
2426  * igb_set_mac - Change the Ethernet Address of the NIC
2427  * @netdev: network interface device structure
2428  * @p: pointer to an address structure
2429  *
2430  * Returns 0 on success, negative on failure
2431  **/
2432 static int igb_set_mac(struct net_device *netdev, void *p)
2433 {
2434         struct igb_adapter *adapter = netdev_priv(netdev);
2435         struct e1000_hw *hw = &adapter->hw;
2436         struct sockaddr *addr = p;
2437
2438         if (!is_valid_ether_addr(addr->sa_data))
2439                 return -EADDRNOTAVAIL;
2440
2441         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2442         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2443
2444         hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
2445
2446         igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
2447
2448         return 0;
2449 }
2450
2451 /**
2452  * igb_set_multi - Multicast and Promiscuous mode set
2453  * @netdev: network interface device structure
2454  *
2455  * The set_multi entry point is called whenever the multicast address
2456  * list or the network interface flags are updated.  This routine is
2457  * responsible for configuring the hardware for proper multicast,
2458  * promiscuous mode, and all-multi behavior.
2459  **/
2460 static void igb_set_multi(struct net_device *netdev)
2461 {
2462         struct igb_adapter *adapter = netdev_priv(netdev);
2463         struct e1000_hw *hw = &adapter->hw;
2464         struct e1000_mac_info *mac = &hw->mac;
2465         struct dev_mc_list *mc_ptr;
2466         u8  *mta_list = NULL;
2467         u32 rctl;
2468         int i;
2469
2470         /* Check for Promiscuous and All Multicast modes */
2471
2472         rctl = rd32(E1000_RCTL);
2473
2474         if (netdev->flags & IFF_PROMISC) {
2475                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2476                 rctl &= ~E1000_RCTL_VFE;
2477         } else {
2478                 if (netdev->flags & IFF_ALLMULTI) {
2479                         rctl |= E1000_RCTL_MPE;
2480                         rctl &= ~E1000_RCTL_UPE;
2481                 } else
2482                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2483                 rctl |= E1000_RCTL_VFE;
2484         }
2485         wr32(E1000_RCTL, rctl);
2486
2487         if (netdev->mc_count) {
2488                 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2489                 if (!mta_list) {
2490                         dev_err(&adapter->pdev->dev,
2491                                 "failed to allocate multicast filter list\n");
2492                         return;
2493                 }
2494         }
2495
2496         /* The shared function expects a packed array of only addresses. */
2497         mc_ptr = netdev->mc_list;
2498
2499         for (i = 0; i < netdev->mc_count; i++) {
2500                 if (!mc_ptr)
2501                         break;
2502                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2503                 mc_ptr = mc_ptr->next;
2504         }
2505         igb_update_mc_addr_list(hw, mta_list, i,
2506                                 adapter->vfs_allocated_count + 1,
2507                                 mac->rar_entry_count);
2508
2509         igb_set_mc_list_pools(adapter, i, mac->rar_entry_count);
2510         igb_restore_vf_multicasts(adapter);
2511
2512         kfree(mta_list);
2513 }
2514
2515 /* Need to wait a few seconds after link up to get diagnostic information from
2516  * the phy */
2517 static void igb_update_phy_info(unsigned long data)
2518 {
2519         struct igb_adapter *adapter = (struct igb_adapter *) data;
2520         igb_get_phy_info(&adapter->hw);
2521 }
2522
2523 /**
2524  * igb_has_link - check shared code for link and determine up/down
2525  * @adapter: pointer to driver private info
2526  **/
2527 static bool igb_has_link(struct igb_adapter *adapter)
2528 {
2529         struct e1000_hw *hw = &adapter->hw;
2530         bool link_active = false;
2531         s32 ret_val = 0;
2532
2533         /* get_link_status is set on LSC (link status) interrupt or
2534          * rx sequence error interrupt.  get_link_status will stay
2535          * false until the e1000_check_for_link establishes link
2536          * for copper adapters ONLY
2537          */
2538         switch (hw->phy.media_type) {
2539         case e1000_media_type_copper:
2540                 if (hw->mac.get_link_status) {
2541                         ret_val = hw->mac.ops.check_for_link(hw);
2542                         link_active = !hw->mac.get_link_status;
2543                 } else {
2544                         link_active = true;
2545                 }
2546                 break;
2547         case e1000_media_type_fiber:
2548                 ret_val = hw->mac.ops.check_for_link(hw);
2549                 link_active = !!(rd32(E1000_STATUS) & E1000_STATUS_LU);
2550                 break;
2551         case e1000_media_type_internal_serdes:
2552                 ret_val = hw->mac.ops.check_for_link(hw);
2553                 link_active = hw->mac.serdes_has_link;
2554                 break;
2555         default:
2556         case e1000_media_type_unknown:
2557                 break;
2558         }
2559
2560         return link_active;
2561 }
2562
2563 /**
2564  * igb_watchdog - Timer Call-back
2565  * @data: pointer to adapter cast into an unsigned long
2566  **/
2567 static void igb_watchdog(unsigned long data)
2568 {
2569         struct igb_adapter *adapter = (struct igb_adapter *)data;
2570         /* Do the rest outside of interrupt context */
2571         schedule_work(&adapter->watchdog_task);
2572 }
2573
2574 static void igb_watchdog_task(struct work_struct *work)
2575 {
2576         struct igb_adapter *adapter = container_of(work,
2577                                         struct igb_adapter, watchdog_task);
2578         struct e1000_hw *hw = &adapter->hw;
2579         struct net_device *netdev = adapter->netdev;
2580         struct igb_ring *tx_ring = adapter->tx_ring;
2581         u32 link;
2582         u32 eics = 0;
2583         int i;
2584
2585         link = igb_has_link(adapter);
2586         if ((netif_carrier_ok(netdev)) && link)
2587                 goto link_up;
2588
2589         if (link) {
2590                 if (!netif_carrier_ok(netdev)) {
2591                         u32 ctrl;
2592                         hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2593                                                    &adapter->link_speed,
2594                                                    &adapter->link_duplex);
2595
2596                         ctrl = rd32(E1000_CTRL);
2597                         /* Links status message must follow this format */
2598                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2599                                  "Flow Control: %s\n",
2600                                  netdev->name,
2601                                  adapter->link_speed,
2602                                  adapter->link_duplex == FULL_DUPLEX ?
2603                                  "Full Duplex" : "Half Duplex",
2604                                  ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2605                                  E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2606                                  E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2607                                  E1000_CTRL_TFCE) ? "TX" : "None")));
2608
2609                         /* tweak tx_queue_len according to speed/duplex and
2610                          * adjust the timeout factor */
2611                         netdev->tx_queue_len = adapter->tx_queue_len;
2612                         adapter->tx_timeout_factor = 1;
2613                         switch (adapter->link_speed) {
2614                         case SPEED_10:
2615                                 netdev->tx_queue_len = 10;
2616                                 adapter->tx_timeout_factor = 14;
2617                                 break;
2618                         case SPEED_100:
2619                                 netdev->tx_queue_len = 100;
2620                                 /* maybe add some timeout factor ? */
2621                                 break;
2622                         }
2623
2624                         netif_carrier_on(netdev);
2625                         netif_tx_wake_all_queues(netdev);
2626
2627                         igb_ping_all_vfs(adapter);
2628
2629                         /* link state has changed, schedule phy info update */
2630                         if (!test_bit(__IGB_DOWN, &adapter->state))
2631                                 mod_timer(&adapter->phy_info_timer,
2632                                           round_jiffies(jiffies + 2 * HZ));
2633                 }
2634         } else {
2635                 if (netif_carrier_ok(netdev)) {
2636                         adapter->link_speed = 0;
2637                         adapter->link_duplex = 0;
2638                         /* Links status message must follow this format */
2639                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
2640                                netdev->name);
2641                         netif_carrier_off(netdev);
2642                         netif_tx_stop_all_queues(netdev);
2643
2644                         igb_ping_all_vfs(adapter);
2645
2646                         /* link state has changed, schedule phy info update */
2647                         if (!test_bit(__IGB_DOWN, &adapter->state))
2648                                 mod_timer(&adapter->phy_info_timer,
2649                                           round_jiffies(jiffies + 2 * HZ));
2650                 }
2651         }
2652
2653 link_up:
2654         igb_update_stats(adapter);
2655
2656         hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2657         adapter->tpt_old = adapter->stats.tpt;
2658         hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
2659         adapter->colc_old = adapter->stats.colc;
2660
2661         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2662         adapter->gorc_old = adapter->stats.gorc;
2663         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2664         adapter->gotc_old = adapter->stats.gotc;
2665
2666         igb_update_adaptive(&adapter->hw);
2667
2668         if (!netif_carrier_ok(netdev)) {
2669                 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
2670                         /* We've lost link, so the controller stops DMA,
2671                          * but we've got queued Tx work that's never going
2672                          * to get done, so reset controller to flush Tx.
2673                          * (Do the reset outside of interrupt context). */
2674                         adapter->tx_timeout_count++;
2675                         schedule_work(&adapter->reset_task);
2676                 }
2677         }
2678
2679         /* Cause software interrupt to ensure rx ring is cleaned */
2680         if (adapter->msix_entries) {
2681                 for (i = 0; i < adapter->num_rx_queues; i++)
2682                         eics |= adapter->rx_ring[i].eims_value;
2683                 wr32(E1000_EICS, eics);
2684         } else {
2685                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2686         }
2687
2688         /* Force detection of hung controller every watchdog period */
2689         tx_ring->detect_tx_hung = true;
2690
2691         /* Reset the timer */
2692         if (!test_bit(__IGB_DOWN, &adapter->state))
2693                 mod_timer(&adapter->watchdog_timer,
2694                           round_jiffies(jiffies + 2 * HZ));
2695 }
2696
2697 enum latency_range {
2698         lowest_latency = 0,
2699         low_latency = 1,
2700         bulk_latency = 2,
2701         latency_invalid = 255
2702 };
2703
2704
2705 /**
2706  * igb_update_ring_itr - update the dynamic ITR value based on packet size
2707  *
2708  *      Stores a new ITR value based on strictly on packet size.  This
2709  *      algorithm is less sophisticated than that used in igb_update_itr,
2710  *      due to the difficulty of synchronizing statistics across multiple
2711  *      receive rings.  The divisors and thresholds used by this fuction
2712  *      were determined based on theoretical maximum wire speed and testing
2713  *      data, in order to minimize response time while increasing bulk
2714  *      throughput.
2715  *      This functionality is controlled by the InterruptThrottleRate module
2716  *      parameter (see igb_param.c)
2717  *      NOTE:  This function is called only when operating in a multiqueue
2718  *             receive environment.
2719  * @rx_ring: pointer to ring
2720  **/
2721 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2722 {
2723         int new_val = rx_ring->itr_val;
2724         int avg_wire_size = 0;
2725         struct igb_adapter *adapter = rx_ring->adapter;
2726
2727         if (!rx_ring->total_packets)
2728                 goto clear_counts; /* no packets, so don't do anything */
2729
2730         /* For non-gigabit speeds, just fix the interrupt rate at 4000
2731          * ints/sec - ITR timer value of 120 ticks.
2732          */
2733         if (adapter->link_speed != SPEED_1000) {
2734                 new_val = 120;
2735                 goto set_itr_val;
2736         }
2737         avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2738
2739         /* Add 24 bytes to size to account for CRC, preamble, and gap */
2740         avg_wire_size += 24;
2741
2742         /* Don't starve jumbo frames */
2743         avg_wire_size = min(avg_wire_size, 3000);
2744
2745         /* Give a little boost to mid-size frames */
2746         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2747                 new_val = avg_wire_size / 3;
2748         else
2749                 new_val = avg_wire_size / 2;
2750
2751 set_itr_val:
2752         if (new_val != rx_ring->itr_val) {
2753                 rx_ring->itr_val = new_val;
2754                 rx_ring->set_itr = 1;
2755         }
2756 clear_counts:
2757         rx_ring->total_bytes = 0;
2758         rx_ring->total_packets = 0;
2759 }
2760
2761 /**
2762  * igb_update_itr - update the dynamic ITR value based on statistics
2763  *      Stores a new ITR value based on packets and byte
2764  *      counts during the last interrupt.  The advantage of per interrupt
2765  *      computation is faster updates and more accurate ITR for the current
2766  *      traffic pattern.  Constants in this function were computed
2767  *      based on theoretical maximum wire speed and thresholds were set based
2768  *      on testing data as well as attempting to minimize response time
2769  *      while increasing bulk throughput.
2770  *      this functionality is controlled by the InterruptThrottleRate module
2771  *      parameter (see igb_param.c)
2772  *      NOTE:  These calculations are only valid when operating in a single-
2773  *             queue environment.
2774  * @adapter: pointer to adapter
2775  * @itr_setting: current adapter->itr
2776  * @packets: the number of packets during this measurement interval
2777  * @bytes: the number of bytes during this measurement interval
2778  **/
2779 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2780                                    int packets, int bytes)
2781 {
2782         unsigned int retval = itr_setting;
2783
2784         if (packets == 0)
2785                 goto update_itr_done;
2786
2787         switch (itr_setting) {
2788         case lowest_latency:
2789                 /* handle TSO and jumbo frames */
2790                 if (bytes/packets > 8000)
2791                         retval = bulk_latency;
2792                 else if ((packets < 5) && (bytes > 512))
2793                         retval = low_latency;
2794                 break;
2795         case low_latency:  /* 50 usec aka 20000 ints/s */
2796                 if (bytes > 10000) {
2797                         /* this if handles the TSO accounting */
2798                         if (bytes/packets > 8000) {
2799                                 retval = bulk_latency;
2800                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2801                                 retval = bulk_latency;
2802                         } else if ((packets > 35)) {
2803                                 retval = lowest_latency;
2804                         }
2805                 } else if (bytes/packets > 2000) {
2806                         retval = bulk_latency;
2807                 } else if (packets <= 2 && bytes < 512) {
2808                         retval = lowest_latency;
2809                 }
2810                 break;
2811         case bulk_latency: /* 250 usec aka 4000 ints/s */
2812                 if (bytes > 25000) {
2813                         if (packets > 35)
2814                                 retval = low_latency;
2815                 } else if (bytes < 1500) {
2816                         retval = low_latency;
2817                 }
2818                 break;
2819         }
2820
2821 update_itr_done:
2822         return retval;
2823 }
2824
2825 static void igb_set_itr(struct igb_adapter *adapter)
2826 {
2827         u16 current_itr;
2828         u32 new_itr = adapter->itr;
2829
2830         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2831         if (adapter->link_speed != SPEED_1000) {
2832                 current_itr = 0;
2833                 new_itr = 4000;
2834                 goto set_itr_now;
2835         }
2836
2837         adapter->rx_itr = igb_update_itr(adapter,
2838                                     adapter->rx_itr,
2839                                     adapter->rx_ring->total_packets,
2840                                     adapter->rx_ring->total_bytes);
2841
2842         if (adapter->rx_ring->buddy) {
2843                 adapter->tx_itr = igb_update_itr(adapter,
2844                                             adapter->tx_itr,
2845                                             adapter->tx_ring->total_packets,
2846                                             adapter->tx_ring->total_bytes);
2847                 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2848         } else {
2849                 current_itr = adapter->rx_itr;
2850         }
2851
2852         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2853         if (adapter->itr_setting == 3 && current_itr == lowest_latency)
2854                 current_itr = low_latency;
2855
2856         switch (current_itr) {
2857         /* counts and packets in update_itr are dependent on these numbers */
2858         case lowest_latency:
2859                 new_itr = 70000;
2860                 break;
2861         case low_latency:
2862                 new_itr = 20000; /* aka hwitr = ~200 */
2863                 break;
2864         case bulk_latency:
2865                 new_itr = 4000;
2866                 break;
2867         default:
2868                 break;
2869         }
2870
2871 set_itr_now:
2872         adapter->rx_ring->total_bytes = 0;
2873         adapter->rx_ring->total_packets = 0;
2874         if (adapter->rx_ring->buddy) {
2875                 adapter->rx_ring->buddy->total_bytes = 0;
2876                 adapter->rx_ring->buddy->total_packets = 0;
2877         }
2878
2879         if (new_itr != adapter->itr) {
2880                 /* this attempts to bias the interrupt rate towards Bulk
2881                  * by adding intermediate steps when interrupt rate is
2882                  * increasing */
2883                 new_itr = new_itr > adapter->itr ?
2884                              min(adapter->itr + (new_itr >> 2), new_itr) :
2885                              new_itr;
2886                 /* Don't write the value here; it resets the adapter's
2887                  * internal timer, and causes us to delay far longer than
2888                  * we should between interrupts.  Instead, we write the ITR
2889                  * value at the beginning of the next interrupt so the timing
2890                  * ends up being correct.
2891                  */
2892                 adapter->itr = new_itr;
2893                 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2894                 adapter->rx_ring->set_itr = 1;
2895         }
2896
2897         return;
2898 }
2899
2900
2901 #define IGB_TX_FLAGS_CSUM               0x00000001
2902 #define IGB_TX_FLAGS_VLAN               0x00000002
2903 #define IGB_TX_FLAGS_TSO                0x00000004
2904 #define IGB_TX_FLAGS_IPV4               0x00000008
2905 #define IGB_TX_FLAGS_TSTAMP             0x00000010
2906 #define IGB_TX_FLAGS_VLAN_MASK  0xffff0000
2907 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2908
2909 static inline int igb_tso_adv(struct igb_adapter *adapter,
2910                               struct igb_ring *tx_ring,
2911                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2912 {
2913         struct e1000_adv_tx_context_desc *context_desc;
2914         unsigned int i;
2915         int err;
2916         struct igb_buffer *buffer_info;
2917         u32 info = 0, tu_cmd = 0;
2918         u32 mss_l4len_idx, l4len;
2919         *hdr_len = 0;
2920
2921         if (skb_header_cloned(skb)) {
2922                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2923                 if (err)
2924                         return err;
2925         }
2926
2927         l4len = tcp_hdrlen(skb);
2928         *hdr_len += l4len;
2929
2930         if (skb->protocol == htons(ETH_P_IP)) {
2931                 struct iphdr *iph = ip_hdr(skb);
2932                 iph->tot_len = 0;
2933                 iph->check = 0;
2934                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2935                                                          iph->daddr, 0,
2936                                                          IPPROTO_TCP,
2937                                                          0);
2938         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2939                 ipv6_hdr(skb)->payload_len = 0;
2940                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2941                                                        &ipv6_hdr(skb)->daddr,
2942                                                        0, IPPROTO_TCP, 0);
2943         }
2944
2945         i = tx_ring->next_to_use;
2946
2947         buffer_info = &tx_ring->buffer_info[i];
2948         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2949         /* VLAN MACLEN IPLEN */
2950         if (tx_flags & IGB_TX_FLAGS_VLAN)
2951                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2952         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2953         *hdr_len += skb_network_offset(skb);
2954         info |= skb_network_header_len(skb);
2955         *hdr_len += skb_network_header_len(skb);
2956         context_desc->vlan_macip_lens = cpu_to_le32(info);
2957
2958         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2959         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2960
2961         if (skb->protocol == htons(ETH_P_IP))
2962                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2963         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2964
2965         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2966
2967         /* MSS L4LEN IDX */
2968         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2969         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2970
2971         /* For 82575, context index must be unique per ring. */
2972         if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2973                 mss_l4len_idx |= tx_ring->queue_index << 4;
2974
2975         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2976         context_desc->seqnum_seed = 0;
2977
2978         buffer_info->time_stamp = jiffies;
2979         buffer_info->next_to_watch = i;
2980         buffer_info->dma = 0;
2981         i++;
2982         if (i == tx_ring->count)
2983                 i = 0;
2984
2985         tx_ring->next_to_use = i;
2986
2987         return true;
2988 }
2989
2990 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2991                                         struct igb_ring *tx_ring,
2992                                         struct sk_buff *skb, u32 tx_flags)
2993 {
2994         struct e1000_adv_tx_context_desc *context_desc;
2995         unsigned int i;
2996         struct igb_buffer *buffer_info;
2997         u32 info = 0, tu_cmd = 0;
2998
2999         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3000             (tx_flags & IGB_TX_FLAGS_VLAN)) {
3001                 i = tx_ring->next_to_use;
3002                 buffer_info = &tx_ring->buffer_info[i];
3003                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3004
3005                 if (tx_flags & IGB_TX_FLAGS_VLAN)
3006                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3007                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3008                 if (skb->ip_summed == CHECKSUM_PARTIAL)
3009                         info |= skb_network_header_len(skb);
3010
3011                 context_desc->vlan_macip_lens = cpu_to_le32(info);
3012
3013                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3014
3015                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3016                         __be16 protocol;
3017
3018                         if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3019                                 const struct vlan_ethhdr *vhdr =
3020                                           (const struct vlan_ethhdr*)skb->data;
3021
3022                                 protocol = vhdr->h_vlan_encapsulated_proto;
3023                         } else {
3024                                 protocol = skb->protocol;
3025                         }
3026
3027                         switch (protocol) {
3028                         case cpu_to_be16(ETH_P_IP):
3029                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3030                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3031                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3032                                 break;
3033                         case cpu_to_be16(ETH_P_IPV6):
3034                                 /* XXX what about other V6 headers?? */
3035                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3036                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3037                                 break;
3038                         default:
3039                                 if (unlikely(net_ratelimit()))
3040                                         dev_warn(&adapter->pdev->dev,
3041                                             "partial checksum but proto=%x!\n",
3042                                             skb->protocol);
3043                                 break;
3044                         }
3045                 }
3046
3047                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3048                 context_desc->seqnum_seed = 0;
3049                 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3050                         context_desc->mss_l4len_idx =
3051                                 cpu_to_le32(tx_ring->queue_index << 4);
3052                 else
3053                         context_desc->mss_l4len_idx = 0;
3054
3055                 buffer_info->time_stamp = jiffies;
3056                 buffer_info->next_to_watch = i;
3057                 buffer_info->dma = 0;
3058
3059                 i++;
3060                 if (i == tx_ring->count)
3061                         i = 0;
3062                 tx_ring->next_to_use = i;
3063
3064                 return true;
3065         }
3066         return false;
3067 }
3068
3069 #define IGB_MAX_TXD_PWR 16
3070 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
3071
3072 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
3073                                  struct igb_ring *tx_ring, struct sk_buff *skb,
3074                                  unsigned int first)
3075 {
3076         struct igb_buffer *buffer_info;
3077         unsigned int len = skb_headlen(skb);
3078         unsigned int count = 0, i;
3079         unsigned int f;
3080         dma_addr_t *map;
3081
3082         i = tx_ring->next_to_use;
3083
3084         if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
3085                 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3086                 return 0;
3087         }
3088
3089         map = skb_shinfo(skb)->dma_maps;
3090
3091         buffer_info = &tx_ring->buffer_info[i];
3092         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3093         buffer_info->length = len;
3094         /* set time_stamp *before* dma to help avoid a possible race */
3095         buffer_info->time_stamp = jiffies;
3096         buffer_info->next_to_watch = i;
3097         buffer_info->dma = map[count];
3098         count++;
3099
3100         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3101                 struct skb_frag_struct *frag;
3102
3103                 i++;
3104                 if (i == tx_ring->count)
3105                         i = 0;
3106
3107                 frag = &skb_shinfo(skb)->frags[f];
3108                 len = frag->size;
3109
3110                 buffer_info = &tx_ring->buffer_info[i];
3111                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3112                 buffer_info->length = len;
3113                 buffer_info->time_stamp = jiffies;
3114                 buffer_info->next_to_watch = i;
3115                 buffer_info->dma = map[count];
3116                 count++;
3117         }
3118
3119         tx_ring->buffer_info[i].skb = skb;
3120         tx_ring->buffer_info[first].next_to_watch = i;
3121
3122         return count;
3123 }
3124
3125 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
3126                                     struct igb_ring *tx_ring,
3127                                     int tx_flags, int count, u32 paylen,
3128                                     u8 hdr_len)
3129 {
3130         union e1000_adv_tx_desc *tx_desc = NULL;
3131         struct igb_buffer *buffer_info;
3132         u32 olinfo_status = 0, cmd_type_len;
3133         unsigned int i;
3134
3135         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3136                         E1000_ADVTXD_DCMD_DEXT);
3137
3138         if (tx_flags & IGB_TX_FLAGS_VLAN)
3139                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3140
3141         if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3142                 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3143
3144         if (tx_flags & IGB_TX_FLAGS_TSO) {
3145                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3146
3147                 /* insert tcp checksum */
3148                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3149
3150                 /* insert ip checksum */
3151                 if (tx_flags & IGB_TX_FLAGS_IPV4)
3152                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3153
3154         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3155                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3156         }
3157
3158         if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
3159             (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
3160                          IGB_TX_FLAGS_VLAN)))
3161                 olinfo_status |= tx_ring->queue_index << 4;
3162
3163         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3164
3165         i = tx_ring->next_to_use;
3166         while (count--) {
3167                 buffer_info = &tx_ring->buffer_info[i];
3168                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3169                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3170                 tx_desc->read.cmd_type_len =
3171                         cpu_to_le32(cmd_type_len | buffer_info->length);
3172                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3173                 i++;
3174                 if (i == tx_ring->count)
3175                         i = 0;
3176         }
3177
3178         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
3179         /* Force memory writes to complete before letting h/w
3180          * know there are new descriptors to fetch.  (Only
3181          * applicable for weak-ordered memory model archs,
3182          * such as IA-64). */
3183         wmb();
3184
3185         tx_ring->next_to_use = i;
3186         writel(i, adapter->hw.hw_addr + tx_ring->tail);
3187         /* we need this if more than one processor can write to our tail
3188          * at a time, it syncronizes IO on IA64/Altix systems */
3189         mmiowb();
3190 }
3191
3192 static int __igb_maybe_stop_tx(struct net_device *netdev,
3193                                struct igb_ring *tx_ring, int size)
3194 {
3195         struct igb_adapter *adapter = netdev_priv(netdev);
3196
3197         netif_stop_subqueue(netdev, tx_ring->queue_index);
3198
3199         /* Herbert's original patch had:
3200          *  smp_mb__after_netif_stop_queue();
3201          * but since that doesn't exist yet, just open code it. */
3202         smp_mb();
3203
3204         /* We need to check again in a case another CPU has just
3205          * made room available. */
3206         if (igb_desc_unused(tx_ring) < size)
3207                 return -EBUSY;
3208
3209         /* A reprieve! */
3210         netif_wake_subqueue(netdev, tx_ring->queue_index);
3211         ++adapter->restart_queue;
3212         return 0;
3213 }
3214
3215 static int igb_maybe_stop_tx(struct net_device *netdev,
3216                              struct igb_ring *tx_ring, int size)
3217 {
3218         if (igb_desc_unused(tx_ring) >= size)
3219                 return 0;
3220         return __igb_maybe_stop_tx(netdev, tx_ring, size);
3221 }
3222
3223 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
3224                                    struct net_device *netdev,
3225                                    struct igb_ring *tx_ring)
3226 {
3227         struct igb_adapter *adapter = netdev_priv(netdev);
3228         unsigned int first;
3229         unsigned int tx_flags = 0;
3230         u8 hdr_len = 0;
3231         int count = 0;
3232         int tso = 0;
3233         union skb_shared_tx *shtx;
3234
3235         if (test_bit(__IGB_DOWN, &adapter->state)) {
3236                 dev_kfree_skb_any(skb);
3237                 return NETDEV_TX_OK;
3238         }
3239
3240         if (skb->len <= 0) {
3241                 dev_kfree_skb_any(skb);
3242                 return NETDEV_TX_OK;
3243         }
3244
3245         /* need: 1 descriptor per page,
3246          *       + 2 desc gap to keep tail from touching head,
3247          *       + 1 desc for skb->data,
3248          *       + 1 desc for context descriptor,
3249          * otherwise try next time */
3250         if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3251                 /* this is a hard error */
3252                 return NETDEV_TX_BUSY;
3253         }
3254
3255         /*
3256          * TODO: check that there currently is no other packet with
3257          * time stamping in the queue
3258          *
3259          * When doing time stamping, keep the connection to the socket
3260          * a while longer: it is still needed by skb_hwtstamp_tx(),
3261          * called either in igb_tx_hwtstamp() or by our caller when
3262          * doing software time stamping.
3263          */
3264         shtx = skb_tx(skb);
3265         if (unlikely(shtx->hardware)) {
3266                 shtx->in_progress = 1;
3267                 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3268         }
3269
3270         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3271                 tx_flags |= IGB_TX_FLAGS_VLAN;
3272                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3273         }
3274
3275         if (skb->protocol == htons(ETH_P_IP))
3276                 tx_flags |= IGB_TX_FLAGS_IPV4;
3277
3278         first = tx_ring->next_to_use;
3279         tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
3280                                               &hdr_len) : 0;
3281
3282         if (tso < 0) {
3283                 dev_kfree_skb_any(skb);
3284                 return NETDEV_TX_OK;
3285         }
3286
3287         if (tso)
3288                 tx_flags |= IGB_TX_FLAGS_TSO;
3289         else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags) &&
3290                  (skb->ip_summed == CHECKSUM_PARTIAL))
3291                 tx_flags |= IGB_TX_FLAGS_CSUM;
3292
3293         /*
3294          * count reflects descriptors mapped, if 0 then mapping error
3295          * has occured and we need to rewind the descriptor queue
3296          */
3297         count = igb_tx_map_adv(adapter, tx_ring, skb, first);
3298
3299         if (count) {
3300                 igb_tx_queue_adv(adapter, tx_ring, tx_flags, count,
3301                                  skb->len, hdr_len);
3302                 netdev->trans_start = jiffies;
3303                 /* Make sure there is space in the ring for the next send. */
3304                 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3305         } else {
3306                 dev_kfree_skb_any(skb);
3307                 tx_ring->buffer_info[first].time_stamp = 0;
3308                 tx_ring->next_to_use = first;
3309         }
3310
3311         return NETDEV_TX_OK;
3312 }
3313
3314 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3315 {
3316         struct igb_adapter *adapter = netdev_priv(netdev);
3317         struct igb_ring *tx_ring;
3318
3319         int r_idx = 0;
3320         r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3321         tx_ring = adapter->multi_tx_table[r_idx];
3322
3323         /* This goes back to the question of how to logically map a tx queue
3324          * to a flow.  Right now, performance is impacted slightly negatively
3325          * if using multiple tx queues.  If the stack breaks away from a
3326          * single qdisc implementation, we can look at this again. */
3327         return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3328 }
3329
3330 /**
3331  * igb_tx_timeout - Respond to a Tx Hang
3332  * @netdev: network interface device structure
3333  **/
3334 static void igb_tx_timeout(struct net_device *netdev)
3335 {
3336         struct igb_adapter *adapter = netdev_priv(netdev);
3337         struct e1000_hw *hw = &adapter->hw;
3338
3339         /* Do the reset outside of interrupt context */
3340         adapter->tx_timeout_count++;
3341         schedule_work(&adapter->reset_task);
3342         wr32(E1000_EICS,
3343              (adapter->eims_enable_mask & ~adapter->eims_other));
3344 }
3345
3346 static void igb_reset_task(struct work_struct *work)
3347 {
3348         struct igb_adapter *adapter;
3349         adapter = container_of(work, struct igb_adapter, reset_task);
3350
3351         igb_reinit_locked(adapter);
3352 }
3353
3354 /**
3355  * igb_get_stats - Get System Network Statistics
3356  * @netdev: network interface device structure
3357  *
3358  * Returns the address of the device statistics structure.
3359  * The statistics are actually updated from the timer callback.
3360  **/
3361 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3362 {
3363         struct igb_adapter *adapter = netdev_priv(netdev);
3364
3365         /* only return the current stats */
3366         return &adapter->net_stats;
3367 }
3368
3369 /**
3370  * igb_change_mtu - Change the Maximum Transfer Unit
3371  * @netdev: network interface device structure
3372  * @new_mtu: new value for maximum frame size
3373  *
3374  * Returns 0 on success, negative on failure
3375  **/
3376 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3377 {
3378         struct igb_adapter *adapter = netdev_priv(netdev);
3379         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3380
3381         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3382             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3383                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3384                 return -EINVAL;
3385         }
3386
3387         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3388                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3389                 return -EINVAL;
3390         }
3391
3392         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3393                 msleep(1);
3394
3395         /* igb_down has a dependency on max_frame_size */
3396         adapter->max_frame_size = max_frame;
3397         if (netif_running(netdev))
3398                 igb_down(adapter);
3399
3400         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3401          * means we reserve 2 more, this pushes us to allocate from the next
3402          * larger slab size.
3403          * i.e. RXBUFFER_2048 --> size-4096 slab
3404          */
3405
3406         if (max_frame <= IGB_RXBUFFER_256)
3407                 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3408         else if (max_frame <= IGB_RXBUFFER_512)
3409                 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3410         else if (max_frame <= IGB_RXBUFFER_1024)
3411                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3412         else if (max_frame <= IGB_RXBUFFER_2048)
3413                 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3414         else
3415 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3416                 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3417 #else
3418                 adapter->rx_buffer_len = PAGE_SIZE / 2;
3419 #endif
3420
3421         /* if sr-iov is enabled we need to force buffer size to 1K or larger */
3422         if (adapter->vfs_allocated_count &&
3423             (adapter->rx_buffer_len < IGB_RXBUFFER_1024))
3424                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3425
3426         /* adjust allocation if LPE protects us, and we aren't using SBP */
3427         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3428              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3429                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3430
3431         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3432                  netdev->mtu, new_mtu);
3433         netdev->mtu = new_mtu;
3434
3435         if (netif_running(netdev))
3436                 igb_up(adapter);
3437         else
3438                 igb_reset(adapter);
3439
3440         clear_bit(__IGB_RESETTING, &adapter->state);
3441
3442         return 0;
3443 }
3444
3445 /**
3446  * igb_update_stats - Update the board statistics counters
3447  * @adapter: board private structure
3448  **/
3449
3450 void igb_update_stats(struct igb_adapter *adapter)
3451 {
3452         struct e1000_hw *hw = &adapter->hw;
3453         struct pci_dev *pdev = adapter->pdev;
3454         u16 phy_tmp;
3455
3456 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3457
3458         /*
3459          * Prevent stats update while adapter is being reset, or if the pci
3460          * connection is down.
3461          */
3462         if (adapter->link_speed == 0)
3463                 return;
3464         if (pci_channel_offline(pdev))
3465                 return;
3466
3467         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3468         adapter->stats.gprc += rd32(E1000_GPRC);
3469         adapter->stats.gorc += rd32(E1000_GORCL);
3470         rd32(E1000_GORCH); /* clear GORCL */
3471         adapter->stats.bprc += rd32(E1000_BPRC);
3472         adapter->stats.mprc += rd32(E1000_MPRC);
3473         adapter->stats.roc += rd32(E1000_ROC);
3474
3475         adapter->stats.prc64 += rd32(E1000_PRC64);
3476         adapter->stats.prc127 += rd32(E1000_PRC127);
3477         adapter->stats.prc255 += rd32(E1000_PRC255);
3478         adapter->stats.prc511 += rd32(E1000_PRC511);
3479         adapter->stats.prc1023 += rd32(E1000_PRC1023);
3480         adapter->stats.prc1522 += rd32(E1000_PRC1522);
3481         adapter->stats.symerrs += rd32(E1000_SYMERRS);
3482         adapter->stats.sec += rd32(E1000_SEC);
3483
3484         adapter->stats.mpc += rd32(E1000_MPC);
3485         adapter->stats.scc += rd32(E1000_SCC);
3486         adapter->stats.ecol += rd32(E1000_ECOL);
3487         adapter->stats.mcc += rd32(E1000_MCC);
3488         adapter->stats.latecol += rd32(E1000_LATECOL);
3489         adapter->stats.dc += rd32(E1000_DC);
3490         adapter->stats.rlec += rd32(E1000_RLEC);
3491         adapter->stats.xonrxc += rd32(E1000_XONRXC);
3492         adapter->stats.xontxc += rd32(E1000_XONTXC);
3493         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3494         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3495         adapter->stats.fcruc += rd32(E1000_FCRUC);
3496         adapter->stats.gptc += rd32(E1000_GPTC);
3497         adapter->stats.gotc += rd32(E1000_GOTCL);
3498         rd32(E1000_GOTCH); /* clear GOTCL */
3499         adapter->stats.rnbc += rd32(E1000_RNBC);
3500         adapter->stats.ruc += rd32(E1000_RUC);
3501         adapter->stats.rfc += rd32(E1000_RFC);
3502         adapter->stats.rjc += rd32(E1000_RJC);
3503         adapter->stats.tor += rd32(E1000_TORH);
3504         adapter->stats.tot += rd32(E1000_TOTH);
3505         adapter->stats.tpr += rd32(E1000_TPR);
3506
3507         adapter->stats.ptc64 += rd32(E1000_PTC64);
3508         adapter->stats.ptc127 += rd32(E1000_PTC127);
3509         adapter->stats.ptc255 += rd32(E1000_PTC255);
3510         adapter->stats.ptc511 += rd32(E1000_PTC511);
3511         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3512         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3513
3514         adapter->stats.mptc += rd32(E1000_MPTC);
3515         adapter->stats.bptc += rd32(E1000_BPTC);
3516
3517         /* used for adaptive IFS */
3518
3519         hw->mac.tx_packet_delta = rd32(E1000_TPT);
3520         adapter->stats.tpt += hw->mac.tx_packet_delta;
3521         hw->mac.collision_delta = rd32(E1000_COLC);
3522         adapter->stats.colc += hw->mac.collision_delta;
3523
3524         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3525         adapter->stats.rxerrc += rd32(E1000_RXERRC);
3526         adapter->stats.tncrs += rd32(E1000_TNCRS);
3527         adapter->stats.tsctc += rd32(E1000_TSCTC);
3528         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3529
3530         adapter->stats.iac += rd32(E1000_IAC);
3531         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3532         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3533         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3534         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3535         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3536         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3537         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3538         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3539
3540         /* Fill out the OS statistics structure */
3541         adapter->net_stats.multicast = adapter->stats.mprc;
3542         adapter->net_stats.collisions = adapter->stats.colc;
3543
3544         /* Rx Errors */
3545
3546         /* RLEC on some newer hardware can be incorrect so build
3547         * our own version based on RUC and ROC */
3548         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3549                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3550                 adapter->stats.ruc + adapter->stats.roc +
3551                 adapter->stats.cexterr;
3552         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3553                                               adapter->stats.roc;
3554         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3555         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3556         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3557
3558         /* Tx Errors */
3559         adapter->net_stats.tx_errors = adapter->stats.ecol +
3560                                        adapter->stats.latecol;
3561         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3562         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3563         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3564
3565         /* Tx Dropped needs to be maintained elsewhere */
3566
3567         /* Phy Stats */
3568         if (hw->phy.media_type == e1000_media_type_copper) {
3569                 if ((adapter->link_speed == SPEED_1000) &&
3570                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3571                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3572                         adapter->phy_stats.idle_errors += phy_tmp;
3573                 }
3574         }
3575
3576         /* Management Stats */
3577         adapter->stats.mgptc += rd32(E1000_MGTPTC);
3578         adapter->stats.mgprc += rd32(E1000_MGTPRC);
3579         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3580 }
3581
3582 static irqreturn_t igb_msix_other(int irq, void *data)
3583 {
3584         struct net_device *netdev = data;
3585         struct igb_adapter *adapter = netdev_priv(netdev);
3586         struct e1000_hw *hw = &adapter->hw;
3587         u32 icr = rd32(E1000_ICR);
3588
3589         /* reading ICR causes bit 31 of EICR to be cleared */
3590
3591         if(icr & E1000_ICR_DOUTSYNC) {
3592                 /* HW is reporting DMA is out of sync */
3593                 adapter->stats.doosync++;
3594         }
3595
3596         /* Check for a mailbox event */
3597         if (icr & E1000_ICR_VMMB)
3598                 igb_msg_task(adapter);
3599
3600         if (icr & E1000_ICR_LSC) {
3601                 hw->mac.get_link_status = 1;
3602                 /* guard against interrupt when we're going down */
3603                 if (!test_bit(__IGB_DOWN, &adapter->state))
3604                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3605         }
3606
3607         wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_VMMB);
3608         wr32(E1000_EIMS, adapter->eims_other);
3609
3610         return IRQ_HANDLED;
3611 }
3612
3613 static irqreturn_t igb_msix_tx(int irq, void *data)
3614 {
3615         struct igb_ring *tx_ring = data;
3616         struct igb_adapter *adapter = tx_ring->adapter;
3617         struct e1000_hw *hw = &adapter->hw;
3618
3619 #ifdef CONFIG_IGB_DCA
3620         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3621                 igb_update_tx_dca(tx_ring);
3622 #endif
3623
3624         tx_ring->total_bytes = 0;
3625         tx_ring->total_packets = 0;
3626
3627         /* auto mask will automatically reenable the interrupt when we write
3628          * EICS */
3629         if (!igb_clean_tx_irq(tx_ring))
3630                 /* Ring was not completely cleaned, so fire another interrupt */
3631                 wr32(E1000_EICS, tx_ring->eims_value);
3632         else
3633                 wr32(E1000_EIMS, tx_ring->eims_value);
3634
3635         return IRQ_HANDLED;
3636 }
3637
3638 static void igb_write_itr(struct igb_ring *ring)
3639 {
3640         struct e1000_hw *hw = &ring->adapter->hw;
3641         if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3642                 switch (hw->mac.type) {
3643                 case e1000_82576:
3644                         wr32(ring->itr_register, ring->itr_val |
3645                              0x80000000);
3646                         break;
3647                 default:
3648                         wr32(ring->itr_register, ring->itr_val |
3649                              (ring->itr_val << 16));
3650                         break;
3651                 }
3652                 ring->set_itr = 0;
3653         }
3654 }
3655
3656 static irqreturn_t igb_msix_rx(int irq, void *data)
3657 {
3658         struct igb_ring *rx_ring = data;
3659
3660         /* Write the ITR value calculated at the end of the
3661          * previous interrupt.
3662          */
3663
3664         igb_write_itr(rx_ring);
3665
3666         if (napi_schedule_prep(&rx_ring->napi))
3667                 __napi_schedule(&rx_ring->napi);
3668
3669 #ifdef CONFIG_IGB_DCA
3670         if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3671                 igb_update_rx_dca(rx_ring);
3672 #endif
3673                 return IRQ_HANDLED;
3674 }
3675
3676 #ifdef CONFIG_IGB_DCA
3677 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3678 {
3679         u32 dca_rxctrl;
3680         struct igb_adapter *adapter = rx_ring->adapter;
3681         struct e1000_hw *hw = &adapter->hw;
3682         int cpu = get_cpu();
3683         int q = rx_ring->reg_idx;
3684
3685         if (rx_ring->cpu != cpu) {
3686                 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3687                 if (hw->mac.type == e1000_82576) {
3688                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3689                         dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
3690                                       E1000_DCA_RXCTRL_CPUID_SHIFT;
3691                 } else {
3692                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3693                         dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
3694                 }
3695                 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3696                 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3697                 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3698                 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3699                 rx_ring->cpu = cpu;
3700         }
3701         put_cpu();
3702 }
3703
3704 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3705 {
3706         u32 dca_txctrl;
3707         struct igb_adapter *adapter = tx_ring->adapter;
3708         struct e1000_hw *hw = &adapter->hw;
3709         int cpu = get_cpu();
3710         int q = tx_ring->reg_idx;
3711
3712         if (tx_ring->cpu != cpu) {
3713                 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3714                 if (hw->mac.type == e1000_82576) {
3715                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3716                         dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
3717                                       E1000_DCA_TXCTRL_CPUID_SHIFT;
3718                 } else {
3719                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3720                         dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
3721                 }
3722                 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3723                 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3724                 tx_ring->cpu = cpu;
3725         }
3726         put_cpu();
3727 }
3728
3729 static void igb_setup_dca(struct igb_adapter *adapter)
3730 {
3731         int i;
3732
3733         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3734                 return;
3735
3736         for (i = 0; i < adapter->num_tx_queues; i++) {
3737                 adapter->tx_ring[i].cpu = -1;
3738                 igb_update_tx_dca(&adapter->tx_ring[i]);
3739         }
3740         for (i = 0; i < adapter->num_rx_queues; i++) {
3741                 adapter->rx_ring[i].cpu = -1;
3742                 igb_update_rx_dca(&adapter->rx_ring[i]);
3743         }
3744 }
3745
3746 static int __igb_notify_dca(struct device *dev, void *data)
3747 {
3748         struct net_device *netdev = dev_get_drvdata(dev);
3749         struct igb_adapter *adapter = netdev_priv(netdev);
3750         struct e1000_hw *hw = &adapter->hw;
3751         unsigned long event = *(unsigned long *)data;
3752
3753         switch (event) {
3754         case DCA_PROVIDER_ADD:
3755                 /* if already enabled, don't do it again */
3756                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3757                         break;
3758                 /* Always use CB2 mode, difference is masked
3759                  * in the CB driver. */
3760                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
3761                 if (dca_add_requester(dev) == 0) {
3762                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
3763                         dev_info(&adapter->pdev->dev, "DCA enabled\n");
3764                         igb_setup_dca(adapter);
3765                         break;
3766                 }
3767                 /* Fall Through since DCA is disabled. */
3768         case DCA_PROVIDER_REMOVE:
3769                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3770                         /* without this a class_device is left
3771                          * hanging around in the sysfs model */
3772                         dca_remove_requester(dev);
3773                         dev_info(&adapter->pdev->dev, "DCA disabled\n");
3774                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3775                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3776                 }
3777                 break;
3778         }
3779
3780         return 0;
3781 }
3782
3783 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3784                           void *p)
3785 {
3786         int ret_val;
3787
3788         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3789                                          __igb_notify_dca);
3790
3791         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3792 }
3793 #endif /* CONFIG_IGB_DCA */
3794
3795 static void igb_ping_all_vfs(struct igb_adapter *adapter)
3796 {
3797         struct e1000_hw *hw = &adapter->hw;
3798         u32 ping;
3799         int i;
3800
3801         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
3802                 ping = E1000_PF_CONTROL_MSG;
3803                 if (adapter->vf_data[i].clear_to_send)
3804                         ping |= E1000_VT_MSGTYPE_CTS;
3805                 igb_write_mbx(hw, &ping, 1, i);
3806         }
3807 }
3808
3809 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
3810                                   u32 *msgbuf, u32 vf)
3811 {
3812         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
3813         u16 *hash_list = (u16 *)&msgbuf[1];
3814         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
3815         int i;
3816
3817         /* only up to 30 hash values supported */
3818         if (n > 30)
3819                 n = 30;
3820
3821         /* salt away the number of multi cast addresses assigned
3822          * to this VF for later use to restore when the PF multi cast
3823          * list changes
3824          */
3825         vf_data->num_vf_mc_hashes = n;
3826
3827         /* VFs are limited to using the MTA hash table for their multicast
3828          * addresses */
3829         for (i = 0; i < n; i++)
3830                 vf_data->vf_mc_hashes[i] = hash_list[i];;
3831
3832         /* Flush and reset the mta with the new values */
3833         igb_set_multi(adapter->netdev);
3834
3835         return 0;
3836 }
3837
3838 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
3839 {
3840         struct e1000_hw *hw = &adapter->hw;
3841         struct vf_data_storage *vf_data;
3842         int i, j;
3843
3844         for (i = 0; i < adapter->vfs_allocated_count; i++) {
3845                 vf_data = &adapter->vf_data[i];
3846                 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
3847                         igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
3848         }
3849 }
3850
3851 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
3852 {
3853         struct e1000_hw *hw = &adapter->hw;
3854         u32 pool_mask, reg, vid;
3855         int i;
3856
3857         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
3858
3859         /* Find the vlan filter for this id */
3860         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3861                 reg = rd32(E1000_VLVF(i));
3862
3863                 /* remove the vf from the pool */
3864                 reg &= ~pool_mask;
3865
3866                 /* if pool is empty then remove entry from vfta */
3867                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
3868                     (reg & E1000_VLVF_VLANID_ENABLE)) {
3869                         reg = 0;
3870                         vid = reg & E1000_VLVF_VLANID_MASK;
3871                         igb_vfta_set(hw, vid, false);
3872                 }
3873
3874                 wr32(E1000_VLVF(i), reg);
3875         }
3876 }
3877
3878 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
3879 {
3880         struct e1000_hw *hw = &adapter->hw;
3881         u32 reg, i;
3882
3883         /* It is an error to call this function when VFs are not enabled */
3884         if (!adapter->vfs_allocated_count)
3885                 return -1;
3886
3887         /* Find the vlan filter for this id */
3888         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3889                 reg = rd32(E1000_VLVF(i));
3890                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
3891                     vid == (reg & E1000_VLVF_VLANID_MASK))
3892                         break;
3893         }
3894
3895         if (add) {
3896                 if (i == E1000_VLVF_ARRAY_SIZE) {
3897                         /* Did not find a matching VLAN ID entry that was
3898                          * enabled.  Search for a free filter entry, i.e.
3899                          * one without the enable bit set
3900                          */
3901                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3902                                 reg = rd32(E1000_VLVF(i));
3903                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
3904                                         break;
3905                         }
3906                 }
3907                 if (i < E1000_VLVF_ARRAY_SIZE) {
3908                         /* Found an enabled/available entry */
3909                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
3910
3911                         /* if !enabled we need to set this up in vfta */
3912                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
3913                                 /* add VID to filter table, if bit already set
3914                                  * PF must have added it outside of table */
3915                                 if (igb_vfta_set(hw, vid, true))
3916                                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT +
3917                                                 adapter->vfs_allocated_count);
3918                                 reg |= E1000_VLVF_VLANID_ENABLE;
3919                         }
3920                         reg &= ~E1000_VLVF_VLANID_MASK;
3921                         reg |= vid;
3922
3923                         wr32(E1000_VLVF(i), reg);
3924                         return 0;
3925                 }
3926         } else {
3927                 if (i < E1000_VLVF_ARRAY_SIZE) {
3928                         /* remove vf from the pool */
3929                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
3930                         /* if pool is empty then remove entry from vfta */
3931                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
3932                                 reg = 0;
3933                                 igb_vfta_set(hw, vid, false);
3934                         }
3935                         wr32(E1000_VLVF(i), reg);
3936                         return 0;
3937                 }
3938         }
3939         return -1;
3940 }
3941
3942 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
3943 {
3944         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
3945         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
3946
3947         return igb_vlvf_set(adapter, vid, add, vf);
3948 }
3949
3950 static inline void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
3951 {
3952         struct e1000_hw *hw = &adapter->hw;
3953
3954         /* disable mailbox functionality for vf */
3955         adapter->vf_data[vf].clear_to_send = false;
3956
3957         /* reset offloads to defaults */
3958         igb_set_vmolr(hw, vf);
3959
3960         /* reset vlans for device */
3961         igb_clear_vf_vfta(adapter, vf);
3962
3963         /* reset multicast table array for vf */
3964         adapter->vf_data[vf].num_vf_mc_hashes = 0;
3965
3966         /* Flush and reset the mta with the new values */
3967         igb_set_multi(adapter->netdev);
3968 }
3969
3970 static inline void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
3971 {
3972         struct e1000_hw *hw = &adapter->hw;
3973         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
3974         u32 reg, msgbuf[3];
3975         u8 *addr = (u8 *)(&msgbuf[1]);
3976
3977         /* process all the same items cleared in a function level reset */
3978         igb_vf_reset_event(adapter, vf);
3979
3980         /* set vf mac address */
3981         igb_rar_set(hw, vf_mac, vf + 1);
3982         igb_set_rah_pool(hw, vf, vf + 1);
3983
3984         /* enable transmit and receive for vf */
3985         reg = rd32(E1000_VFTE);
3986         wr32(E1000_VFTE, reg | (1 << vf));
3987         reg = rd32(E1000_VFRE);
3988         wr32(E1000_VFRE, reg | (1 << vf));
3989
3990         /* enable mailbox functionality for vf */
3991         adapter->vf_data[vf].clear_to_send = true;
3992
3993         /* reply to reset with ack and vf mac address */
3994         msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
3995         memcpy(addr, vf_mac, 6);
3996         igb_write_mbx(hw, msgbuf, 3, vf);
3997 }
3998
3999 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4000 {
4001                 unsigned char *addr = (char *)&msg[1];
4002                 int err = -1;
4003
4004                 if (is_valid_ether_addr(addr))
4005                         err = igb_set_vf_mac(adapter, vf, addr);
4006
4007                 return err;
4008
4009 }
4010
4011 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4012 {
4013         struct e1000_hw *hw = &adapter->hw;
4014         u32 msg = E1000_VT_MSGTYPE_NACK;
4015
4016         /* if device isn't clear to send it shouldn't be reading either */
4017         if (!adapter->vf_data[vf].clear_to_send)
4018                 igb_write_mbx(hw, &msg, 1, vf);
4019 }
4020
4021
4022 static void igb_msg_task(struct igb_adapter *adapter)
4023 {
4024         struct e1000_hw *hw = &adapter->hw;
4025         u32 vf;
4026
4027         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4028                 /* process any reset requests */
4029                 if (!igb_check_for_rst(hw, vf)) {
4030                         adapter->vf_data[vf].clear_to_send = false;
4031                         igb_vf_reset_event(adapter, vf);
4032                 }
4033
4034                 /* process any messages pending */
4035                 if (!igb_check_for_msg(hw, vf))
4036                         igb_rcv_msg_from_vf(adapter, vf);
4037
4038                 /* process any acks */
4039                 if (!igb_check_for_ack(hw, vf))
4040                         igb_rcv_ack_from_vf(adapter, vf);
4041
4042         }
4043 }
4044
4045 static int igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4046 {
4047         u32 mbx_size = E1000_VFMAILBOX_SIZE;
4048         u32 msgbuf[mbx_size];
4049         struct e1000_hw *hw = &adapter->hw;
4050         s32 retval;
4051
4052         retval = igb_read_mbx(hw, msgbuf, mbx_size, vf);
4053
4054         if (retval)
4055                 dev_err(&adapter->pdev->dev,
4056                         "Error receiving message from VF\n");
4057
4058         /* this is a message we already processed, do nothing */
4059         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4060                 return retval;
4061
4062         /*
4063          * until the vf completes a reset it should not be
4064          * allowed to start any configuration.
4065          */
4066
4067         if (msgbuf[0] == E1000_VF_RESET) {
4068                 igb_vf_reset_msg(adapter, vf);
4069
4070                 return retval;
4071         }
4072
4073         if (!adapter->vf_data[vf].clear_to_send) {
4074                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4075                 igb_write_mbx(hw, msgbuf, 1, vf);
4076                 return retval;
4077         }
4078
4079         switch ((msgbuf[0] & 0xFFFF)) {
4080         case E1000_VF_SET_MAC_ADDR:
4081                 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4082                 break;
4083         case E1000_VF_SET_MULTICAST:
4084                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4085                 break;
4086         case E1000_VF_SET_LPE:
4087                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4088                 break;
4089         case E1000_VF_SET_VLAN:
4090                 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4091                 break;
4092         default:
4093                 dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4094                 retval = -1;
4095                 break;
4096         }
4097
4098         /* notify the VF of the results of what it sent us */
4099         if (retval)
4100                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4101         else
4102                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4103
4104         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4105
4106         igb_write_mbx(hw, msgbuf, 1, vf);
4107
4108         return retval;
4109 }
4110
4111 /**
4112  * igb_intr_msi - Interrupt Handler
4113  * @irq: interrupt number
4114  * @data: pointer to a network interface device structure
4115  **/
4116 static irqreturn_t igb_intr_msi(int irq, void *data)
4117 {
4118         struct net_device *netdev = data;
4119         struct igb_adapter *adapter = netdev_priv(netdev);
4120         struct e1000_hw *hw = &adapter->hw;
4121         /* read ICR disables interrupts using IAM */
4122         u32 icr = rd32(E1000_ICR);
4123
4124         igb_write_itr(adapter->rx_ring);
4125
4126         if(icr & E1000_ICR_DOUTSYNC) {
4127                 /* HW is reporting DMA is out of sync */
4128                 adapter->stats.doosync++;
4129         }
4130
4131         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4132                 hw->mac.get_link_status = 1;
4133                 if (!test_bit(__IGB_DOWN, &adapter->state))
4134                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4135         }
4136
4137         napi_schedule(&adapter->rx_ring[0].napi);
4138
4139         return IRQ_HANDLED;
4140 }
4141
4142 /**
4143  * igb_intr - Legacy Interrupt Handler
4144  * @irq: interrupt number
4145  * @data: pointer to a network interface device structure
4146  **/
4147 static irqreturn_t igb_intr(int irq, void *data)
4148 {
4149         struct net_device *netdev = data;
4150         struct igb_adapter *adapter = netdev_priv(netdev);
4151         struct e1000_hw *hw = &adapter->hw;
4152         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
4153          * need for the IMC write */
4154         u32 icr = rd32(E1000_ICR);
4155         if (!icr)
4156                 return IRQ_NONE;  /* Not our interrupt */
4157
4158         igb_write_itr(adapter->rx_ring);
4159
4160         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4161          * not set, then the adapter didn't send an interrupt */
4162         if (!(icr & E1000_ICR_INT_ASSERTED))
4163                 return IRQ_NONE;
4164
4165         if(icr & E1000_ICR_DOUTSYNC) {
4166                 /* HW is reporting DMA is out of sync */
4167                 adapter->stats.doosync++;
4168         }
4169
4170         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4171                 hw->mac.get_link_status = 1;
4172                 /* guard against interrupt when we're going down */
4173                 if (!test_bit(__IGB_DOWN, &adapter->state))
4174                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4175         }
4176
4177         napi_schedule(&adapter->rx_ring[0].napi);
4178
4179         return IRQ_HANDLED;
4180 }
4181
4182 static inline void igb_rx_irq_enable(struct igb_ring *rx_ring)
4183 {
4184         struct igb_adapter *adapter = rx_ring->adapter;
4185         struct e1000_hw *hw = &adapter->hw;
4186
4187         if (adapter->itr_setting & 3) {
4188                 if (adapter->num_rx_queues == 1)
4189                         igb_set_itr(adapter);
4190                 else
4191                         igb_update_ring_itr(rx_ring);
4192         }
4193
4194         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4195                 if (adapter->msix_entries)
4196                         wr32(E1000_EIMS, rx_ring->eims_value);
4197                 else
4198                         igb_irq_enable(adapter);
4199         }
4200 }
4201
4202 /**
4203  * igb_poll - NAPI Rx polling callback
4204  * @napi: napi polling structure
4205  * @budget: count of how many packets we should handle
4206  **/
4207 static int igb_poll(struct napi_struct *napi, int budget)
4208 {
4209         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
4210         int work_done = 0;
4211
4212 #ifdef CONFIG_IGB_DCA
4213         if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
4214                 igb_update_rx_dca(rx_ring);
4215 #endif
4216         igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
4217
4218         if (rx_ring->buddy) {
4219 #ifdef CONFIG_IGB_DCA
4220                 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
4221                         igb_update_tx_dca(rx_ring->buddy);
4222 #endif
4223                 if (!igb_clean_tx_irq(rx_ring->buddy))
4224                         work_done = budget;
4225         }
4226
4227         /* If not enough Rx work done, exit the polling mode */
4228         if (work_done < budget) {
4229                 napi_complete(napi);
4230                 igb_rx_irq_enable(rx_ring);
4231         }
4232
4233         return work_done;
4234 }
4235
4236 /**
4237  * igb_hwtstamp - utility function which checks for TX time stamp
4238  * @adapter: board private structure
4239  * @skb: packet that was just sent
4240  *
4241  * If we were asked to do hardware stamping and such a time stamp is
4242  * available, then it must have been for this skb here because we only
4243  * allow only one such packet into the queue.
4244  */
4245 static void igb_tx_hwtstamp(struct igb_adapter *adapter, struct sk_buff *skb)
4246 {
4247         union skb_shared_tx *shtx = skb_tx(skb);
4248         struct e1000_hw *hw = &adapter->hw;
4249
4250         if (unlikely(shtx->hardware)) {
4251                 u32 valid = rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID;
4252                 if (valid) {
4253                         u64 regval = rd32(E1000_TXSTMPL);
4254                         u64 ns;
4255                         struct skb_shared_hwtstamps shhwtstamps;
4256
4257                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
4258                         regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4259                         ns = timecounter_cyc2time(&adapter->clock,
4260                                                   regval);
4261                         timecompare_update(&adapter->compare, ns);
4262                         shhwtstamps.hwtstamp = ns_to_ktime(ns);
4263                         shhwtstamps.syststamp =
4264                                 timecompare_transform(&adapter->compare, ns);
4265                         skb_tstamp_tx(skb, &shhwtstamps);
4266                 }
4267         }
4268 }
4269
4270 /**
4271  * igb_clean_tx_irq - Reclaim resources after transmit completes
4272  * @adapter: board private structure
4273  * returns true if ring is completely cleaned
4274  **/
4275 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
4276 {
4277         struct igb_adapter *adapter = tx_ring->adapter;
4278         struct net_device *netdev = adapter->netdev;
4279         struct e1000_hw *hw = &adapter->hw;
4280         struct igb_buffer *buffer_info;
4281         struct sk_buff *skb;
4282         union e1000_adv_tx_desc *tx_desc, *eop_desc;
4283         unsigned int total_bytes = 0, total_packets = 0;
4284         unsigned int i, eop, count = 0;
4285         bool cleaned = false;
4286
4287         i = tx_ring->next_to_clean;
4288         eop = tx_ring->buffer_info[i].next_to_watch;
4289         eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4290
4291         while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4292                (count < tx_ring->count)) {
4293                 for (cleaned = false; !cleaned; count++) {
4294                         tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4295                         buffer_info = &tx_ring->buffer_info[i];
4296                         cleaned = (i == eop);
4297                         skb = buffer_info->skb;
4298
4299                         if (skb) {
4300                                 unsigned int segs, bytecount;
4301                                 /* gso_segs is currently only valid for tcp */
4302                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
4303                                 /* multiply data chunks by size of headers */
4304                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
4305                                             skb->len;
4306                                 total_packets += segs;
4307                                 total_bytes += bytecount;
4308
4309                                 igb_tx_hwtstamp(adapter, skb);
4310                         }
4311
4312                         igb_unmap_and_free_tx_resource(adapter, buffer_info);
4313                         tx_desc->wb.status = 0;
4314
4315                         i++;
4316                         if (i == tx_ring->count)
4317                                 i = 0;
4318                 }
4319                 eop = tx_ring->buffer_info[i].next_to_watch;
4320                 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4321         }
4322
4323         tx_ring->next_to_clean = i;
4324
4325         if (unlikely(count &&
4326                      netif_carrier_ok(netdev) &&
4327                      igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4328                 /* Make sure that anybody stopping the queue after this
4329                  * sees the new next_to_clean.
4330                  */
4331                 smp_mb();
4332                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4333                     !(test_bit(__IGB_DOWN, &adapter->state))) {
4334                         netif_wake_subqueue(netdev, tx_ring->queue_index);
4335                         ++adapter->restart_queue;
4336                 }
4337         }
4338
4339         if (tx_ring->detect_tx_hung) {
4340                 /* Detect a transmit hang in hardware, this serializes the
4341                  * check with the clearing of time_stamp and movement of i */
4342                 tx_ring->detect_tx_hung = false;
4343                 if (tx_ring->buffer_info[i].time_stamp &&
4344                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4345                                (adapter->tx_timeout_factor * HZ))
4346                     && !(rd32(E1000_STATUS) &
4347                          E1000_STATUS_TXOFF)) {
4348
4349                         /* detected Tx unit hang */
4350                         dev_err(&adapter->pdev->dev,
4351                                 "Detected Tx Unit Hang\n"
4352                                 "  Tx Queue             <%d>\n"
4353                                 "  TDH                  <%x>\n"
4354                                 "  TDT                  <%x>\n"
4355                                 "  next_to_use          <%x>\n"
4356                                 "  next_to_clean        <%x>\n"
4357                                 "buffer_info[next_to_clean]\n"
4358                                 "  time_stamp           <%lx>\n"
4359                                 "  next_to_watch        <%x>\n"
4360                                 "  jiffies              <%lx>\n"
4361                                 "  desc.status          <%x>\n",
4362                                 tx_ring->queue_index,
4363                                 readl(adapter->hw.hw_addr + tx_ring->head),
4364                                 readl(adapter->hw.hw_addr + tx_ring->tail),
4365                                 tx_ring->next_to_use,
4366                                 tx_ring->next_to_clean,
4367                                 tx_ring->buffer_info[i].time_stamp,
4368                                 eop,
4369                                 jiffies,
4370                                 eop_desc->wb.status);
4371                         netif_stop_subqueue(netdev, tx_ring->queue_index);
4372                 }
4373         }
4374         tx_ring->total_bytes += total_bytes;
4375         tx_ring->total_packets += total_packets;
4376         tx_ring->tx_stats.bytes += total_bytes;
4377         tx_ring->tx_stats.packets += total_packets;
4378         adapter->net_stats.tx_bytes += total_bytes;
4379         adapter->net_stats.tx_packets += total_packets;
4380         return (count < tx_ring->count);
4381 }
4382
4383 /**
4384  * igb_receive_skb - helper function to handle rx indications
4385  * @ring: pointer to receive ring receving this packet
4386  * @status: descriptor status field as written by hardware
4387  * @rx_desc: receive descriptor containing vlan and type information.
4388  * @skb: pointer to sk_buff to be indicated to stack
4389  **/
4390 static void igb_receive_skb(struct igb_ring *ring, u8 status,
4391                             union e1000_adv_rx_desc * rx_desc,
4392                             struct sk_buff *skb)
4393 {
4394         struct igb_adapter * adapter = ring->adapter;
4395         bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
4396
4397         skb_record_rx_queue(skb, ring->queue_index);
4398         if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4399                 if (vlan_extracted)
4400                         vlan_gro_receive(&ring->napi, adapter->vlgrp,
4401                                          le16_to_cpu(rx_desc->wb.upper.vlan),
4402                                          skb);
4403                 else
4404                         napi_gro_receive(&ring->napi, skb);
4405         } else {
4406                 if (vlan_extracted)
4407                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4408                                           le16_to_cpu(rx_desc->wb.upper.vlan));
4409                 else
4410                         netif_receive_skb(skb);
4411         }
4412 }
4413
4414 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
4415                                        u32 status_err, struct sk_buff *skb)
4416 {
4417         skb->ip_summed = CHECKSUM_NONE;
4418
4419         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
4420         if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
4421                 return;
4422         /* TCP/UDP checksum error bit is set */
4423         if (status_err &
4424             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4425                 /* let the stack verify checksum errors */
4426                 adapter->hw_csum_err++;
4427                 return;
4428         }
4429         /* It must be a TCP or UDP packet with a valid checksum */
4430         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
4431                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4432
4433         adapter->hw_csum_good++;
4434 }
4435
4436 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
4437                                  int *work_done, int budget)
4438 {
4439         struct igb_adapter *adapter = rx_ring->adapter;
4440         struct net_device *netdev = adapter->netdev;
4441         struct e1000_hw *hw = &adapter->hw;
4442         struct pci_dev *pdev = adapter->pdev;
4443         union e1000_adv_rx_desc *rx_desc , *next_rxd;
4444         struct igb_buffer *buffer_info , *next_buffer;
4445         struct sk_buff *skb;
4446         bool cleaned = false;
4447         int cleaned_count = 0;
4448         unsigned int total_bytes = 0, total_packets = 0;
4449         unsigned int i;
4450         u32 length, hlen, staterr;
4451
4452         i = rx_ring->next_to_clean;
4453         buffer_info = &rx_ring->buffer_info[i];
4454         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4455         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4456
4457         while (staterr & E1000_RXD_STAT_DD) {
4458                 if (*work_done >= budget)
4459                         break;
4460                 (*work_done)++;
4461
4462                 skb = buffer_info->skb;
4463                 prefetch(skb->data - NET_IP_ALIGN);
4464                 buffer_info->skb = NULL;
4465
4466                 i++;
4467                 if (i == rx_ring->count)
4468                         i = 0;
4469                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4470                 prefetch(next_rxd);
4471                 next_buffer = &rx_ring->buffer_info[i];
4472
4473                 length = le16_to_cpu(rx_desc->wb.upper.length);
4474                 cleaned = true;
4475                 cleaned_count++;
4476
4477                 if (!adapter->rx_ps_hdr_size) {
4478                         pci_unmap_single(pdev, buffer_info->dma,
4479                                          adapter->rx_buffer_len +
4480                                            NET_IP_ALIGN,
4481                                          PCI_DMA_FROMDEVICE);
4482                         skb_put(skb, length);
4483                         goto send_up;
4484                 }
4485
4486                 /* HW will not DMA in data larger than the given buffer, even
4487                  * if it parses the (NFS, of course) header to be larger.  In
4488                  * that case, it fills the header buffer and spills the rest
4489                  * into the page.
4490                  */
4491                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4492                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4493                 if (hlen > adapter->rx_ps_hdr_size)
4494                         hlen = adapter->rx_ps_hdr_size;
4495
4496                 if (!skb_shinfo(skb)->nr_frags) {
4497                         pci_unmap_single(pdev, buffer_info->dma,
4498                                          adapter->rx_ps_hdr_size + NET_IP_ALIGN,
4499                                          PCI_DMA_FROMDEVICE);
4500                         skb_put(skb, hlen);
4501                 }
4502
4503                 if (length) {
4504                         pci_unmap_page(pdev, buffer_info->page_dma,
4505                                        PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
4506                         buffer_info->page_dma = 0;
4507
4508                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
4509                                                 buffer_info->page,
4510                                                 buffer_info->page_offset,
4511                                                 length);
4512
4513                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
4514                             (page_count(buffer_info->page) != 1))
4515                                 buffer_info->page = NULL;
4516                         else
4517                                 get_page(buffer_info->page);
4518
4519                         skb->len += length;
4520                         skb->data_len += length;
4521
4522                         skb->truesize += length;
4523                 }
4524
4525                 if (!(staterr & E1000_RXD_STAT_EOP)) {
4526                         buffer_info->skb = next_buffer->skb;
4527                         buffer_info->dma = next_buffer->dma;
4528                         next_buffer->skb = skb;
4529                         next_buffer->dma = 0;
4530                         goto next_desc;
4531                 }
4532 send_up:
4533                 /*
4534                  * If this bit is set, then the RX registers contain
4535                  * the time stamp. No other packet will be time
4536                  * stamped until we read these registers, so read the
4537                  * registers to make them available again. Because
4538                  * only one packet can be time stamped at a time, we
4539                  * know that the register values must belong to this
4540                  * one here and therefore we don't need to compare
4541                  * any of the additional attributes stored for it.
4542                  *
4543                  * If nothing went wrong, then it should have a
4544                  * skb_shared_tx that we can turn into a
4545                  * skb_shared_hwtstamps.
4546                  *
4547                  * TODO: can time stamping be triggered (thus locking
4548                  * the registers) without the packet reaching this point
4549                  * here? In that case RX time stamping would get stuck.
4550                  *
4551                  * TODO: in "time stamp all packets" mode this bit is
4552                  * not set. Need a global flag for this mode and then
4553                  * always read the registers. Cannot be done without
4554                  * a race condition.
4555                  */
4556                 if (unlikely(staterr & E1000_RXD_STAT_TS)) {
4557                         u64 regval;
4558                         u64 ns;
4559                         struct skb_shared_hwtstamps *shhwtstamps =
4560                                 skb_hwtstamps(skb);
4561
4562                         WARN(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
4563                              "igb: no RX time stamp available for time stamped packet");
4564                         regval = rd32(E1000_RXSTMPL);
4565                         regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4566                         ns = timecounter_cyc2time(&adapter->clock, regval);
4567                         timecompare_update(&adapter->compare, ns);
4568                         memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4569                         shhwtstamps->hwtstamp = ns_to_ktime(ns);
4570                         shhwtstamps->syststamp =
4571                                 timecompare_transform(&adapter->compare, ns);
4572                 }
4573
4574                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
4575                         dev_kfree_skb_irq(skb);
4576                         goto next_desc;
4577                 }
4578
4579                 total_bytes += skb->len;
4580                 total_packets++;
4581
4582                 igb_rx_checksum_adv(adapter, staterr, skb);
4583
4584                 skb->protocol = eth_type_trans(skb, netdev);
4585
4586                 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
4587
4588 next_desc:
4589                 rx_desc->wb.upper.status_error = 0;
4590
4591                 /* return some buffers to hardware, one at a time is too slow */
4592                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
4593                         igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4594                         cleaned_count = 0;
4595                 }
4596
4597                 /* use prefetched values */
4598                 rx_desc = next_rxd;
4599                 buffer_info = next_buffer;
4600                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4601         }
4602
4603         rx_ring->next_to_clean = i;
4604         cleaned_count = igb_desc_unused(rx_ring);
4605
4606         if (cleaned_count)
4607                 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4608
4609         rx_ring->total_packets += total_packets;
4610         rx_ring->total_bytes += total_bytes;
4611         rx_ring->rx_stats.packets += total_packets;
4612         rx_ring->rx_stats.bytes += total_bytes;
4613         adapter->net_stats.rx_bytes += total_bytes;
4614         adapter->net_stats.rx_packets += total_packets;
4615         return cleaned;
4616 }
4617
4618 /**
4619  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4620  * @adapter: address of board private structure
4621  **/
4622 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
4623                                      int cleaned_count)
4624 {
4625         struct igb_adapter *adapter = rx_ring->adapter;
4626         struct net_device *netdev = adapter->netdev;
4627         struct pci_dev *pdev = adapter->pdev;
4628         union e1000_adv_rx_desc *rx_desc;
4629         struct igb_buffer *buffer_info;
4630         struct sk_buff *skb;
4631         unsigned int i;
4632         int bufsz;
4633
4634         i = rx_ring->next_to_use;
4635         buffer_info = &rx_ring->buffer_info[i];
4636
4637         if (adapter->rx_ps_hdr_size)
4638                 bufsz = adapter->rx_ps_hdr_size;
4639         else
4640                 bufsz = adapter->rx_buffer_len;
4641         bufsz += NET_IP_ALIGN;
4642
4643         while (cleaned_count--) {
4644                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4645
4646                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4647                         if (!buffer_info->page) {
4648                                 buffer_info->page = alloc_page(GFP_ATOMIC);
4649                                 if (!buffer_info->page) {
4650                                         adapter->alloc_rx_buff_failed++;
4651                                         goto no_buffers;
4652                                 }
4653                                 buffer_info->page_offset = 0;
4654                         } else {
4655                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
4656                         }
4657                         buffer_info->page_dma =
4658                                 pci_map_page(pdev, buffer_info->page,
4659                                              buffer_info->page_offset,
4660                                              PAGE_SIZE / 2,
4661                                              PCI_DMA_FROMDEVICE);
4662                 }
4663
4664                 if (!buffer_info->skb) {
4665                         skb = netdev_alloc_skb(netdev, bufsz);
4666                         if (!skb) {
4667                                 adapter->alloc_rx_buff_failed++;
4668                                 goto no_buffers;
4669                         }
4670
4671                         /* Make buffer alignment 2 beyond a 16 byte boundary
4672                          * this will result in a 16 byte aligned IP header after
4673                          * the 14 byte MAC header is removed
4674                          */
4675                         skb_reserve(skb, NET_IP_ALIGN);
4676
4677                         buffer_info->skb = skb;
4678                         buffer_info->dma = pci_map_single(pdev, skb->data,
4679                                                           bufsz,
4680                                                           PCI_DMA_FROMDEVICE);
4681                 }
4682                 /* Refresh the desc even if buffer_addrs didn't change because
4683                  * each write-back erases this info. */
4684                 if (adapter->rx_ps_hdr_size) {
4685                         rx_desc->read.pkt_addr =
4686                              cpu_to_le64(buffer_info->page_dma);
4687                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4688                 } else {
4689                         rx_desc->read.pkt_addr =
4690                              cpu_to_le64(buffer_info->dma);
4691                         rx_desc->read.hdr_addr = 0;
4692                 }
4693
4694                 i++;
4695                 if (i == rx_ring->count)
4696                         i = 0;
4697                 buffer_info = &rx_ring->buffer_info[i];
4698         }
4699
4700 no_buffers:
4701         if (rx_ring->next_to_use != i) {
4702                 rx_ring->next_to_use = i;
4703                 if (i == 0)
4704                         i = (rx_ring->count - 1);
4705                 else
4706                         i--;
4707
4708                 /* Force memory writes to complete before letting h/w
4709                  * know there are new descriptors to fetch.  (Only
4710                  * applicable for weak-ordered memory model archs,
4711                  * such as IA-64). */
4712                 wmb();
4713                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4714         }
4715 }
4716
4717 /**
4718  * igb_mii_ioctl -
4719  * @netdev:
4720  * @ifreq:
4721  * @cmd:
4722  **/
4723 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4724 {
4725         struct igb_adapter *adapter = netdev_priv(netdev);
4726         struct mii_ioctl_data *data = if_mii(ifr);
4727
4728         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4729                 return -EOPNOTSUPP;
4730
4731         switch (cmd) {
4732         case SIOCGMIIPHY:
4733                 data->phy_id = adapter->hw.phy.addr;
4734                 break;
4735         case SIOCGMIIREG:
4736                 if (!capable(CAP_NET_ADMIN))
4737                         return -EPERM;
4738                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4739                                      &data->val_out))
4740                         return -EIO;
4741                 break;
4742         case SIOCSMIIREG:
4743         default:
4744                 return -EOPNOTSUPP;
4745         }
4746         return 0;
4747 }
4748
4749 /**
4750  * igb_hwtstamp_ioctl - control hardware time stamping
4751  * @netdev:
4752  * @ifreq:
4753  * @cmd:
4754  *
4755  * Outgoing time stamping can be enabled and disabled. Play nice and
4756  * disable it when requested, although it shouldn't case any overhead
4757  * when no packet needs it. At most one packet in the queue may be
4758  * marked for time stamping, otherwise it would be impossible to tell
4759  * for sure to which packet the hardware time stamp belongs.
4760  *
4761  * Incoming time stamping has to be configured via the hardware
4762  * filters. Not all combinations are supported, in particular event
4763  * type has to be specified. Matching the kind of event packet is
4764  * not supported, with the exception of "all V2 events regardless of
4765  * level 2 or 4".
4766  *
4767  **/
4768 static int igb_hwtstamp_ioctl(struct net_device *netdev,
4769                               struct ifreq *ifr, int cmd)
4770 {
4771         struct igb_adapter *adapter = netdev_priv(netdev);
4772         struct e1000_hw *hw = &adapter->hw;
4773         struct hwtstamp_config config;
4774         u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4775         u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
4776         u32 tsync_rx_ctl_type = 0;
4777         u32 tsync_rx_cfg = 0;
4778         int is_l4 = 0;
4779         int is_l2 = 0;
4780         short port = 319; /* PTP */
4781         u32 regval;
4782
4783         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
4784                 return -EFAULT;
4785
4786         /* reserved for future extensions */
4787         if (config.flags)
4788                 return -EINVAL;
4789
4790         switch (config.tx_type) {
4791         case HWTSTAMP_TX_OFF:
4792                 tsync_tx_ctl_bit = 0;
4793                 break;
4794         case HWTSTAMP_TX_ON:
4795                 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4796                 break;
4797         default:
4798                 return -ERANGE;
4799         }
4800
4801         switch (config.rx_filter) {
4802         case HWTSTAMP_FILTER_NONE:
4803                 tsync_rx_ctl_bit = 0;
4804                 break;
4805         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
4806         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4807         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4808         case HWTSTAMP_FILTER_ALL:
4809                 /*
4810                  * register TSYNCRXCFG must be set, therefore it is not
4811                  * possible to time stamp both Sync and Delay_Req messages
4812                  * => fall back to time stamping all packets
4813                  */
4814                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
4815                 config.rx_filter = HWTSTAMP_FILTER_ALL;
4816                 break;
4817         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
4818                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4819                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
4820                 is_l4 = 1;
4821                 break;
4822         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
4823                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4824                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
4825                 is_l4 = 1;
4826                 break;
4827         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4828         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4829                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4830                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
4831                 is_l2 = 1;
4832                 is_l4 = 1;
4833                 config.rx_filter = HWTSTAMP_FILTER_SOME;
4834                 break;
4835         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4836         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4837                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4838                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
4839                 is_l2 = 1;
4840                 is_l4 = 1;
4841                 config.rx_filter = HWTSTAMP_FILTER_SOME;
4842                 break;
4843         case HWTSTAMP_FILTER_PTP_V2_EVENT:
4844         case HWTSTAMP_FILTER_PTP_V2_SYNC:
4845         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4846                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
4847                 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
4848                 is_l2 = 1;
4849                 break;
4850         default:
4851                 return -ERANGE;
4852         }
4853
4854         /* enable/disable TX */
4855         regval = rd32(E1000_TSYNCTXCTL);
4856         regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
4857         wr32(E1000_TSYNCTXCTL, regval);
4858
4859         /* enable/disable RX, define which PTP packets are time stamped */
4860         regval = rd32(E1000_TSYNCRXCTL);
4861         regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
4862         regval = (regval & ~0xE) | tsync_rx_ctl_type;
4863         wr32(E1000_TSYNCRXCTL, regval);
4864         wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
4865
4866         /*
4867          * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
4868          *                                          (Ethertype to filter on)
4869          * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
4870          * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
4871          */
4872         wr32(E1000_ETQF0, is_l2 ? 0x440088f7 : 0);
4873
4874         /* L4 Queue Filter[0]: only filter by source and destination port */
4875         wr32(E1000_SPQF0, htons(port));
4876         wr32(E1000_IMIREXT(0), is_l4 ?
4877              ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
4878         wr32(E1000_IMIR(0), is_l4 ?
4879              (htons(port)
4880               | (0<<16) /* immediate interrupt disabled */
4881               | 0 /* (1<<17) bit cleared: do not bypass
4882                      destination port check */)
4883                 : 0);
4884         wr32(E1000_FTQF0, is_l4 ?
4885              (0x11 /* UDP */
4886               | (1<<15) /* VF not compared */
4887               | (1<<27) /* Enable Timestamping */
4888               | (7<<28) /* only source port filter enabled,
4889                            source/target address and protocol
4890                            masked */)
4891              : ((1<<15) | (15<<28) /* all mask bits set = filter not
4892                                       enabled */));
4893
4894         wrfl();
4895
4896         adapter->hwtstamp_config = config;
4897
4898         /* clear TX/RX time stamp registers, just to be sure */
4899         regval = rd32(E1000_TXSTMPH);
4900         regval = rd32(E1000_RXSTMPH);
4901
4902         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
4903                 -EFAULT : 0;
4904 }
4905
4906 /**
4907  * igb_ioctl -
4908  * @netdev:
4909  * @ifreq:
4910  * @cmd:
4911  **/
4912 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4913 {
4914         switch (cmd) {
4915         case SIOCGMIIPHY:
4916         case SIOCGMIIREG:
4917         case SIOCSMIIREG:
4918                 return igb_mii_ioctl(netdev, ifr, cmd);
4919         case SIOCSHWTSTAMP:
4920                 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
4921         default:
4922                 return -EOPNOTSUPP;
4923         }
4924 }
4925
4926 static void igb_vlan_rx_register(struct net_device *netdev,
4927                                  struct vlan_group *grp)
4928 {
4929         struct igb_adapter *adapter = netdev_priv(netdev);
4930         struct e1000_hw *hw = &adapter->hw;
4931         u32 ctrl, rctl;
4932
4933         igb_irq_disable(adapter);
4934         adapter->vlgrp = grp;
4935
4936         if (grp) {
4937                 /* enable VLAN tag insert/strip */
4938                 ctrl = rd32(E1000_CTRL);
4939                 ctrl |= E1000_CTRL_VME;
4940                 wr32(E1000_CTRL, ctrl);
4941
4942                 /* enable VLAN receive filtering */
4943                 rctl = rd32(E1000_RCTL);
4944                 rctl &= ~E1000_RCTL_CFIEN;
4945                 wr32(E1000_RCTL, rctl);
4946                 igb_update_mng_vlan(adapter);
4947         } else {
4948                 /* disable VLAN tag insert/strip */
4949                 ctrl = rd32(E1000_CTRL);
4950                 ctrl &= ~E1000_CTRL_VME;
4951                 wr32(E1000_CTRL, ctrl);
4952
4953                 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4954                         igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4955                         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4956                 }
4957         }
4958
4959         igb_rlpml_set(adapter);
4960
4961         if (!test_bit(__IGB_DOWN, &adapter->state))
4962                 igb_irq_enable(adapter);
4963 }
4964
4965 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4966 {
4967         struct igb_adapter *adapter = netdev_priv(netdev);
4968         struct e1000_hw *hw = &adapter->hw;
4969         int pf_id = adapter->vfs_allocated_count;
4970
4971         if ((hw->mng_cookie.status &
4972              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4973             (vid == adapter->mng_vlan_id))
4974                 return;
4975
4976         /* add vid to vlvf if sr-iov is enabled,
4977          * if that fails add directly to filter table */
4978         if (igb_vlvf_set(adapter, vid, true, pf_id))
4979                 igb_vfta_set(hw, vid, true);
4980
4981 }
4982
4983 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4984 {
4985         struct igb_adapter *adapter = netdev_priv(netdev);
4986         struct e1000_hw *hw = &adapter->hw;
4987         int pf_id = adapter->vfs_allocated_count;
4988
4989         igb_irq_disable(adapter);
4990         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4991
4992         if (!test_bit(__IGB_DOWN, &adapter->state))
4993                 igb_irq_enable(adapter);
4994
4995         if ((adapter->hw.mng_cookie.status &
4996              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4997             (vid == adapter->mng_vlan_id)) {
4998                 /* release control to f/w */
4999                 igb_release_hw_control(adapter);
5000                 return;
5001         }
5002
5003         /* remove vid from vlvf if sr-iov is enabled,
5004          * if not in vlvf remove from vfta */
5005         if (igb_vlvf_set(adapter, vid, false, pf_id))
5006                 igb_vfta_set(hw, vid, false);
5007 }
5008
5009 static void igb_restore_vlan(struct igb_adapter *adapter)
5010 {
5011         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5012
5013         if (adapter->vlgrp) {
5014                 u16 vid;
5015                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5016                         if (!vlan_group_get_device(adapter->vlgrp, vid))
5017                                 continue;
5018                         igb_vlan_rx_add_vid(adapter->netdev, vid);
5019                 }
5020         }
5021 }
5022
5023 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5024 {
5025         struct e1000_mac_info *mac = &adapter->hw.mac;
5026
5027         mac->autoneg = 0;
5028
5029         /* Fiber NICs only allow 1000 gbps Full duplex */
5030         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
5031                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5032                 dev_err(&adapter->pdev->dev,
5033                         "Unsupported Speed/Duplex configuration\n");
5034                 return -EINVAL;
5035         }
5036
5037         switch (spddplx) {
5038         case SPEED_10 + DUPLEX_HALF:
5039                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5040                 break;
5041         case SPEED_10 + DUPLEX_FULL:
5042                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5043                 break;
5044         case SPEED_100 + DUPLEX_HALF:
5045                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5046                 break;
5047         case SPEED_100 + DUPLEX_FULL:
5048                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5049                 break;
5050         case SPEED_1000 + DUPLEX_FULL:
5051                 mac->autoneg = 1;
5052                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5053                 break;
5054         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5055         default:
5056                 dev_err(&adapter->pdev->dev,
5057                         "Unsupported Speed/Duplex configuration\n");
5058                 return -EINVAL;
5059         }
5060         return 0;
5061 }
5062
5063 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5064 {
5065         struct net_device *netdev = pci_get_drvdata(pdev);
5066         struct igb_adapter *adapter = netdev_priv(netdev);
5067         struct e1000_hw *hw = &adapter->hw;
5068         u32 ctrl, rctl, status;
5069         u32 wufc = adapter->wol;
5070 #ifdef CONFIG_PM
5071         int retval = 0;
5072 #endif
5073
5074         netif_device_detach(netdev);
5075
5076         if (netif_running(netdev))
5077                 igb_close(netdev);
5078
5079         igb_reset_interrupt_capability(adapter);
5080
5081         igb_free_queues(adapter);
5082
5083 #ifdef CONFIG_PM
5084         retval = pci_save_state(pdev);
5085         if (retval)
5086                 return retval;
5087 #endif
5088
5089         status = rd32(E1000_STATUS);
5090         if (status & E1000_STATUS_LU)
5091                 wufc &= ~E1000_WUFC_LNKC;
5092
5093         if (wufc) {
5094                 igb_setup_rctl(adapter);
5095                 igb_set_multi(netdev);
5096
5097                 /* turn on all-multi mode if wake on multicast is enabled */
5098                 if (wufc & E1000_WUFC_MC) {
5099                         rctl = rd32(E1000_RCTL);
5100                         rctl |= E1000_RCTL_MPE;
5101                         wr32(E1000_RCTL, rctl);
5102                 }
5103
5104                 ctrl = rd32(E1000_CTRL);
5105                 /* advertise wake from D3Cold */
5106                 #define E1000_CTRL_ADVD3WUC 0x00100000
5107                 /* phy power management enable */
5108                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5109                 ctrl |= E1000_CTRL_ADVD3WUC;
5110                 wr32(E1000_CTRL, ctrl);
5111
5112                 /* Allow time for pending master requests to run */
5113                 igb_disable_pcie_master(&adapter->hw);
5114
5115                 wr32(E1000_WUC, E1000_WUC_PME_EN);
5116                 wr32(E1000_WUFC, wufc);
5117         } else {
5118                 wr32(E1000_WUC, 0);
5119                 wr32(E1000_WUFC, 0);
5120         }
5121
5122         *enable_wake = wufc || adapter->en_mng_pt;
5123         if (!*enable_wake)
5124                 igb_shutdown_fiber_serdes_link_82575(hw);
5125
5126         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5127          * would have already happened in close and is redundant. */
5128         igb_release_hw_control(adapter);
5129
5130         pci_disable_device(pdev);
5131
5132         return 0;
5133 }
5134
5135 #ifdef CONFIG_PM
5136 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5137 {
5138         int retval;
5139         bool wake;
5140
5141         retval = __igb_shutdown(pdev, &wake);
5142         if (retval)
5143                 return retval;
5144
5145         if (wake) {
5146                 pci_prepare_to_sleep(pdev);
5147         } else {
5148                 pci_wake_from_d3(pdev, false);
5149                 pci_set_power_state(pdev, PCI_D3hot);
5150         }
5151
5152         return 0;
5153 }
5154
5155 static int igb_resume(struct pci_dev *pdev)
5156 {
5157         struct net_device *netdev = pci_get_drvdata(pdev);
5158         struct igb_adapter *adapter = netdev_priv(netdev);
5159         struct e1000_hw *hw = &adapter->hw;
5160         u32 err;
5161
5162         pci_set_power_state(pdev, PCI_D0);
5163         pci_restore_state(pdev);
5164
5165         err = pci_enable_device_mem(pdev);
5166         if (err) {
5167                 dev_err(&pdev->dev,
5168                         "igb: Cannot enable PCI device from suspend\n");
5169                 return err;
5170         }
5171         pci_set_master(pdev);
5172
5173         pci_enable_wake(pdev, PCI_D3hot, 0);
5174         pci_enable_wake(pdev, PCI_D3cold, 0);
5175
5176         igb_set_interrupt_capability(adapter);
5177
5178         if (igb_alloc_queues(adapter)) {
5179                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5180                 return -ENOMEM;
5181         }
5182
5183         /* e1000_power_up_phy(adapter); */
5184
5185         igb_reset(adapter);
5186
5187         /* let the f/w know that the h/w is now under the control of the
5188          * driver. */
5189         igb_get_hw_control(adapter);
5190
5191         wr32(E1000_WUS, ~0);
5192
5193         if (netif_running(netdev)) {
5194                 err = igb_open(netdev);
5195                 if (err)
5196                         return err;
5197         }
5198
5199         netif_device_attach(netdev);
5200
5201         return 0;
5202 }
5203 #endif
5204
5205 static void igb_shutdown(struct pci_dev *pdev)
5206 {
5207         bool wake;
5208
5209         __igb_shutdown(pdev, &wake);
5210
5211         if (system_state == SYSTEM_POWER_OFF) {
5212                 pci_wake_from_d3(pdev, wake);
5213                 pci_set_power_state(pdev, PCI_D3hot);
5214         }
5215 }
5216
5217 #ifdef CONFIG_NET_POLL_CONTROLLER
5218 /*
5219  * Polling 'interrupt' - used by things like netconsole to send skbs
5220  * without having to re-enable interrupts. It's not called while
5221  * the interrupt routine is executing.
5222  */
5223 static void igb_netpoll(struct net_device *netdev)
5224 {
5225         struct igb_adapter *adapter = netdev_priv(netdev);
5226         struct e1000_hw *hw = &adapter->hw;
5227         int i;
5228
5229         if (!adapter->msix_entries) {
5230                 igb_irq_disable(adapter);
5231                 napi_schedule(&adapter->rx_ring[0].napi);
5232                 return;
5233         }
5234
5235         for (i = 0; i < adapter->num_tx_queues; i++) {
5236                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
5237                 wr32(E1000_EIMC, tx_ring->eims_value);
5238                 igb_clean_tx_irq(tx_ring);
5239                 wr32(E1000_EIMS, tx_ring->eims_value);
5240         }
5241
5242         for (i = 0; i < adapter->num_rx_queues; i++) {
5243                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
5244                 wr32(E1000_EIMC, rx_ring->eims_value);
5245                 napi_schedule(&rx_ring->napi);
5246         }
5247 }
5248 #endif /* CONFIG_NET_POLL_CONTROLLER */
5249
5250 /**
5251  * igb_io_error_detected - called when PCI error is detected
5252  * @pdev: Pointer to PCI device
5253  * @state: The current pci connection state
5254  *
5255  * This function is called after a PCI bus error affecting
5256  * this device has been detected.
5257  */
5258 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5259                                               pci_channel_state_t state)
5260 {
5261         struct net_device *netdev = pci_get_drvdata(pdev);
5262         struct igb_adapter *adapter = netdev_priv(netdev);
5263
5264         netif_device_detach(netdev);
5265
5266         if (netif_running(netdev))
5267                 igb_down(adapter);
5268         pci_disable_device(pdev);
5269
5270         /* Request a slot slot reset. */
5271         return PCI_ERS_RESULT_NEED_RESET;
5272 }
5273
5274 /**
5275  * igb_io_slot_reset - called after the pci bus has been reset.
5276  * @pdev: Pointer to PCI device
5277  *
5278  * Restart the card from scratch, as if from a cold-boot. Implementation
5279  * resembles the first-half of the igb_resume routine.
5280  */
5281 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5282 {
5283         struct net_device *netdev = pci_get_drvdata(pdev);
5284         struct igb_adapter *adapter = netdev_priv(netdev);
5285         struct e1000_hw *hw = &adapter->hw;
5286         pci_ers_result_t result;
5287         int err;
5288
5289         if (pci_enable_device_mem(pdev)) {
5290                 dev_err(&pdev->dev,
5291                         "Cannot re-enable PCI device after reset.\n");
5292                 result = PCI_ERS_RESULT_DISCONNECT;
5293         } else {
5294                 pci_set_master(pdev);
5295                 pci_restore_state(pdev);
5296
5297                 pci_enable_wake(pdev, PCI_D3hot, 0);
5298                 pci_enable_wake(pdev, PCI_D3cold, 0);
5299
5300                 igb_reset(adapter);
5301                 wr32(E1000_WUS, ~0);
5302                 result = PCI_ERS_RESULT_RECOVERED;
5303         }
5304
5305         err = pci_cleanup_aer_uncorrect_error_status(pdev);
5306         if (err) {
5307                 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5308                         "failed 0x%0x\n", err);
5309                 /* non-fatal, continue */
5310         }
5311
5312         return result;
5313 }
5314
5315 /**
5316  * igb_io_resume - called when traffic can start flowing again.
5317  * @pdev: Pointer to PCI device
5318  *
5319  * This callback is called when the error recovery driver tells us that
5320  * its OK to resume normal operation. Implementation resembles the
5321  * second-half of the igb_resume routine.
5322  */
5323 static void igb_io_resume(struct pci_dev *pdev)
5324 {
5325         struct net_device *netdev = pci_get_drvdata(pdev);
5326         struct igb_adapter *adapter = netdev_priv(netdev);
5327
5328         if (netif_running(netdev)) {
5329                 if (igb_up(adapter)) {
5330                         dev_err(&pdev->dev, "igb_up failed after reset\n");
5331                         return;
5332                 }
5333         }
5334
5335         netif_device_attach(netdev);
5336
5337         /* let the f/w know that the h/w is now under the control of the
5338          * driver. */
5339         igb_get_hw_control(adapter);
5340 }
5341
5342 static inline void igb_set_vmolr(struct e1000_hw *hw, int vfn)
5343 {
5344         u32 reg_data;
5345
5346         reg_data = rd32(E1000_VMOLR(vfn));
5347         reg_data |= E1000_VMOLR_BAM |    /* Accept broadcast */
5348                     E1000_VMOLR_ROPE |   /* Accept packets matched in UTA */
5349                     E1000_VMOLR_ROMPE |  /* Accept packets matched in MTA */
5350                     E1000_VMOLR_AUPE |   /* Accept untagged packets */
5351                     E1000_VMOLR_STRVLAN; /* Strip vlan tags */
5352         wr32(E1000_VMOLR(vfn), reg_data);
5353 }
5354
5355 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
5356                                  int vfn)
5357 {
5358         struct e1000_hw *hw = &adapter->hw;
5359         u32 vmolr;
5360
5361         vmolr = rd32(E1000_VMOLR(vfn));
5362         vmolr &= ~E1000_VMOLR_RLPML_MASK;
5363         vmolr |= size | E1000_VMOLR_LPE;
5364         wr32(E1000_VMOLR(vfn), vmolr);
5365
5366         return 0;
5367 }
5368
5369 static inline void igb_set_rah_pool(struct e1000_hw *hw, int pool, int entry)
5370 {
5371         u32 reg_data;
5372
5373         reg_data = rd32(E1000_RAH(entry));
5374         reg_data &= ~E1000_RAH_POOL_MASK;
5375         reg_data |= E1000_RAH_POOL_1 << pool;;
5376         wr32(E1000_RAH(entry), reg_data);
5377 }
5378
5379 static void igb_set_mc_list_pools(struct igb_adapter *adapter,
5380                                   int entry_count, u16 total_rar_filters)
5381 {
5382         struct e1000_hw *hw = &adapter->hw;
5383         int i = adapter->vfs_allocated_count + 1;
5384
5385         if ((i + entry_count) < total_rar_filters)
5386                 total_rar_filters = i + entry_count;
5387
5388         for (; i < total_rar_filters; i++)
5389                 igb_set_rah_pool(hw, adapter->vfs_allocated_count, i);
5390 }
5391
5392 static int igb_set_vf_mac(struct igb_adapter *adapter,
5393                           int vf, unsigned char *mac_addr)
5394 {
5395         struct e1000_hw *hw = &adapter->hw;
5396         int rar_entry = vf + 1; /* VF MAC addresses start at entry 1 */
5397
5398         igb_rar_set(hw, mac_addr, rar_entry);
5399
5400         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5401
5402         igb_set_rah_pool(hw, vf, rar_entry);
5403
5404         return 0;
5405 }
5406
5407 static void igb_vmm_control(struct igb_adapter *adapter)
5408 {
5409         struct e1000_hw *hw = &adapter->hw;
5410         u32 reg_data;
5411
5412         if (!adapter->vfs_allocated_count)
5413                 return;
5414
5415         /* VF's need PF reset indication before they
5416          * can send/receive mail */
5417         reg_data = rd32(E1000_CTRL_EXT);
5418         reg_data |= E1000_CTRL_EXT_PFRSTD;
5419         wr32(E1000_CTRL_EXT, reg_data);
5420
5421         igb_vmdq_set_loopback_pf(hw, true);
5422         igb_vmdq_set_replication_pf(hw, true);
5423 }
5424
5425 #ifdef CONFIG_PCI_IOV
5426 static ssize_t igb_show_num_vfs(struct device *dev,
5427                                 struct device_attribute *attr, char *buf)
5428 {
5429         struct igb_adapter *adapter = netdev_priv(to_net_dev(dev));
5430
5431         return sprintf(buf, "%d\n", adapter->vfs_allocated_count);
5432 }
5433
5434 static ssize_t igb_set_num_vfs(struct device *dev,
5435                                struct device_attribute *attr,
5436                                const char *buf, size_t count)
5437 {
5438         struct net_device *netdev = to_net_dev(dev);
5439         struct igb_adapter *adapter = netdev_priv(netdev);
5440         struct e1000_hw *hw = &adapter->hw;
5441         struct pci_dev *pdev = adapter->pdev;
5442         unsigned int num_vfs, i;
5443         unsigned char mac_addr[ETH_ALEN];
5444         int err;
5445
5446         sscanf(buf, "%u", &num_vfs);
5447
5448         if (num_vfs > 7)
5449                 num_vfs = 7;
5450
5451         /* value unchanged do nothing */
5452         if (num_vfs == adapter->vfs_allocated_count)
5453                 return count;
5454
5455         if (netdev->flags & IFF_UP)
5456                 igb_close(netdev);
5457
5458         igb_reset_interrupt_capability(adapter);
5459         igb_free_queues(adapter);
5460         adapter->tx_ring = NULL;
5461         adapter->rx_ring = NULL;
5462         adapter->vfs_allocated_count = 0;
5463
5464         /* reclaim resources allocated to VFs since we are changing count */
5465         if (adapter->vf_data) {
5466                 /* disable iov and allow time for transactions to clear */
5467                 pci_disable_sriov(pdev);
5468                 msleep(500);
5469
5470                 kfree(adapter->vf_data);
5471                 adapter->vf_data = NULL;
5472                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
5473                 msleep(100);
5474                 dev_info(&pdev->dev, "IOV Disabled\n");
5475         }
5476
5477         if (num_vfs) {
5478                 adapter->vf_data = kcalloc(num_vfs,
5479                                            sizeof(struct vf_data_storage),
5480                                            GFP_KERNEL);
5481                 if (!adapter->vf_data) {
5482                         dev_err(&pdev->dev, "Could not allocate VF private "
5483                                 "data - IOV enable failed\n");
5484                 } else {
5485                         err = pci_enable_sriov(pdev, num_vfs);
5486                         if (!err) {
5487                                 adapter->vfs_allocated_count = num_vfs;
5488                                 dev_info(&pdev->dev, "%d vfs allocated\n", num_vfs);
5489                                 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5490                                         random_ether_addr(mac_addr);
5491                                         igb_set_vf_mac(adapter, i, mac_addr);
5492                                 }
5493                         } else {
5494                                 kfree(adapter->vf_data);
5495                                 adapter->vf_data = NULL;
5496                         }
5497                 }
5498         }
5499
5500         igb_set_interrupt_capability(adapter);
5501         igb_alloc_queues(adapter);
5502         igb_reset(adapter);
5503
5504         if (netdev->flags & IFF_UP)
5505                 igb_open(netdev);
5506
5507         return count;
5508 }
5509 #endif /* CONFIG_PCI_IOV */
5510 /* igb_main.c */