2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/init.h>
29 #include <linux/vmalloc.h>
31 #include <linux/sysctl.h>
32 #include <linux/list.h>
33 #include <linux/file.h>
34 #include <linux/poll.h>
35 #include <linux/vfs.h>
36 #include <linux/smp.h>
37 #include <linux/pagemap.h>
38 #include <linux/mount.h>
39 #include <linux/bitops.h>
40 #include <linux/capability.h>
41 #include <linux/rcupdate.h>
42 #include <linux/completion.h>
44 #include <asm/errno.h>
45 #include <asm/intrinsics.h>
47 #include <asm/perfmon.h>
48 #include <asm/processor.h>
49 #include <asm/signal.h>
50 #include <asm/system.h>
51 #include <asm/uaccess.h>
52 #include <asm/delay.h>
56 * perfmon context state
58 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
59 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
60 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
61 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
63 #define PFM_INVALID_ACTIVATION (~0UL)
65 #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
66 #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
69 * depth of message queue
71 #define PFM_MAX_MSGS 32
72 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
75 * type of a PMU register (bitmask).
77 * bit0 : register implemented
80 * bit4 : pmc has pmc.pm
81 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
82 * bit6-7 : register type
85 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
86 #define PFM_REG_IMPL 0x1 /* register implemented */
87 #define PFM_REG_END 0x2 /* end marker */
88 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
89 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
90 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
91 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
92 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
94 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
95 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
97 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
99 /* i assumed unsigned */
100 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
101 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
103 /* XXX: these assume that register i is implemented */
104 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
105 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
106 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
107 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
109 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
110 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
111 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
112 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
114 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
115 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
117 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
118 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
119 #define PFM_CTX_TASK(h) (h)->ctx_task
121 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
123 /* XXX: does not support more than 64 PMDs */
124 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
125 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
127 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
129 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
130 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
131 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
132 #define PFM_CODE_RR 0 /* requesting code range restriction */
133 #define PFM_DATA_RR 1 /* requestion data range restriction */
135 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
136 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
137 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
139 #define RDEP(x) (1UL<<(x))
142 * context protection macros
144 * - we need to protect against CPU concurrency (spin_lock)
145 * - we need to protect against PMU overflow interrupts (local_irq_disable)
147 * - we need to protect against PMU overflow interrupts (local_irq_disable)
149 * spin_lock_irqsave()/spin_unlock_irqrestore():
150 * in SMP: local_irq_disable + spin_lock
151 * in UP : local_irq_disable
153 * spin_lock()/spin_lock():
154 * in UP : removed automatically
155 * in SMP: protect against context accesses from other CPU. interrupts
156 * are not masked. This is useful for the PMU interrupt handler
157 * because we know we will not get PMU concurrency in that code.
159 #define PROTECT_CTX(c, f) \
161 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \
162 spin_lock_irqsave(&(c)->ctx_lock, f); \
163 DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \
166 #define UNPROTECT_CTX(c, f) \
168 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \
169 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
172 #define PROTECT_CTX_NOPRINT(c, f) \
174 spin_lock_irqsave(&(c)->ctx_lock, f); \
178 #define UNPROTECT_CTX_NOPRINT(c, f) \
180 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
184 #define PROTECT_CTX_NOIRQ(c) \
186 spin_lock(&(c)->ctx_lock); \
189 #define UNPROTECT_CTX_NOIRQ(c) \
191 spin_unlock(&(c)->ctx_lock); \
197 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
198 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
199 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
201 #else /* !CONFIG_SMP */
202 #define SET_ACTIVATION(t) do {} while(0)
203 #define GET_ACTIVATION(t) do {} while(0)
204 #define INC_ACTIVATION(t) do {} while(0)
205 #endif /* CONFIG_SMP */
207 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
208 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
209 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
211 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
212 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
214 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
217 * cmp0 must be the value of pmc0
219 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
221 #define PFMFS_MAGIC 0xa0b4d889
226 #define PFM_DEBUGGING 1
230 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
233 #define DPRINT_ovfl(a) \
235 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
240 * 64-bit software counter structure
242 * the next_reset_type is applied to the next call to pfm_reset_regs()
245 unsigned long val; /* virtual 64bit counter value */
246 unsigned long lval; /* last reset value */
247 unsigned long long_reset; /* reset value on sampling overflow */
248 unsigned long short_reset; /* reset value on overflow */
249 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
250 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
251 unsigned long seed; /* seed for random-number generator */
252 unsigned long mask; /* mask for random-number generator */
253 unsigned int flags; /* notify/do not notify */
254 unsigned long eventid; /* overflow event identifier */
261 unsigned int block:1; /* when 1, task will blocked on user notifications */
262 unsigned int system:1; /* do system wide monitoring */
263 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
264 unsigned int is_sampling:1; /* true if using a custom format */
265 unsigned int excl_idle:1; /* exclude idle task in system wide session */
266 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
267 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
268 unsigned int no_msg:1; /* no message sent on overflow */
269 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
270 unsigned int reserved:22;
271 } pfm_context_flags_t;
273 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
274 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
275 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
279 * perfmon context: encapsulates all the state of a monitoring session
282 typedef struct pfm_context {
283 spinlock_t ctx_lock; /* context protection */
285 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
286 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
288 struct task_struct *ctx_task; /* task to which context is attached */
290 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
292 struct completion ctx_restart_done; /* use for blocking notification mode */
294 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
295 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
296 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
298 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
299 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
300 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
302 unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
304 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
305 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
306 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
307 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
309 pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
311 unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
312 unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
314 u64 ctx_saved_psr_up; /* only contains psr.up value */
316 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
317 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
318 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
320 int ctx_fd; /* file descriptor used my this context */
321 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
323 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
324 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
325 unsigned long ctx_smpl_size; /* size of sampling buffer */
326 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
328 wait_queue_head_t ctx_msgq_wait;
329 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
332 struct fasync_struct *ctx_async_queue;
334 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
338 * magic number used to verify that structure is really
341 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
343 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
346 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
347 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
349 #define SET_LAST_CPU(ctx, v) do {} while(0)
350 #define GET_LAST_CPU(ctx) do {} while(0)
354 #define ctx_fl_block ctx_flags.block
355 #define ctx_fl_system ctx_flags.system
356 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
357 #define ctx_fl_is_sampling ctx_flags.is_sampling
358 #define ctx_fl_excl_idle ctx_flags.excl_idle
359 #define ctx_fl_going_zombie ctx_flags.going_zombie
360 #define ctx_fl_trap_reason ctx_flags.trap_reason
361 #define ctx_fl_no_msg ctx_flags.no_msg
362 #define ctx_fl_can_restart ctx_flags.can_restart
364 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
365 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
368 * global information about all sessions
369 * mostly used to synchronize between system wide and per-process
372 spinlock_t pfs_lock; /* lock the structure */
374 unsigned int pfs_task_sessions; /* number of per task sessions */
375 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
376 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
377 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
378 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
382 * information about a PMC or PMD.
383 * dep_pmd[]: a bitmask of dependent PMD registers
384 * dep_pmc[]: a bitmask of dependent PMC registers
386 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
390 unsigned long default_value; /* power-on default value */
391 unsigned long reserved_mask; /* bitmask of reserved bits */
392 pfm_reg_check_t read_check;
393 pfm_reg_check_t write_check;
394 unsigned long dep_pmd[4];
395 unsigned long dep_pmc[4];
398 /* assume cnum is a valid monitor */
399 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
402 * This structure is initialized at boot time and contains
403 * a description of the PMU main characteristics.
405 * If the probe function is defined, detection is based
406 * on its return value:
407 * - 0 means recognized PMU
408 * - anything else means not supported
409 * When the probe function is not defined, then the pmu_family field
410 * is used and it must match the host CPU family such that:
411 * - cpu->family & config->pmu_family != 0
414 unsigned long ovfl_val; /* overflow value for counters */
416 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
417 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
419 unsigned int num_pmcs; /* number of PMCS: computed at init time */
420 unsigned int num_pmds; /* number of PMDS: computed at init time */
421 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
422 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
424 char *pmu_name; /* PMU family name */
425 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
426 unsigned int flags; /* pmu specific flags */
427 unsigned int num_ibrs; /* number of IBRS: computed at init time */
428 unsigned int num_dbrs; /* number of DBRS: computed at init time */
429 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
430 int (*probe)(void); /* customized probe routine */
431 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
436 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
439 * debug register related type definitions
442 unsigned long ibr_mask:56;
443 unsigned long ibr_plm:4;
444 unsigned long ibr_ig:3;
445 unsigned long ibr_x:1;
449 unsigned long dbr_mask:56;
450 unsigned long dbr_plm:4;
451 unsigned long dbr_ig:2;
452 unsigned long dbr_w:1;
453 unsigned long dbr_r:1;
464 * perfmon command descriptions
467 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
470 unsigned int cmd_narg;
472 int (*cmd_getsize)(void *arg, size_t *sz);
475 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
476 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
477 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
478 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
481 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
482 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
483 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
484 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
485 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
487 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
490 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
491 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
492 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
493 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
494 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
496 unsigned long pfm_smpl_handler_calls;
497 unsigned long pfm_smpl_handler_cycles;
498 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
502 * perfmon internal variables
504 static pfm_stats_t pfm_stats[NR_CPUS];
505 static pfm_session_t pfm_sessions; /* global sessions information */
507 static DEFINE_SPINLOCK(pfm_alt_install_check);
508 static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
510 static struct proc_dir_entry *perfmon_dir;
511 static pfm_uuid_t pfm_null_uuid = {0,};
513 static spinlock_t pfm_buffer_fmt_lock;
514 static LIST_HEAD(pfm_buffer_fmt_list);
516 static pmu_config_t *pmu_conf;
518 /* sysctl() controls */
519 pfm_sysctl_t pfm_sysctl;
520 EXPORT_SYMBOL(pfm_sysctl);
522 static ctl_table pfm_ctl_table[]={
524 .ctl_name = CTL_UNNUMBERED,
526 .data = &pfm_sysctl.debug,
527 .maxlen = sizeof(int),
529 .proc_handler = &proc_dointvec,
532 .ctl_name = CTL_UNNUMBERED,
533 .procname = "debug_ovfl",
534 .data = &pfm_sysctl.debug_ovfl,
535 .maxlen = sizeof(int),
537 .proc_handler = &proc_dointvec,
540 .ctl_name = CTL_UNNUMBERED,
541 .procname = "fastctxsw",
542 .data = &pfm_sysctl.fastctxsw,
543 .maxlen = sizeof(int),
545 .proc_handler = &proc_dointvec,
548 .ctl_name = CTL_UNNUMBERED,
549 .procname = "expert_mode",
550 .data = &pfm_sysctl.expert_mode,
551 .maxlen = sizeof(int),
553 .proc_handler = &proc_dointvec,
557 static ctl_table pfm_sysctl_dir[] = {
559 .ctl_name = CTL_UNNUMBERED,
560 .procname = "perfmon",
562 .child = pfm_ctl_table,
566 static ctl_table pfm_sysctl_root[] = {
568 .ctl_name = CTL_KERN,
569 .procname = "kernel",
571 .child = pfm_sysctl_dir,
575 static struct ctl_table_header *pfm_sysctl_header;
577 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
579 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
580 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
583 pfm_put_task(struct task_struct *task)
585 if (task != current) put_task_struct(task);
589 pfm_set_task_notify(struct task_struct *task)
591 struct thread_info *info;
593 info = (struct thread_info *) ((char *) task + IA64_TASK_SIZE);
594 set_bit(TIF_PERFMON_WORK, &info->flags);
598 pfm_clear_task_notify(void)
600 clear_thread_flag(TIF_PERFMON_WORK);
604 pfm_reserve_page(unsigned long a)
606 SetPageReserved(vmalloc_to_page((void *)a));
609 pfm_unreserve_page(unsigned long a)
611 ClearPageReserved(vmalloc_to_page((void*)a));
614 static inline unsigned long
615 pfm_protect_ctx_ctxsw(pfm_context_t *x)
617 spin_lock(&(x)->ctx_lock);
622 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
624 spin_unlock(&(x)->ctx_lock);
627 static inline unsigned int
628 pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
630 return do_munmap(mm, addr, len);
633 static inline unsigned long
634 pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
636 return get_unmapped_area(file, addr, len, pgoff, flags);
641 pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data,
642 struct vfsmount *mnt)
644 return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC, mnt);
647 static struct file_system_type pfm_fs_type = {
649 .get_sb = pfmfs_get_sb,
650 .kill_sb = kill_anon_super,
653 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
654 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
655 DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
656 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
657 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
660 /* forward declaration */
661 static const struct file_operations pfm_file_ops;
664 * forward declarations
667 static void pfm_lazy_save_regs (struct task_struct *ta);
670 void dump_pmu_state(const char *);
671 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
673 #include "perfmon_itanium.h"
674 #include "perfmon_mckinley.h"
675 #include "perfmon_montecito.h"
676 #include "perfmon_generic.h"
678 static pmu_config_t *pmu_confs[]={
682 &pmu_conf_gen, /* must be last */
687 static int pfm_end_notify_user(pfm_context_t *ctx);
690 pfm_clear_psr_pp(void)
692 ia64_rsm(IA64_PSR_PP);
699 ia64_ssm(IA64_PSR_PP);
704 pfm_clear_psr_up(void)
706 ia64_rsm(IA64_PSR_UP);
713 ia64_ssm(IA64_PSR_UP);
717 static inline unsigned long
721 tmp = ia64_getreg(_IA64_REG_PSR);
727 pfm_set_psr_l(unsigned long val)
729 ia64_setreg(_IA64_REG_PSR_L, val);
741 pfm_unfreeze_pmu(void)
748 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
752 for (i=0; i < nibrs; i++) {
753 ia64_set_ibr(i, ibrs[i]);
754 ia64_dv_serialize_instruction();
760 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
764 for (i=0; i < ndbrs; i++) {
765 ia64_set_dbr(i, dbrs[i]);
766 ia64_dv_serialize_data();
772 * PMD[i] must be a counter. no check is made
774 static inline unsigned long
775 pfm_read_soft_counter(pfm_context_t *ctx, int i)
777 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
781 * PMD[i] must be a counter. no check is made
784 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
786 unsigned long ovfl_val = pmu_conf->ovfl_val;
788 ctx->ctx_pmds[i].val = val & ~ovfl_val;
790 * writing to unimplemented part is ignore, so we do not need to
793 ia64_set_pmd(i, val & ovfl_val);
797 pfm_get_new_msg(pfm_context_t *ctx)
801 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
803 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
804 if (next == ctx->ctx_msgq_head) return NULL;
806 idx = ctx->ctx_msgq_tail;
807 ctx->ctx_msgq_tail = next;
809 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
811 return ctx->ctx_msgq+idx;
815 pfm_get_next_msg(pfm_context_t *ctx)
819 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
821 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
826 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
831 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
833 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
839 pfm_reset_msgq(pfm_context_t *ctx)
841 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
842 DPRINT(("ctx=%p msgq reset\n", ctx));
846 pfm_rvmalloc(unsigned long size)
851 size = PAGE_ALIGN(size);
854 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
855 memset(mem, 0, size);
856 addr = (unsigned long)mem;
858 pfm_reserve_page(addr);
867 pfm_rvfree(void *mem, unsigned long size)
872 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
873 addr = (unsigned long) mem;
874 while ((long) size > 0) {
875 pfm_unreserve_page(addr);
884 static pfm_context_t *
885 pfm_context_alloc(void)
890 * allocate context descriptor
891 * must be able to free with interrupts disabled
893 ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
895 DPRINT(("alloc ctx @%p\n", ctx));
901 pfm_context_free(pfm_context_t *ctx)
904 DPRINT(("free ctx @%p\n", ctx));
910 pfm_mask_monitoring(struct task_struct *task)
912 pfm_context_t *ctx = PFM_GET_CTX(task);
913 unsigned long mask, val, ovfl_mask;
916 DPRINT_ovfl(("masking monitoring for [%d]\n", task->pid));
918 ovfl_mask = pmu_conf->ovfl_val;
920 * monitoring can only be masked as a result of a valid
921 * counter overflow. In UP, it means that the PMU still
922 * has an owner. Note that the owner can be different
923 * from the current task. However the PMU state belongs
925 * In SMP, a valid overflow only happens when task is
926 * current. Therefore if we come here, we know that
927 * the PMU state belongs to the current task, therefore
928 * we can access the live registers.
930 * So in both cases, the live register contains the owner's
931 * state. We can ONLY touch the PMU registers and NOT the PSR.
933 * As a consequence to this call, the ctx->th_pmds[] array
934 * contains stale information which must be ignored
935 * when context is reloaded AND monitoring is active (see
938 mask = ctx->ctx_used_pmds[0];
939 for (i = 0; mask; i++, mask>>=1) {
940 /* skip non used pmds */
941 if ((mask & 0x1) == 0) continue;
942 val = ia64_get_pmd(i);
944 if (PMD_IS_COUNTING(i)) {
946 * we rebuild the full 64 bit value of the counter
948 ctx->ctx_pmds[i].val += (val & ovfl_mask);
950 ctx->ctx_pmds[i].val = val;
952 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
954 ctx->ctx_pmds[i].val,
958 * mask monitoring by setting the privilege level to 0
959 * we cannot use psr.pp/psr.up for this, it is controlled by
962 * if task is current, modify actual registers, otherwise modify
963 * thread save state, i.e., what will be restored in pfm_load_regs()
965 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
966 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
967 if ((mask & 0x1) == 0UL) continue;
968 ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
969 ctx->th_pmcs[i] &= ~0xfUL;
970 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
973 * make all of this visible
979 * must always be done with task == current
981 * context must be in MASKED state when calling
984 pfm_restore_monitoring(struct task_struct *task)
986 pfm_context_t *ctx = PFM_GET_CTX(task);
987 unsigned long mask, ovfl_mask;
988 unsigned long psr, val;
991 is_system = ctx->ctx_fl_system;
992 ovfl_mask = pmu_conf->ovfl_val;
994 if (task != current) {
995 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task->pid, current->pid);
998 if (ctx->ctx_state != PFM_CTX_MASKED) {
999 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1000 task->pid, current->pid, ctx->ctx_state);
1003 psr = pfm_get_psr();
1005 * monitoring is masked via the PMC.
1006 * As we restore their value, we do not want each counter to
1007 * restart right away. We stop monitoring using the PSR,
1008 * restore the PMC (and PMD) and then re-establish the psr
1009 * as it was. Note that there can be no pending overflow at
1010 * this point, because monitoring was MASKED.
1012 * system-wide session are pinned and self-monitoring
1014 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1015 /* disable dcr pp */
1016 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1022 * first, we restore the PMD
1024 mask = ctx->ctx_used_pmds[0];
1025 for (i = 0; mask; i++, mask>>=1) {
1026 /* skip non used pmds */
1027 if ((mask & 0x1) == 0) continue;
1029 if (PMD_IS_COUNTING(i)) {
1031 * we split the 64bit value according to
1034 val = ctx->ctx_pmds[i].val & ovfl_mask;
1035 ctx->ctx_pmds[i].val &= ~ovfl_mask;
1037 val = ctx->ctx_pmds[i].val;
1039 ia64_set_pmd(i, val);
1041 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1043 ctx->ctx_pmds[i].val,
1049 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1050 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1051 if ((mask & 0x1) == 0UL) continue;
1052 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1053 ia64_set_pmc(i, ctx->th_pmcs[i]);
1054 DPRINT(("[%d] pmc[%d]=0x%lx\n", task->pid, i, ctx->th_pmcs[i]));
1059 * must restore DBR/IBR because could be modified while masked
1060 * XXX: need to optimize
1062 if (ctx->ctx_fl_using_dbreg) {
1063 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1064 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1070 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1072 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1079 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1085 for (i=0; mask; i++, mask>>=1) {
1086 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1091 * reload from thread state (used for ctxw only)
1094 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1097 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1099 for (i=0; mask; i++, mask>>=1) {
1100 if ((mask & 0x1) == 0) continue;
1101 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1102 ia64_set_pmd(i, val);
1108 * propagate PMD from context to thread-state
1111 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1113 unsigned long ovfl_val = pmu_conf->ovfl_val;
1114 unsigned long mask = ctx->ctx_all_pmds[0];
1118 DPRINT(("mask=0x%lx\n", mask));
1120 for (i=0; mask; i++, mask>>=1) {
1122 val = ctx->ctx_pmds[i].val;
1125 * We break up the 64 bit value into 2 pieces
1126 * the lower bits go to the machine state in the
1127 * thread (will be reloaded on ctxsw in).
1128 * The upper part stays in the soft-counter.
1130 if (PMD_IS_COUNTING(i)) {
1131 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1134 ctx->th_pmds[i] = val;
1136 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1139 ctx->ctx_pmds[i].val));
1144 * propagate PMC from context to thread-state
1147 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1149 unsigned long mask = ctx->ctx_all_pmcs[0];
1152 DPRINT(("mask=0x%lx\n", mask));
1154 for (i=0; mask; i++, mask>>=1) {
1155 /* masking 0 with ovfl_val yields 0 */
1156 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1157 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1164 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1168 for (i=0; mask; i++, mask>>=1) {
1169 if ((mask & 0x1) == 0) continue;
1170 ia64_set_pmc(i, pmcs[i]);
1176 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1178 return memcmp(a, b, sizeof(pfm_uuid_t));
1182 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1185 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1190 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1193 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1199 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1203 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1208 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1212 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1217 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1220 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1225 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1228 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1232 static pfm_buffer_fmt_t *
1233 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1235 struct list_head * pos;
1236 pfm_buffer_fmt_t * entry;
1238 list_for_each(pos, &pfm_buffer_fmt_list) {
1239 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1240 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1247 * find a buffer format based on its uuid
1249 static pfm_buffer_fmt_t *
1250 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1252 pfm_buffer_fmt_t * fmt;
1253 spin_lock(&pfm_buffer_fmt_lock);
1254 fmt = __pfm_find_buffer_fmt(uuid);
1255 spin_unlock(&pfm_buffer_fmt_lock);
1260 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1264 /* some sanity checks */
1265 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1267 /* we need at least a handler */
1268 if (fmt->fmt_handler == NULL) return -EINVAL;
1271 * XXX: need check validity of fmt_arg_size
1274 spin_lock(&pfm_buffer_fmt_lock);
1276 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1277 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1281 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1282 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1285 spin_unlock(&pfm_buffer_fmt_lock);
1288 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1291 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1293 pfm_buffer_fmt_t *fmt;
1296 spin_lock(&pfm_buffer_fmt_lock);
1298 fmt = __pfm_find_buffer_fmt(uuid);
1300 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1304 list_del_init(&fmt->fmt_list);
1305 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1308 spin_unlock(&pfm_buffer_fmt_lock);
1312 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1314 extern void update_pal_halt_status(int);
1317 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1319 unsigned long flags;
1321 * validity checks on cpu_mask have been done upstream
1325 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1326 pfm_sessions.pfs_sys_sessions,
1327 pfm_sessions.pfs_task_sessions,
1328 pfm_sessions.pfs_sys_use_dbregs,
1334 * cannot mix system wide and per-task sessions
1336 if (pfm_sessions.pfs_task_sessions > 0UL) {
1337 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1338 pfm_sessions.pfs_task_sessions));
1342 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1344 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1346 pfm_sessions.pfs_sys_session[cpu] = task;
1348 pfm_sessions.pfs_sys_sessions++ ;
1351 if (pfm_sessions.pfs_sys_sessions) goto abort;
1352 pfm_sessions.pfs_task_sessions++;
1355 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1356 pfm_sessions.pfs_sys_sessions,
1357 pfm_sessions.pfs_task_sessions,
1358 pfm_sessions.pfs_sys_use_dbregs,
1363 * disable default_idle() to go to PAL_HALT
1365 update_pal_halt_status(0);
1372 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1373 pfm_sessions.pfs_sys_session[cpu]->pid,
1383 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1385 unsigned long flags;
1387 * validity checks on cpu_mask have been done upstream
1391 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1392 pfm_sessions.pfs_sys_sessions,
1393 pfm_sessions.pfs_task_sessions,
1394 pfm_sessions.pfs_sys_use_dbregs,
1400 pfm_sessions.pfs_sys_session[cpu] = NULL;
1402 * would not work with perfmon+more than one bit in cpu_mask
1404 if (ctx && ctx->ctx_fl_using_dbreg) {
1405 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1406 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1408 pfm_sessions.pfs_sys_use_dbregs--;
1411 pfm_sessions.pfs_sys_sessions--;
1413 pfm_sessions.pfs_task_sessions--;
1415 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1416 pfm_sessions.pfs_sys_sessions,
1417 pfm_sessions.pfs_task_sessions,
1418 pfm_sessions.pfs_sys_use_dbregs,
1423 * if possible, enable default_idle() to go into PAL_HALT
1425 if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1426 update_pal_halt_status(1);
1434 * removes virtual mapping of the sampling buffer.
1435 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1436 * a PROTECT_CTX() section.
1439 pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1444 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1445 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task->pid, task->mm);
1449 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1452 * does the actual unmapping
1454 down_write(&task->mm->mmap_sem);
1456 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1458 r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1460 up_write(&task->mm->mmap_sem);
1462 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task->pid, vaddr, size);
1465 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1471 * free actual physical storage used by sampling buffer
1475 pfm_free_smpl_buffer(pfm_context_t *ctx)
1477 pfm_buffer_fmt_t *fmt;
1479 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1482 * we won't use the buffer format anymore
1484 fmt = ctx->ctx_buf_fmt;
1486 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1489 ctx->ctx_smpl_vaddr));
1491 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1496 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1498 ctx->ctx_smpl_hdr = NULL;
1499 ctx->ctx_smpl_size = 0UL;
1504 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current->pid);
1510 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1512 if (fmt == NULL) return;
1514 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1519 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1520 * no real gain from having the whole whorehouse mounted. So we don't need
1521 * any operations on the root directory. However, we need a non-trivial
1522 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1524 static struct vfsmount *pfmfs_mnt;
1529 int err = register_filesystem(&pfm_fs_type);
1531 pfmfs_mnt = kern_mount(&pfm_fs_type);
1532 err = PTR_ERR(pfmfs_mnt);
1533 if (IS_ERR(pfmfs_mnt))
1534 unregister_filesystem(&pfm_fs_type);
1542 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1547 unsigned long flags;
1548 DECLARE_WAITQUEUE(wait, current);
1549 if (PFM_IS_FILE(filp) == 0) {
1550 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1554 ctx = (pfm_context_t *)filp->private_data;
1556 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", current->pid);
1561 * check even when there is no message
1563 if (size < sizeof(pfm_msg_t)) {
1564 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1568 PROTECT_CTX(ctx, flags);
1571 * put ourselves on the wait queue
1573 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1581 set_current_state(TASK_INTERRUPTIBLE);
1583 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1586 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1588 UNPROTECT_CTX(ctx, flags);
1591 * check non-blocking read
1594 if(filp->f_flags & O_NONBLOCK) break;
1597 * check pending signals
1599 if(signal_pending(current)) {
1604 * no message, so wait
1608 PROTECT_CTX(ctx, flags);
1610 DPRINT(("[%d] back to running ret=%ld\n", current->pid, ret));
1611 set_current_state(TASK_RUNNING);
1612 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1614 if (ret < 0) goto abort;
1617 msg = pfm_get_next_msg(ctx);
1619 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, current->pid);
1623 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1626 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1629 UNPROTECT_CTX(ctx, flags);
1635 pfm_write(struct file *file, const char __user *ubuf,
1636 size_t size, loff_t *ppos)
1638 DPRINT(("pfm_write called\n"));
1643 pfm_poll(struct file *filp, poll_table * wait)
1646 unsigned long flags;
1647 unsigned int mask = 0;
1649 if (PFM_IS_FILE(filp) == 0) {
1650 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1654 ctx = (pfm_context_t *)filp->private_data;
1656 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", current->pid);
1661 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1663 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1665 PROTECT_CTX(ctx, flags);
1667 if (PFM_CTXQ_EMPTY(ctx) == 0)
1668 mask = POLLIN | POLLRDNORM;
1670 UNPROTECT_CTX(ctx, flags);
1672 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1678 pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
1680 DPRINT(("pfm_ioctl called\n"));
1685 * interrupt cannot be masked when coming here
1688 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1692 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1694 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1698 ctx->ctx_async_queue, ret));
1704 pfm_fasync(int fd, struct file *filp, int on)
1709 if (PFM_IS_FILE(filp) == 0) {
1710 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", current->pid);
1714 ctx = (pfm_context_t *)filp->private_data;
1716 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", current->pid);
1720 * we cannot mask interrupts during this call because this may
1721 * may go to sleep if memory is not readily avalaible.
1723 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1724 * done in caller. Serialization of this function is ensured by caller.
1726 ret = pfm_do_fasync(fd, filp, ctx, on);
1729 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1732 ctx->ctx_async_queue, ret));
1739 * this function is exclusively called from pfm_close().
1740 * The context is not protected at that time, nor are interrupts
1741 * on the remote CPU. That's necessary to avoid deadlocks.
1744 pfm_syswide_force_stop(void *info)
1746 pfm_context_t *ctx = (pfm_context_t *)info;
1747 struct pt_regs *regs = task_pt_regs(current);
1748 struct task_struct *owner;
1749 unsigned long flags;
1752 if (ctx->ctx_cpu != smp_processor_id()) {
1753 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1755 smp_processor_id());
1758 owner = GET_PMU_OWNER();
1759 if (owner != ctx->ctx_task) {
1760 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1762 owner->pid, ctx->ctx_task->pid);
1765 if (GET_PMU_CTX() != ctx) {
1766 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1768 GET_PMU_CTX(), ctx);
1772 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx->ctx_task->pid));
1774 * the context is already protected in pfm_close(), we simply
1775 * need to mask interrupts to avoid a PMU interrupt race on
1778 local_irq_save(flags);
1780 ret = pfm_context_unload(ctx, NULL, 0, regs);
1782 DPRINT(("context_unload returned %d\n", ret));
1786 * unmask interrupts, PMU interrupts are now spurious here
1788 local_irq_restore(flags);
1792 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1796 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1797 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 0, 1);
1798 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1800 #endif /* CONFIG_SMP */
1803 * called for each close(). Partially free resources.
1804 * When caller is self-monitoring, the context is unloaded.
1807 pfm_flush(struct file *filp, fl_owner_t id)
1810 struct task_struct *task;
1811 struct pt_regs *regs;
1812 unsigned long flags;
1813 unsigned long smpl_buf_size = 0UL;
1814 void *smpl_buf_vaddr = NULL;
1815 int state, is_system;
1817 if (PFM_IS_FILE(filp) == 0) {
1818 DPRINT(("bad magic for\n"));
1822 ctx = (pfm_context_t *)filp->private_data;
1824 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", current->pid);
1829 * remove our file from the async queue, if we use this mode.
1830 * This can be done without the context being protected. We come
1831 * here when the context has become unreachable by other tasks.
1833 * We may still have active monitoring at this point and we may
1834 * end up in pfm_overflow_handler(). However, fasync_helper()
1835 * operates with interrupts disabled and it cleans up the
1836 * queue. If the PMU handler is called prior to entering
1837 * fasync_helper() then it will send a signal. If it is
1838 * invoked after, it will find an empty queue and no
1839 * signal will be sent. In both case, we are safe
1841 if (filp->f_flags & FASYNC) {
1842 DPRINT(("cleaning up async_queue=%p\n", ctx->ctx_async_queue));
1843 pfm_do_fasync (-1, filp, ctx, 0);
1846 PROTECT_CTX(ctx, flags);
1848 state = ctx->ctx_state;
1849 is_system = ctx->ctx_fl_system;
1851 task = PFM_CTX_TASK(ctx);
1852 regs = task_pt_regs(task);
1854 DPRINT(("ctx_state=%d is_current=%d\n",
1856 task == current ? 1 : 0));
1859 * if state == UNLOADED, then task is NULL
1863 * we must stop and unload because we are losing access to the context.
1865 if (task == current) {
1868 * the task IS the owner but it migrated to another CPU: that's bad
1869 * but we must handle this cleanly. Unfortunately, the kernel does
1870 * not provide a mechanism to block migration (while the context is loaded).
1872 * We need to release the resource on the ORIGINAL cpu.
1874 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1876 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1878 * keep context protected but unmask interrupt for IPI
1880 local_irq_restore(flags);
1882 pfm_syswide_cleanup_other_cpu(ctx);
1885 * restore interrupt masking
1887 local_irq_save(flags);
1890 * context is unloaded at this point
1893 #endif /* CONFIG_SMP */
1896 DPRINT(("forcing unload\n"));
1898 * stop and unload, returning with state UNLOADED
1899 * and session unreserved.
1901 pfm_context_unload(ctx, NULL, 0, regs);
1903 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1908 * remove virtual mapping, if any, for the calling task.
1909 * cannot reset ctx field until last user is calling close().
1911 * ctx_smpl_vaddr must never be cleared because it is needed
1912 * by every task with access to the context
1914 * When called from do_exit(), the mm context is gone already, therefore
1915 * mm is NULL, i.e., the VMA is already gone and we do not have to
1918 if (ctx->ctx_smpl_vaddr && current->mm) {
1919 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1920 smpl_buf_size = ctx->ctx_smpl_size;
1923 UNPROTECT_CTX(ctx, flags);
1926 * if there was a mapping, then we systematically remove it
1927 * at this point. Cannot be done inside critical section
1928 * because some VM function reenables interrupts.
1931 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1936 * called either on explicit close() or from exit_files().
1937 * Only the LAST user of the file gets to this point, i.e., it is
1940 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1941 * (fput()),i.e, last task to access the file. Nobody else can access the
1942 * file at this point.
1944 * When called from exit_files(), the VMA has been freed because exit_mm()
1945 * is executed before exit_files().
1947 * When called from exit_files(), the current task is not yet ZOMBIE but we
1948 * flush the PMU state to the context.
1951 pfm_close(struct inode *inode, struct file *filp)
1954 struct task_struct *task;
1955 struct pt_regs *regs;
1956 DECLARE_WAITQUEUE(wait, current);
1957 unsigned long flags;
1958 unsigned long smpl_buf_size = 0UL;
1959 void *smpl_buf_addr = NULL;
1960 int free_possible = 1;
1961 int state, is_system;
1963 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1965 if (PFM_IS_FILE(filp) == 0) {
1966 DPRINT(("bad magic\n"));
1970 ctx = (pfm_context_t *)filp->private_data;
1972 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", current->pid);
1976 PROTECT_CTX(ctx, flags);
1978 state = ctx->ctx_state;
1979 is_system = ctx->ctx_fl_system;
1981 task = PFM_CTX_TASK(ctx);
1982 regs = task_pt_regs(task);
1984 DPRINT(("ctx_state=%d is_current=%d\n",
1986 task == current ? 1 : 0));
1989 * if task == current, then pfm_flush() unloaded the context
1991 if (state == PFM_CTX_UNLOADED) goto doit;
1994 * context is loaded/masked and task != current, we need to
1995 * either force an unload or go zombie
1999 * The task is currently blocked or will block after an overflow.
2000 * we must force it to wakeup to get out of the
2001 * MASKED state and transition to the unloaded state by itself.
2003 * This situation is only possible for per-task mode
2005 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2008 * set a "partial" zombie state to be checked
2009 * upon return from down() in pfm_handle_work().
2011 * We cannot use the ZOMBIE state, because it is checked
2012 * by pfm_load_regs() which is called upon wakeup from down().
2013 * In such case, it would free the context and then we would
2014 * return to pfm_handle_work() which would access the
2015 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2016 * but visible to pfm_handle_work().
2018 * For some window of time, we have a zombie context with
2019 * ctx_state = MASKED and not ZOMBIE
2021 ctx->ctx_fl_going_zombie = 1;
2024 * force task to wake up from MASKED state
2026 complete(&ctx->ctx_restart_done);
2028 DPRINT(("waking up ctx_state=%d\n", state));
2031 * put ourself to sleep waiting for the other
2032 * task to report completion
2034 * the context is protected by mutex, therefore there
2035 * is no risk of being notified of completion before
2036 * begin actually on the waitq.
2038 set_current_state(TASK_INTERRUPTIBLE);
2039 add_wait_queue(&ctx->ctx_zombieq, &wait);
2041 UNPROTECT_CTX(ctx, flags);
2044 * XXX: check for signals :
2045 * - ok for explicit close
2046 * - not ok when coming from exit_files()
2051 PROTECT_CTX(ctx, flags);
2054 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2055 set_current_state(TASK_RUNNING);
2058 * context is unloaded at this point
2060 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2062 else if (task != current) {
2065 * switch context to zombie state
2067 ctx->ctx_state = PFM_CTX_ZOMBIE;
2069 DPRINT(("zombie ctx for [%d]\n", task->pid));
2071 * cannot free the context on the spot. deferred until
2072 * the task notices the ZOMBIE state
2076 pfm_context_unload(ctx, NULL, 0, regs);
2081 /* reload state, may have changed during opening of critical section */
2082 state = ctx->ctx_state;
2085 * the context is still attached to a task (possibly current)
2086 * we cannot destroy it right now
2090 * we must free the sampling buffer right here because
2091 * we cannot rely on it being cleaned up later by the
2092 * monitored task. It is not possible to free vmalloc'ed
2093 * memory in pfm_load_regs(). Instead, we remove the buffer
2094 * now. should there be subsequent PMU overflow originally
2095 * meant for sampling, the will be converted to spurious
2096 * and that's fine because the monitoring tools is gone anyway.
2098 if (ctx->ctx_smpl_hdr) {
2099 smpl_buf_addr = ctx->ctx_smpl_hdr;
2100 smpl_buf_size = ctx->ctx_smpl_size;
2101 /* no more sampling */
2102 ctx->ctx_smpl_hdr = NULL;
2103 ctx->ctx_fl_is_sampling = 0;
2106 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2112 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2115 * UNLOADED that the session has already been unreserved.
2117 if (state == PFM_CTX_ZOMBIE) {
2118 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2122 * disconnect file descriptor from context must be done
2125 filp->private_data = NULL;
2128 * if we free on the spot, the context is now completely unreachable
2129 * from the callers side. The monitored task side is also cut, so we
2132 * If we have a deferred free, only the caller side is disconnected.
2134 UNPROTECT_CTX(ctx, flags);
2137 * All memory free operations (especially for vmalloc'ed memory)
2138 * MUST be done with interrupts ENABLED.
2140 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2143 * return the memory used by the context
2145 if (free_possible) pfm_context_free(ctx);
2151 pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2153 DPRINT(("pfm_no_open called\n"));
2159 static const struct file_operations pfm_file_ops = {
2160 .llseek = no_llseek,
2165 .open = pfm_no_open, /* special open code to disallow open via /proc */
2166 .fasync = pfm_fasync,
2167 .release = pfm_close,
2172 pfmfs_delete_dentry(struct dentry *dentry)
2177 static struct dentry_operations pfmfs_dentry_operations = {
2178 .d_delete = pfmfs_delete_dentry,
2183 pfm_alloc_fd(struct file **cfile)
2186 struct file *file = NULL;
2187 struct inode * inode;
2191 fd = get_unused_fd();
2192 if (fd < 0) return -ENFILE;
2196 file = get_empty_filp();
2197 if (!file) goto out;
2200 * allocate a new inode
2202 inode = new_inode(pfmfs_mnt->mnt_sb);
2203 if (!inode) goto out;
2205 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2207 inode->i_mode = S_IFCHR|S_IRUGO;
2208 inode->i_uid = current->fsuid;
2209 inode->i_gid = current->fsgid;
2211 sprintf(name, "[%lu]", inode->i_ino);
2213 this.len = strlen(name);
2214 this.hash = inode->i_ino;
2219 * allocate a new dcache entry
2221 file->f_path.dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2222 if (!file->f_path.dentry) goto out;
2224 file->f_path.dentry->d_op = &pfmfs_dentry_operations;
2226 d_add(file->f_path.dentry, inode);
2227 file->f_path.mnt = mntget(pfmfs_mnt);
2228 file->f_mapping = inode->i_mapping;
2230 file->f_op = &pfm_file_ops;
2231 file->f_mode = FMODE_READ;
2232 file->f_flags = O_RDONLY;
2236 * may have to delay until context is attached?
2238 fd_install(fd, file);
2241 * the file structure we will use
2247 if (file) put_filp(file);
2253 pfm_free_fd(int fd, struct file *file)
2255 struct files_struct *files = current->files;
2256 struct fdtable *fdt;
2259 * there ie no fd_uninstall(), so we do it here
2261 spin_lock(&files->file_lock);
2262 fdt = files_fdtable(files);
2263 rcu_assign_pointer(fdt->fd[fd], NULL);
2264 spin_unlock(&files->file_lock);
2272 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2274 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2277 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2280 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2291 * allocate a sampling buffer and remaps it into the user address space of the task
2294 pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2296 struct mm_struct *mm = task->mm;
2297 struct vm_area_struct *vma = NULL;
2303 * the fixed header + requested size and align to page boundary
2305 size = PAGE_ALIGN(rsize);
2307 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2310 * check requested size to avoid Denial-of-service attacks
2311 * XXX: may have to refine this test
2312 * Check against address space limit.
2314 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2317 if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
2321 * We do the easy to undo allocations first.
2323 * pfm_rvmalloc(), clears the buffer, so there is no leak
2325 smpl_buf = pfm_rvmalloc(size);
2326 if (smpl_buf == NULL) {
2327 DPRINT(("Can't allocate sampling buffer\n"));
2331 DPRINT(("smpl_buf @%p\n", smpl_buf));
2334 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2336 DPRINT(("Cannot allocate vma\n"));
2341 * partially initialize the vma for the sampling buffer
2344 vma->vm_file = filp;
2345 vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
2346 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2349 * Now we have everything we need and we can initialize
2350 * and connect all the data structures
2353 ctx->ctx_smpl_hdr = smpl_buf;
2354 ctx->ctx_smpl_size = size; /* aligned size */
2357 * Let's do the difficult operations next.
2359 * now we atomically find some area in the address space and
2360 * remap the buffer in it.
2362 down_write(&task->mm->mmap_sem);
2364 /* find some free area in address space, must have mmap sem held */
2365 vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2366 if (vma->vm_start == 0UL) {
2367 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2368 up_write(&task->mm->mmap_sem);
2371 vma->vm_end = vma->vm_start + size;
2372 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2374 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2376 /* can only be applied to current task, need to have the mm semaphore held when called */
2377 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2378 DPRINT(("Can't remap buffer\n"));
2379 up_write(&task->mm->mmap_sem);
2386 * now insert the vma in the vm list for the process, must be
2387 * done with mmap lock held
2389 insert_vm_struct(mm, vma);
2391 mm->total_vm += size >> PAGE_SHIFT;
2392 vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2394 up_write(&task->mm->mmap_sem);
2397 * keep track of user level virtual address
2399 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2400 *(unsigned long *)user_vaddr = vma->vm_start;
2405 kmem_cache_free(vm_area_cachep, vma);
2407 pfm_rvfree(smpl_buf, size);
2413 * XXX: do something better here
2416 pfm_bad_permissions(struct task_struct *task)
2418 /* inspired by ptrace_attach() */
2419 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2428 return ((current->uid != task->euid)
2429 || (current->uid != task->suid)
2430 || (current->uid != task->uid)
2431 || (current->gid != task->egid)
2432 || (current->gid != task->sgid)
2433 || (current->gid != task->gid)) && !capable(CAP_SYS_PTRACE);
2437 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2443 ctx_flags = pfx->ctx_flags;
2445 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2448 * cannot block in this mode
2450 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2451 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2456 /* probably more to add here */
2462 pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2463 unsigned int cpu, pfarg_context_t *arg)
2465 pfm_buffer_fmt_t *fmt = NULL;
2466 unsigned long size = 0UL;
2468 void *fmt_arg = NULL;
2470 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2472 /* invoke and lock buffer format, if found */
2473 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2475 DPRINT(("[%d] cannot find buffer format\n", task->pid));
2480 * buffer argument MUST be contiguous to pfarg_context_t
2482 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2484 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2486 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task->pid, ctx_flags, cpu, fmt_arg, ret));
2488 if (ret) goto error;
2490 /* link buffer format and context */
2491 ctx->ctx_buf_fmt = fmt;
2494 * check if buffer format wants to use perfmon buffer allocation/mapping service
2496 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2497 if (ret) goto error;
2501 * buffer is always remapped into the caller's address space
2503 ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2504 if (ret) goto error;
2506 /* keep track of user address of buffer */
2507 arg->ctx_smpl_vaddr = uaddr;
2509 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2516 pfm_reset_pmu_state(pfm_context_t *ctx)
2521 * install reset values for PMC.
2523 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2524 if (PMC_IS_IMPL(i) == 0) continue;
2525 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2526 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2529 * PMD registers are set to 0UL when the context in memset()
2533 * On context switched restore, we must restore ALL pmc and ALL pmd even
2534 * when they are not actively used by the task. In UP, the incoming process
2535 * may otherwise pick up left over PMC, PMD state from the previous process.
2536 * As opposed to PMD, stale PMC can cause harm to the incoming
2537 * process because they may change what is being measured.
2538 * Therefore, we must systematically reinstall the entire
2539 * PMC state. In SMP, the same thing is possible on the
2540 * same CPU but also on between 2 CPUs.
2542 * The problem with PMD is information leaking especially
2543 * to user level when psr.sp=0
2545 * There is unfortunately no easy way to avoid this problem
2546 * on either UP or SMP. This definitively slows down the
2547 * pfm_load_regs() function.
2551 * bitmask of all PMCs accessible to this context
2553 * PMC0 is treated differently.
2555 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2558 * bitmask of all PMDs that are accessible to this context
2560 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2562 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2565 * useful in case of re-enable after disable
2567 ctx->ctx_used_ibrs[0] = 0UL;
2568 ctx->ctx_used_dbrs[0] = 0UL;
2572 pfm_ctx_getsize(void *arg, size_t *sz)
2574 pfarg_context_t *req = (pfarg_context_t *)arg;
2575 pfm_buffer_fmt_t *fmt;
2579 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2581 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2583 DPRINT(("cannot find buffer format\n"));
2586 /* get just enough to copy in user parameters */
2587 *sz = fmt->fmt_arg_size;
2588 DPRINT(("arg_size=%lu\n", *sz));
2596 * cannot attach if :
2598 * - task not owned by caller
2599 * - task incompatible with context mode
2602 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2605 * no kernel task or task not owner by caller
2607 if (task->mm == NULL) {
2608 DPRINT(("task [%d] has not memory context (kernel thread)\n", task->pid));
2611 if (pfm_bad_permissions(task)) {
2612 DPRINT(("no permission to attach to [%d]\n", task->pid));
2616 * cannot block in self-monitoring mode
2618 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2619 DPRINT(("cannot load a blocking context on self for [%d]\n", task->pid));
2623 if (task->exit_state == EXIT_ZOMBIE) {
2624 DPRINT(("cannot attach to zombie task [%d]\n", task->pid));
2629 * always ok for self
2631 if (task == current) return 0;
2633 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
2634 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task->pid, task->state));
2638 * make sure the task is off any CPU
2640 wait_task_inactive(task);
2642 /* more to come... */
2648 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2650 struct task_struct *p = current;
2653 /* XXX: need to add more checks here */
2654 if (pid < 2) return -EPERM;
2656 if (pid != current->pid) {
2658 read_lock(&tasklist_lock);
2660 p = find_task_by_pid(pid);
2662 /* make sure task cannot go away while we operate on it */
2663 if (p) get_task_struct(p);
2665 read_unlock(&tasklist_lock);
2667 if (p == NULL) return -ESRCH;
2670 ret = pfm_task_incompatible(ctx, p);
2673 } else if (p != current) {
2682 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2684 pfarg_context_t *req = (pfarg_context_t *)arg;
2689 /* let's check the arguments first */
2690 ret = pfarg_is_sane(current, req);
2691 if (ret < 0) return ret;
2693 ctx_flags = req->ctx_flags;
2697 ctx = pfm_context_alloc();
2698 if (!ctx) goto error;
2700 ret = pfm_alloc_fd(&filp);
2701 if (ret < 0) goto error_file;
2703 req->ctx_fd = ctx->ctx_fd = ret;
2706 * attach context to file
2708 filp->private_data = ctx;
2711 * does the user want to sample?
2713 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2714 ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2715 if (ret) goto buffer_error;
2719 * init context protection lock
2721 spin_lock_init(&ctx->ctx_lock);
2724 * context is unloaded
2726 ctx->ctx_state = PFM_CTX_UNLOADED;
2729 * initialization of context's flags
2731 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
2732 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
2733 ctx->ctx_fl_is_sampling = ctx->ctx_buf_fmt ? 1 : 0; /* assume record() is defined */
2734 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
2736 * will move to set properties
2737 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
2741 * init restart semaphore to locked
2743 init_completion(&ctx->ctx_restart_done);
2746 * activation is used in SMP only
2748 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
2749 SET_LAST_CPU(ctx, -1);
2752 * initialize notification message queue
2754 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
2755 init_waitqueue_head(&ctx->ctx_msgq_wait);
2756 init_waitqueue_head(&ctx->ctx_zombieq);
2758 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2763 ctx->ctx_fl_excl_idle,
2768 * initialize soft PMU state
2770 pfm_reset_pmu_state(ctx);
2775 pfm_free_fd(ctx->ctx_fd, filp);
2777 if (ctx->ctx_buf_fmt) {
2778 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2781 pfm_context_free(ctx);
2787 static inline unsigned long
2788 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2790 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2791 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2792 extern unsigned long carta_random32 (unsigned long seed);
2794 if (reg->flags & PFM_REGFL_RANDOM) {
2795 new_seed = carta_random32(old_seed);
2796 val -= (old_seed & mask); /* counter values are negative numbers! */
2797 if ((mask >> 32) != 0)
2798 /* construct a full 64-bit random value: */
2799 new_seed |= carta_random32(old_seed >> 32) << 32;
2800 reg->seed = new_seed;
2807 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2809 unsigned long mask = ovfl_regs[0];
2810 unsigned long reset_others = 0UL;
2815 * now restore reset value on sampling overflowed counters
2817 mask >>= PMU_FIRST_COUNTER;
2818 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2820 if ((mask & 0x1UL) == 0UL) continue;
2822 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2823 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2825 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2829 * Now take care of resetting the other registers
2831 for(i = 0; reset_others; i++, reset_others >>= 1) {
2833 if ((reset_others & 0x1) == 0) continue;
2835 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2837 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2838 is_long_reset ? "long" : "short", i, val));
2843 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2845 unsigned long mask = ovfl_regs[0];
2846 unsigned long reset_others = 0UL;
2850 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2852 if (ctx->ctx_state == PFM_CTX_MASKED) {
2853 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2858 * now restore reset value on sampling overflowed counters
2860 mask >>= PMU_FIRST_COUNTER;
2861 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2863 if ((mask & 0x1UL) == 0UL) continue;
2865 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2866 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2868 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2870 pfm_write_soft_counter(ctx, i, val);
2874 * Now take care of resetting the other registers
2876 for(i = 0; reset_others; i++, reset_others >>= 1) {
2878 if ((reset_others & 0x1) == 0) continue;
2880 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2882 if (PMD_IS_COUNTING(i)) {
2883 pfm_write_soft_counter(ctx, i, val);
2885 ia64_set_pmd(i, val);
2887 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2888 is_long_reset ? "long" : "short", i, val));
2894 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2896 struct task_struct *task;
2897 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2898 unsigned long value, pmc_pm;
2899 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2900 unsigned int cnum, reg_flags, flags, pmc_type;
2901 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2902 int is_monitor, is_counting, state;
2904 pfm_reg_check_t wr_func;
2905 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2907 state = ctx->ctx_state;
2908 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2909 is_system = ctx->ctx_fl_system;
2910 task = ctx->ctx_task;
2911 impl_pmds = pmu_conf->impl_pmds[0];
2913 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2917 * In system wide and when the context is loaded, access can only happen
2918 * when the caller is running on the CPU being monitored by the session.
2919 * It does not have to be the owner (ctx_task) of the context per se.
2921 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2922 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2925 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2927 expert_mode = pfm_sysctl.expert_mode;
2929 for (i = 0; i < count; i++, req++) {
2931 cnum = req->reg_num;
2932 reg_flags = req->reg_flags;
2933 value = req->reg_value;
2934 smpl_pmds = req->reg_smpl_pmds[0];
2935 reset_pmds = req->reg_reset_pmds[0];
2939 if (cnum >= PMU_MAX_PMCS) {
2940 DPRINT(("pmc%u is invalid\n", cnum));
2944 pmc_type = pmu_conf->pmc_desc[cnum].type;
2945 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2946 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2947 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2950 * we reject all non implemented PMC as well
2951 * as attempts to modify PMC[0-3] which are used
2952 * as status registers by the PMU
2954 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2955 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2958 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2960 * If the PMC is a monitor, then if the value is not the default:
2961 * - system-wide session: PMCx.pm=1 (privileged monitor)
2962 * - per-task : PMCx.pm=0 (user monitor)
2964 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2965 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2974 * enforce generation of overflow interrupt. Necessary on all
2977 value |= 1 << PMU_PMC_OI;
2979 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2980 flags |= PFM_REGFL_OVFL_NOTIFY;
2983 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2985 /* verify validity of smpl_pmds */
2986 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2987 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2991 /* verify validity of reset_pmds */
2992 if ((reset_pmds & impl_pmds) != reset_pmds) {
2993 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2997 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2998 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
3001 /* eventid on non-counting monitors are ignored */
3005 * execute write checker, if any
3007 if (likely(expert_mode == 0 && wr_func)) {
3008 ret = (*wr_func)(task, ctx, cnum, &value, regs);
3009 if (ret) goto error;
3014 * no error on this register
3016 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3019 * Now we commit the changes to the software state
3023 * update overflow information
3027 * full flag update each time a register is programmed
3029 ctx->ctx_pmds[cnum].flags = flags;
3031 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
3032 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
3033 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
3036 * Mark all PMDS to be accessed as used.
3038 * We do not keep track of PMC because we have to
3039 * systematically restore ALL of them.
3041 * We do not update the used_monitors mask, because
3042 * if we have not programmed them, then will be in
3043 * a quiescent state, therefore we will not need to
3044 * mask/restore then when context is MASKED.
3046 CTX_USED_PMD(ctx, reset_pmds);
3047 CTX_USED_PMD(ctx, smpl_pmds);
3049 * make sure we do not try to reset on
3050 * restart because we have established new values
3052 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3055 * Needed in case the user does not initialize the equivalent
3056 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3057 * possible leak here.
3059 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3062 * keep track of the monitor PMC that we are using.
3063 * we save the value of the pmc in ctx_pmcs[] and if
3064 * the monitoring is not stopped for the context we also
3065 * place it in the saved state area so that it will be
3066 * picked up later by the context switch code.
3068 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3070 * The value in th_pmcs[] may be modified on overflow, i.e., when
3071 * monitoring needs to be stopped.
3073 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3076 * update context state
3078 ctx->ctx_pmcs[cnum] = value;
3082 * write thread state
3084 if (is_system == 0) ctx->th_pmcs[cnum] = value;
3087 * write hardware register if we can
3089 if (can_access_pmu) {
3090 ia64_set_pmc(cnum, value);
3095 * per-task SMP only here
3097 * we are guaranteed that the task is not running on the other CPU,
3098 * we indicate that this PMD will need to be reloaded if the task
3099 * is rescheduled on the CPU it ran last on.
3101 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3106 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3112 ctx->ctx_all_pmcs[0],
3113 ctx->ctx_used_pmds[0],
3114 ctx->ctx_pmds[cnum].eventid,
3117 ctx->ctx_reload_pmcs[0],
3118 ctx->ctx_used_monitors[0],
3119 ctx->ctx_ovfl_regs[0]));
3123 * make sure the changes are visible
3125 if (can_access_pmu) ia64_srlz_d();
3129 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3134 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3136 struct task_struct *task;
3137 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3138 unsigned long value, hw_value, ovfl_mask;
3140 int i, can_access_pmu = 0, state;
3141 int is_counting, is_loaded, is_system, expert_mode;
3143 pfm_reg_check_t wr_func;
3146 state = ctx->ctx_state;
3147 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3148 is_system = ctx->ctx_fl_system;
3149 ovfl_mask = pmu_conf->ovfl_val;
3150 task = ctx->ctx_task;
3152 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3155 * on both UP and SMP, we can only write to the PMC when the task is
3156 * the owner of the local PMU.
3158 if (likely(is_loaded)) {
3160 * In system wide and when the context is loaded, access can only happen
3161 * when the caller is running on the CPU being monitored by the session.
3162 * It does not have to be the owner (ctx_task) of the context per se.
3164 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3165 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3168 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3170 expert_mode = pfm_sysctl.expert_mode;
3172 for (i = 0; i < count; i++, req++) {
3174 cnum = req->reg_num;
3175 value = req->reg_value;
3177 if (!PMD_IS_IMPL(cnum)) {
3178 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3181 is_counting = PMD_IS_COUNTING(cnum);
3182 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3185 * execute write checker, if any
3187 if (unlikely(expert_mode == 0 && wr_func)) {
3188 unsigned long v = value;
3190 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3191 if (ret) goto abort_mission;
3198 * no error on this register
3200 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3203 * now commit changes to software state
3208 * update virtualized (64bits) counter
3212 * write context state
3214 ctx->ctx_pmds[cnum].lval = value;
3217 * when context is load we use the split value
3220 hw_value = value & ovfl_mask;
3221 value = value & ~ovfl_mask;
3225 * update reset values (not just for counters)
3227 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3228 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3231 * update randomization parameters (not just for counters)
3233 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3234 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3237 * update context value
3239 ctx->ctx_pmds[cnum].val = value;
3242 * Keep track of what we use
3244 * We do not keep track of PMC because we have to
3245 * systematically restore ALL of them.
3247 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3250 * mark this PMD register used as well
3252 CTX_USED_PMD(ctx, RDEP(cnum));
3255 * make sure we do not try to reset on
3256 * restart because we have established new values
3258 if (is_counting && state == PFM_CTX_MASKED) {
3259 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3264 * write thread state
3266 if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3269 * write hardware register if we can
3271 if (can_access_pmu) {
3272 ia64_set_pmd(cnum, hw_value);
3276 * we are guaranteed that the task is not running on the other CPU,
3277 * we indicate that this PMD will need to be reloaded if the task
3278 * is rescheduled on the CPU it ran last on.
3280 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3285 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3286 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3292 ctx->ctx_pmds[cnum].val,
3293 ctx->ctx_pmds[cnum].short_reset,
3294 ctx->ctx_pmds[cnum].long_reset,
3295 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3296 ctx->ctx_pmds[cnum].seed,
3297 ctx->ctx_pmds[cnum].mask,
3298 ctx->ctx_used_pmds[0],
3299 ctx->ctx_pmds[cnum].reset_pmds[0],
3300 ctx->ctx_reload_pmds[0],
3301 ctx->ctx_all_pmds[0],
3302 ctx->ctx_ovfl_regs[0]));
3306 * make changes visible
3308 if (can_access_pmu) ia64_srlz_d();
3314 * for now, we have only one possibility for error
3316 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3321 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3322 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3323 * interrupt is delivered during the call, it will be kept pending until we leave, making
3324 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3325 * guaranteed to return consistent data to the user, it may simply be old. It is not
3326 * trivial to treat the overflow while inside the call because you may end up in
3327 * some module sampling buffer code causing deadlocks.
3330 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3332 struct task_struct *task;
3333 unsigned long val = 0UL, lval, ovfl_mask, sval;
3334 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3335 unsigned int cnum, reg_flags = 0;
3336 int i, can_access_pmu = 0, state;
3337 int is_loaded, is_system, is_counting, expert_mode;
3339 pfm_reg_check_t rd_func;
3342 * access is possible when loaded only for
3343 * self-monitoring tasks or in UP mode
3346 state = ctx->ctx_state;
3347 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3348 is_system = ctx->ctx_fl_system;
3349 ovfl_mask = pmu_conf->ovfl_val;
3350 task = ctx->ctx_task;
3352 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3354 if (likely(is_loaded)) {
3356 * In system wide and when the context is loaded, access can only happen
3357 * when the caller is running on the CPU being monitored by the session.
3358 * It does not have to be the owner (ctx_task) of the context per se.
3360 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3361 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3365 * this can be true when not self-monitoring only in UP
3367 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3369 if (can_access_pmu) ia64_srlz_d();
3371 expert_mode = pfm_sysctl.expert_mode;
3373 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3379 * on both UP and SMP, we can only read the PMD from the hardware register when
3380 * the task is the owner of the local PMU.
3383 for (i = 0; i < count; i++, req++) {
3385 cnum = req->reg_num;
3386 reg_flags = req->reg_flags;
3388 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3390 * we can only read the register that we use. That includes
3391 * the one we explicitly initialize AND the one we want included
3392 * in the sampling buffer (smpl_regs).
3394 * Having this restriction allows optimization in the ctxsw routine
3395 * without compromising security (leaks)
3397 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3399 sval = ctx->ctx_pmds[cnum].val;
3400 lval = ctx->ctx_pmds[cnum].lval;
3401 is_counting = PMD_IS_COUNTING(cnum);
3404 * If the task is not the current one, then we check if the
3405 * PMU state is still in the local live register due to lazy ctxsw.
3406 * If true, then we read directly from the registers.
3408 if (can_access_pmu){
3409 val = ia64_get_pmd(cnum);
3412 * context has been saved
3413 * if context is zombie, then task does not exist anymore.
3414 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3416 val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3418 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3422 * XXX: need to check for overflow when loaded
3429 * execute read checker, if any
3431 if (unlikely(expert_mode == 0 && rd_func)) {
3432 unsigned long v = val;
3433 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3434 if (ret) goto error;
3439 PFM_REG_RETFLAG_SET(reg_flags, 0);
3441 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3444 * update register return value, abort all if problem during copy.
3445 * we only modify the reg_flags field. no check mode is fine because
3446 * access has been verified upfront in sys_perfmonctl().
3448 req->reg_value = val;
3449 req->reg_flags = reg_flags;
3450 req->reg_last_reset_val = lval;
3456 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3461 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3465 if (req == NULL) return -EINVAL;
3467 ctx = GET_PMU_CTX();
3469 if (ctx == NULL) return -EINVAL;
3472 * for now limit to current task, which is enough when calling
3473 * from overflow handler
3475 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3477 return pfm_write_pmcs(ctx, req, nreq, regs);
3479 EXPORT_SYMBOL(pfm_mod_write_pmcs);
3482 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3486 if (req == NULL) return -EINVAL;
3488 ctx = GET_PMU_CTX();
3490 if (ctx == NULL) return -EINVAL;
3493 * for now limit to current task, which is enough when calling
3494 * from overflow handler
3496 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3498 return pfm_read_pmds(ctx, req, nreq, regs);
3500 EXPORT_SYMBOL(pfm_mod_read_pmds);
3503 * Only call this function when a process it trying to
3504 * write the debug registers (reading is always allowed)
3507 pfm_use_debug_registers(struct task_struct *task)
3509 pfm_context_t *ctx = task->thread.pfm_context;
3510 unsigned long flags;
3513 if (pmu_conf->use_rr_dbregs == 0) return 0;
3515 DPRINT(("called for [%d]\n", task->pid));
3520 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3523 * Even on SMP, we do not need to use an atomic here because
3524 * the only way in is via ptrace() and this is possible only when the
3525 * process is stopped. Even in the case where the ctxsw out is not totally
3526 * completed by the time we come here, there is no way the 'stopped' process
3527 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3528 * So this is always safe.
3530 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3535 * We cannot allow setting breakpoints when system wide monitoring
3536 * sessions are using the debug registers.
3538 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3541 pfm_sessions.pfs_ptrace_use_dbregs++;
3543 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3544 pfm_sessions.pfs_ptrace_use_dbregs,
3545 pfm_sessions.pfs_sys_use_dbregs,
3554 * This function is called for every task that exits with the
3555 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3556 * able to use the debug registers for debugging purposes via
3557 * ptrace(). Therefore we know it was not using them for
3558 * perfmormance monitoring, so we only decrement the number
3559 * of "ptraced" debug register users to keep the count up to date
3562 pfm_release_debug_registers(struct task_struct *task)
3564 unsigned long flags;
3567 if (pmu_conf->use_rr_dbregs == 0) return 0;
3570 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3571 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task->pid);
3574 pfm_sessions.pfs_ptrace_use_dbregs--;
3583 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3585 struct task_struct *task;
3586 pfm_buffer_fmt_t *fmt;
3587 pfm_ovfl_ctrl_t rst_ctrl;
3588 int state, is_system;
3591 state = ctx->ctx_state;
3592 fmt = ctx->ctx_buf_fmt;
3593 is_system = ctx->ctx_fl_system;
3594 task = PFM_CTX_TASK(ctx);
3597 case PFM_CTX_MASKED:
3599 case PFM_CTX_LOADED:
3600 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3602 case PFM_CTX_UNLOADED:
3603 case PFM_CTX_ZOMBIE:
3604 DPRINT(("invalid state=%d\n", state));
3607 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3612 * In system wide and when the context is loaded, access can only happen
3613 * when the caller is running on the CPU being monitored by the session.
3614 * It does not have to be the owner (ctx_task) of the context per se.
3616 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3617 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3622 if (unlikely(task == NULL)) {
3623 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", current->pid);
3627 if (task == current || is_system) {
3629 fmt = ctx->ctx_buf_fmt;
3631 DPRINT(("restarting self %d ovfl=0x%lx\n",
3633 ctx->ctx_ovfl_regs[0]));
3635 if (CTX_HAS_SMPL(ctx)) {
3637 prefetch(ctx->ctx_smpl_hdr);
3639 rst_ctrl.bits.mask_monitoring = 0;
3640 rst_ctrl.bits.reset_ovfl_pmds = 0;
3642 if (state == PFM_CTX_LOADED)
3643 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3645 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3647 rst_ctrl.bits.mask_monitoring = 0;
3648 rst_ctrl.bits.reset_ovfl_pmds = 1;
3652 if (rst_ctrl.bits.reset_ovfl_pmds)
3653 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3655 if (rst_ctrl.bits.mask_monitoring == 0) {
3656 DPRINT(("resuming monitoring for [%d]\n", task->pid));
3658 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3660 DPRINT(("keeping monitoring stopped for [%d]\n", task->pid));
3662 // cannot use pfm_stop_monitoring(task, regs);
3666 * clear overflowed PMD mask to remove any stale information
3668 ctx->ctx_ovfl_regs[0] = 0UL;
3671 * back to LOADED state
3673 ctx->ctx_state = PFM_CTX_LOADED;
3676 * XXX: not really useful for self monitoring
3678 ctx->ctx_fl_can_restart = 0;
3684 * restart another task
3688 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3689 * one is seen by the task.
3691 if (state == PFM_CTX_MASKED) {
3692 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3694 * will prevent subsequent restart before this one is
3695 * seen by other task
3697 ctx->ctx_fl_can_restart = 0;
3701 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3702 * the task is blocked or on its way to block. That's the normal
3703 * restart path. If the monitoring is not masked, then the task
3704 * can be actively monitoring and we cannot directly intervene.
3705 * Therefore we use the trap mechanism to catch the task and
3706 * force it to reset the buffer/reset PMDs.
3708 * if non-blocking, then we ensure that the task will go into
3709 * pfm_handle_work() before returning to user mode.
3711 * We cannot explicitly reset another task, it MUST always
3712 * be done by the task itself. This works for system wide because
3713 * the tool that is controlling the session is logically doing
3714 * "self-monitoring".
3716 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3717 DPRINT(("unblocking [%d] \n", task->pid));
3718 complete(&ctx->ctx_restart_done);
3720 DPRINT(("[%d] armed exit trap\n", task->pid));
3722 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3724 PFM_SET_WORK_PENDING(task, 1);
3726 pfm_set_task_notify(task);
3729 * XXX: send reschedule if task runs on another CPU
3736 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3738 unsigned int m = *(unsigned int *)arg;
3740 pfm_sysctl.debug = m == 0 ? 0 : 1;
3742 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3745 memset(pfm_stats, 0, sizeof(pfm_stats));
3746 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3752 * arg can be NULL and count can be zero for this function
3755 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3757 struct thread_struct *thread = NULL;
3758 struct task_struct *task;
3759 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3760 unsigned long flags;
3765 int i, can_access_pmu = 0;
3766 int is_system, is_loaded;
3768 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3770 state = ctx->ctx_state;
3771 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3772 is_system = ctx->ctx_fl_system;
3773 task = ctx->ctx_task;
3775 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3778 * on both UP and SMP, we can only write to the PMC when the task is
3779 * the owner of the local PMU.
3782 thread = &task->thread;
3784 * In system wide and when the context is loaded, access can only happen
3785 * when the caller is running on the CPU being monitored by the session.
3786 * It does not have to be the owner (ctx_task) of the context per se.
3788 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3789 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3792 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3796 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3797 * ensuring that no real breakpoint can be installed via this call.
3799 * IMPORTANT: regs can be NULL in this function
3802 first_time = ctx->ctx_fl_using_dbreg == 0;
3805 * don't bother if we are loaded and task is being debugged
3807 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3808 DPRINT(("debug registers already in use for [%d]\n", task->pid));
3813 * check for debug registers in system wide mode
3815 * If though a check is done in pfm_context_load(),
3816 * we must repeat it here, in case the registers are
3817 * written after the context is loaded
3822 if (first_time && is_system) {
3823 if (pfm_sessions.pfs_ptrace_use_dbregs)
3826 pfm_sessions.pfs_sys_use_dbregs++;
3831 if (ret != 0) return ret;
3834 * mark ourself as user of the debug registers for
3837 ctx->ctx_fl_using_dbreg = 1;
3840 * clear hardware registers to make sure we don't
3841 * pick up stale state.
3843 * for a system wide session, we do not use
3844 * thread.dbr, thread.ibr because this process
3845 * never leaves the current CPU and the state
3846 * is shared by all processes running on it
3848 if (first_time && can_access_pmu) {
3849 DPRINT(("[%d] clearing ibrs, dbrs\n", task->pid));
3850 for (i=0; i < pmu_conf->num_ibrs; i++) {
3851 ia64_set_ibr(i, 0UL);
3852 ia64_dv_serialize_instruction();
3855 for (i=0; i < pmu_conf->num_dbrs; i++) {
3856 ia64_set_dbr(i, 0UL);
3857 ia64_dv_serialize_data();
3863 * Now install the values into the registers
3865 for (i = 0; i < count; i++, req++) {
3867 rnum = req->dbreg_num;
3868 dbreg.val = req->dbreg_value;
3872 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3873 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3874 rnum, dbreg.val, mode, i, count));
3880 * make sure we do not install enabled breakpoint
3883 if (mode == PFM_CODE_RR)
3884 dbreg.ibr.ibr_x = 0;
3886 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3889 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3892 * Debug registers, just like PMC, can only be modified
3893 * by a kernel call. Moreover, perfmon() access to those
3894 * registers are centralized in this routine. The hardware
3895 * does not modify the value of these registers, therefore,
3896 * if we save them as they are written, we can avoid having
3897 * to save them on context switch out. This is made possible
3898 * by the fact that when perfmon uses debug registers, ptrace()
3899 * won't be able to modify them concurrently.
3901 if (mode == PFM_CODE_RR) {
3902 CTX_USED_IBR(ctx, rnum);
3904 if (can_access_pmu) {
3905 ia64_set_ibr(rnum, dbreg.val);
3906 ia64_dv_serialize_instruction();
3909 ctx->ctx_ibrs[rnum] = dbreg.val;
3911 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3912 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3914 CTX_USED_DBR(ctx, rnum);
3916 if (can_access_pmu) {
3917 ia64_set_dbr(rnum, dbreg.val);
3918 ia64_dv_serialize_data();
3920 ctx->ctx_dbrs[rnum] = dbreg.val;
3922 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3923 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3931 * in case it was our first attempt, we undo the global modifications
3935 if (ctx->ctx_fl_system) {
3936 pfm_sessions.pfs_sys_use_dbregs--;
3939 ctx->ctx_fl_using_dbreg = 0;
3942 * install error return flag
3944 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3950 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3952 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3956 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3958 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3962 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3966 if (req == NULL) return -EINVAL;
3968 ctx = GET_PMU_CTX();
3970 if (ctx == NULL) return -EINVAL;
3973 * for now limit to current task, which is enough when calling
3974 * from overflow handler
3976 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3978 return pfm_write_ibrs(ctx, req, nreq, regs);
3980 EXPORT_SYMBOL(pfm_mod_write_ibrs);
3983 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3987 if (req == NULL) return -EINVAL;
3989 ctx = GET_PMU_CTX();
3991 if (ctx == NULL) return -EINVAL;
3994 * for now limit to current task, which is enough when calling
3995 * from overflow handler
3997 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3999 return pfm_write_dbrs(ctx, req, nreq, regs);
4001 EXPORT_SYMBOL(pfm_mod_write_dbrs);
4005 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4007 pfarg_features_t *req = (pfarg_features_t *)arg;
4009 req->ft_version = PFM_VERSION;
4014 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4016 struct pt_regs *tregs;
4017 struct task_struct *task = PFM_CTX_TASK(ctx);
4018 int state, is_system;
4020 state = ctx->ctx_state;
4021 is_system = ctx->ctx_fl_system;
4024 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
4026 if (state == PFM_CTX_UNLOADED) return -EINVAL;
4029 * In system wide and when the context is loaded, access can only happen
4030 * when the caller is running on the CPU being monitored by the session.
4031 * It does not have to be the owner (ctx_task) of the context per se.
4033 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4034 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4037 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4038 PFM_CTX_TASK(ctx)->pid,
4042 * in system mode, we need to update the PMU directly
4043 * and the user level state of the caller, which may not
4044 * necessarily be the creator of the context.
4048 * Update local PMU first
4052 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4056 * update local cpuinfo
4058 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4061 * stop monitoring, does srlz.i
4066 * stop monitoring in the caller
4068 ia64_psr(regs)->pp = 0;
4076 if (task == current) {
4077 /* stop monitoring at kernel level */
4081 * stop monitoring at the user level
4083 ia64_psr(regs)->up = 0;
4085 tregs = task_pt_regs(task);
4088 * stop monitoring at the user level
4090 ia64_psr(tregs)->up = 0;
4093 * monitoring disabled in kernel at next reschedule
4095 ctx->ctx_saved_psr_up = 0;
4096 DPRINT(("task=[%d]\n", task->pid));
4103 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4105 struct pt_regs *tregs;
4106 int state, is_system;
4108 state = ctx->ctx_state;
4109 is_system = ctx->ctx_fl_system;
4111 if (state != PFM_CTX_LOADED) return -EINVAL;
4114 * In system wide and when the context is loaded, access can only happen
4115 * when the caller is running on the CPU being monitored by the session.
4116 * It does not have to be the owner (ctx_task) of the context per se.
4118 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4119 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4124 * in system mode, we need to update the PMU directly
4125 * and the user level state of the caller, which may not
4126 * necessarily be the creator of the context.
4131 * set user level psr.pp for the caller
4133 ia64_psr(regs)->pp = 1;
4136 * now update the local PMU and cpuinfo
4138 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4141 * start monitoring at kernel level
4146 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4156 if (ctx->ctx_task == current) {
4158 /* start monitoring at kernel level */
4162 * activate monitoring at user level
4164 ia64_psr(regs)->up = 1;
4167 tregs = task_pt_regs(ctx->ctx_task);
4170 * start monitoring at the kernel level the next
4171 * time the task is scheduled
4173 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4176 * activate monitoring at user level
4178 ia64_psr(tregs)->up = 1;
4184 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4186 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4191 for (i = 0; i < count; i++, req++) {
4193 cnum = req->reg_num;
4195 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4197 req->reg_value = PMC_DFL_VAL(cnum);
4199 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4201 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4206 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4211 pfm_check_task_exist(pfm_context_t *ctx)
4213 struct task_struct *g, *t;
4216 read_lock(&tasklist_lock);
4218 do_each_thread (g, t) {
4219 if (t->thread.pfm_context == ctx) {
4223 } while_each_thread (g, t);
4225 read_unlock(&tasklist_lock);
4227 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4233 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4235 struct task_struct *task;
4236 struct thread_struct *thread;
4237 struct pfm_context_t *old;
4238 unsigned long flags;
4240 struct task_struct *owner_task = NULL;
4242 pfarg_load_t *req = (pfarg_load_t *)arg;
4243 unsigned long *pmcs_source, *pmds_source;
4246 int state, is_system, set_dbregs = 0;
4248 state = ctx->ctx_state;
4249 is_system = ctx->ctx_fl_system;
4251 * can only load from unloaded or terminated state
4253 if (state != PFM_CTX_UNLOADED) {
4254 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4260 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4262 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4263 DPRINT(("cannot use blocking mode on self\n"));
4267 ret = pfm_get_task(ctx, req->load_pid, &task);
4269 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4276 * system wide is self monitoring only
4278 if (is_system && task != current) {
4279 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4284 thread = &task->thread;
4288 * cannot load a context which is using range restrictions,
4289 * into a task that is being debugged.
4291 if (ctx->ctx_fl_using_dbreg) {
4292 if (thread->flags & IA64_THREAD_DBG_VALID) {
4294 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4300 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4301 DPRINT(("cannot load [%d] dbregs in use\n", task->pid));
4304 pfm_sessions.pfs_sys_use_dbregs++;
4305 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task->pid, pfm_sessions.pfs_sys_use_dbregs));
4312 if (ret) goto error;
4316 * SMP system-wide monitoring implies self-monitoring.
4318 * The programming model expects the task to
4319 * be pinned on a CPU throughout the session.
4320 * Here we take note of the current CPU at the
4321 * time the context is loaded. No call from
4322 * another CPU will be allowed.
4324 * The pinning via shed_setaffinity()
4325 * must be done by the calling task prior
4328 * systemwide: keep track of CPU this session is supposed to run on
4330 the_cpu = ctx->ctx_cpu = smp_processor_id();
4334 * now reserve the session
4336 ret = pfm_reserve_session(current, is_system, the_cpu);
4337 if (ret) goto error;
4340 * task is necessarily stopped at this point.
4342 * If the previous context was zombie, then it got removed in
4343 * pfm_save_regs(). Therefore we should not see it here.
4344 * If we see a context, then this is an active context
4346 * XXX: needs to be atomic
4348 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4349 thread->pfm_context, ctx));
4352 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4354 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4358 pfm_reset_msgq(ctx);
4360 ctx->ctx_state = PFM_CTX_LOADED;
4363 * link context to task
4365 ctx->ctx_task = task;
4369 * we load as stopped
4371 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4372 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4374 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4376 thread->flags |= IA64_THREAD_PM_VALID;
4380 * propagate into thread-state
4382 pfm_copy_pmds(task, ctx);
4383 pfm_copy_pmcs(task, ctx);
4385 pmcs_source = ctx->th_pmcs;
4386 pmds_source = ctx->th_pmds;
4389 * always the case for system-wide
4391 if (task == current) {
4393 if (is_system == 0) {
4395 /* allow user level control */
4396 ia64_psr(regs)->sp = 0;
4397 DPRINT(("clearing psr.sp for [%d]\n", task->pid));
4399 SET_LAST_CPU(ctx, smp_processor_id());
4401 SET_ACTIVATION(ctx);
4404 * push the other task out, if any
4406 owner_task = GET_PMU_OWNER();
4407 if (owner_task) pfm_lazy_save_regs(owner_task);
4411 * load all PMD from ctx to PMU (as opposed to thread state)
4412 * restore all PMC from ctx to PMU
4414 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4415 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4417 ctx->ctx_reload_pmcs[0] = 0UL;
4418 ctx->ctx_reload_pmds[0] = 0UL;
4421 * guaranteed safe by earlier check against DBG_VALID
4423 if (ctx->ctx_fl_using_dbreg) {
4424 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4425 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4430 SET_PMU_OWNER(task, ctx);
4432 DPRINT(("context loaded on PMU for [%d]\n", task->pid));
4435 * when not current, task MUST be stopped, so this is safe
4437 regs = task_pt_regs(task);
4439 /* force a full reload */
4440 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4441 SET_LAST_CPU(ctx, -1);
4443 /* initial saved psr (stopped) */
4444 ctx->ctx_saved_psr_up = 0UL;
4445 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4451 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4454 * we must undo the dbregs setting (for system-wide)
4456 if (ret && set_dbregs) {
4458 pfm_sessions.pfs_sys_use_dbregs--;
4462 * release task, there is now a link with the context
4464 if (is_system == 0 && task != current) {
4468 ret = pfm_check_task_exist(ctx);
4470 ctx->ctx_state = PFM_CTX_UNLOADED;
4471 ctx->ctx_task = NULL;
4479 * in this function, we do not need to increase the use count
4480 * for the task via get_task_struct(), because we hold the
4481 * context lock. If the task were to disappear while having
4482 * a context attached, it would go through pfm_exit_thread()
4483 * which also grabs the context lock and would therefore be blocked
4484 * until we are here.
4486 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4489 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4491 struct task_struct *task = PFM_CTX_TASK(ctx);
4492 struct pt_regs *tregs;
4493 int prev_state, is_system;
4496 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task->pid : -1));
4498 prev_state = ctx->ctx_state;
4499 is_system = ctx->ctx_fl_system;
4502 * unload only when necessary
4504 if (prev_state == PFM_CTX_UNLOADED) {
4505 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4510 * clear psr and dcr bits
4512 ret = pfm_stop(ctx, NULL, 0, regs);
4513 if (ret) return ret;
4515 ctx->ctx_state = PFM_CTX_UNLOADED;
4518 * in system mode, we need to update the PMU directly
4519 * and the user level state of the caller, which may not
4520 * necessarily be the creator of the context.
4527 * local PMU is taken care of in pfm_stop()
4529 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4530 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4533 * save PMDs in context
4536 pfm_flush_pmds(current, ctx);
4539 * at this point we are done with the PMU
4540 * so we can unreserve the resource.
4542 if (prev_state != PFM_CTX_ZOMBIE)
4543 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4546 * disconnect context from task
4548 task->thread.pfm_context = NULL;
4550 * disconnect task from context
4552 ctx->ctx_task = NULL;
4555 * There is nothing more to cleanup here.
4563 tregs = task == current ? regs : task_pt_regs(task);
4565 if (task == current) {
4567 * cancel user level control
4569 ia64_psr(regs)->sp = 1;
4571 DPRINT(("setting psr.sp for [%d]\n", task->pid));
4574 * save PMDs to context
4577 pfm_flush_pmds(task, ctx);
4580 * at this point we are done with the PMU
4581 * so we can unreserve the resource.
4583 * when state was ZOMBIE, we have already unreserved.
4585 if (prev_state != PFM_CTX_ZOMBIE)
4586 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4589 * reset activation counter and psr
4591 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4592 SET_LAST_CPU(ctx, -1);
4595 * PMU state will not be restored
4597 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4600 * break links between context and task
4602 task->thread.pfm_context = NULL;
4603 ctx->ctx_task = NULL;
4605 PFM_SET_WORK_PENDING(task, 0);
4607 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4608 ctx->ctx_fl_can_restart = 0;
4609 ctx->ctx_fl_going_zombie = 0;
4611 DPRINT(("disconnected [%d] from context\n", task->pid));
4618 * called only from exit_thread(): task == current
4619 * we come here only if current has a context attached (loaded or masked)
4622 pfm_exit_thread(struct task_struct *task)
4625 unsigned long flags;
4626 struct pt_regs *regs = task_pt_regs(task);
4630 ctx = PFM_GET_CTX(task);
4632 PROTECT_CTX(ctx, flags);
4634 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task->pid));
4636 state = ctx->ctx_state;
4638 case PFM_CTX_UNLOADED:
4640 * only comes to this function if pfm_context is not NULL, i.e., cannot
4641 * be in unloaded state
4643 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task->pid);
4645 case PFM_CTX_LOADED:
4646 case PFM_CTX_MASKED:
4647 ret = pfm_context_unload(ctx, NULL, 0, regs);
4649 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4651 DPRINT(("ctx unloaded for current state was %d\n", state));
4653 pfm_end_notify_user(ctx);
4655 case PFM_CTX_ZOMBIE:
4656 ret = pfm_context_unload(ctx, NULL, 0, regs);
4658 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4663 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task->pid, state);
4666 UNPROTECT_CTX(ctx, flags);
4668 { u64 psr = pfm_get_psr();
4669 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4670 BUG_ON(GET_PMU_OWNER());
4671 BUG_ON(ia64_psr(regs)->up);
4672 BUG_ON(ia64_psr(regs)->pp);
4676 * All memory free operations (especially for vmalloc'ed memory)
4677 * MUST be done with interrupts ENABLED.
4679 if (free_ok) pfm_context_free(ctx);
4683 * functions MUST be listed in the increasing order of their index (see permfon.h)
4685 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4686 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4687 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4688 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4689 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4691 static pfm_cmd_desc_t pfm_cmd_tab[]={
4692 /* 0 */PFM_CMD_NONE,
4693 /* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4694 /* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4695 /* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4696 /* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4697 /* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4698 /* 6 */PFM_CMD_NONE,
4699 /* 7 */PFM_CMD_NONE,
4700 /* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4701 /* 9 */PFM_CMD_NONE,
4702 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4703 /* 11 */PFM_CMD_NONE,
4704 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4705 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4706 /* 14 */PFM_CMD_NONE,
4707 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4708 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4709 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4710 /* 18 */PFM_CMD_NONE,
4711 /* 19 */PFM_CMD_NONE,
4712 /* 20 */PFM_CMD_NONE,
4713 /* 21 */PFM_CMD_NONE,
4714 /* 22 */PFM_CMD_NONE,
4715 /* 23 */PFM_CMD_NONE,
4716 /* 24 */PFM_CMD_NONE,
4717 /* 25 */PFM_CMD_NONE,
4718 /* 26 */PFM_CMD_NONE,
4719 /* 27 */PFM_CMD_NONE,
4720 /* 28 */PFM_CMD_NONE,
4721 /* 29 */PFM_CMD_NONE,
4722 /* 30 */PFM_CMD_NONE,
4723 /* 31 */PFM_CMD_NONE,
4724 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4725 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4727 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4730 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4732 struct task_struct *task;
4733 int state, old_state;
4736 state = ctx->ctx_state;
4737 task = ctx->ctx_task;
4740 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4744 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4748 task->state, PFM_CMD_STOPPED(cmd)));
4751 * self-monitoring always ok.
4753 * for system-wide the caller can either be the creator of the
4754 * context (to one to which the context is attached to) OR
4755 * a task running on the same CPU as the session.
4757 if (task == current || ctx->ctx_fl_system) return 0;
4760 * we are monitoring another thread
4763 case PFM_CTX_UNLOADED:
4765 * if context is UNLOADED we are safe to go
4768 case PFM_CTX_ZOMBIE:
4770 * no command can operate on a zombie context
4772 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4774 case PFM_CTX_MASKED:
4776 * PMU state has been saved to software even though
4777 * the thread may still be running.
4779 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4783 * context is LOADED or MASKED. Some commands may need to have
4786 * We could lift this restriction for UP but it would mean that
4787 * the user has no guarantee the task would not run between
4788 * two successive calls to perfmonctl(). That's probably OK.
4789 * If this user wants to ensure the task does not run, then
4790 * the task must be stopped.
4792 if (PFM_CMD_STOPPED(cmd)) {
4793 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
4794 DPRINT(("[%d] task not in stopped state\n", task->pid));
4798 * task is now stopped, wait for ctxsw out
4800 * This is an interesting point in the code.
4801 * We need to unprotect the context because
4802 * the pfm_save_regs() routines needs to grab
4803 * the same lock. There are danger in doing
4804 * this because it leaves a window open for
4805 * another task to get access to the context
4806 * and possibly change its state. The one thing
4807 * that is not possible is for the context to disappear
4808 * because we are protected by the VFS layer, i.e.,
4809 * get_fd()/put_fd().
4813 UNPROTECT_CTX(ctx, flags);
4815 wait_task_inactive(task);
4817 PROTECT_CTX(ctx, flags);
4820 * we must recheck to verify if state has changed
4822 if (ctx->ctx_state != old_state) {
4823 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4831 * system-call entry point (must return long)
4834 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4836 struct file *file = NULL;
4837 pfm_context_t *ctx = NULL;
4838 unsigned long flags = 0UL;
4839 void *args_k = NULL;
4840 long ret; /* will expand int return types */
4841 size_t base_sz, sz, xtra_sz = 0;
4842 int narg, completed_args = 0, call_made = 0, cmd_flags;
4843 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4844 int (*getsize)(void *arg, size_t *sz);
4845 #define PFM_MAX_ARGSIZE 4096
4848 * reject any call if perfmon was disabled at initialization
4850 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4852 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4853 DPRINT(("invalid cmd=%d\n", cmd));
4857 func = pfm_cmd_tab[cmd].cmd_func;
4858 narg = pfm_cmd_tab[cmd].cmd_narg;
4859 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4860 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4861 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4863 if (unlikely(func == NULL)) {
4864 DPRINT(("invalid cmd=%d\n", cmd));
4868 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4876 * check if number of arguments matches what the command expects
4878 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4882 sz = xtra_sz + base_sz*count;
4884 * limit abuse to min page size
4886 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4887 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", current->pid, sz);
4892 * allocate default-sized argument buffer
4894 if (likely(count && args_k == NULL)) {
4895 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4896 if (args_k == NULL) return -ENOMEM;
4904 * assume sz = 0 for command without parameters
4906 if (sz && copy_from_user(args_k, arg, sz)) {
4907 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4912 * check if command supports extra parameters
4914 if (completed_args == 0 && getsize) {
4916 * get extra parameters size (based on main argument)
4918 ret = (*getsize)(args_k, &xtra_sz);
4919 if (ret) goto error_args;
4923 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4925 /* retry if necessary */
4926 if (likely(xtra_sz)) goto restart_args;
4929 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4934 if (unlikely(file == NULL)) {
4935 DPRINT(("invalid fd %d\n", fd));
4938 if (unlikely(PFM_IS_FILE(file) == 0)) {
4939 DPRINT(("fd %d not related to perfmon\n", fd));
4943 ctx = (pfm_context_t *)file->private_data;
4944 if (unlikely(ctx == NULL)) {
4945 DPRINT(("no context for fd %d\n", fd));
4948 prefetch(&ctx->ctx_state);
4950 PROTECT_CTX(ctx, flags);
4953 * check task is stopped
4955 ret = pfm_check_task_state(ctx, cmd, flags);
4956 if (unlikely(ret)) goto abort_locked;
4959 ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4965 DPRINT(("context unlocked\n"));
4966 UNPROTECT_CTX(ctx, flags);
4969 /* copy argument back to user, if needed */
4970 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4978 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4984 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4986 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4987 pfm_ovfl_ctrl_t rst_ctrl;
4991 state = ctx->ctx_state;
4993 * Unlock sampling buffer and reset index atomically
4994 * XXX: not really needed when blocking
4996 if (CTX_HAS_SMPL(ctx)) {
4998 rst_ctrl.bits.mask_monitoring = 0;
4999 rst_ctrl.bits.reset_ovfl_pmds = 0;
5001 if (state == PFM_CTX_LOADED)
5002 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
5004 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
5006 rst_ctrl.bits.mask_monitoring = 0;
5007 rst_ctrl.bits.reset_ovfl_pmds = 1;
5011 if (rst_ctrl.bits.reset_ovfl_pmds) {
5012 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
5014 if (rst_ctrl.bits.mask_monitoring == 0) {
5015 DPRINT(("resuming monitoring\n"));
5016 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
5018 DPRINT(("stopping monitoring\n"));
5019 //pfm_stop_monitoring(current, regs);
5021 ctx->ctx_state = PFM_CTX_LOADED;
5026 * context MUST BE LOCKED when calling
5027 * can only be called for current
5030 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
5034 DPRINT(("entering for [%d]\n", current->pid));
5036 ret = pfm_context_unload(ctx, NULL, 0, regs);
5038 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", current->pid, ret);
5042 * and wakeup controlling task, indicating we are now disconnected
5044 wake_up_interruptible(&ctx->ctx_zombieq);
5047 * given that context is still locked, the controlling
5048 * task will only get access when we return from
5049 * pfm_handle_work().
5053 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
5055 * pfm_handle_work() can be called with interrupts enabled
5056 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5057 * call may sleep, therefore we must re-enable interrupts
5058 * to avoid deadlocks. It is safe to do so because this function
5059 * is called ONLY when returning to user level (PUStk=1), in which case
5060 * there is no risk of kernel stack overflow due to deep
5061 * interrupt nesting.
5064 pfm_handle_work(void)
5067 struct pt_regs *regs;
5068 unsigned long flags, dummy_flags;
5069 unsigned long ovfl_regs;
5070 unsigned int reason;
5073 ctx = PFM_GET_CTX(current);
5075 printk(KERN_ERR "perfmon: [%d] has no PFM context\n", current->pid);
5079 PROTECT_CTX(ctx, flags);
5081 PFM_SET_WORK_PENDING(current, 0);
5083 pfm_clear_task_notify();
5085 regs = task_pt_regs(current);
5088 * extract reason for being here and clear
5090 reason = ctx->ctx_fl_trap_reason;
5091 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5092 ovfl_regs = ctx->ctx_ovfl_regs[0];
5094 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5097 * must be done before we check for simple-reset mode
5099 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) goto do_zombie;
5102 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5103 if (reason == PFM_TRAP_REASON_RESET) goto skip_blocking;
5106 * restore interrupt mask to what it was on entry.
5107 * Could be enabled/diasbled.
5109 UNPROTECT_CTX(ctx, flags);
5112 * force interrupt enable because of down_interruptible()
5116 DPRINT(("before block sleeping\n"));
5119 * may go through without blocking on SMP systems
5120 * if restart has been received already by the time we call down()
5122 ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5124 DPRINT(("after block sleeping ret=%d\n", ret));
5127 * lock context and mask interrupts again
5128 * We save flags into a dummy because we may have
5129 * altered interrupts mask compared to entry in this
5132 PROTECT_CTX(ctx, dummy_flags);
5135 * we need to read the ovfl_regs only after wake-up
5136 * because we may have had pfm_write_pmds() in between
5137 * and that can changed PMD values and therefore
5138 * ovfl_regs is reset for these new PMD values.
5140 ovfl_regs = ctx->ctx_ovfl_regs[0];
5142 if (ctx->ctx_fl_going_zombie) {
5144 DPRINT(("context is zombie, bailing out\n"));
5145 pfm_context_force_terminate(ctx, regs);
5149 * in case of interruption of down() we don't restart anything
5151 if (ret < 0) goto nothing_to_do;
5154 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5155 ctx->ctx_ovfl_regs[0] = 0UL;
5159 * restore flags as they were upon entry
5161 UNPROTECT_CTX(ctx, flags);
5165 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5167 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5168 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5172 DPRINT(("waking up somebody\n"));
5174 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5177 * safe, we are not in intr handler, nor in ctxsw when
5180 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5186 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5188 pfm_msg_t *msg = NULL;
5190 if (ctx->ctx_fl_no_msg == 0) {
5191 msg = pfm_get_new_msg(ctx);
5193 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5197 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5198 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5199 msg->pfm_ovfl_msg.msg_active_set = 0;
5200 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5201 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5202 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5203 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5204 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5207 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5213 return pfm_notify_user(ctx, msg);
5217 pfm_end_notify_user(pfm_context_t *ctx)
5221 msg = pfm_get_new_msg(ctx);
5223 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5227 memset(msg, 0, sizeof(*msg));
5229 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5230 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5231 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5233 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5238 return pfm_notify_user(ctx, msg);
5242 * main overflow processing routine.
5243 * it can be called from the interrupt path or explicitly during the context switch code
5246 pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs)
5248 pfm_ovfl_arg_t *ovfl_arg;
5250 unsigned long old_val, ovfl_val, new_val;
5251 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5252 unsigned long tstamp;
5253 pfm_ovfl_ctrl_t ovfl_ctrl;
5254 unsigned int i, has_smpl;
5255 int must_notify = 0;
5257 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5260 * sanity test. Should never happen
5262 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5264 tstamp = ia64_get_itc();
5265 mask = pmc0 >> PMU_FIRST_COUNTER;
5266 ovfl_val = pmu_conf->ovfl_val;
5267 has_smpl = CTX_HAS_SMPL(ctx);
5269 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5270 "used_pmds=0x%lx\n",
5272 task ? task->pid: -1,
5273 (regs ? regs->cr_iip : 0),
5274 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5275 ctx->ctx_used_pmds[0]));
5279 * first we update the virtual counters
5280 * assume there was a prior ia64_srlz_d() issued
5282 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5284 /* skip pmd which did not overflow */
5285 if ((mask & 0x1) == 0) continue;
5288 * Note that the pmd is not necessarily 0 at this point as qualified events
5289 * may have happened before the PMU was frozen. The residual count is not
5290 * taken into consideration here but will be with any read of the pmd via
5293 old_val = new_val = ctx->ctx_pmds[i].val;
5294 new_val += 1 + ovfl_val;
5295 ctx->ctx_pmds[i].val = new_val;
5298 * check for overflow condition
5300 if (likely(old_val > new_val)) {
5301 ovfl_pmds |= 1UL << i;
5302 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5305 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5309 ia64_get_pmd(i) & ovfl_val,
5315 * there was no 64-bit overflow, nothing else to do
5317 if (ovfl_pmds == 0UL) return;
5320 * reset all control bits
5326 * if a sampling format module exists, then we "cache" the overflow by
5327 * calling the module's handler() routine.
5330 unsigned long start_cycles, end_cycles;
5331 unsigned long pmd_mask;
5333 int this_cpu = smp_processor_id();
5335 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5336 ovfl_arg = &ctx->ctx_ovfl_arg;
5338 prefetch(ctx->ctx_smpl_hdr);
5340 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5344 if ((pmd_mask & 0x1) == 0) continue;
5346 ovfl_arg->ovfl_pmd = (unsigned char )i;
5347 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5348 ovfl_arg->active_set = 0;
5349 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5350 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5352 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5353 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5354 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5357 * copy values of pmds of interest. Sampling format may copy them
5358 * into sampling buffer.
5361 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5362 if ((smpl_pmds & 0x1) == 0) continue;
5363 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5364 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5368 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5370 start_cycles = ia64_get_itc();
5373 * call custom buffer format record (handler) routine
5375 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5377 end_cycles = ia64_get_itc();
5380 * For those controls, we take the union because they have
5381 * an all or nothing behavior.
5383 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5384 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5385 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5387 * build the bitmask of pmds to reset now
5389 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5391 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5394 * when the module cannot handle the rest of the overflows, we abort right here
5396 if (ret && pmd_mask) {
5397 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5398 pmd_mask<<PMU_FIRST_COUNTER));
5401 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5403 ovfl_pmds &= ~reset_pmds;
5406 * when no sampling module is used, then the default
5407 * is to notify on overflow if requested by user
5409 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5410 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5411 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5412 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5414 * if needed, we reset all overflowed pmds
5416 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5419 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5422 * reset the requested PMD registers using the short reset values
5425 unsigned long bm = reset_pmds;
5426 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5429 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5431 * keep track of what to reset when unblocking
5433 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5436 * check for blocking context
5438 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5440 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5443 * set the perfmon specific checking pending work for the task
5445 PFM_SET_WORK_PENDING(task, 1);
5448 * when coming from ctxsw, current still points to the
5449 * previous task, therefore we must work with task and not current.
5451 pfm_set_task_notify(task);
5454 * defer until state is changed (shorten spin window). the context is locked
5455 * anyway, so the signal receiver would come spin for nothing.
5460 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5461 GET_PMU_OWNER() ? GET_PMU_OWNER()->pid : -1,
5462 PFM_GET_WORK_PENDING(task),
5463 ctx->ctx_fl_trap_reason,
5466 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5468 * in case monitoring must be stopped, we toggle the psr bits
5470 if (ovfl_ctrl.bits.mask_monitoring) {
5471 pfm_mask_monitoring(task);
5472 ctx->ctx_state = PFM_CTX_MASKED;
5473 ctx->ctx_fl_can_restart = 1;
5477 * send notification now
5479 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5484 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5486 task ? task->pid : -1,
5492 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5493 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5494 * come here as zombie only if the task is the current task. In which case, we
5495 * can access the PMU hardware directly.
5497 * Note that zombies do have PM_VALID set. So here we do the minimal.
5499 * In case the context was zombified it could not be reclaimed at the time
5500 * the monitoring program exited. At this point, the PMU reservation has been
5501 * returned, the sampiing buffer has been freed. We must convert this call
5502 * into a spurious interrupt. However, we must also avoid infinite overflows
5503 * by stopping monitoring for this task. We can only come here for a per-task
5504 * context. All we need to do is to stop monitoring using the psr bits which
5505 * are always task private. By re-enabling secure montioring, we ensure that
5506 * the monitored task will not be able to re-activate monitoring.
5507 * The task will eventually be context switched out, at which point the context
5508 * will be reclaimed (that includes releasing ownership of the PMU).
5510 * So there might be a window of time where the number of per-task session is zero
5511 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5512 * context. This is safe because if a per-task session comes in, it will push this one
5513 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5514 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5515 * also push our zombie context out.
5517 * Overall pretty hairy stuff....
5519 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task->pid: -1));
5521 ia64_psr(regs)->up = 0;
5522 ia64_psr(regs)->sp = 1;
5527 pfm_do_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5529 struct task_struct *task;
5531 unsigned long flags;
5533 int this_cpu = smp_processor_id();
5536 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5539 * srlz.d done before arriving here
5541 pmc0 = ia64_get_pmc(0);
5543 task = GET_PMU_OWNER();
5544 ctx = GET_PMU_CTX();
5547 * if we have some pending bits set
5548 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5550 if (PMC0_HAS_OVFL(pmc0) && task) {
5552 * we assume that pmc0.fr is always set here
5556 if (!ctx) goto report_spurious1;
5558 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5559 goto report_spurious2;
5561 PROTECT_CTX_NOPRINT(ctx, flags);
5563 pfm_overflow_handler(task, ctx, pmc0, regs);
5565 UNPROTECT_CTX_NOPRINT(ctx, flags);
5568 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5572 * keep it unfrozen at all times
5579 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5580 this_cpu, task->pid);
5584 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5592 pfm_interrupt_handler(int irq, void *arg)
5594 unsigned long start_cycles, total_cycles;
5595 unsigned long min, max;
5598 struct pt_regs *regs = get_irq_regs();
5600 this_cpu = get_cpu();
5601 if (likely(!pfm_alt_intr_handler)) {
5602 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5603 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5605 start_cycles = ia64_get_itc();
5607 ret = pfm_do_interrupt_handler(irq, arg, regs);
5609 total_cycles = ia64_get_itc();
5612 * don't measure spurious interrupts
5614 if (likely(ret == 0)) {
5615 total_cycles -= start_cycles;
5617 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5618 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5620 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5624 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5627 put_cpu_no_resched();
5632 * /proc/perfmon interface, for debug only
5635 #define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
5638 pfm_proc_start(struct seq_file *m, loff_t *pos)
5641 return PFM_PROC_SHOW_HEADER;
5644 while (*pos <= NR_CPUS) {
5645 if (cpu_online(*pos - 1)) {
5646 return (void *)*pos;
5654 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5657 return pfm_proc_start(m, pos);
5661 pfm_proc_stop(struct seq_file *m, void *v)
5666 pfm_proc_show_header(struct seq_file *m)
5668 struct list_head * pos;
5669 pfm_buffer_fmt_t * entry;
5670 unsigned long flags;
5673 "perfmon version : %u.%u\n"
5676 "expert mode : %s\n"
5677 "ovfl_mask : 0x%lx\n"
5678 "PMU flags : 0x%x\n",
5679 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5681 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5682 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5689 "proc_sessions : %u\n"
5690 "sys_sessions : %u\n"
5691 "sys_use_dbregs : %u\n"
5692 "ptrace_use_dbregs : %u\n",
5693 pfm_sessions.pfs_task_sessions,
5694 pfm_sessions.pfs_sys_sessions,
5695 pfm_sessions.pfs_sys_use_dbregs,
5696 pfm_sessions.pfs_ptrace_use_dbregs);
5700 spin_lock(&pfm_buffer_fmt_lock);
5702 list_for_each(pos, &pfm_buffer_fmt_list) {
5703 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5704 seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5715 entry->fmt_uuid[10],
5716 entry->fmt_uuid[11],
5717 entry->fmt_uuid[12],
5718 entry->fmt_uuid[13],
5719 entry->fmt_uuid[14],
5720 entry->fmt_uuid[15],
5723 spin_unlock(&pfm_buffer_fmt_lock);
5728 pfm_proc_show(struct seq_file *m, void *v)
5734 if (v == PFM_PROC_SHOW_HEADER) {
5735 pfm_proc_show_header(m);
5739 /* show info for CPU (v - 1) */
5743 "CPU%-2d overflow intrs : %lu\n"
5744 "CPU%-2d overflow cycles : %lu\n"
5745 "CPU%-2d overflow min : %lu\n"
5746 "CPU%-2d overflow max : %lu\n"
5747 "CPU%-2d smpl handler calls : %lu\n"
5748 "CPU%-2d smpl handler cycles : %lu\n"
5749 "CPU%-2d spurious intrs : %lu\n"
5750 "CPU%-2d replay intrs : %lu\n"
5751 "CPU%-2d syst_wide : %d\n"
5752 "CPU%-2d dcr_pp : %d\n"
5753 "CPU%-2d exclude idle : %d\n"
5754 "CPU%-2d owner : %d\n"
5755 "CPU%-2d context : %p\n"
5756 "CPU%-2d activations : %lu\n",
5757 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5758 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5759 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5760 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5761 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5762 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5763 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5764 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5765 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5766 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5767 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5768 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5769 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5770 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5772 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5774 psr = pfm_get_psr();
5779 "CPU%-2d psr : 0x%lx\n"
5780 "CPU%-2d pmc0 : 0x%lx\n",
5782 cpu, ia64_get_pmc(0));
5784 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5785 if (PMC_IS_COUNTING(i) == 0) continue;
5787 "CPU%-2d pmc%u : 0x%lx\n"
5788 "CPU%-2d pmd%u : 0x%lx\n",
5789 cpu, i, ia64_get_pmc(i),
5790 cpu, i, ia64_get_pmd(i));
5796 struct seq_operations pfm_seq_ops = {
5797 .start = pfm_proc_start,
5798 .next = pfm_proc_next,
5799 .stop = pfm_proc_stop,
5800 .show = pfm_proc_show
5804 pfm_proc_open(struct inode *inode, struct file *file)
5806 return seq_open(file, &pfm_seq_ops);
5811 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5812 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5813 * is active or inactive based on mode. We must rely on the value in
5814 * local_cpu_data->pfm_syst_info
5817 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5819 struct pt_regs *regs;
5821 unsigned long dcr_pp;
5823 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5826 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5827 * on every CPU, so we can rely on the pid to identify the idle task.
5829 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5830 regs = task_pt_regs(task);
5831 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5835 * if monitoring has started
5838 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5840 * context switching in?
5843 /* mask monitoring for the idle task */
5844 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5850 * context switching out
5851 * restore monitoring for next task
5853 * Due to inlining this odd if-then-else construction generates
5856 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5865 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5867 struct task_struct *task = ctx->ctx_task;
5869 ia64_psr(regs)->up = 0;
5870 ia64_psr(regs)->sp = 1;
5872 if (GET_PMU_OWNER() == task) {
5873 DPRINT(("cleared ownership for [%d]\n", ctx->ctx_task->pid));
5874 SET_PMU_OWNER(NULL, NULL);
5878 * disconnect the task from the context and vice-versa
5880 PFM_SET_WORK_PENDING(task, 0);
5882 task->thread.pfm_context = NULL;
5883 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5885 DPRINT(("force cleanup for [%d]\n", task->pid));
5890 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5893 pfm_save_regs(struct task_struct *task)
5896 unsigned long flags;
5900 ctx = PFM_GET_CTX(task);
5901 if (ctx == NULL) return;
5904 * we always come here with interrupts ALREADY disabled by
5905 * the scheduler. So we simply need to protect against concurrent
5906 * access, not CPU concurrency.
5908 flags = pfm_protect_ctx_ctxsw(ctx);
5910 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5911 struct pt_regs *regs = task_pt_regs(task);
5915 pfm_force_cleanup(ctx, regs);
5917 BUG_ON(ctx->ctx_smpl_hdr);
5919 pfm_unprotect_ctx_ctxsw(ctx, flags);
5921 pfm_context_free(ctx);
5926 * save current PSR: needed because we modify it
5929 psr = pfm_get_psr();
5931 BUG_ON(psr & (IA64_PSR_I));
5935 * This is the last instruction which may generate an overflow
5937 * We do not need to set psr.sp because, it is irrelevant in kernel.
5938 * It will be restored from ipsr when going back to user level
5943 * keep a copy of psr.up (for reload)
5945 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5948 * release ownership of this PMU.
5949 * PM interrupts are masked, so nothing
5952 SET_PMU_OWNER(NULL, NULL);
5955 * we systematically save the PMD as we have no
5956 * guarantee we will be schedule at that same
5959 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5962 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5963 * we will need it on the restore path to check
5964 * for pending overflow.
5966 ctx->th_pmcs[0] = ia64_get_pmc(0);
5969 * unfreeze PMU if had pending overflows
5971 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5974 * finally, allow context access.
5975 * interrupts will still be masked after this call.
5977 pfm_unprotect_ctx_ctxsw(ctx, flags);
5980 #else /* !CONFIG_SMP */
5982 pfm_save_regs(struct task_struct *task)
5987 ctx = PFM_GET_CTX(task);
5988 if (ctx == NULL) return;
5991 * save current PSR: needed because we modify it
5993 psr = pfm_get_psr();
5995 BUG_ON(psr & (IA64_PSR_I));
5999 * This is the last instruction which may generate an overflow
6001 * We do not need to set psr.sp because, it is irrelevant in kernel.
6002 * It will be restored from ipsr when going back to user level
6007 * keep a copy of psr.up (for reload)
6009 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
6013 pfm_lazy_save_regs (struct task_struct *task)
6016 unsigned long flags;
6018 { u64 psr = pfm_get_psr();
6019 BUG_ON(psr & IA64_PSR_UP);
6022 ctx = PFM_GET_CTX(task);
6025 * we need to mask PMU overflow here to
6026 * make sure that we maintain pmc0 until
6027 * we save it. overflow interrupts are
6028 * treated as spurious if there is no
6031 * XXX: I don't think this is necessary
6033 PROTECT_CTX(ctx,flags);
6036 * release ownership of this PMU.
6037 * must be done before we save the registers.
6039 * after this call any PMU interrupt is treated
6042 SET_PMU_OWNER(NULL, NULL);
6045 * save all the pmds we use
6047 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
6050 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6051 * it is needed to check for pended overflow
6052 * on the restore path
6054 ctx->th_pmcs[0] = ia64_get_pmc(0);
6057 * unfreeze PMU if had pending overflows
6059 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6062 * now get can unmask PMU interrupts, they will
6063 * be treated as purely spurious and we will not
6064 * lose any information
6066 UNPROTECT_CTX(ctx,flags);
6068 #endif /* CONFIG_SMP */
6072 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6075 pfm_load_regs (struct task_struct *task)
6078 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6079 unsigned long flags;
6081 int need_irq_resend;
6083 ctx = PFM_GET_CTX(task);
6084 if (unlikely(ctx == NULL)) return;
6086 BUG_ON(GET_PMU_OWNER());
6089 * possible on unload
6091 if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6094 * we always come here with interrupts ALREADY disabled by
6095 * the scheduler. So we simply need to protect against concurrent
6096 * access, not CPU concurrency.
6098 flags = pfm_protect_ctx_ctxsw(ctx);
6099 psr = pfm_get_psr();
6101 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6103 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6104 BUG_ON(psr & IA64_PSR_I);
6106 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6107 struct pt_regs *regs = task_pt_regs(task);
6109 BUG_ON(ctx->ctx_smpl_hdr);
6111 pfm_force_cleanup(ctx, regs);
6113 pfm_unprotect_ctx_ctxsw(ctx, flags);
6116 * this one (kmalloc'ed) is fine with interrupts disabled
6118 pfm_context_free(ctx);
6124 * we restore ALL the debug registers to avoid picking up
6127 if (ctx->ctx_fl_using_dbreg) {
6128 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6129 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6132 * retrieve saved psr.up
6134 psr_up = ctx->ctx_saved_psr_up;
6137 * if we were the last user of the PMU on that CPU,
6138 * then nothing to do except restore psr
6140 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6143 * retrieve partial reload masks (due to user modifications)
6145 pmc_mask = ctx->ctx_reload_pmcs[0];
6146 pmd_mask = ctx->ctx_reload_pmds[0];
6150 * To avoid leaking information to the user level when psr.sp=0,
6151 * we must reload ALL implemented pmds (even the ones we don't use).
6152 * In the kernel we only allow PFM_READ_PMDS on registers which
6153 * we initialized or requested (sampling) so there is no risk there.
6155 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6158 * ALL accessible PMCs are systematically reloaded, unused registers
6159 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6160 * up stale configuration.
6162 * PMC0 is never in the mask. It is always restored separately.
6164 pmc_mask = ctx->ctx_all_pmcs[0];
6167 * when context is MASKED, we will restore PMC with plm=0
6168 * and PMD with stale information, but that's ok, nothing
6171 * XXX: optimize here
6173 if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6174 if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6177 * check for pending overflow at the time the state
6180 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6182 * reload pmc0 with the overflow information
6183 * On McKinley PMU, this will trigger a PMU interrupt
6185 ia64_set_pmc(0, ctx->th_pmcs[0]);
6187 ctx->th_pmcs[0] = 0UL;
6190 * will replay the PMU interrupt
6192 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6194 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6198 * we just did a reload, so we reset the partial reload fields
6200 ctx->ctx_reload_pmcs[0] = 0UL;
6201 ctx->ctx_reload_pmds[0] = 0UL;
6203 SET_LAST_CPU(ctx, smp_processor_id());
6206 * dump activation value for this PMU
6210 * record current activation for this context
6212 SET_ACTIVATION(ctx);
6215 * establish new ownership.
6217 SET_PMU_OWNER(task, ctx);
6220 * restore the psr.up bit. measurement
6222 * no PMU interrupt can happen at this point
6223 * because we still have interrupts disabled.
6225 if (likely(psr_up)) pfm_set_psr_up();
6228 * allow concurrent access to context
6230 pfm_unprotect_ctx_ctxsw(ctx, flags);
6232 #else /* !CONFIG_SMP */
6234 * reload PMU state for UP kernels
6235 * in 2.5 we come here with interrupts disabled
6238 pfm_load_regs (struct task_struct *task)
6241 struct task_struct *owner;
6242 unsigned long pmd_mask, pmc_mask;
6244 int need_irq_resend;
6246 owner = GET_PMU_OWNER();
6247 ctx = PFM_GET_CTX(task);
6248 psr = pfm_get_psr();
6250 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6251 BUG_ON(psr & IA64_PSR_I);
6254 * we restore ALL the debug registers to avoid picking up
6257 * This must be done even when the task is still the owner
6258 * as the registers may have been modified via ptrace()
6259 * (not perfmon) by the previous task.
6261 if (ctx->ctx_fl_using_dbreg) {
6262 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6263 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6267 * retrieved saved psr.up
6269 psr_up = ctx->ctx_saved_psr_up;
6270 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6273 * short path, our state is still there, just
6274 * need to restore psr and we go
6276 * we do not touch either PMC nor PMD. the psr is not touched
6277 * by the overflow_handler. So we are safe w.r.t. to interrupt
6278 * concurrency even without interrupt masking.
6280 if (likely(owner == task)) {
6281 if (likely(psr_up)) pfm_set_psr_up();
6286 * someone else is still using the PMU, first push it out and
6287 * then we'll be able to install our stuff !
6289 * Upon return, there will be no owner for the current PMU
6291 if (owner) pfm_lazy_save_regs(owner);
6294 * To avoid leaking information to the user level when psr.sp=0,
6295 * we must reload ALL implemented pmds (even the ones we don't use).
6296 * In the kernel we only allow PFM_READ_PMDS on registers which
6297 * we initialized or requested (sampling) so there is no risk there.
6299 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6302 * ALL accessible PMCs are systematically reloaded, unused registers
6303 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6304 * up stale configuration.
6306 * PMC0 is never in the mask. It is always restored separately
6308 pmc_mask = ctx->ctx_all_pmcs[0];
6310 pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6311 pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6314 * check for pending overflow at the time the state
6317 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6319 * reload pmc0 with the overflow information
6320 * On McKinley PMU, this will trigger a PMU interrupt
6322 ia64_set_pmc(0, ctx->th_pmcs[0]);
6325 ctx->th_pmcs[0] = 0UL;
6328 * will replay the PMU interrupt
6330 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6332 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6336 * establish new ownership.
6338 SET_PMU_OWNER(task, ctx);
6341 * restore the psr.up bit. measurement
6343 * no PMU interrupt can happen at this point
6344 * because we still have interrupts disabled.
6346 if (likely(psr_up)) pfm_set_psr_up();
6348 #endif /* CONFIG_SMP */
6351 * this function assumes monitoring is stopped
6354 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6357 unsigned long mask2, val, pmd_val, ovfl_val;
6358 int i, can_access_pmu = 0;
6362 * is the caller the task being monitored (or which initiated the
6363 * session for system wide measurements)
6365 is_self = ctx->ctx_task == task ? 1 : 0;
6368 * can access PMU is task is the owner of the PMU state on the current CPU
6369 * or if we are running on the CPU bound to the context in system-wide mode
6370 * (that is not necessarily the task the context is attached to in this mode).
6371 * In system-wide we always have can_access_pmu true because a task running on an
6372 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6374 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6375 if (can_access_pmu) {
6377 * Mark the PMU as not owned
6378 * This will cause the interrupt handler to do nothing in case an overflow
6379 * interrupt was in-flight
6380 * This also guarantees that pmc0 will contain the final state
6381 * It virtually gives us full control on overflow processing from that point
6384 SET_PMU_OWNER(NULL, NULL);
6385 DPRINT(("releasing ownership\n"));
6388 * read current overflow status:
6390 * we are guaranteed to read the final stable state
6393 pmc0 = ia64_get_pmc(0); /* slow */
6396 * reset freeze bit, overflow status information destroyed
6400 pmc0 = ctx->th_pmcs[0];
6402 * clear whatever overflow status bits there were
6404 ctx->th_pmcs[0] = 0;
6406 ovfl_val = pmu_conf->ovfl_val;
6408 * we save all the used pmds
6409 * we take care of overflows for counting PMDs
6411 * XXX: sampling situation is not taken into account here
6413 mask2 = ctx->ctx_used_pmds[0];
6415 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6417 for (i = 0; mask2; i++, mask2>>=1) {
6419 /* skip non used pmds */
6420 if ((mask2 & 0x1) == 0) continue;
6423 * can access PMU always true in system wide mode
6425 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6427 if (PMD_IS_COUNTING(i)) {
6428 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6431 ctx->ctx_pmds[i].val,
6435 * we rebuild the full 64 bit value of the counter
6437 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6440 * now everything is in ctx_pmds[] and we need
6441 * to clear the saved context from save_regs() such that
6442 * pfm_read_pmds() gets the correct value
6447 * take care of overflow inline
6449 if (pmc0 & (1UL << i)) {
6450 val += 1 + ovfl_val;
6451 DPRINT(("[%d] pmd[%d] overflowed\n", task->pid, i));
6455 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task->pid, i, val, pmd_val));
6457 if (is_self) ctx->th_pmds[i] = pmd_val;
6459 ctx->ctx_pmds[i].val = val;
6463 static struct irqaction perfmon_irqaction = {
6464 .handler = pfm_interrupt_handler,
6465 .flags = IRQF_DISABLED,
6470 pfm_alt_save_pmu_state(void *data)
6472 struct pt_regs *regs;
6474 regs = task_pt_regs(current);
6476 DPRINT(("called\n"));
6479 * should not be necessary but
6480 * let's take not risk
6484 ia64_psr(regs)->pp = 0;
6487 * This call is required
6488 * May cause a spurious interrupt on some processors
6496 pfm_alt_restore_pmu_state(void *data)
6498 struct pt_regs *regs;
6500 regs = task_pt_regs(current);
6502 DPRINT(("called\n"));
6505 * put PMU back in state expected
6510 ia64_psr(regs)->pp = 0;
6513 * perfmon runs with PMU unfrozen at all times
6521 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6526 /* some sanity checks */
6527 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6529 /* do the easy test first */
6530 if (pfm_alt_intr_handler) return -EBUSY;
6532 /* one at a time in the install or remove, just fail the others */
6533 if (!spin_trylock(&pfm_alt_install_check)) {
6537 /* reserve our session */
6538 for_each_online_cpu(reserve_cpu) {
6539 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6540 if (ret) goto cleanup_reserve;
6543 /* save the current system wide pmu states */
6544 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 0, 1);
6546 DPRINT(("on_each_cpu() failed: %d\n", ret));
6547 goto cleanup_reserve;
6550 /* officially change to the alternate interrupt handler */
6551 pfm_alt_intr_handler = hdl;
6553 spin_unlock(&pfm_alt_install_check);
6558 for_each_online_cpu(i) {
6559 /* don't unreserve more than we reserved */
6560 if (i >= reserve_cpu) break;
6562 pfm_unreserve_session(NULL, 1, i);
6565 spin_unlock(&pfm_alt_install_check);
6569 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6572 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6577 if (hdl == NULL) return -EINVAL;
6579 /* cannot remove someone else's handler! */
6580 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6582 /* one at a time in the install or remove, just fail the others */
6583 if (!spin_trylock(&pfm_alt_install_check)) {
6587 pfm_alt_intr_handler = NULL;
6589 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 0, 1);
6591 DPRINT(("on_each_cpu() failed: %d\n", ret));
6594 for_each_online_cpu(i) {
6595 pfm_unreserve_session(NULL, 1, i);
6598 spin_unlock(&pfm_alt_install_check);
6602 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6605 * perfmon initialization routine, called from the initcall() table
6607 static int init_pfm_fs(void);
6615 family = local_cpu_data->family;
6620 if ((*p)->probe() == 0) goto found;
6621 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6632 static const struct file_operations pfm_proc_fops = {
6633 .open = pfm_proc_open,
6635 .llseek = seq_lseek,
6636 .release = seq_release,
6642 unsigned int n, n_counters, i;
6644 printk("perfmon: version %u.%u IRQ %u\n",
6647 IA64_PERFMON_VECTOR);
6649 if (pfm_probe_pmu()) {
6650 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6651 local_cpu_data->family);
6656 * compute the number of implemented PMD/PMC from the
6657 * description tables
6660 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6661 if (PMC_IS_IMPL(i) == 0) continue;
6662 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6665 pmu_conf->num_pmcs = n;
6667 n = 0; n_counters = 0;
6668 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6669 if (PMD_IS_IMPL(i) == 0) continue;
6670 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6672 if (PMD_IS_COUNTING(i)) n_counters++;
6674 pmu_conf->num_pmds = n;
6675 pmu_conf->num_counters = n_counters;
6678 * sanity checks on the number of debug registers
6680 if (pmu_conf->use_rr_dbregs) {
6681 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6682 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6686 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6687 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6693 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6697 pmu_conf->num_counters,
6698 ffz(pmu_conf->ovfl_val));
6701 if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6702 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6708 * create /proc/perfmon (mostly for debugging purposes)
6710 perfmon_dir = create_proc_entry("perfmon", S_IRUGO, NULL);
6711 if (perfmon_dir == NULL) {
6712 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6717 * install customized file operations for /proc/perfmon entry
6719 perfmon_dir->proc_fops = &pfm_proc_fops;
6722 * create /proc/sys/kernel/perfmon (for debugging purposes)
6724 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6727 * initialize all our spinlocks
6729 spin_lock_init(&pfm_sessions.pfs_lock);
6730 spin_lock_init(&pfm_buffer_fmt_lock);
6734 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6739 __initcall(pfm_init);
6742 * this function is called before pfm_init()
6745 pfm_init_percpu (void)
6747 static int first_time=1;
6749 * make sure no measurement is active
6750 * (may inherit programmed PMCs from EFI).
6756 * we run with the PMU not frozen at all times
6761 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6765 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6770 * used for debug purposes only
6773 dump_pmu_state(const char *from)
6775 struct task_struct *task;
6776 struct pt_regs *regs;
6778 unsigned long psr, dcr, info, flags;
6781 local_irq_save(flags);
6783 this_cpu = smp_processor_id();
6784 regs = task_pt_regs(current);
6785 info = PFM_CPUINFO_GET();
6786 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6788 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6789 local_irq_restore(flags);
6793 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6800 task = GET_PMU_OWNER();
6801 ctx = GET_PMU_CTX();
6803 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task->pid : -1, ctx);
6805 psr = pfm_get_psr();
6807 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6810 psr & IA64_PSR_PP ? 1 : 0,
6811 psr & IA64_PSR_UP ? 1 : 0,
6812 dcr & IA64_DCR_PP ? 1 : 0,
6815 ia64_psr(regs)->pp);
6817 ia64_psr(regs)->up = 0;
6818 ia64_psr(regs)->pp = 0;
6820 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6821 if (PMC_IS_IMPL(i) == 0) continue;
6822 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6825 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6826 if (PMD_IS_IMPL(i) == 0) continue;
6827 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6831 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6834 ctx->ctx_smpl_vaddr,
6838 ctx->ctx_saved_psr_up);
6840 local_irq_restore(flags);
6844 * called from process.c:copy_thread(). task is new child.
6847 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6849 struct thread_struct *thread;
6851 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task->pid));
6853 thread = &task->thread;
6856 * cut links inherited from parent (current)
6858 thread->pfm_context = NULL;
6860 PFM_SET_WORK_PENDING(task, 0);
6863 * the psr bits are already set properly in copy_threads()
6866 #else /* !CONFIG_PERFMON */
6868 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6872 #endif /* CONFIG_PERFMON */