Merge branch 'linus' into x86/mm
[linux-2.6] / drivers / crypto / ixp4xx_crypto.c
1 /*
2  * Intel IXP4xx NPE-C crypto driver
3  *
4  * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of version 2 of the GNU General Public License
8  * as published by the Free Software Foundation.
9  *
10  */
11
12 #include <linux/platform_device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/crypto.h>
16 #include <linux/kernel.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20
21 #include <crypto/ctr.h>
22 #include <crypto/des.h>
23 #include <crypto/aes.h>
24 #include <crypto/sha.h>
25 #include <crypto/algapi.h>
26 #include <crypto/aead.h>
27 #include <crypto/authenc.h>
28 #include <crypto/scatterwalk.h>
29
30 #include <mach/npe.h>
31 #include <mach/qmgr.h>
32
33 #define MAX_KEYLEN 32
34
35 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
36 #define NPE_CTX_LEN 80
37 #define AES_BLOCK128 16
38
39 #define NPE_OP_HASH_VERIFY   0x01
40 #define NPE_OP_CCM_ENABLE    0x04
41 #define NPE_OP_CRYPT_ENABLE  0x08
42 #define NPE_OP_HASH_ENABLE   0x10
43 #define NPE_OP_NOT_IN_PLACE  0x20
44 #define NPE_OP_HMAC_DISABLE  0x40
45 #define NPE_OP_CRYPT_ENCRYPT 0x80
46
47 #define NPE_OP_CCM_GEN_MIC   0xcc
48 #define NPE_OP_HASH_GEN_ICV  0x50
49 #define NPE_OP_ENC_GEN_KEY   0xc9
50
51 #define MOD_ECB     0x0000
52 #define MOD_CTR     0x1000
53 #define MOD_CBC_ENC 0x2000
54 #define MOD_CBC_DEC 0x3000
55 #define MOD_CCM_ENC 0x4000
56 #define MOD_CCM_DEC 0x5000
57
58 #define KEYLEN_128  4
59 #define KEYLEN_192  6
60 #define KEYLEN_256  8
61
62 #define CIPH_DECR   0x0000
63 #define CIPH_ENCR   0x0400
64
65 #define MOD_DES     0x0000
66 #define MOD_TDEA2   0x0100
67 #define MOD_3DES   0x0200
68 #define MOD_AES     0x0800
69 #define MOD_AES128  (0x0800 | KEYLEN_128)
70 #define MOD_AES192  (0x0900 | KEYLEN_192)
71 #define MOD_AES256  (0x0a00 | KEYLEN_256)
72
73 #define MAX_IVLEN   16
74 #define NPE_ID      2  /* NPE C */
75 #define NPE_QLEN    16
76 /* Space for registering when the first
77  * NPE_QLEN crypt_ctl are busy */
78 #define NPE_QLEN_TOTAL 64
79
80 #define SEND_QID    29
81 #define RECV_QID    30
82
83 #define CTL_FLAG_UNUSED         0x0000
84 #define CTL_FLAG_USED           0x1000
85 #define CTL_FLAG_PERFORM_ABLK   0x0001
86 #define CTL_FLAG_GEN_ICV        0x0002
87 #define CTL_FLAG_GEN_REVAES     0x0004
88 #define CTL_FLAG_PERFORM_AEAD   0x0008
89 #define CTL_FLAG_MASK           0x000f
90
91 #define HMAC_IPAD_VALUE   0x36
92 #define HMAC_OPAD_VALUE   0x5C
93 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
94
95 #define MD5_DIGEST_SIZE   16
96
97 struct buffer_desc {
98         u32 phys_next;
99         u16 buf_len;
100         u16 pkt_len;
101         u32 phys_addr;
102         u32 __reserved[4];
103         struct buffer_desc *next;
104         enum dma_data_direction dir;
105 };
106
107 struct crypt_ctl {
108         u8 mode;                /* NPE_OP_*  operation mode */
109         u8 init_len;
110         u16 reserved;
111         u8 iv[MAX_IVLEN];       /* IV for CBC mode or CTR IV for CTR mode */
112         u32 icv_rev_aes;        /* icv or rev aes */
113         u32 src_buf;
114         u32 dst_buf;
115         u16 auth_offs;          /* Authentication start offset */
116         u16 auth_len;           /* Authentication data length */
117         u16 crypt_offs;         /* Cryption start offset */
118         u16 crypt_len;          /* Cryption data length */
119         u32 aadAddr;            /* Additional Auth Data Addr for CCM mode */
120         u32 crypto_ctx;         /* NPE Crypto Param structure address */
121
122         /* Used by Host: 4*4 bytes*/
123         unsigned ctl_flags;
124         union {
125                 struct ablkcipher_request *ablk_req;
126                 struct aead_request *aead_req;
127                 struct crypto_tfm *tfm;
128         } data;
129         struct buffer_desc *regist_buf;
130         u8 *regist_ptr;
131 };
132
133 struct ablk_ctx {
134         struct buffer_desc *src;
135         struct buffer_desc *dst;
136 };
137
138 struct aead_ctx {
139         struct buffer_desc *buffer;
140         struct scatterlist ivlist;
141         /* used when the hmac is not on one sg entry */
142         u8 *hmac_virt;
143         int encrypt;
144 };
145
146 struct ix_hash_algo {
147         u32 cfgword;
148         unsigned char *icv;
149 };
150
151 struct ix_sa_dir {
152         unsigned char *npe_ctx;
153         dma_addr_t npe_ctx_phys;
154         int npe_ctx_idx;
155         u8 npe_mode;
156 };
157
158 struct ixp_ctx {
159         struct ix_sa_dir encrypt;
160         struct ix_sa_dir decrypt;
161         int authkey_len;
162         u8 authkey[MAX_KEYLEN];
163         int enckey_len;
164         u8 enckey[MAX_KEYLEN];
165         u8 salt[MAX_IVLEN];
166         u8 nonce[CTR_RFC3686_NONCE_SIZE];
167         unsigned salted;
168         atomic_t configuring;
169         struct completion completion;
170 };
171
172 struct ixp_alg {
173         struct crypto_alg crypto;
174         const struct ix_hash_algo *hash;
175         u32 cfg_enc;
176         u32 cfg_dec;
177
178         int registered;
179 };
180
181 static const struct ix_hash_algo hash_alg_md5 = {
182         .cfgword        = 0xAA010004,
183         .icv            = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
184                           "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
185 };
186 static const struct ix_hash_algo hash_alg_sha1 = {
187         .cfgword        = 0x00000005,
188         .icv            = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
189                           "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
190 };
191
192 static struct npe *npe_c;
193 static struct dma_pool *buffer_pool = NULL;
194 static struct dma_pool *ctx_pool = NULL;
195
196 static struct crypt_ctl *crypt_virt = NULL;
197 static dma_addr_t crypt_phys;
198
199 static int support_aes = 1;
200
201 static void dev_release(struct device *dev)
202 {
203         return;
204 }
205
206 #define DRIVER_NAME "ixp4xx_crypto"
207 static struct platform_device pseudo_dev = {
208         .name = DRIVER_NAME,
209         .id   = 0,
210         .num_resources = 0,
211         .dev  = {
212                 .coherent_dma_mask = DMA_BIT_MASK(32),
213                 .release = dev_release,
214         }
215 };
216
217 static struct device *dev = &pseudo_dev.dev;
218
219 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
220 {
221         return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
222 }
223
224 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
225 {
226         return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
227 }
228
229 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
230 {
231         return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
232 }
233
234 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
235 {
236         return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
237 }
238
239 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
240 {
241         return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
242 }
243
244 static int setup_crypt_desc(void)
245 {
246         BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
247         crypt_virt = dma_alloc_coherent(dev,
248                         NPE_QLEN * sizeof(struct crypt_ctl),
249                         &crypt_phys, GFP_KERNEL);
250         if (!crypt_virt)
251                 return -ENOMEM;
252         memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl));
253         return 0;
254 }
255
256 static spinlock_t desc_lock;
257 static struct crypt_ctl *get_crypt_desc(void)
258 {
259         int i;
260         static int idx = 0;
261         unsigned long flags;
262
263         spin_lock_irqsave(&desc_lock, flags);
264
265         if (unlikely(!crypt_virt))
266                 setup_crypt_desc();
267         if (unlikely(!crypt_virt)) {
268                 spin_unlock_irqrestore(&desc_lock, flags);
269                 return NULL;
270         }
271         i = idx;
272         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
273                 if (++idx >= NPE_QLEN)
274                         idx = 0;
275                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
276                 spin_unlock_irqrestore(&desc_lock, flags);
277                 return crypt_virt +i;
278         } else {
279                 spin_unlock_irqrestore(&desc_lock, flags);
280                 return NULL;
281         }
282 }
283
284 static spinlock_t emerg_lock;
285 static struct crypt_ctl *get_crypt_desc_emerg(void)
286 {
287         int i;
288         static int idx = NPE_QLEN;
289         struct crypt_ctl *desc;
290         unsigned long flags;
291
292         desc = get_crypt_desc();
293         if (desc)
294                 return desc;
295         if (unlikely(!crypt_virt))
296                 return NULL;
297
298         spin_lock_irqsave(&emerg_lock, flags);
299         i = idx;
300         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
301                 if (++idx >= NPE_QLEN_TOTAL)
302                         idx = NPE_QLEN;
303                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
304                 spin_unlock_irqrestore(&emerg_lock, flags);
305                 return crypt_virt +i;
306         } else {
307                 spin_unlock_irqrestore(&emerg_lock, flags);
308                 return NULL;
309         }
310 }
311
312 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys)
313 {
314         while (buf) {
315                 struct buffer_desc *buf1;
316                 u32 phys1;
317
318                 buf1 = buf->next;
319                 phys1 = buf->phys_next;
320                 dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
321                 dma_pool_free(buffer_pool, buf, phys);
322                 buf = buf1;
323                 phys = phys1;
324         }
325 }
326
327 static struct tasklet_struct crypto_done_tasklet;
328
329 static void finish_scattered_hmac(struct crypt_ctl *crypt)
330 {
331         struct aead_request *req = crypt->data.aead_req;
332         struct aead_ctx *req_ctx = aead_request_ctx(req);
333         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
334         int authsize = crypto_aead_authsize(tfm);
335         int decryptlen = req->cryptlen - authsize;
336
337         if (req_ctx->encrypt) {
338                 scatterwalk_map_and_copy(req_ctx->hmac_virt,
339                         req->src, decryptlen, authsize, 1);
340         }
341         dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
342 }
343
344 static void one_packet(dma_addr_t phys)
345 {
346         struct crypt_ctl *crypt;
347         struct ixp_ctx *ctx;
348         int failed;
349
350         failed = phys & 0x1 ? -EBADMSG : 0;
351         phys &= ~0x3;
352         crypt = crypt_phys2virt(phys);
353
354         switch (crypt->ctl_flags & CTL_FLAG_MASK) {
355         case CTL_FLAG_PERFORM_AEAD: {
356                 struct aead_request *req = crypt->data.aead_req;
357                 struct aead_ctx *req_ctx = aead_request_ctx(req);
358
359                 free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
360                 if (req_ctx->hmac_virt) {
361                         finish_scattered_hmac(crypt);
362                 }
363                 req->base.complete(&req->base, failed);
364                 break;
365         }
366         case CTL_FLAG_PERFORM_ABLK: {
367                 struct ablkcipher_request *req = crypt->data.ablk_req;
368                 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
369
370                 if (req_ctx->dst) {
371                         free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
372                 }
373                 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
374                 req->base.complete(&req->base, failed);
375                 break;
376         }
377         case CTL_FLAG_GEN_ICV:
378                 ctx = crypto_tfm_ctx(crypt->data.tfm);
379                 dma_pool_free(ctx_pool, crypt->regist_ptr,
380                                 crypt->regist_buf->phys_addr);
381                 dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
382                 if (atomic_dec_and_test(&ctx->configuring))
383                         complete(&ctx->completion);
384                 break;
385         case CTL_FLAG_GEN_REVAES:
386                 ctx = crypto_tfm_ctx(crypt->data.tfm);
387                 *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
388                 if (atomic_dec_and_test(&ctx->configuring))
389                         complete(&ctx->completion);
390                 break;
391         default:
392                 BUG();
393         }
394         crypt->ctl_flags = CTL_FLAG_UNUSED;
395 }
396
397 static void irqhandler(void *_unused)
398 {
399         tasklet_schedule(&crypto_done_tasklet);
400 }
401
402 static void crypto_done_action(unsigned long arg)
403 {
404         int i;
405
406         for(i=0; i<4; i++) {
407                 dma_addr_t phys = qmgr_get_entry(RECV_QID);
408                 if (!phys)
409                         return;
410                 one_packet(phys);
411         }
412         tasklet_schedule(&crypto_done_tasklet);
413 }
414
415 static int init_ixp_crypto(void)
416 {
417         int ret = -ENODEV;
418
419         if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
420                                 IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
421                 printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
422                 return ret;
423         }
424         npe_c = npe_request(NPE_ID);
425         if (!npe_c)
426                 return ret;
427
428         if (!npe_running(npe_c)) {
429                 npe_load_firmware(npe_c, npe_name(npe_c), dev);
430         }
431
432         /* buffer_pool will also be used to sometimes store the hmac,
433          * so assure it is large enough
434          */
435         BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
436         buffer_pool = dma_pool_create("buffer", dev,
437                         sizeof(struct buffer_desc), 32, 0);
438         ret = -ENOMEM;
439         if (!buffer_pool) {
440                 goto err;
441         }
442         ctx_pool = dma_pool_create("context", dev,
443                         NPE_CTX_LEN, 16, 0);
444         if (!ctx_pool) {
445                 goto err;
446         }
447         ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
448                                  "ixp_crypto:out", NULL);
449         if (ret)
450                 goto err;
451         ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
452                                  "ixp_crypto:in", NULL);
453         if (ret) {
454                 qmgr_release_queue(SEND_QID);
455                 goto err;
456         }
457         qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
458         tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
459
460         qmgr_enable_irq(RECV_QID);
461         return 0;
462 err:
463         if (ctx_pool)
464                 dma_pool_destroy(ctx_pool);
465         if (buffer_pool)
466                 dma_pool_destroy(buffer_pool);
467         npe_release(npe_c);
468         return ret;
469 }
470
471 static void release_ixp_crypto(void)
472 {
473         qmgr_disable_irq(RECV_QID);
474         tasklet_kill(&crypto_done_tasklet);
475
476         qmgr_release_queue(SEND_QID);
477         qmgr_release_queue(RECV_QID);
478
479         dma_pool_destroy(ctx_pool);
480         dma_pool_destroy(buffer_pool);
481
482         npe_release(npe_c);
483
484         if (crypt_virt) {
485                 dma_free_coherent(dev,
486                         NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
487                         crypt_virt, crypt_phys);
488         }
489         return;
490 }
491
492 static void reset_sa_dir(struct ix_sa_dir *dir)
493 {
494         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
495         dir->npe_ctx_idx = 0;
496         dir->npe_mode = 0;
497 }
498
499 static int init_sa_dir(struct ix_sa_dir *dir)
500 {
501         dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
502         if (!dir->npe_ctx) {
503                 return -ENOMEM;
504         }
505         reset_sa_dir(dir);
506         return 0;
507 }
508
509 static void free_sa_dir(struct ix_sa_dir *dir)
510 {
511         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
512         dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
513 }
514
515 static int init_tfm(struct crypto_tfm *tfm)
516 {
517         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
518         int ret;
519
520         atomic_set(&ctx->configuring, 0);
521         ret = init_sa_dir(&ctx->encrypt);
522         if (ret)
523                 return ret;
524         ret = init_sa_dir(&ctx->decrypt);
525         if (ret) {
526                 free_sa_dir(&ctx->encrypt);
527         }
528         return ret;
529 }
530
531 static int init_tfm_ablk(struct crypto_tfm *tfm)
532 {
533         tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
534         return init_tfm(tfm);
535 }
536
537 static int init_tfm_aead(struct crypto_tfm *tfm)
538 {
539         tfm->crt_aead.reqsize = sizeof(struct aead_ctx);
540         return init_tfm(tfm);
541 }
542
543 static void exit_tfm(struct crypto_tfm *tfm)
544 {
545         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
546         free_sa_dir(&ctx->encrypt);
547         free_sa_dir(&ctx->decrypt);
548 }
549
550 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
551                 int init_len, u32 ctx_addr, const u8 *key, int key_len)
552 {
553         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
554         struct crypt_ctl *crypt;
555         struct buffer_desc *buf;
556         int i;
557         u8 *pad;
558         u32 pad_phys, buf_phys;
559
560         BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
561         pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
562         if (!pad)
563                 return -ENOMEM;
564         buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
565         if (!buf) {
566                 dma_pool_free(ctx_pool, pad, pad_phys);
567                 return -ENOMEM;
568         }
569         crypt = get_crypt_desc_emerg();
570         if (!crypt) {
571                 dma_pool_free(ctx_pool, pad, pad_phys);
572                 dma_pool_free(buffer_pool, buf, buf_phys);
573                 return -EAGAIN;
574         }
575
576         memcpy(pad, key, key_len);
577         memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
578         for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
579                 pad[i] ^= xpad;
580         }
581
582         crypt->data.tfm = tfm;
583         crypt->regist_ptr = pad;
584         crypt->regist_buf = buf;
585
586         crypt->auth_offs = 0;
587         crypt->auth_len = HMAC_PAD_BLOCKLEN;
588         crypt->crypto_ctx = ctx_addr;
589         crypt->src_buf = buf_phys;
590         crypt->icv_rev_aes = target;
591         crypt->mode = NPE_OP_HASH_GEN_ICV;
592         crypt->init_len = init_len;
593         crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
594
595         buf->next = 0;
596         buf->buf_len = HMAC_PAD_BLOCKLEN;
597         buf->pkt_len = 0;
598         buf->phys_addr = pad_phys;
599
600         atomic_inc(&ctx->configuring);
601         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
602         BUG_ON(qmgr_stat_overflow(SEND_QID));
603         return 0;
604 }
605
606 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
607                 const u8 *key, int key_len, unsigned digest_len)
608 {
609         u32 itarget, otarget, npe_ctx_addr;
610         unsigned char *cinfo;
611         int init_len, ret = 0;
612         u32 cfgword;
613         struct ix_sa_dir *dir;
614         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
615         const struct ix_hash_algo *algo;
616
617         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
618         cinfo = dir->npe_ctx + dir->npe_ctx_idx;
619         algo = ix_hash(tfm);
620
621         /* write cfg word to cryptinfo */
622         cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
623         *(u32*)cinfo = cpu_to_be32(cfgword);
624         cinfo += sizeof(cfgword);
625
626         /* write ICV to cryptinfo */
627         memcpy(cinfo, algo->icv, digest_len);
628         cinfo += digest_len;
629
630         itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
631                                 + sizeof(algo->cfgword);
632         otarget = itarget + digest_len;
633         init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
634         npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
635
636         dir->npe_ctx_idx += init_len;
637         dir->npe_mode |= NPE_OP_HASH_ENABLE;
638
639         if (!encrypt)
640                 dir->npe_mode |= NPE_OP_HASH_VERIFY;
641
642         ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
643                         init_len, npe_ctx_addr, key, key_len);
644         if (ret)
645                 return ret;
646         return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
647                         init_len, npe_ctx_addr, key, key_len);
648 }
649
650 static int gen_rev_aes_key(struct crypto_tfm *tfm)
651 {
652         struct crypt_ctl *crypt;
653         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
654         struct ix_sa_dir *dir = &ctx->decrypt;
655
656         crypt = get_crypt_desc_emerg();
657         if (!crypt) {
658                 return -EAGAIN;
659         }
660         *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
661
662         crypt->data.tfm = tfm;
663         crypt->crypt_offs = 0;
664         crypt->crypt_len = AES_BLOCK128;
665         crypt->src_buf = 0;
666         crypt->crypto_ctx = dir->npe_ctx_phys;
667         crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
668         crypt->mode = NPE_OP_ENC_GEN_KEY;
669         crypt->init_len = dir->npe_ctx_idx;
670         crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
671
672         atomic_inc(&ctx->configuring);
673         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
674         BUG_ON(qmgr_stat_overflow(SEND_QID));
675         return 0;
676 }
677
678 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
679                 const u8 *key, int key_len)
680 {
681         u8 *cinfo;
682         u32 cipher_cfg;
683         u32 keylen_cfg = 0;
684         struct ix_sa_dir *dir;
685         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
686         u32 *flags = &tfm->crt_flags;
687
688         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
689         cinfo = dir->npe_ctx;
690
691         if (encrypt) {
692                 cipher_cfg = cipher_cfg_enc(tfm);
693                 dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
694         } else {
695                 cipher_cfg = cipher_cfg_dec(tfm);
696         }
697         if (cipher_cfg & MOD_AES) {
698                 switch (key_len) {
699                         case 16: keylen_cfg = MOD_AES128 | KEYLEN_128; break;
700                         case 24: keylen_cfg = MOD_AES192 | KEYLEN_192; break;
701                         case 32: keylen_cfg = MOD_AES256 | KEYLEN_256; break;
702                         default:
703                                 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
704                                 return -EINVAL;
705                 }
706                 cipher_cfg |= keylen_cfg;
707         } else if (cipher_cfg & MOD_3DES) {
708                 const u32 *K = (const u32 *)key;
709                 if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
710                              !((K[2] ^ K[4]) | (K[3] ^ K[5]))))
711                 {
712                         *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
713                         return -EINVAL;
714                 }
715         } else {
716                 u32 tmp[DES_EXPKEY_WORDS];
717                 if (des_ekey(tmp, key) == 0) {
718                         *flags |= CRYPTO_TFM_RES_WEAK_KEY;
719                 }
720         }
721         /* write cfg word to cryptinfo */
722         *(u32*)cinfo = cpu_to_be32(cipher_cfg);
723         cinfo += sizeof(cipher_cfg);
724
725         /* write cipher key to cryptinfo */
726         memcpy(cinfo, key, key_len);
727         /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
728         if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
729                 memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
730                 key_len = DES3_EDE_KEY_SIZE;
731         }
732         dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
733         dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
734         if ((cipher_cfg & MOD_AES) && !encrypt) {
735                 return gen_rev_aes_key(tfm);
736         }
737         return 0;
738 }
739
740 static struct buffer_desc *chainup_buffers(struct device *dev,
741                 struct scatterlist *sg, unsigned nbytes,
742                 struct buffer_desc *buf, gfp_t flags,
743                 enum dma_data_direction dir)
744 {
745         for (;nbytes > 0; sg = scatterwalk_sg_next(sg)) {
746                 unsigned len = min(nbytes, sg->length);
747                 struct buffer_desc *next_buf;
748                 u32 next_buf_phys;
749                 void *ptr;
750
751                 nbytes -= len;
752                 ptr = page_address(sg_page(sg)) + sg->offset;
753                 next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
754                 if (!next_buf) {
755                         buf = NULL;
756                         break;
757                 }
758                 sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
759                 buf->next = next_buf;
760                 buf->phys_next = next_buf_phys;
761                 buf = next_buf;
762
763                 buf->phys_addr = sg_dma_address(sg);
764                 buf->buf_len = len;
765                 buf->dir = dir;
766         }
767         buf->next = NULL;
768         buf->phys_next = 0;
769         return buf;
770 }
771
772 static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
773                         unsigned int key_len)
774 {
775         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
776         u32 *flags = &tfm->base.crt_flags;
777         int ret;
778
779         init_completion(&ctx->completion);
780         atomic_inc(&ctx->configuring);
781
782         reset_sa_dir(&ctx->encrypt);
783         reset_sa_dir(&ctx->decrypt);
784
785         ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
786         ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
787
788         ret = setup_cipher(&tfm->base, 0, key, key_len);
789         if (ret)
790                 goto out;
791         ret = setup_cipher(&tfm->base, 1, key, key_len);
792         if (ret)
793                 goto out;
794
795         if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
796                 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
797                         ret = -EINVAL;
798                 } else {
799                         *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
800                 }
801         }
802 out:
803         if (!atomic_dec_and_test(&ctx->configuring))
804                 wait_for_completion(&ctx->completion);
805         return ret;
806 }
807
808 static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
809                 unsigned int key_len)
810 {
811         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
812
813         /* the nonce is stored in bytes at end of key */
814         if (key_len < CTR_RFC3686_NONCE_SIZE)
815                 return -EINVAL;
816
817         memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
818                         CTR_RFC3686_NONCE_SIZE);
819
820         key_len -= CTR_RFC3686_NONCE_SIZE;
821         return ablk_setkey(tfm, key, key_len);
822 }
823
824 static int ablk_perform(struct ablkcipher_request *req, int encrypt)
825 {
826         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
827         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
828         unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
829         struct ix_sa_dir *dir;
830         struct crypt_ctl *crypt;
831         unsigned int nbytes = req->nbytes;
832         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
833         struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
834         struct buffer_desc src_hook;
835         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
836                                 GFP_KERNEL : GFP_ATOMIC;
837
838         if (qmgr_stat_full(SEND_QID))
839                 return -EAGAIN;
840         if (atomic_read(&ctx->configuring))
841                 return -EAGAIN;
842
843         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
844
845         crypt = get_crypt_desc();
846         if (!crypt)
847                 return -ENOMEM;
848
849         crypt->data.ablk_req = req;
850         crypt->crypto_ctx = dir->npe_ctx_phys;
851         crypt->mode = dir->npe_mode;
852         crypt->init_len = dir->npe_ctx_idx;
853
854         crypt->crypt_offs = 0;
855         crypt->crypt_len = nbytes;
856
857         BUG_ON(ivsize && !req->info);
858         memcpy(crypt->iv, req->info, ivsize);
859         if (req->src != req->dst) {
860                 struct buffer_desc dst_hook;
861                 crypt->mode |= NPE_OP_NOT_IN_PLACE;
862                 /* This was never tested by Intel
863                  * for more than one dst buffer, I think. */
864                 BUG_ON(req->dst->length < nbytes);
865                 req_ctx->dst = NULL;
866                 if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
867                                         flags, DMA_FROM_DEVICE))
868                         goto free_buf_dest;
869                 src_direction = DMA_TO_DEVICE;
870                 req_ctx->dst = dst_hook.next;
871                 crypt->dst_buf = dst_hook.phys_next;
872         } else {
873                 req_ctx->dst = NULL;
874         }
875         req_ctx->src = NULL;
876         if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
877                                 flags, src_direction))
878                 goto free_buf_src;
879
880         req_ctx->src = src_hook.next;
881         crypt->src_buf = src_hook.phys_next;
882         crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
883         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
884         BUG_ON(qmgr_stat_overflow(SEND_QID));
885         return -EINPROGRESS;
886
887 free_buf_src:
888         free_buf_chain(dev, req_ctx->src, crypt->src_buf);
889 free_buf_dest:
890         if (req->src != req->dst) {
891                 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
892         }
893         crypt->ctl_flags = CTL_FLAG_UNUSED;
894         return -ENOMEM;
895 }
896
897 static int ablk_encrypt(struct ablkcipher_request *req)
898 {
899         return ablk_perform(req, 1);
900 }
901
902 static int ablk_decrypt(struct ablkcipher_request *req)
903 {
904         return ablk_perform(req, 0);
905 }
906
907 static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
908 {
909         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
910         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
911         u8 iv[CTR_RFC3686_BLOCK_SIZE];
912         u8 *info = req->info;
913         int ret;
914
915         /* set up counter block */
916         memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
917         memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
918
919         /* initialize counter portion of counter block */
920         *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
921                 cpu_to_be32(1);
922
923         req->info = iv;
924         ret = ablk_perform(req, 1);
925         req->info = info;
926         return ret;
927 }
928
929 static int hmac_inconsistent(struct scatterlist *sg, unsigned start,
930                 unsigned int nbytes)
931 {
932         int offset = 0;
933
934         if (!nbytes)
935                 return 0;
936
937         for (;;) {
938                 if (start < offset + sg->length)
939                         break;
940
941                 offset += sg->length;
942                 sg = scatterwalk_sg_next(sg);
943         }
944         return (start + nbytes > offset + sg->length);
945 }
946
947 static int aead_perform(struct aead_request *req, int encrypt,
948                 int cryptoffset, int eff_cryptlen, u8 *iv)
949 {
950         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
951         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
952         unsigned ivsize = crypto_aead_ivsize(tfm);
953         unsigned authsize = crypto_aead_authsize(tfm);
954         struct ix_sa_dir *dir;
955         struct crypt_ctl *crypt;
956         unsigned int cryptlen;
957         struct buffer_desc *buf, src_hook;
958         struct aead_ctx *req_ctx = aead_request_ctx(req);
959         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
960                                 GFP_KERNEL : GFP_ATOMIC;
961
962         if (qmgr_stat_full(SEND_QID))
963                 return -EAGAIN;
964         if (atomic_read(&ctx->configuring))
965                 return -EAGAIN;
966
967         if (encrypt) {
968                 dir = &ctx->encrypt;
969                 cryptlen = req->cryptlen;
970         } else {
971                 dir = &ctx->decrypt;
972                 /* req->cryptlen includes the authsize when decrypting */
973                 cryptlen = req->cryptlen -authsize;
974                 eff_cryptlen -= authsize;
975         }
976         crypt = get_crypt_desc();
977         if (!crypt)
978                 return -ENOMEM;
979
980         crypt->data.aead_req = req;
981         crypt->crypto_ctx = dir->npe_ctx_phys;
982         crypt->mode = dir->npe_mode;
983         crypt->init_len = dir->npe_ctx_idx;
984
985         crypt->crypt_offs = cryptoffset;
986         crypt->crypt_len = eff_cryptlen;
987
988         crypt->auth_offs = 0;
989         crypt->auth_len = req->assoclen + ivsize + cryptlen;
990         BUG_ON(ivsize && !req->iv);
991         memcpy(crypt->iv, req->iv, ivsize);
992
993         if (req->src != req->dst) {
994                 BUG(); /* -ENOTSUP because of my lazyness */
995         }
996
997         /* ASSOC data */
998         buf = chainup_buffers(dev, req->assoc, req->assoclen, &src_hook,
999                 flags, DMA_TO_DEVICE);
1000         req_ctx->buffer = src_hook.next;
1001         crypt->src_buf = src_hook.phys_next;
1002         if (!buf)
1003                 goto out;
1004         /* IV */
1005         sg_init_table(&req_ctx->ivlist, 1);
1006         sg_set_buf(&req_ctx->ivlist, iv, ivsize);
1007         buf = chainup_buffers(dev, &req_ctx->ivlist, ivsize, buf, flags,
1008                         DMA_BIDIRECTIONAL);
1009         if (!buf)
1010                 goto free_chain;
1011         if (unlikely(hmac_inconsistent(req->src, cryptlen, authsize))) {
1012                 /* The 12 hmac bytes are scattered,
1013                  * we need to copy them into a safe buffer */
1014                 req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1015                                 &crypt->icv_rev_aes);
1016                 if (unlikely(!req_ctx->hmac_virt))
1017                         goto free_chain;
1018                 if (!encrypt) {
1019                         scatterwalk_map_and_copy(req_ctx->hmac_virt,
1020                                 req->src, cryptlen, authsize, 0);
1021                 }
1022                 req_ctx->encrypt = encrypt;
1023         } else {
1024                 req_ctx->hmac_virt = NULL;
1025         }
1026         /* Crypt */
1027         buf = chainup_buffers(dev, req->src, cryptlen + authsize, buf, flags,
1028                         DMA_BIDIRECTIONAL);
1029         if (!buf)
1030                 goto free_hmac_virt;
1031         if (!req_ctx->hmac_virt) {
1032                 crypt->icv_rev_aes = buf->phys_addr + buf->buf_len - authsize;
1033         }
1034
1035         crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1036         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1037         BUG_ON(qmgr_stat_overflow(SEND_QID));
1038         return -EINPROGRESS;
1039 free_hmac_virt:
1040         if (req_ctx->hmac_virt) {
1041                 dma_pool_free(buffer_pool, req_ctx->hmac_virt,
1042                                 crypt->icv_rev_aes);
1043         }
1044 free_chain:
1045         free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
1046 out:
1047         crypt->ctl_flags = CTL_FLAG_UNUSED;
1048         return -ENOMEM;
1049 }
1050
1051 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1052 {
1053         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1054         u32 *flags = &tfm->base.crt_flags;
1055         unsigned digest_len = crypto_aead_alg(tfm)->maxauthsize;
1056         int ret;
1057
1058         if (!ctx->enckey_len && !ctx->authkey_len)
1059                 return 0;
1060         init_completion(&ctx->completion);
1061         atomic_inc(&ctx->configuring);
1062
1063         reset_sa_dir(&ctx->encrypt);
1064         reset_sa_dir(&ctx->decrypt);
1065
1066         ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1067         if (ret)
1068                 goto out;
1069         ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1070         if (ret)
1071                 goto out;
1072         ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1073                         ctx->authkey_len, digest_len);
1074         if (ret)
1075                 goto out;
1076         ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey,
1077                         ctx->authkey_len, digest_len);
1078         if (ret)
1079                 goto out;
1080
1081         if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1082                 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
1083                         ret = -EINVAL;
1084                         goto out;
1085                 } else {
1086                         *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1087                 }
1088         }
1089 out:
1090         if (!atomic_dec_and_test(&ctx->configuring))
1091                 wait_for_completion(&ctx->completion);
1092         return ret;
1093 }
1094
1095 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1096 {
1097         int max = crypto_aead_alg(tfm)->maxauthsize >> 2;
1098
1099         if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1100                 return -EINVAL;
1101         return aead_setup(tfm, authsize);
1102 }
1103
1104 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1105                         unsigned int keylen)
1106 {
1107         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1108         struct rtattr *rta = (struct rtattr *)key;
1109         struct crypto_authenc_key_param *param;
1110
1111         if (!RTA_OK(rta, keylen))
1112                 goto badkey;
1113         if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
1114                 goto badkey;
1115         if (RTA_PAYLOAD(rta) < sizeof(*param))
1116                 goto badkey;
1117
1118         param = RTA_DATA(rta);
1119         ctx->enckey_len = be32_to_cpu(param->enckeylen);
1120
1121         key += RTA_ALIGN(rta->rta_len);
1122         keylen -= RTA_ALIGN(rta->rta_len);
1123
1124         if (keylen < ctx->enckey_len)
1125                 goto badkey;
1126
1127         ctx->authkey_len = keylen - ctx->enckey_len;
1128         memcpy(ctx->enckey, key + ctx->authkey_len, ctx->enckey_len);
1129         memcpy(ctx->authkey, key, ctx->authkey_len);
1130
1131         return aead_setup(tfm, crypto_aead_authsize(tfm));
1132 badkey:
1133         ctx->enckey_len = 0;
1134         crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1135         return -EINVAL;
1136 }
1137
1138 static int aead_encrypt(struct aead_request *req)
1139 {
1140         unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1141         return aead_perform(req, 1, req->assoclen + ivsize,
1142                         req->cryptlen, req->iv);
1143 }
1144
1145 static int aead_decrypt(struct aead_request *req)
1146 {
1147         unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1148         return aead_perform(req, 0, req->assoclen + ivsize,
1149                         req->cryptlen, req->iv);
1150 }
1151
1152 static int aead_givencrypt(struct aead_givcrypt_request *req)
1153 {
1154         struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
1155         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1156         unsigned len, ivsize = crypto_aead_ivsize(tfm);
1157         __be64 seq;
1158
1159         /* copied from eseqiv.c */
1160         if (!ctx->salted) {
1161                 get_random_bytes(ctx->salt, ivsize);
1162                 ctx->salted = 1;
1163         }
1164         memcpy(req->areq.iv, ctx->salt, ivsize);
1165         len = ivsize;
1166         if (ivsize > sizeof(u64)) {
1167                 memset(req->giv, 0, ivsize - sizeof(u64));
1168                 len = sizeof(u64);
1169         }
1170         seq = cpu_to_be64(req->seq);
1171         memcpy(req->giv + ivsize - len, &seq, len);
1172         return aead_perform(&req->areq, 1, req->areq.assoclen,
1173                         req->areq.cryptlen +ivsize, req->giv);
1174 }
1175
1176 static struct ixp_alg ixp4xx_algos[] = {
1177 {
1178         .crypto = {
1179                 .cra_name       = "cbc(des)",
1180                 .cra_blocksize  = DES_BLOCK_SIZE,
1181                 .cra_u          = { .ablkcipher = {
1182                         .min_keysize    = DES_KEY_SIZE,
1183                         .max_keysize    = DES_KEY_SIZE,
1184                         .ivsize         = DES_BLOCK_SIZE,
1185                         .geniv          = "eseqiv",
1186                         }
1187                 }
1188         },
1189         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1190         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1191
1192 }, {
1193         .crypto = {
1194                 .cra_name       = "ecb(des)",
1195                 .cra_blocksize  = DES_BLOCK_SIZE,
1196                 .cra_u          = { .ablkcipher = {
1197                         .min_keysize    = DES_KEY_SIZE,
1198                         .max_keysize    = DES_KEY_SIZE,
1199                         }
1200                 }
1201         },
1202         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1203         .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1204 }, {
1205         .crypto = {
1206                 .cra_name       = "cbc(des3_ede)",
1207                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1208                 .cra_u          = { .ablkcipher = {
1209                         .min_keysize    = DES3_EDE_KEY_SIZE,
1210                         .max_keysize    = DES3_EDE_KEY_SIZE,
1211                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1212                         .geniv          = "eseqiv",
1213                         }
1214                 }
1215         },
1216         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1217         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1218 }, {
1219         .crypto = {
1220                 .cra_name       = "ecb(des3_ede)",
1221                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1222                 .cra_u          = { .ablkcipher = {
1223                         .min_keysize    = DES3_EDE_KEY_SIZE,
1224                         .max_keysize    = DES3_EDE_KEY_SIZE,
1225                         }
1226                 }
1227         },
1228         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1229         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1230 }, {
1231         .crypto = {
1232                 .cra_name       = "cbc(aes)",
1233                 .cra_blocksize  = AES_BLOCK_SIZE,
1234                 .cra_u          = { .ablkcipher = {
1235                         .min_keysize    = AES_MIN_KEY_SIZE,
1236                         .max_keysize    = AES_MAX_KEY_SIZE,
1237                         .ivsize         = AES_BLOCK_SIZE,
1238                         .geniv          = "eseqiv",
1239                         }
1240                 }
1241         },
1242         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1243         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1244 }, {
1245         .crypto = {
1246                 .cra_name       = "ecb(aes)",
1247                 .cra_blocksize  = AES_BLOCK_SIZE,
1248                 .cra_u          = { .ablkcipher = {
1249                         .min_keysize    = AES_MIN_KEY_SIZE,
1250                         .max_keysize    = AES_MAX_KEY_SIZE,
1251                         }
1252                 }
1253         },
1254         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1255         .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1256 }, {
1257         .crypto = {
1258                 .cra_name       = "ctr(aes)",
1259                 .cra_blocksize  = AES_BLOCK_SIZE,
1260                 .cra_u          = { .ablkcipher = {
1261                         .min_keysize    = AES_MIN_KEY_SIZE,
1262                         .max_keysize    = AES_MAX_KEY_SIZE,
1263                         .ivsize         = AES_BLOCK_SIZE,
1264                         .geniv          = "eseqiv",
1265                         }
1266                 }
1267         },
1268         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1269         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1270 }, {
1271         .crypto = {
1272                 .cra_name       = "rfc3686(ctr(aes))",
1273                 .cra_blocksize  = AES_BLOCK_SIZE,
1274                 .cra_u          = { .ablkcipher = {
1275                         .min_keysize    = AES_MIN_KEY_SIZE,
1276                         .max_keysize    = AES_MAX_KEY_SIZE,
1277                         .ivsize         = AES_BLOCK_SIZE,
1278                         .geniv          = "eseqiv",
1279                         .setkey         = ablk_rfc3686_setkey,
1280                         .encrypt        = ablk_rfc3686_crypt,
1281                         .decrypt        = ablk_rfc3686_crypt }
1282                 }
1283         },
1284         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1285         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1286 }, {
1287         .crypto = {
1288                 .cra_name       = "authenc(hmac(md5),cbc(des))",
1289                 .cra_blocksize  = DES_BLOCK_SIZE,
1290                 .cra_u          = { .aead = {
1291                         .ivsize         = DES_BLOCK_SIZE,
1292                         .maxauthsize    = MD5_DIGEST_SIZE,
1293                         }
1294                 }
1295         },
1296         .hash = &hash_alg_md5,
1297         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1298         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1299 }, {
1300         .crypto = {
1301                 .cra_name       = "authenc(hmac(md5),cbc(des3_ede))",
1302                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1303                 .cra_u          = { .aead = {
1304                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1305                         .maxauthsize    = MD5_DIGEST_SIZE,
1306                         }
1307                 }
1308         },
1309         .hash = &hash_alg_md5,
1310         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1311         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1312 }, {
1313         .crypto = {
1314                 .cra_name       = "authenc(hmac(sha1),cbc(des))",
1315                 .cra_blocksize  = DES_BLOCK_SIZE,
1316                 .cra_u          = { .aead = {
1317                         .ivsize         = DES_BLOCK_SIZE,
1318                         .maxauthsize    = SHA1_DIGEST_SIZE,
1319                         }
1320                 }
1321         },
1322         .hash = &hash_alg_sha1,
1323         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1324         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1325 }, {
1326         .crypto = {
1327                 .cra_name       = "authenc(hmac(sha1),cbc(des3_ede))",
1328                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1329                 .cra_u          = { .aead = {
1330                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1331                         .maxauthsize    = SHA1_DIGEST_SIZE,
1332                         }
1333                 }
1334         },
1335         .hash = &hash_alg_sha1,
1336         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1337         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1338 }, {
1339         .crypto = {
1340                 .cra_name       = "authenc(hmac(md5),cbc(aes))",
1341                 .cra_blocksize  = AES_BLOCK_SIZE,
1342                 .cra_u          = { .aead = {
1343                         .ivsize         = AES_BLOCK_SIZE,
1344                         .maxauthsize    = MD5_DIGEST_SIZE,
1345                         }
1346                 }
1347         },
1348         .hash = &hash_alg_md5,
1349         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1350         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1351 }, {
1352         .crypto = {
1353                 .cra_name       = "authenc(hmac(sha1),cbc(aes))",
1354                 .cra_blocksize  = AES_BLOCK_SIZE,
1355                 .cra_u          = { .aead = {
1356                         .ivsize         = AES_BLOCK_SIZE,
1357                         .maxauthsize    = SHA1_DIGEST_SIZE,
1358                         }
1359                 }
1360         },
1361         .hash = &hash_alg_sha1,
1362         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1363         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1364 } };
1365
1366 #define IXP_POSTFIX "-ixp4xx"
1367 static int __init ixp_module_init(void)
1368 {
1369         int num = ARRAY_SIZE(ixp4xx_algos);
1370         int i,err ;
1371
1372         if (platform_device_register(&pseudo_dev))
1373                 return -ENODEV;
1374
1375         spin_lock_init(&desc_lock);
1376         spin_lock_init(&emerg_lock);
1377
1378         err = init_ixp_crypto();
1379         if (err) {
1380                 platform_device_unregister(&pseudo_dev);
1381                 return err;
1382         }
1383         for (i=0; i< num; i++) {
1384                 struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
1385
1386                 if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
1387                         "%s"IXP_POSTFIX, cra->cra_name) >=
1388                         CRYPTO_MAX_ALG_NAME)
1389                 {
1390                         continue;
1391                 }
1392                 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1393                         continue;
1394                 }
1395                 if (!ixp4xx_algos[i].hash) {
1396                         /* block ciphers */
1397                         cra->cra_type = &crypto_ablkcipher_type;
1398                         cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1399                                          CRYPTO_ALG_ASYNC;
1400                         if (!cra->cra_ablkcipher.setkey)
1401                                 cra->cra_ablkcipher.setkey = ablk_setkey;
1402                         if (!cra->cra_ablkcipher.encrypt)
1403                                 cra->cra_ablkcipher.encrypt = ablk_encrypt;
1404                         if (!cra->cra_ablkcipher.decrypt)
1405                                 cra->cra_ablkcipher.decrypt = ablk_decrypt;
1406                         cra->cra_init = init_tfm_ablk;
1407                 } else {
1408                         /* authenc */
1409                         cra->cra_type = &crypto_aead_type;
1410                         cra->cra_flags = CRYPTO_ALG_TYPE_AEAD |
1411                                          CRYPTO_ALG_ASYNC;
1412                         cra->cra_aead.setkey = aead_setkey;
1413                         cra->cra_aead.setauthsize = aead_setauthsize;
1414                         cra->cra_aead.encrypt = aead_encrypt;
1415                         cra->cra_aead.decrypt = aead_decrypt;
1416                         cra->cra_aead.givencrypt = aead_givencrypt;
1417                         cra->cra_init = init_tfm_aead;
1418                 }
1419                 cra->cra_ctxsize = sizeof(struct ixp_ctx);
1420                 cra->cra_module = THIS_MODULE;
1421                 cra->cra_alignmask = 3;
1422                 cra->cra_priority = 300;
1423                 cra->cra_exit = exit_tfm;
1424                 if (crypto_register_alg(cra))
1425                         printk(KERN_ERR "Failed to register '%s'\n",
1426                                 cra->cra_name);
1427                 else
1428                         ixp4xx_algos[i].registered = 1;
1429         }
1430         return 0;
1431 }
1432
1433 static void __exit ixp_module_exit(void)
1434 {
1435         int num = ARRAY_SIZE(ixp4xx_algos);
1436         int i;
1437
1438         for (i=0; i< num; i++) {
1439                 if (ixp4xx_algos[i].registered)
1440                         crypto_unregister_alg(&ixp4xx_algos[i].crypto);
1441         }
1442         release_ixp_crypto();
1443         platform_device_unregister(&pseudo_dev);
1444 }
1445
1446 module_init(ixp_module_init);
1447 module_exit(ixp_module_exit);
1448
1449 MODULE_LICENSE("GPL");
1450 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1451 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1452