2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
22 #include <linux/config.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/sched.h>
26 #include <linux/interrupt.h>
27 #include <linux/smp_lock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
33 #include <linux/sysctl.h>
34 #include <linux/list.h>
35 #include <linux/file.h>
36 #include <linux/poll.h>
37 #include <linux/vfs.h>
38 #include <linux/pagemap.h>
39 #include <linux/mount.h>
40 #include <linux/bitops.h>
42 #include <asm/errno.h>
43 #include <asm/intrinsics.h>
45 #include <asm/perfmon.h>
46 #include <asm/processor.h>
47 #include <asm/signal.h>
48 #include <asm/system.h>
49 #include <asm/uaccess.h>
50 #include <asm/delay.h>
54 * perfmon context state
56 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
57 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
58 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
59 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
61 #define PFM_INVALID_ACTIVATION (~0UL)
64 * depth of message queue
66 #define PFM_MAX_MSGS 32
67 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
70 * type of a PMU register (bitmask).
72 * bit0 : register implemented
75 * bit4 : pmc has pmc.pm
76 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
77 * bit6-7 : register type
80 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
81 #define PFM_REG_IMPL 0x1 /* register implemented */
82 #define PFM_REG_END 0x2 /* end marker */
83 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
84 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
85 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
86 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
87 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
89 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
90 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
92 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
94 /* i assumed unsigned */
95 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
96 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
98 /* XXX: these assume that register i is implemented */
99 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
100 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
101 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
102 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
104 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
105 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
106 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
107 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
109 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
110 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
112 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
113 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
114 #define PFM_CTX_TASK(h) (h)->ctx_task
116 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
118 /* XXX: does not support more than 64 PMDs */
119 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
120 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
122 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
124 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
125 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
126 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
127 #define PFM_CODE_RR 0 /* requesting code range restriction */
128 #define PFM_DATA_RR 1 /* requestion data range restriction */
130 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
131 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
132 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
134 #define RDEP(x) (1UL<<(x))
137 * context protection macros
139 * - we need to protect against CPU concurrency (spin_lock)
140 * - we need to protect against PMU overflow interrupts (local_irq_disable)
142 * - we need to protect against PMU overflow interrupts (local_irq_disable)
144 * spin_lock_irqsave()/spin_lock_irqrestore():
145 * in SMP: local_irq_disable + spin_lock
146 * in UP : local_irq_disable
148 * spin_lock()/spin_lock():
149 * in UP : removed automatically
150 * in SMP: protect against context accesses from other CPU. interrupts
151 * are not masked. This is useful for the PMU interrupt handler
152 * because we know we will not get PMU concurrency in that code.
154 #define PROTECT_CTX(c, f) \
156 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \
157 spin_lock_irqsave(&(c)->ctx_lock, f); \
158 DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \
161 #define UNPROTECT_CTX(c, f) \
163 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \
164 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
167 #define PROTECT_CTX_NOPRINT(c, f) \
169 spin_lock_irqsave(&(c)->ctx_lock, f); \
173 #define UNPROTECT_CTX_NOPRINT(c, f) \
175 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
179 #define PROTECT_CTX_NOIRQ(c) \
181 spin_lock(&(c)->ctx_lock); \
184 #define UNPROTECT_CTX_NOIRQ(c) \
186 spin_unlock(&(c)->ctx_lock); \
192 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
193 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
194 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
196 #else /* !CONFIG_SMP */
197 #define SET_ACTIVATION(t) do {} while(0)
198 #define GET_ACTIVATION(t) do {} while(0)
199 #define INC_ACTIVATION(t) do {} while(0)
200 #endif /* CONFIG_SMP */
202 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
203 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
204 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
206 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
207 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
209 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
212 * cmp0 must be the value of pmc0
214 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
216 #define PFMFS_MAGIC 0xa0b4d889
221 #define PFM_DEBUGGING 1
225 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
228 #define DPRINT_ovfl(a) \
230 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
235 * 64-bit software counter structure
237 * the next_reset_type is applied to the next call to pfm_reset_regs()
240 unsigned long val; /* virtual 64bit counter value */
241 unsigned long lval; /* last reset value */
242 unsigned long long_reset; /* reset value on sampling overflow */
243 unsigned long short_reset; /* reset value on overflow */
244 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
245 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
246 unsigned long seed; /* seed for random-number generator */
247 unsigned long mask; /* mask for random-number generator */
248 unsigned int flags; /* notify/do not notify */
249 unsigned long eventid; /* overflow event identifier */
256 unsigned int block:1; /* when 1, task will blocked on user notifications */
257 unsigned int system:1; /* do system wide monitoring */
258 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
259 unsigned int is_sampling:1; /* true if using a custom format */
260 unsigned int excl_idle:1; /* exclude idle task in system wide session */
261 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
262 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
263 unsigned int no_msg:1; /* no message sent on overflow */
264 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
265 unsigned int reserved:22;
266 } pfm_context_flags_t;
268 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
269 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
270 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
274 * perfmon context: encapsulates all the state of a monitoring session
277 typedef struct pfm_context {
278 spinlock_t ctx_lock; /* context protection */
280 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
281 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
283 struct task_struct *ctx_task; /* task to which context is attached */
285 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
287 struct semaphore ctx_restart_sem; /* use for blocking notification mode */
289 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
290 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
291 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
293 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
294 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
295 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
297 unsigned long ctx_pmcs[IA64_NUM_PMC_REGS]; /* saved copies of PMC values */
299 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
300 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
301 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
302 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
304 pfm_counter_t ctx_pmds[IA64_NUM_PMD_REGS]; /* software state for PMDS */
306 u64 ctx_saved_psr_up; /* only contains psr.up value */
308 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
309 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
310 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
312 int ctx_fd; /* file descriptor used my this context */
313 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
315 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
316 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
317 unsigned long ctx_smpl_size; /* size of sampling buffer */
318 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
320 wait_queue_head_t ctx_msgq_wait;
321 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
324 struct fasync_struct *ctx_async_queue;
326 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
330 * magic number used to verify that structure is really
333 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
335 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
338 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
339 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
341 #define SET_LAST_CPU(ctx, v) do {} while(0)
342 #define GET_LAST_CPU(ctx) do {} while(0)
346 #define ctx_fl_block ctx_flags.block
347 #define ctx_fl_system ctx_flags.system
348 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
349 #define ctx_fl_is_sampling ctx_flags.is_sampling
350 #define ctx_fl_excl_idle ctx_flags.excl_idle
351 #define ctx_fl_going_zombie ctx_flags.going_zombie
352 #define ctx_fl_trap_reason ctx_flags.trap_reason
353 #define ctx_fl_no_msg ctx_flags.no_msg
354 #define ctx_fl_can_restart ctx_flags.can_restart
356 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
357 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
360 * global information about all sessions
361 * mostly used to synchronize between system wide and per-process
364 spinlock_t pfs_lock; /* lock the structure */
366 unsigned int pfs_task_sessions; /* number of per task sessions */
367 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
368 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
369 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
370 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
374 * information about a PMC or PMD.
375 * dep_pmd[]: a bitmask of dependent PMD registers
376 * dep_pmc[]: a bitmask of dependent PMC registers
378 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
382 unsigned long default_value; /* power-on default value */
383 unsigned long reserved_mask; /* bitmask of reserved bits */
384 pfm_reg_check_t read_check;
385 pfm_reg_check_t write_check;
386 unsigned long dep_pmd[4];
387 unsigned long dep_pmc[4];
390 /* assume cnum is a valid monitor */
391 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
394 * This structure is initialized at boot time and contains
395 * a description of the PMU main characteristics.
397 * If the probe function is defined, detection is based
398 * on its return value:
399 * - 0 means recognized PMU
400 * - anything else means not supported
401 * When the probe function is not defined, then the pmu_family field
402 * is used and it must match the host CPU family such that:
403 * - cpu->family & config->pmu_family != 0
406 unsigned long ovfl_val; /* overflow value for counters */
408 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
409 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
411 unsigned int num_pmcs; /* number of PMCS: computed at init time */
412 unsigned int num_pmds; /* number of PMDS: computed at init time */
413 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
414 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
416 char *pmu_name; /* PMU family name */
417 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
418 unsigned int flags; /* pmu specific flags */
419 unsigned int num_ibrs; /* number of IBRS: computed at init time */
420 unsigned int num_dbrs; /* number of DBRS: computed at init time */
421 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
422 int (*probe)(void); /* customized probe routine */
423 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
428 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
431 * debug register related type definitions
434 unsigned long ibr_mask:56;
435 unsigned long ibr_plm:4;
436 unsigned long ibr_ig:3;
437 unsigned long ibr_x:1;
441 unsigned long dbr_mask:56;
442 unsigned long dbr_plm:4;
443 unsigned long dbr_ig:2;
444 unsigned long dbr_w:1;
445 unsigned long dbr_r:1;
456 * perfmon command descriptions
459 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
462 unsigned int cmd_narg;
464 int (*cmd_getsize)(void *arg, size_t *sz);
467 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
468 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
469 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
470 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
473 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
474 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
475 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
476 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
477 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
479 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
482 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
483 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
484 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
485 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
486 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
487 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
488 unsigned long pfm_smpl_handler_calls;
489 unsigned long pfm_smpl_handler_cycles;
490 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
494 * perfmon internal variables
496 static pfm_stats_t pfm_stats[NR_CPUS];
497 static pfm_session_t pfm_sessions; /* global sessions information */
499 static spinlock_t pfm_alt_install_check = SPIN_LOCK_UNLOCKED;
500 static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
502 static struct proc_dir_entry *perfmon_dir;
503 static pfm_uuid_t pfm_null_uuid = {0,};
505 static spinlock_t pfm_buffer_fmt_lock;
506 static LIST_HEAD(pfm_buffer_fmt_list);
508 static pmu_config_t *pmu_conf;
510 /* sysctl() controls */
511 pfm_sysctl_t pfm_sysctl;
512 EXPORT_SYMBOL(pfm_sysctl);
514 static ctl_table pfm_ctl_table[]={
515 {1, "debug", &pfm_sysctl.debug, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
516 {2, "debug_ovfl", &pfm_sysctl.debug_ovfl, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
517 {3, "fastctxsw", &pfm_sysctl.fastctxsw, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
518 {4, "expert_mode", &pfm_sysctl.expert_mode, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
521 static ctl_table pfm_sysctl_dir[] = {
522 {1, "perfmon", NULL, 0, 0755, pfm_ctl_table, },
525 static ctl_table pfm_sysctl_root[] = {
526 {1, "kernel", NULL, 0, 0755, pfm_sysctl_dir, },
529 static struct ctl_table_header *pfm_sysctl_header;
531 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
532 static int pfm_flush(struct file *filp);
534 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
535 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
538 pfm_put_task(struct task_struct *task)
540 if (task != current) put_task_struct(task);
544 pfm_set_task_notify(struct task_struct *task)
546 struct thread_info *info;
548 info = (struct thread_info *) ((char *) task + IA64_TASK_SIZE);
549 set_bit(TIF_NOTIFY_RESUME, &info->flags);
553 pfm_clear_task_notify(void)
555 clear_thread_flag(TIF_NOTIFY_RESUME);
559 pfm_reserve_page(unsigned long a)
561 SetPageReserved(vmalloc_to_page((void *)a));
564 pfm_unreserve_page(unsigned long a)
566 ClearPageReserved(vmalloc_to_page((void*)a));
569 static inline unsigned long
570 pfm_protect_ctx_ctxsw(pfm_context_t *x)
572 spin_lock(&(x)->ctx_lock);
576 static inline unsigned long
577 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
579 spin_unlock(&(x)->ctx_lock);
582 static inline unsigned int
583 pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
585 return do_munmap(mm, addr, len);
588 static inline unsigned long
589 pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
591 return get_unmapped_area(file, addr, len, pgoff, flags);
595 static struct super_block *
596 pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
598 return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC);
601 static struct file_system_type pfm_fs_type = {
603 .get_sb = pfmfs_get_sb,
604 .kill_sb = kill_anon_super,
607 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
608 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
609 DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
610 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
611 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
614 /* forward declaration */
615 static struct file_operations pfm_file_ops;
618 * forward declarations
621 static void pfm_lazy_save_regs (struct task_struct *ta);
624 void dump_pmu_state(const char *);
625 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
627 #include "perfmon_itanium.h"
628 #include "perfmon_mckinley.h"
629 #include "perfmon_generic.h"
631 static pmu_config_t *pmu_confs[]={
634 &pmu_conf_gen, /* must be last */
639 static int pfm_end_notify_user(pfm_context_t *ctx);
642 pfm_clear_psr_pp(void)
644 ia64_rsm(IA64_PSR_PP);
651 ia64_ssm(IA64_PSR_PP);
656 pfm_clear_psr_up(void)
658 ia64_rsm(IA64_PSR_UP);
665 ia64_ssm(IA64_PSR_UP);
669 static inline unsigned long
673 tmp = ia64_getreg(_IA64_REG_PSR);
679 pfm_set_psr_l(unsigned long val)
681 ia64_setreg(_IA64_REG_PSR_L, val);
693 pfm_unfreeze_pmu(void)
700 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
704 for (i=0; i < nibrs; i++) {
705 ia64_set_ibr(i, ibrs[i]);
706 ia64_dv_serialize_instruction();
712 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
716 for (i=0; i < ndbrs; i++) {
717 ia64_set_dbr(i, dbrs[i]);
718 ia64_dv_serialize_data();
724 * PMD[i] must be a counter. no check is made
726 static inline unsigned long
727 pfm_read_soft_counter(pfm_context_t *ctx, int i)
729 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
733 * PMD[i] must be a counter. no check is made
736 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
738 unsigned long ovfl_val = pmu_conf->ovfl_val;
740 ctx->ctx_pmds[i].val = val & ~ovfl_val;
742 * writing to unimplemented part is ignore, so we do not need to
745 ia64_set_pmd(i, val & ovfl_val);
749 pfm_get_new_msg(pfm_context_t *ctx)
753 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
755 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
756 if (next == ctx->ctx_msgq_head) return NULL;
758 idx = ctx->ctx_msgq_tail;
759 ctx->ctx_msgq_tail = next;
761 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
763 return ctx->ctx_msgq+idx;
767 pfm_get_next_msg(pfm_context_t *ctx)
771 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
773 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
778 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
783 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
785 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
791 pfm_reset_msgq(pfm_context_t *ctx)
793 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
794 DPRINT(("ctx=%p msgq reset\n", ctx));
798 pfm_rvmalloc(unsigned long size)
803 size = PAGE_ALIGN(size);
806 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
807 memset(mem, 0, size);
808 addr = (unsigned long)mem;
810 pfm_reserve_page(addr);
819 pfm_rvfree(void *mem, unsigned long size)
824 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
825 addr = (unsigned long) mem;
826 while ((long) size > 0) {
827 pfm_unreserve_page(addr);
836 static pfm_context_t *
837 pfm_context_alloc(void)
842 * allocate context descriptor
843 * must be able to free with interrupts disabled
845 ctx = kmalloc(sizeof(pfm_context_t), GFP_KERNEL);
847 memset(ctx, 0, sizeof(pfm_context_t));
848 DPRINT(("alloc ctx @%p\n", ctx));
854 pfm_context_free(pfm_context_t *ctx)
857 DPRINT(("free ctx @%p\n", ctx));
863 pfm_mask_monitoring(struct task_struct *task)
865 pfm_context_t *ctx = PFM_GET_CTX(task);
866 struct thread_struct *th = &task->thread;
867 unsigned long mask, val, ovfl_mask;
870 DPRINT_ovfl(("masking monitoring for [%d]\n", task->pid));
872 ovfl_mask = pmu_conf->ovfl_val;
874 * monitoring can only be masked as a result of a valid
875 * counter overflow. In UP, it means that the PMU still
876 * has an owner. Note that the owner can be different
877 * from the current task. However the PMU state belongs
879 * In SMP, a valid overflow only happens when task is
880 * current. Therefore if we come here, we know that
881 * the PMU state belongs to the current task, therefore
882 * we can access the live registers.
884 * So in both cases, the live register contains the owner's
885 * state. We can ONLY touch the PMU registers and NOT the PSR.
887 * As a consequence to this call, the thread->pmds[] array
888 * contains stale information which must be ignored
889 * when context is reloaded AND monitoring is active (see
892 mask = ctx->ctx_used_pmds[0];
893 for (i = 0; mask; i++, mask>>=1) {
894 /* skip non used pmds */
895 if ((mask & 0x1) == 0) continue;
896 val = ia64_get_pmd(i);
898 if (PMD_IS_COUNTING(i)) {
900 * we rebuild the full 64 bit value of the counter
902 ctx->ctx_pmds[i].val += (val & ovfl_mask);
904 ctx->ctx_pmds[i].val = val;
906 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
908 ctx->ctx_pmds[i].val,
912 * mask monitoring by setting the privilege level to 0
913 * we cannot use psr.pp/psr.up for this, it is controlled by
916 * if task is current, modify actual registers, otherwise modify
917 * thread save state, i.e., what will be restored in pfm_load_regs()
919 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
920 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
921 if ((mask & 0x1) == 0UL) continue;
922 ia64_set_pmc(i, th->pmcs[i] & ~0xfUL);
923 th->pmcs[i] &= ~0xfUL;
924 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, th->pmcs[i]));
927 * make all of this visible
933 * must always be done with task == current
935 * context must be in MASKED state when calling
938 pfm_restore_monitoring(struct task_struct *task)
940 pfm_context_t *ctx = PFM_GET_CTX(task);
941 struct thread_struct *th = &task->thread;
942 unsigned long mask, ovfl_mask;
943 unsigned long psr, val;
946 is_system = ctx->ctx_fl_system;
947 ovfl_mask = pmu_conf->ovfl_val;
949 if (task != current) {
950 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task->pid, current->pid);
953 if (ctx->ctx_state != PFM_CTX_MASKED) {
954 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
955 task->pid, current->pid, ctx->ctx_state);
960 * monitoring is masked via the PMC.
961 * As we restore their value, we do not want each counter to
962 * restart right away. We stop monitoring using the PSR,
963 * restore the PMC (and PMD) and then re-establish the psr
964 * as it was. Note that there can be no pending overflow at
965 * this point, because monitoring was MASKED.
967 * system-wide session are pinned and self-monitoring
969 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
971 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
977 * first, we restore the PMD
979 mask = ctx->ctx_used_pmds[0];
980 for (i = 0; mask; i++, mask>>=1) {
981 /* skip non used pmds */
982 if ((mask & 0x1) == 0) continue;
984 if (PMD_IS_COUNTING(i)) {
986 * we split the 64bit value according to
989 val = ctx->ctx_pmds[i].val & ovfl_mask;
990 ctx->ctx_pmds[i].val &= ~ovfl_mask;
992 val = ctx->ctx_pmds[i].val;
994 ia64_set_pmd(i, val);
996 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
998 ctx->ctx_pmds[i].val,
1004 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1005 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1006 if ((mask & 0x1) == 0UL) continue;
1007 th->pmcs[i] = ctx->ctx_pmcs[i];
1008 ia64_set_pmc(i, th->pmcs[i]);
1009 DPRINT(("[%d] pmc[%d]=0x%lx\n", task->pid, i, th->pmcs[i]));
1014 * must restore DBR/IBR because could be modified while masked
1015 * XXX: need to optimize
1017 if (ctx->ctx_fl_using_dbreg) {
1018 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1019 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1025 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1027 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1034 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1040 for (i=0; mask; i++, mask>>=1) {
1041 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1046 * reload from thread state (used for ctxw only)
1049 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1052 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1054 for (i=0; mask; i++, mask>>=1) {
1055 if ((mask & 0x1) == 0) continue;
1056 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1057 ia64_set_pmd(i, val);
1063 * propagate PMD from context to thread-state
1066 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1068 struct thread_struct *thread = &task->thread;
1069 unsigned long ovfl_val = pmu_conf->ovfl_val;
1070 unsigned long mask = ctx->ctx_all_pmds[0];
1074 DPRINT(("mask=0x%lx\n", mask));
1076 for (i=0; mask; i++, mask>>=1) {
1078 val = ctx->ctx_pmds[i].val;
1081 * We break up the 64 bit value into 2 pieces
1082 * the lower bits go to the machine state in the
1083 * thread (will be reloaded on ctxsw in).
1084 * The upper part stays in the soft-counter.
1086 if (PMD_IS_COUNTING(i)) {
1087 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1090 thread->pmds[i] = val;
1092 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1095 ctx->ctx_pmds[i].val));
1100 * propagate PMC from context to thread-state
1103 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1105 struct thread_struct *thread = &task->thread;
1106 unsigned long mask = ctx->ctx_all_pmcs[0];
1109 DPRINT(("mask=0x%lx\n", mask));
1111 for (i=0; mask; i++, mask>>=1) {
1112 /* masking 0 with ovfl_val yields 0 */
1113 thread->pmcs[i] = ctx->ctx_pmcs[i];
1114 DPRINT(("pmc[%d]=0x%lx\n", i, thread->pmcs[i]));
1121 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1125 for (i=0; mask; i++, mask>>=1) {
1126 if ((mask & 0x1) == 0) continue;
1127 ia64_set_pmc(i, pmcs[i]);
1133 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1135 return memcmp(a, b, sizeof(pfm_uuid_t));
1139 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1142 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1147 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1150 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1156 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1160 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1165 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1169 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1174 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1177 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1182 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1185 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1189 static pfm_buffer_fmt_t *
1190 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1192 struct list_head * pos;
1193 pfm_buffer_fmt_t * entry;
1195 list_for_each(pos, &pfm_buffer_fmt_list) {
1196 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1197 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1204 * find a buffer format based on its uuid
1206 static pfm_buffer_fmt_t *
1207 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1209 pfm_buffer_fmt_t * fmt;
1210 spin_lock(&pfm_buffer_fmt_lock);
1211 fmt = __pfm_find_buffer_fmt(uuid);
1212 spin_unlock(&pfm_buffer_fmt_lock);
1217 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1221 /* some sanity checks */
1222 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1224 /* we need at least a handler */
1225 if (fmt->fmt_handler == NULL) return -EINVAL;
1228 * XXX: need check validity of fmt_arg_size
1231 spin_lock(&pfm_buffer_fmt_lock);
1233 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1234 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1238 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1239 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1242 spin_unlock(&pfm_buffer_fmt_lock);
1245 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1248 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1250 pfm_buffer_fmt_t *fmt;
1253 spin_lock(&pfm_buffer_fmt_lock);
1255 fmt = __pfm_find_buffer_fmt(uuid);
1257 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1261 list_del_init(&fmt->fmt_list);
1262 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1265 spin_unlock(&pfm_buffer_fmt_lock);
1269 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1271 extern void update_pal_halt_status(int);
1274 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1276 unsigned long flags;
1278 * validy checks on cpu_mask have been done upstream
1282 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1283 pfm_sessions.pfs_sys_sessions,
1284 pfm_sessions.pfs_task_sessions,
1285 pfm_sessions.pfs_sys_use_dbregs,
1291 * cannot mix system wide and per-task sessions
1293 if (pfm_sessions.pfs_task_sessions > 0UL) {
1294 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1295 pfm_sessions.pfs_task_sessions));
1299 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1301 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1303 pfm_sessions.pfs_sys_session[cpu] = task;
1305 pfm_sessions.pfs_sys_sessions++ ;
1308 if (pfm_sessions.pfs_sys_sessions) goto abort;
1309 pfm_sessions.pfs_task_sessions++;
1312 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1313 pfm_sessions.pfs_sys_sessions,
1314 pfm_sessions.pfs_task_sessions,
1315 pfm_sessions.pfs_sys_use_dbregs,
1320 * disable default_idle() to go to PAL_HALT
1322 update_pal_halt_status(0);
1329 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1330 pfm_sessions.pfs_sys_session[cpu]->pid,
1340 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1342 unsigned long flags;
1344 * validy checks on cpu_mask have been done upstream
1348 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1349 pfm_sessions.pfs_sys_sessions,
1350 pfm_sessions.pfs_task_sessions,
1351 pfm_sessions.pfs_sys_use_dbregs,
1357 pfm_sessions.pfs_sys_session[cpu] = NULL;
1359 * would not work with perfmon+more than one bit in cpu_mask
1361 if (ctx && ctx->ctx_fl_using_dbreg) {
1362 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1363 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1365 pfm_sessions.pfs_sys_use_dbregs--;
1368 pfm_sessions.pfs_sys_sessions--;
1370 pfm_sessions.pfs_task_sessions--;
1372 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1373 pfm_sessions.pfs_sys_sessions,
1374 pfm_sessions.pfs_task_sessions,
1375 pfm_sessions.pfs_sys_use_dbregs,
1380 * if possible, enable default_idle() to go into PAL_HALT
1382 if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1383 update_pal_halt_status(1);
1391 * removes virtual mapping of the sampling buffer.
1392 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1393 * a PROTECT_CTX() section.
1396 pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1401 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1402 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task->pid, task->mm);
1406 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1409 * does the actual unmapping
1411 down_write(&task->mm->mmap_sem);
1413 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1415 r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1417 up_write(&task->mm->mmap_sem);
1419 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task->pid, vaddr, size);
1422 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1428 * free actual physical storage used by sampling buffer
1432 pfm_free_smpl_buffer(pfm_context_t *ctx)
1434 pfm_buffer_fmt_t *fmt;
1436 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1439 * we won't use the buffer format anymore
1441 fmt = ctx->ctx_buf_fmt;
1443 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1446 ctx->ctx_smpl_vaddr));
1448 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1453 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1455 ctx->ctx_smpl_hdr = NULL;
1456 ctx->ctx_smpl_size = 0UL;
1461 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current->pid);
1467 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1469 if (fmt == NULL) return;
1471 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1476 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1477 * no real gain from having the whole whorehouse mounted. So we don't need
1478 * any operations on the root directory. However, we need a non-trivial
1479 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1481 static struct vfsmount *pfmfs_mnt;
1486 int err = register_filesystem(&pfm_fs_type);
1488 pfmfs_mnt = kern_mount(&pfm_fs_type);
1489 err = PTR_ERR(pfmfs_mnt);
1490 if (IS_ERR(pfmfs_mnt))
1491 unregister_filesystem(&pfm_fs_type);
1501 unregister_filesystem(&pfm_fs_type);
1506 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1511 unsigned long flags;
1512 DECLARE_WAITQUEUE(wait, current);
1513 if (PFM_IS_FILE(filp) == 0) {
1514 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1518 ctx = (pfm_context_t *)filp->private_data;
1520 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", current->pid);
1525 * check even when there is no message
1527 if (size < sizeof(pfm_msg_t)) {
1528 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1532 PROTECT_CTX(ctx, flags);
1535 * put ourselves on the wait queue
1537 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1545 set_current_state(TASK_INTERRUPTIBLE);
1547 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1550 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1552 UNPROTECT_CTX(ctx, flags);
1555 * check non-blocking read
1558 if(filp->f_flags & O_NONBLOCK) break;
1561 * check pending signals
1563 if(signal_pending(current)) {
1568 * no message, so wait
1572 PROTECT_CTX(ctx, flags);
1574 DPRINT(("[%d] back to running ret=%ld\n", current->pid, ret));
1575 set_current_state(TASK_RUNNING);
1576 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1578 if (ret < 0) goto abort;
1581 msg = pfm_get_next_msg(ctx);
1583 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, current->pid);
1587 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1590 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1593 UNPROTECT_CTX(ctx, flags);
1599 pfm_write(struct file *file, const char __user *ubuf,
1600 size_t size, loff_t *ppos)
1602 DPRINT(("pfm_write called\n"));
1607 pfm_poll(struct file *filp, poll_table * wait)
1610 unsigned long flags;
1611 unsigned int mask = 0;
1613 if (PFM_IS_FILE(filp) == 0) {
1614 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1618 ctx = (pfm_context_t *)filp->private_data;
1620 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", current->pid);
1625 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1627 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1629 PROTECT_CTX(ctx, flags);
1631 if (PFM_CTXQ_EMPTY(ctx) == 0)
1632 mask = POLLIN | POLLRDNORM;
1634 UNPROTECT_CTX(ctx, flags);
1636 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1642 pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
1644 DPRINT(("pfm_ioctl called\n"));
1649 * interrupt cannot be masked when coming here
1652 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1656 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1658 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1662 ctx->ctx_async_queue, ret));
1668 pfm_fasync(int fd, struct file *filp, int on)
1673 if (PFM_IS_FILE(filp) == 0) {
1674 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", current->pid);
1678 ctx = (pfm_context_t *)filp->private_data;
1680 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", current->pid);
1684 * we cannot mask interrupts during this call because this may
1685 * may go to sleep if memory is not readily avalaible.
1687 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1688 * done in caller. Serialization of this function is ensured by caller.
1690 ret = pfm_do_fasync(fd, filp, ctx, on);
1693 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1696 ctx->ctx_async_queue, ret));
1703 * this function is exclusively called from pfm_close().
1704 * The context is not protected at that time, nor are interrupts
1705 * on the remote CPU. That's necessary to avoid deadlocks.
1708 pfm_syswide_force_stop(void *info)
1710 pfm_context_t *ctx = (pfm_context_t *)info;
1711 struct pt_regs *regs = ia64_task_regs(current);
1712 struct task_struct *owner;
1713 unsigned long flags;
1716 if (ctx->ctx_cpu != smp_processor_id()) {
1717 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1719 smp_processor_id());
1722 owner = GET_PMU_OWNER();
1723 if (owner != ctx->ctx_task) {
1724 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1726 owner->pid, ctx->ctx_task->pid);
1729 if (GET_PMU_CTX() != ctx) {
1730 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1732 GET_PMU_CTX(), ctx);
1736 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx->ctx_task->pid));
1738 * the context is already protected in pfm_close(), we simply
1739 * need to mask interrupts to avoid a PMU interrupt race on
1742 local_irq_save(flags);
1744 ret = pfm_context_unload(ctx, NULL, 0, regs);
1746 DPRINT(("context_unload returned %d\n", ret));
1750 * unmask interrupts, PMU interrupts are now spurious here
1752 local_irq_restore(flags);
1756 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1760 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1761 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 0, 1);
1762 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1764 #endif /* CONFIG_SMP */
1767 * called for each close(). Partially free resources.
1768 * When caller is self-monitoring, the context is unloaded.
1771 pfm_flush(struct file *filp)
1774 struct task_struct *task;
1775 struct pt_regs *regs;
1776 unsigned long flags;
1777 unsigned long smpl_buf_size = 0UL;
1778 void *smpl_buf_vaddr = NULL;
1779 int state, is_system;
1781 if (PFM_IS_FILE(filp) == 0) {
1782 DPRINT(("bad magic for\n"));
1786 ctx = (pfm_context_t *)filp->private_data;
1788 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", current->pid);
1793 * remove our file from the async queue, if we use this mode.
1794 * This can be done without the context being protected. We come
1795 * here when the context has become unreacheable by other tasks.
1797 * We may still have active monitoring at this point and we may
1798 * end up in pfm_overflow_handler(). However, fasync_helper()
1799 * operates with interrupts disabled and it cleans up the
1800 * queue. If the PMU handler is called prior to entering
1801 * fasync_helper() then it will send a signal. If it is
1802 * invoked after, it will find an empty queue and no
1803 * signal will be sent. In both case, we are safe
1805 if (filp->f_flags & FASYNC) {
1806 DPRINT(("cleaning up async_queue=%p\n", ctx->ctx_async_queue));
1807 pfm_do_fasync (-1, filp, ctx, 0);
1810 PROTECT_CTX(ctx, flags);
1812 state = ctx->ctx_state;
1813 is_system = ctx->ctx_fl_system;
1815 task = PFM_CTX_TASK(ctx);
1816 regs = ia64_task_regs(task);
1818 DPRINT(("ctx_state=%d is_current=%d\n",
1820 task == current ? 1 : 0));
1823 * if state == UNLOADED, then task is NULL
1827 * we must stop and unload because we are losing access to the context.
1829 if (task == current) {
1832 * the task IS the owner but it migrated to another CPU: that's bad
1833 * but we must handle this cleanly. Unfortunately, the kernel does
1834 * not provide a mechanism to block migration (while the context is loaded).
1836 * We need to release the resource on the ORIGINAL cpu.
1838 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1840 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1842 * keep context protected but unmask interrupt for IPI
1844 local_irq_restore(flags);
1846 pfm_syswide_cleanup_other_cpu(ctx);
1849 * restore interrupt masking
1851 local_irq_save(flags);
1854 * context is unloaded at this point
1857 #endif /* CONFIG_SMP */
1860 DPRINT(("forcing unload\n"));
1862 * stop and unload, returning with state UNLOADED
1863 * and session unreserved.
1865 pfm_context_unload(ctx, NULL, 0, regs);
1867 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1872 * remove virtual mapping, if any, for the calling task.
1873 * cannot reset ctx field until last user is calling close().
1875 * ctx_smpl_vaddr must never be cleared because it is needed
1876 * by every task with access to the context
1878 * When called from do_exit(), the mm context is gone already, therefore
1879 * mm is NULL, i.e., the VMA is already gone and we do not have to
1882 if (ctx->ctx_smpl_vaddr && current->mm) {
1883 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1884 smpl_buf_size = ctx->ctx_smpl_size;
1887 UNPROTECT_CTX(ctx, flags);
1890 * if there was a mapping, then we systematically remove it
1891 * at this point. Cannot be done inside critical section
1892 * because some VM function reenables interrupts.
1895 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1900 * called either on explicit close() or from exit_files().
1901 * Only the LAST user of the file gets to this point, i.e., it is
1904 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1905 * (fput()),i.e, last task to access the file. Nobody else can access the
1906 * file at this point.
1908 * When called from exit_files(), the VMA has been freed because exit_mm()
1909 * is executed before exit_files().
1911 * When called from exit_files(), the current task is not yet ZOMBIE but we
1912 * flush the PMU state to the context.
1915 pfm_close(struct inode *inode, struct file *filp)
1918 struct task_struct *task;
1919 struct pt_regs *regs;
1920 DECLARE_WAITQUEUE(wait, current);
1921 unsigned long flags;
1922 unsigned long smpl_buf_size = 0UL;
1923 void *smpl_buf_addr = NULL;
1924 int free_possible = 1;
1925 int state, is_system;
1927 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1929 if (PFM_IS_FILE(filp) == 0) {
1930 DPRINT(("bad magic\n"));
1934 ctx = (pfm_context_t *)filp->private_data;
1936 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", current->pid);
1940 PROTECT_CTX(ctx, flags);
1942 state = ctx->ctx_state;
1943 is_system = ctx->ctx_fl_system;
1945 task = PFM_CTX_TASK(ctx);
1946 regs = ia64_task_regs(task);
1948 DPRINT(("ctx_state=%d is_current=%d\n",
1950 task == current ? 1 : 0));
1953 * if task == current, then pfm_flush() unloaded the context
1955 if (state == PFM_CTX_UNLOADED) goto doit;
1958 * context is loaded/masked and task != current, we need to
1959 * either force an unload or go zombie
1963 * The task is currently blocked or will block after an overflow.
1964 * we must force it to wakeup to get out of the
1965 * MASKED state and transition to the unloaded state by itself.
1967 * This situation is only possible for per-task mode
1969 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
1972 * set a "partial" zombie state to be checked
1973 * upon return from down() in pfm_handle_work().
1975 * We cannot use the ZOMBIE state, because it is checked
1976 * by pfm_load_regs() which is called upon wakeup from down().
1977 * In such case, it would free the context and then we would
1978 * return to pfm_handle_work() which would access the
1979 * stale context. Instead, we set a flag invisible to pfm_load_regs()
1980 * but visible to pfm_handle_work().
1982 * For some window of time, we have a zombie context with
1983 * ctx_state = MASKED and not ZOMBIE
1985 ctx->ctx_fl_going_zombie = 1;
1988 * force task to wake up from MASKED state
1990 up(&ctx->ctx_restart_sem);
1992 DPRINT(("waking up ctx_state=%d\n", state));
1995 * put ourself to sleep waiting for the other
1996 * task to report completion
1998 * the context is protected by mutex, therefore there
1999 * is no risk of being notified of completion before
2000 * begin actually on the waitq.
2002 set_current_state(TASK_INTERRUPTIBLE);
2003 add_wait_queue(&ctx->ctx_zombieq, &wait);
2005 UNPROTECT_CTX(ctx, flags);
2008 * XXX: check for signals :
2009 * - ok for explicit close
2010 * - not ok when coming from exit_files()
2015 PROTECT_CTX(ctx, flags);
2018 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2019 set_current_state(TASK_RUNNING);
2022 * context is unloaded at this point
2024 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2026 else if (task != current) {
2029 * switch context to zombie state
2031 ctx->ctx_state = PFM_CTX_ZOMBIE;
2033 DPRINT(("zombie ctx for [%d]\n", task->pid));
2035 * cannot free the context on the spot. deferred until
2036 * the task notices the ZOMBIE state
2040 pfm_context_unload(ctx, NULL, 0, regs);
2045 /* reload state, may have changed during opening of critical section */
2046 state = ctx->ctx_state;
2049 * the context is still attached to a task (possibly current)
2050 * we cannot destroy it right now
2054 * we must free the sampling buffer right here because
2055 * we cannot rely on it being cleaned up later by the
2056 * monitored task. It is not possible to free vmalloc'ed
2057 * memory in pfm_load_regs(). Instead, we remove the buffer
2058 * now. should there be subsequent PMU overflow originally
2059 * meant for sampling, the will be converted to spurious
2060 * and that's fine because the monitoring tools is gone anyway.
2062 if (ctx->ctx_smpl_hdr) {
2063 smpl_buf_addr = ctx->ctx_smpl_hdr;
2064 smpl_buf_size = ctx->ctx_smpl_size;
2065 /* no more sampling */
2066 ctx->ctx_smpl_hdr = NULL;
2067 ctx->ctx_fl_is_sampling = 0;
2070 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2076 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2079 * UNLOADED that the session has already been unreserved.
2081 if (state == PFM_CTX_ZOMBIE) {
2082 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2086 * disconnect file descriptor from context must be done
2089 filp->private_data = NULL;
2092 * if we free on the spot, the context is now completely unreacheable
2093 * from the callers side. The monitored task side is also cut, so we
2096 * If we have a deferred free, only the caller side is disconnected.
2098 UNPROTECT_CTX(ctx, flags);
2101 * All memory free operations (especially for vmalloc'ed memory)
2102 * MUST be done with interrupts ENABLED.
2104 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2107 * return the memory used by the context
2109 if (free_possible) pfm_context_free(ctx);
2115 pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2117 DPRINT(("pfm_no_open called\n"));
2123 static struct file_operations pfm_file_ops = {
2124 .llseek = no_llseek,
2129 .open = pfm_no_open, /* special open code to disallow open via /proc */
2130 .fasync = pfm_fasync,
2131 .release = pfm_close,
2136 pfmfs_delete_dentry(struct dentry *dentry)
2141 static struct dentry_operations pfmfs_dentry_operations = {
2142 .d_delete = pfmfs_delete_dentry,
2147 pfm_alloc_fd(struct file **cfile)
2150 struct file *file = NULL;
2151 struct inode * inode;
2155 fd = get_unused_fd();
2156 if (fd < 0) return -ENFILE;
2160 file = get_empty_filp();
2161 if (!file) goto out;
2164 * allocate a new inode
2166 inode = new_inode(pfmfs_mnt->mnt_sb);
2167 if (!inode) goto out;
2169 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2171 inode->i_mode = S_IFCHR|S_IRUGO;
2172 inode->i_uid = current->fsuid;
2173 inode->i_gid = current->fsgid;
2175 sprintf(name, "[%lu]", inode->i_ino);
2177 this.len = strlen(name);
2178 this.hash = inode->i_ino;
2183 * allocate a new dcache entry
2185 file->f_dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2186 if (!file->f_dentry) goto out;
2188 file->f_dentry->d_op = &pfmfs_dentry_operations;
2190 d_add(file->f_dentry, inode);
2191 file->f_vfsmnt = mntget(pfmfs_mnt);
2192 file->f_mapping = inode->i_mapping;
2194 file->f_op = &pfm_file_ops;
2195 file->f_mode = FMODE_READ;
2196 file->f_flags = O_RDONLY;
2200 * may have to delay until context is attached?
2202 fd_install(fd, file);
2205 * the file structure we will use
2211 if (file) put_filp(file);
2217 pfm_free_fd(int fd, struct file *file)
2219 struct files_struct *files = current->files;
2222 * there ie no fd_uninstall(), so we do it here
2224 spin_lock(&files->file_lock);
2225 files->fd[fd] = NULL;
2226 spin_unlock(&files->file_lock);
2228 if (file) put_filp(file);
2233 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2235 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2238 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2241 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2252 * allocate a sampling buffer and remaps it into the user address space of the task
2255 pfm_smpl_buffer_alloc(struct task_struct *task, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2257 struct mm_struct *mm = task->mm;
2258 struct vm_area_struct *vma = NULL;
2264 * the fixed header + requested size and align to page boundary
2266 size = PAGE_ALIGN(rsize);
2268 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2271 * check requested size to avoid Denial-of-service attacks
2272 * XXX: may have to refine this test
2273 * Check against address space limit.
2275 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2278 if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
2282 * We do the easy to undo allocations first.
2284 * pfm_rvmalloc(), clears the buffer, so there is no leak
2286 smpl_buf = pfm_rvmalloc(size);
2287 if (smpl_buf == NULL) {
2288 DPRINT(("Can't allocate sampling buffer\n"));
2292 DPRINT(("smpl_buf @%p\n", smpl_buf));
2295 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
2297 DPRINT(("Cannot allocate vma\n"));
2300 memset(vma, 0, sizeof(*vma));
2303 * partially initialize the vma for the sampling buffer
2306 vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
2307 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2310 * Now we have everything we need and we can initialize
2311 * and connect all the data structures
2314 ctx->ctx_smpl_hdr = smpl_buf;
2315 ctx->ctx_smpl_size = size; /* aligned size */
2318 * Let's do the difficult operations next.
2320 * now we atomically find some area in the address space and
2321 * remap the buffer in it.
2323 down_write(&task->mm->mmap_sem);
2325 /* find some free area in address space, must have mmap sem held */
2326 vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2327 if (vma->vm_start == 0UL) {
2328 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2329 up_write(&task->mm->mmap_sem);
2332 vma->vm_end = vma->vm_start + size;
2333 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2335 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2337 /* can only be applied to current task, need to have the mm semaphore held when called */
2338 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2339 DPRINT(("Can't remap buffer\n"));
2340 up_write(&task->mm->mmap_sem);
2345 * now insert the vma in the vm list for the process, must be
2346 * done with mmap lock held
2348 insert_vm_struct(mm, vma);
2350 mm->total_vm += size >> PAGE_SHIFT;
2351 vm_stat_account(vma);
2352 up_write(&task->mm->mmap_sem);
2355 * keep track of user level virtual address
2357 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2358 *(unsigned long *)user_vaddr = vma->vm_start;
2363 kmem_cache_free(vm_area_cachep, vma);
2365 pfm_rvfree(smpl_buf, size);
2371 * XXX: do something better here
2374 pfm_bad_permissions(struct task_struct *task)
2376 /* inspired by ptrace_attach() */
2377 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2386 return ((current->uid != task->euid)
2387 || (current->uid != task->suid)
2388 || (current->uid != task->uid)
2389 || (current->gid != task->egid)
2390 || (current->gid != task->sgid)
2391 || (current->gid != task->gid)) && !capable(CAP_SYS_PTRACE);
2395 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2401 ctx_flags = pfx->ctx_flags;
2403 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2406 * cannot block in this mode
2408 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2409 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2414 /* probably more to add here */
2420 pfm_setup_buffer_fmt(struct task_struct *task, pfm_context_t *ctx, unsigned int ctx_flags,
2421 unsigned int cpu, pfarg_context_t *arg)
2423 pfm_buffer_fmt_t *fmt = NULL;
2424 unsigned long size = 0UL;
2426 void *fmt_arg = NULL;
2428 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2430 /* invoke and lock buffer format, if found */
2431 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2433 DPRINT(("[%d] cannot find buffer format\n", task->pid));
2438 * buffer argument MUST be contiguous to pfarg_context_t
2440 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2442 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2444 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task->pid, ctx_flags, cpu, fmt_arg, ret));
2446 if (ret) goto error;
2448 /* link buffer format and context */
2449 ctx->ctx_buf_fmt = fmt;
2452 * check if buffer format wants to use perfmon buffer allocation/mapping service
2454 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2455 if (ret) goto error;
2459 * buffer is always remapped into the caller's address space
2461 ret = pfm_smpl_buffer_alloc(current, ctx, size, &uaddr);
2462 if (ret) goto error;
2464 /* keep track of user address of buffer */
2465 arg->ctx_smpl_vaddr = uaddr;
2467 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2474 pfm_reset_pmu_state(pfm_context_t *ctx)
2479 * install reset values for PMC.
2481 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2482 if (PMC_IS_IMPL(i) == 0) continue;
2483 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2484 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2487 * PMD registers are set to 0UL when the context in memset()
2491 * On context switched restore, we must restore ALL pmc and ALL pmd even
2492 * when they are not actively used by the task. In UP, the incoming process
2493 * may otherwise pick up left over PMC, PMD state from the previous process.
2494 * As opposed to PMD, stale PMC can cause harm to the incoming
2495 * process because they may change what is being measured.
2496 * Therefore, we must systematically reinstall the entire
2497 * PMC state. In SMP, the same thing is possible on the
2498 * same CPU but also on between 2 CPUs.
2500 * The problem with PMD is information leaking especially
2501 * to user level when psr.sp=0
2503 * There is unfortunately no easy way to avoid this problem
2504 * on either UP or SMP. This definitively slows down the
2505 * pfm_load_regs() function.
2509 * bitmask of all PMCs accessible to this context
2511 * PMC0 is treated differently.
2513 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2516 * bitmask of all PMDs that are accesible to this context
2518 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2520 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2523 * useful in case of re-enable after disable
2525 ctx->ctx_used_ibrs[0] = 0UL;
2526 ctx->ctx_used_dbrs[0] = 0UL;
2530 pfm_ctx_getsize(void *arg, size_t *sz)
2532 pfarg_context_t *req = (pfarg_context_t *)arg;
2533 pfm_buffer_fmt_t *fmt;
2537 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2539 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2541 DPRINT(("cannot find buffer format\n"));
2544 /* get just enough to copy in user parameters */
2545 *sz = fmt->fmt_arg_size;
2546 DPRINT(("arg_size=%lu\n", *sz));
2554 * cannot attach if :
2556 * - task not owned by caller
2557 * - task incompatible with context mode
2560 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2563 * no kernel task or task not owner by caller
2565 if (task->mm == NULL) {
2566 DPRINT(("task [%d] has not memory context (kernel thread)\n", task->pid));
2569 if (pfm_bad_permissions(task)) {
2570 DPRINT(("no permission to attach to [%d]\n", task->pid));
2574 * cannot block in self-monitoring mode
2576 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2577 DPRINT(("cannot load a blocking context on self for [%d]\n", task->pid));
2581 if (task->exit_state == EXIT_ZOMBIE) {
2582 DPRINT(("cannot attach to zombie task [%d]\n", task->pid));
2587 * always ok for self
2589 if (task == current) return 0;
2591 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
2592 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task->pid, task->state));
2596 * make sure the task is off any CPU
2598 wait_task_inactive(task);
2600 /* more to come... */
2606 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2608 struct task_struct *p = current;
2611 /* XXX: need to add more checks here */
2612 if (pid < 2) return -EPERM;
2614 if (pid != current->pid) {
2616 read_lock(&tasklist_lock);
2618 p = find_task_by_pid(pid);
2620 /* make sure task cannot go away while we operate on it */
2621 if (p) get_task_struct(p);
2623 read_unlock(&tasklist_lock);
2625 if (p == NULL) return -ESRCH;
2628 ret = pfm_task_incompatible(ctx, p);
2631 } else if (p != current) {
2640 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2642 pfarg_context_t *req = (pfarg_context_t *)arg;
2647 /* let's check the arguments first */
2648 ret = pfarg_is_sane(current, req);
2649 if (ret < 0) return ret;
2651 ctx_flags = req->ctx_flags;
2655 ctx = pfm_context_alloc();
2656 if (!ctx) goto error;
2658 ret = pfm_alloc_fd(&filp);
2659 if (ret < 0) goto error_file;
2661 req->ctx_fd = ctx->ctx_fd = ret;
2664 * attach context to file
2666 filp->private_data = ctx;
2669 * does the user want to sample?
2671 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2672 ret = pfm_setup_buffer_fmt(current, ctx, ctx_flags, 0, req);
2673 if (ret) goto buffer_error;
2677 * init context protection lock
2679 spin_lock_init(&ctx->ctx_lock);
2682 * context is unloaded
2684 ctx->ctx_state = PFM_CTX_UNLOADED;
2687 * initialization of context's flags
2689 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
2690 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
2691 ctx->ctx_fl_is_sampling = ctx->ctx_buf_fmt ? 1 : 0; /* assume record() is defined */
2692 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
2694 * will move to set properties
2695 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
2699 * init restart semaphore to locked
2701 sema_init(&ctx->ctx_restart_sem, 0);
2704 * activation is used in SMP only
2706 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
2707 SET_LAST_CPU(ctx, -1);
2710 * initialize notification message queue
2712 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
2713 init_waitqueue_head(&ctx->ctx_msgq_wait);
2714 init_waitqueue_head(&ctx->ctx_zombieq);
2716 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2721 ctx->ctx_fl_excl_idle,
2726 * initialize soft PMU state
2728 pfm_reset_pmu_state(ctx);
2733 pfm_free_fd(ctx->ctx_fd, filp);
2735 if (ctx->ctx_buf_fmt) {
2736 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2739 pfm_context_free(ctx);
2745 static inline unsigned long
2746 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2748 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2749 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2750 extern unsigned long carta_random32 (unsigned long seed);
2752 if (reg->flags & PFM_REGFL_RANDOM) {
2753 new_seed = carta_random32(old_seed);
2754 val -= (old_seed & mask); /* counter values are negative numbers! */
2755 if ((mask >> 32) != 0)
2756 /* construct a full 64-bit random value: */
2757 new_seed |= carta_random32(old_seed >> 32) << 32;
2758 reg->seed = new_seed;
2765 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2767 unsigned long mask = ovfl_regs[0];
2768 unsigned long reset_others = 0UL;
2773 * now restore reset value on sampling overflowed counters
2775 mask >>= PMU_FIRST_COUNTER;
2776 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2778 if ((mask & 0x1UL) == 0UL) continue;
2780 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2781 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2783 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2787 * Now take care of resetting the other registers
2789 for(i = 0; reset_others; i++, reset_others >>= 1) {
2791 if ((reset_others & 0x1) == 0) continue;
2793 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2795 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2796 is_long_reset ? "long" : "short", i, val));
2801 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2803 unsigned long mask = ovfl_regs[0];
2804 unsigned long reset_others = 0UL;
2808 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2810 if (ctx->ctx_state == PFM_CTX_MASKED) {
2811 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2816 * now restore reset value on sampling overflowed counters
2818 mask >>= PMU_FIRST_COUNTER;
2819 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2821 if ((mask & 0x1UL) == 0UL) continue;
2823 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2824 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2826 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2828 pfm_write_soft_counter(ctx, i, val);
2832 * Now take care of resetting the other registers
2834 for(i = 0; reset_others; i++, reset_others >>= 1) {
2836 if ((reset_others & 0x1) == 0) continue;
2838 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2840 if (PMD_IS_COUNTING(i)) {
2841 pfm_write_soft_counter(ctx, i, val);
2843 ia64_set_pmd(i, val);
2845 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2846 is_long_reset ? "long" : "short", i, val));
2852 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2854 struct thread_struct *thread = NULL;
2855 struct task_struct *task;
2856 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2857 unsigned long value, pmc_pm;
2858 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2859 unsigned int cnum, reg_flags, flags, pmc_type;
2860 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2861 int is_monitor, is_counting, state;
2863 pfm_reg_check_t wr_func;
2864 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2866 state = ctx->ctx_state;
2867 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2868 is_system = ctx->ctx_fl_system;
2869 task = ctx->ctx_task;
2870 impl_pmds = pmu_conf->impl_pmds[0];
2872 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2875 thread = &task->thread;
2877 * In system wide and when the context is loaded, access can only happen
2878 * when the caller is running on the CPU being monitored by the session.
2879 * It does not have to be the owner (ctx_task) of the context per se.
2881 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2882 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2885 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2887 expert_mode = pfm_sysctl.expert_mode;
2889 for (i = 0; i < count; i++, req++) {
2891 cnum = req->reg_num;
2892 reg_flags = req->reg_flags;
2893 value = req->reg_value;
2894 smpl_pmds = req->reg_smpl_pmds[0];
2895 reset_pmds = req->reg_reset_pmds[0];
2899 if (cnum >= PMU_MAX_PMCS) {
2900 DPRINT(("pmc%u is invalid\n", cnum));
2904 pmc_type = pmu_conf->pmc_desc[cnum].type;
2905 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2906 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2907 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2910 * we reject all non implemented PMC as well
2911 * as attempts to modify PMC[0-3] which are used
2912 * as status registers by the PMU
2914 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2915 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2918 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2920 * If the PMC is a monitor, then if the value is not the default:
2921 * - system-wide session: PMCx.pm=1 (privileged monitor)
2922 * - per-task : PMCx.pm=0 (user monitor)
2924 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2925 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2934 * enforce generation of overflow interrupt. Necessary on all
2937 value |= 1 << PMU_PMC_OI;
2939 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2940 flags |= PFM_REGFL_OVFL_NOTIFY;
2943 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2945 /* verify validity of smpl_pmds */
2946 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2947 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2951 /* verify validity of reset_pmds */
2952 if ((reset_pmds & impl_pmds) != reset_pmds) {
2953 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2957 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2958 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2961 /* eventid on non-counting monitors are ignored */
2965 * execute write checker, if any
2967 if (likely(expert_mode == 0 && wr_func)) {
2968 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2969 if (ret) goto error;
2974 * no error on this register
2976 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2979 * Now we commit the changes to the software state
2983 * update overflow information
2987 * full flag update each time a register is programmed
2989 ctx->ctx_pmds[cnum].flags = flags;
2991 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2992 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
2993 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
2996 * Mark all PMDS to be accessed as used.
2998 * We do not keep track of PMC because we have to
2999 * systematically restore ALL of them.
3001 * We do not update the used_monitors mask, because
3002 * if we have not programmed them, then will be in
3003 * a quiescent state, therefore we will not need to
3004 * mask/restore then when context is MASKED.
3006 CTX_USED_PMD(ctx, reset_pmds);
3007 CTX_USED_PMD(ctx, smpl_pmds);
3009 * make sure we do not try to reset on
3010 * restart because we have established new values
3012 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3015 * Needed in case the user does not initialize the equivalent
3016 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3017 * possible leak here.
3019 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3022 * keep track of the monitor PMC that we are using.
3023 * we save the value of the pmc in ctx_pmcs[] and if
3024 * the monitoring is not stopped for the context we also
3025 * place it in the saved state area so that it will be
3026 * picked up later by the context switch code.
3028 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3030 * The value in thread->pmcs[] may be modified on overflow, i.e., when
3031 * monitoring needs to be stopped.
3033 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3036 * update context state
3038 ctx->ctx_pmcs[cnum] = value;
3042 * write thread state
3044 if (is_system == 0) thread->pmcs[cnum] = value;
3047 * write hardware register if we can
3049 if (can_access_pmu) {
3050 ia64_set_pmc(cnum, value);
3055 * per-task SMP only here
3057 * we are guaranteed that the task is not running on the other CPU,
3058 * we indicate that this PMD will need to be reloaded if the task
3059 * is rescheduled on the CPU it ran last on.
3061 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3066 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3072 ctx->ctx_all_pmcs[0],
3073 ctx->ctx_used_pmds[0],
3074 ctx->ctx_pmds[cnum].eventid,
3077 ctx->ctx_reload_pmcs[0],
3078 ctx->ctx_used_monitors[0],
3079 ctx->ctx_ovfl_regs[0]));
3083 * make sure the changes are visible
3085 if (can_access_pmu) ia64_srlz_d();
3089 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3094 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3096 struct thread_struct *thread = NULL;
3097 struct task_struct *task;
3098 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3099 unsigned long value, hw_value, ovfl_mask;
3101 int i, can_access_pmu = 0, state;
3102 int is_counting, is_loaded, is_system, expert_mode;
3104 pfm_reg_check_t wr_func;
3107 state = ctx->ctx_state;
3108 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3109 is_system = ctx->ctx_fl_system;
3110 ovfl_mask = pmu_conf->ovfl_val;
3111 task = ctx->ctx_task;
3113 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3116 * on both UP and SMP, we can only write to the PMC when the task is
3117 * the owner of the local PMU.
3119 if (likely(is_loaded)) {
3120 thread = &task->thread;
3122 * In system wide and when the context is loaded, access can only happen
3123 * when the caller is running on the CPU being monitored by the session.
3124 * It does not have to be the owner (ctx_task) of the context per se.
3126 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3127 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3130 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3132 expert_mode = pfm_sysctl.expert_mode;
3134 for (i = 0; i < count; i++, req++) {
3136 cnum = req->reg_num;
3137 value = req->reg_value;
3139 if (!PMD_IS_IMPL(cnum)) {
3140 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3143 is_counting = PMD_IS_COUNTING(cnum);
3144 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3147 * execute write checker, if any
3149 if (unlikely(expert_mode == 0 && wr_func)) {
3150 unsigned long v = value;
3152 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3153 if (ret) goto abort_mission;
3160 * no error on this register
3162 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3165 * now commit changes to software state
3170 * update virtualized (64bits) counter
3174 * write context state
3176 ctx->ctx_pmds[cnum].lval = value;
3179 * when context is load we use the split value
3182 hw_value = value & ovfl_mask;
3183 value = value & ~ovfl_mask;
3187 * update reset values (not just for counters)
3189 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3190 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3193 * update randomization parameters (not just for counters)
3195 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3196 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3199 * update context value
3201 ctx->ctx_pmds[cnum].val = value;
3204 * Keep track of what we use
3206 * We do not keep track of PMC because we have to
3207 * systematically restore ALL of them.
3209 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3212 * mark this PMD register used as well
3214 CTX_USED_PMD(ctx, RDEP(cnum));
3217 * make sure we do not try to reset on
3218 * restart because we have established new values
3220 if (is_counting && state == PFM_CTX_MASKED) {
3221 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3226 * write thread state
3228 if (is_system == 0) thread->pmds[cnum] = hw_value;
3231 * write hardware register if we can
3233 if (can_access_pmu) {
3234 ia64_set_pmd(cnum, hw_value);
3238 * we are guaranteed that the task is not running on the other CPU,
3239 * we indicate that this PMD will need to be reloaded if the task
3240 * is rescheduled on the CPU it ran last on.
3242 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3247 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3248 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3254 ctx->ctx_pmds[cnum].val,
3255 ctx->ctx_pmds[cnum].short_reset,
3256 ctx->ctx_pmds[cnum].long_reset,
3257 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3258 ctx->ctx_pmds[cnum].seed,
3259 ctx->ctx_pmds[cnum].mask,
3260 ctx->ctx_used_pmds[0],
3261 ctx->ctx_pmds[cnum].reset_pmds[0],
3262 ctx->ctx_reload_pmds[0],
3263 ctx->ctx_all_pmds[0],
3264 ctx->ctx_ovfl_regs[0]));
3268 * make changes visible
3270 if (can_access_pmu) ia64_srlz_d();
3276 * for now, we have only one possibility for error
3278 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3283 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3284 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3285 * interrupt is delivered during the call, it will be kept pending until we leave, making
3286 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3287 * guaranteed to return consistent data to the user, it may simply be old. It is not
3288 * trivial to treat the overflow while inside the call because you may end up in
3289 * some module sampling buffer code causing deadlocks.
3292 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3294 struct thread_struct *thread = NULL;
3295 struct task_struct *task;
3296 unsigned long val = 0UL, lval, ovfl_mask, sval;
3297 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3298 unsigned int cnum, reg_flags = 0;
3299 int i, can_access_pmu = 0, state;
3300 int is_loaded, is_system, is_counting, expert_mode;
3302 pfm_reg_check_t rd_func;
3305 * access is possible when loaded only for
3306 * self-monitoring tasks or in UP mode
3309 state = ctx->ctx_state;
3310 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3311 is_system = ctx->ctx_fl_system;
3312 ovfl_mask = pmu_conf->ovfl_val;
3313 task = ctx->ctx_task;
3315 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3317 if (likely(is_loaded)) {
3318 thread = &task->thread;
3320 * In system wide and when the context is loaded, access can only happen
3321 * when the caller is running on the CPU being monitored by the session.
3322 * It does not have to be the owner (ctx_task) of the context per se.
3324 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3325 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3329 * this can be true when not self-monitoring only in UP
3331 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3333 if (can_access_pmu) ia64_srlz_d();
3335 expert_mode = pfm_sysctl.expert_mode;
3337 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3343 * on both UP and SMP, we can only read the PMD from the hardware register when
3344 * the task is the owner of the local PMU.
3347 for (i = 0; i < count; i++, req++) {
3349 cnum = req->reg_num;
3350 reg_flags = req->reg_flags;
3352 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3354 * we can only read the register that we use. That includes
3355 * the one we explicitely initialize AND the one we want included
3356 * in the sampling buffer (smpl_regs).
3358 * Having this restriction allows optimization in the ctxsw routine
3359 * without compromising security (leaks)
3361 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3363 sval = ctx->ctx_pmds[cnum].val;
3364 lval = ctx->ctx_pmds[cnum].lval;
3365 is_counting = PMD_IS_COUNTING(cnum);
3368 * If the task is not the current one, then we check if the
3369 * PMU state is still in the local live register due to lazy ctxsw.
3370 * If true, then we read directly from the registers.
3372 if (can_access_pmu){
3373 val = ia64_get_pmd(cnum);
3376 * context has been saved
3377 * if context is zombie, then task does not exist anymore.
3378 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3380 val = is_loaded ? thread->pmds[cnum] : 0UL;
3382 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3386 * XXX: need to check for overflow when loaded
3393 * execute read checker, if any
3395 if (unlikely(expert_mode == 0 && rd_func)) {
3396 unsigned long v = val;
3397 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3398 if (ret) goto error;
3403 PFM_REG_RETFLAG_SET(reg_flags, 0);
3405 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3408 * update register return value, abort all if problem during copy.
3409 * we only modify the reg_flags field. no check mode is fine because
3410 * access has been verified upfront in sys_perfmonctl().
3412 req->reg_value = val;
3413 req->reg_flags = reg_flags;
3414 req->reg_last_reset_val = lval;
3420 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3425 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3429 if (req == NULL) return -EINVAL;
3431 ctx = GET_PMU_CTX();
3433 if (ctx == NULL) return -EINVAL;
3436 * for now limit to current task, which is enough when calling
3437 * from overflow handler
3439 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3441 return pfm_write_pmcs(ctx, req, nreq, regs);
3443 EXPORT_SYMBOL(pfm_mod_write_pmcs);
3446 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3450 if (req == NULL) return -EINVAL;
3452 ctx = GET_PMU_CTX();
3454 if (ctx == NULL) return -EINVAL;
3457 * for now limit to current task, which is enough when calling
3458 * from overflow handler
3460 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3462 return pfm_read_pmds(ctx, req, nreq, regs);
3464 EXPORT_SYMBOL(pfm_mod_read_pmds);
3467 * Only call this function when a process it trying to
3468 * write the debug registers (reading is always allowed)
3471 pfm_use_debug_registers(struct task_struct *task)
3473 pfm_context_t *ctx = task->thread.pfm_context;
3474 unsigned long flags;
3477 if (pmu_conf->use_rr_dbregs == 0) return 0;
3479 DPRINT(("called for [%d]\n", task->pid));
3484 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3487 * Even on SMP, we do not need to use an atomic here because
3488 * the only way in is via ptrace() and this is possible only when the
3489 * process is stopped. Even in the case where the ctxsw out is not totally
3490 * completed by the time we come here, there is no way the 'stopped' process
3491 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3492 * So this is always safe.
3494 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3499 * We cannot allow setting breakpoints when system wide monitoring
3500 * sessions are using the debug registers.
3502 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3505 pfm_sessions.pfs_ptrace_use_dbregs++;
3507 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3508 pfm_sessions.pfs_ptrace_use_dbregs,
3509 pfm_sessions.pfs_sys_use_dbregs,
3518 * This function is called for every task that exits with the
3519 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3520 * able to use the debug registers for debugging purposes via
3521 * ptrace(). Therefore we know it was not using them for
3522 * perfmormance monitoring, so we only decrement the number
3523 * of "ptraced" debug register users to keep the count up to date
3526 pfm_release_debug_registers(struct task_struct *task)
3528 unsigned long flags;
3531 if (pmu_conf->use_rr_dbregs == 0) return 0;
3534 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3535 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task->pid);
3538 pfm_sessions.pfs_ptrace_use_dbregs--;
3547 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3549 struct task_struct *task;
3550 pfm_buffer_fmt_t *fmt;
3551 pfm_ovfl_ctrl_t rst_ctrl;
3552 int state, is_system;
3555 state = ctx->ctx_state;
3556 fmt = ctx->ctx_buf_fmt;
3557 is_system = ctx->ctx_fl_system;
3558 task = PFM_CTX_TASK(ctx);
3561 case PFM_CTX_MASKED:
3563 case PFM_CTX_LOADED:
3564 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3566 case PFM_CTX_UNLOADED:
3567 case PFM_CTX_ZOMBIE:
3568 DPRINT(("invalid state=%d\n", state));
3571 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3576 * In system wide and when the context is loaded, access can only happen
3577 * when the caller is running on the CPU being monitored by the session.
3578 * It does not have to be the owner (ctx_task) of the context per se.
3580 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3581 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3586 if (unlikely(task == NULL)) {
3587 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", current->pid);
3591 if (task == current || is_system) {
3593 fmt = ctx->ctx_buf_fmt;
3595 DPRINT(("restarting self %d ovfl=0x%lx\n",
3597 ctx->ctx_ovfl_regs[0]));
3599 if (CTX_HAS_SMPL(ctx)) {
3601 prefetch(ctx->ctx_smpl_hdr);
3603 rst_ctrl.bits.mask_monitoring = 0;
3604 rst_ctrl.bits.reset_ovfl_pmds = 0;
3606 if (state == PFM_CTX_LOADED)
3607 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3609 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3611 rst_ctrl.bits.mask_monitoring = 0;
3612 rst_ctrl.bits.reset_ovfl_pmds = 1;
3616 if (rst_ctrl.bits.reset_ovfl_pmds)
3617 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3619 if (rst_ctrl.bits.mask_monitoring == 0) {
3620 DPRINT(("resuming monitoring for [%d]\n", task->pid));
3622 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3624 DPRINT(("keeping monitoring stopped for [%d]\n", task->pid));
3626 // cannot use pfm_stop_monitoring(task, regs);
3630 * clear overflowed PMD mask to remove any stale information
3632 ctx->ctx_ovfl_regs[0] = 0UL;
3635 * back to LOADED state
3637 ctx->ctx_state = PFM_CTX_LOADED;
3640 * XXX: not really useful for self monitoring
3642 ctx->ctx_fl_can_restart = 0;
3648 * restart another task
3652 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3653 * one is seen by the task.
3655 if (state == PFM_CTX_MASKED) {
3656 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3658 * will prevent subsequent restart before this one is
3659 * seen by other task
3661 ctx->ctx_fl_can_restart = 0;
3665 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3666 * the task is blocked or on its way to block. That's the normal
3667 * restart path. If the monitoring is not masked, then the task
3668 * can be actively monitoring and we cannot directly intervene.
3669 * Therefore we use the trap mechanism to catch the task and
3670 * force it to reset the buffer/reset PMDs.
3672 * if non-blocking, then we ensure that the task will go into
3673 * pfm_handle_work() before returning to user mode.
3675 * We cannot explicitely reset another task, it MUST always
3676 * be done by the task itself. This works for system wide because
3677 * the tool that is controlling the session is logically doing
3678 * "self-monitoring".
3680 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3681 DPRINT(("unblocking [%d] \n", task->pid));
3682 up(&ctx->ctx_restart_sem);
3684 DPRINT(("[%d] armed exit trap\n", task->pid));
3686 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3688 PFM_SET_WORK_PENDING(task, 1);
3690 pfm_set_task_notify(task);
3693 * XXX: send reschedule if task runs on another CPU
3700 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3702 unsigned int m = *(unsigned int *)arg;
3704 pfm_sysctl.debug = m == 0 ? 0 : 1;
3706 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3709 memset(pfm_stats, 0, sizeof(pfm_stats));
3710 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3716 * arg can be NULL and count can be zero for this function
3719 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3721 struct thread_struct *thread = NULL;
3722 struct task_struct *task;
3723 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3724 unsigned long flags;
3729 int i, can_access_pmu = 0;
3730 int is_system, is_loaded;
3732 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3734 state = ctx->ctx_state;
3735 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3736 is_system = ctx->ctx_fl_system;
3737 task = ctx->ctx_task;
3739 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3742 * on both UP and SMP, we can only write to the PMC when the task is
3743 * the owner of the local PMU.
3746 thread = &task->thread;
3748 * In system wide and when the context is loaded, access can only happen
3749 * when the caller is running on the CPU being monitored by the session.
3750 * It does not have to be the owner (ctx_task) of the context per se.
3752 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3753 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3756 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3760 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3761 * ensuring that no real breakpoint can be installed via this call.
3763 * IMPORTANT: regs can be NULL in this function
3766 first_time = ctx->ctx_fl_using_dbreg == 0;
3769 * don't bother if we are loaded and task is being debugged
3771 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3772 DPRINT(("debug registers already in use for [%d]\n", task->pid));
3777 * check for debug registers in system wide mode
3779 * If though a check is done in pfm_context_load(),
3780 * we must repeat it here, in case the registers are
3781 * written after the context is loaded
3786 if (first_time && is_system) {
3787 if (pfm_sessions.pfs_ptrace_use_dbregs)
3790 pfm_sessions.pfs_sys_use_dbregs++;
3795 if (ret != 0) return ret;
3798 * mark ourself as user of the debug registers for
3801 ctx->ctx_fl_using_dbreg = 1;
3804 * clear hardware registers to make sure we don't
3805 * pick up stale state.
3807 * for a system wide session, we do not use
3808 * thread.dbr, thread.ibr because this process
3809 * never leaves the current CPU and the state
3810 * is shared by all processes running on it
3812 if (first_time && can_access_pmu) {
3813 DPRINT(("[%d] clearing ibrs, dbrs\n", task->pid));
3814 for (i=0; i < pmu_conf->num_ibrs; i++) {
3815 ia64_set_ibr(i, 0UL);
3816 ia64_dv_serialize_instruction();
3819 for (i=0; i < pmu_conf->num_dbrs; i++) {
3820 ia64_set_dbr(i, 0UL);
3821 ia64_dv_serialize_data();
3827 * Now install the values into the registers
3829 for (i = 0; i < count; i++, req++) {
3831 rnum = req->dbreg_num;
3832 dbreg.val = req->dbreg_value;
3836 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3837 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3838 rnum, dbreg.val, mode, i, count));
3844 * make sure we do not install enabled breakpoint
3847 if (mode == PFM_CODE_RR)
3848 dbreg.ibr.ibr_x = 0;
3850 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3853 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3856 * Debug registers, just like PMC, can only be modified
3857 * by a kernel call. Moreover, perfmon() access to those
3858 * registers are centralized in this routine. The hardware
3859 * does not modify the value of these registers, therefore,
3860 * if we save them as they are written, we can avoid having
3861 * to save them on context switch out. This is made possible
3862 * by the fact that when perfmon uses debug registers, ptrace()
3863 * won't be able to modify them concurrently.
3865 if (mode == PFM_CODE_RR) {
3866 CTX_USED_IBR(ctx, rnum);
3868 if (can_access_pmu) {
3869 ia64_set_ibr(rnum, dbreg.val);
3870 ia64_dv_serialize_instruction();
3873 ctx->ctx_ibrs[rnum] = dbreg.val;
3875 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3876 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3878 CTX_USED_DBR(ctx, rnum);
3880 if (can_access_pmu) {
3881 ia64_set_dbr(rnum, dbreg.val);
3882 ia64_dv_serialize_data();
3884 ctx->ctx_dbrs[rnum] = dbreg.val;
3886 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3887 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3895 * in case it was our first attempt, we undo the global modifications
3899 if (ctx->ctx_fl_system) {
3900 pfm_sessions.pfs_sys_use_dbregs--;
3903 ctx->ctx_fl_using_dbreg = 0;
3906 * install error return flag
3908 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3914 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3916 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3920 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3922 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3926 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3930 if (req == NULL) return -EINVAL;
3932 ctx = GET_PMU_CTX();
3934 if (ctx == NULL) return -EINVAL;
3937 * for now limit to current task, which is enough when calling
3938 * from overflow handler
3940 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3942 return pfm_write_ibrs(ctx, req, nreq, regs);
3944 EXPORT_SYMBOL(pfm_mod_write_ibrs);
3947 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3951 if (req == NULL) return -EINVAL;
3953 ctx = GET_PMU_CTX();
3955 if (ctx == NULL) return -EINVAL;
3958 * for now limit to current task, which is enough when calling
3959 * from overflow handler
3961 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3963 return pfm_write_dbrs(ctx, req, nreq, regs);
3965 EXPORT_SYMBOL(pfm_mod_write_dbrs);
3969 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3971 pfarg_features_t *req = (pfarg_features_t *)arg;
3973 req->ft_version = PFM_VERSION;
3978 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3980 struct pt_regs *tregs;
3981 struct task_struct *task = PFM_CTX_TASK(ctx);
3982 int state, is_system;
3984 state = ctx->ctx_state;
3985 is_system = ctx->ctx_fl_system;
3988 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3990 if (state == PFM_CTX_UNLOADED) return -EINVAL;
3993 * In system wide and when the context is loaded, access can only happen
3994 * when the caller is running on the CPU being monitored by the session.
3995 * It does not have to be the owner (ctx_task) of the context per se.
3997 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3998 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4001 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4002 PFM_CTX_TASK(ctx)->pid,
4006 * in system mode, we need to update the PMU directly
4007 * and the user level state of the caller, which may not
4008 * necessarily be the creator of the context.
4012 * Update local PMU first
4016 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4020 * update local cpuinfo
4022 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4025 * stop monitoring, does srlz.i
4030 * stop monitoring in the caller
4032 ia64_psr(regs)->pp = 0;
4040 if (task == current) {
4041 /* stop monitoring at kernel level */
4045 * stop monitoring at the user level
4047 ia64_psr(regs)->up = 0;
4049 tregs = ia64_task_regs(task);
4052 * stop monitoring at the user level
4054 ia64_psr(tregs)->up = 0;
4057 * monitoring disabled in kernel at next reschedule
4059 ctx->ctx_saved_psr_up = 0;
4060 DPRINT(("task=[%d]\n", task->pid));
4067 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4069 struct pt_regs *tregs;
4070 int state, is_system;
4072 state = ctx->ctx_state;
4073 is_system = ctx->ctx_fl_system;
4075 if (state != PFM_CTX_LOADED) return -EINVAL;
4078 * In system wide and when the context is loaded, access can only happen
4079 * when the caller is running on the CPU being monitored by the session.
4080 * It does not have to be the owner (ctx_task) of the context per se.
4082 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4083 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4088 * in system mode, we need to update the PMU directly
4089 * and the user level state of the caller, which may not
4090 * necessarily be the creator of the context.
4095 * set user level psr.pp for the caller
4097 ia64_psr(regs)->pp = 1;
4100 * now update the local PMU and cpuinfo
4102 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4105 * start monitoring at kernel level
4110 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4120 if (ctx->ctx_task == current) {
4122 /* start monitoring at kernel level */
4126 * activate monitoring at user level
4128 ia64_psr(regs)->up = 1;
4131 tregs = ia64_task_regs(ctx->ctx_task);
4134 * start monitoring at the kernel level the next
4135 * time the task is scheduled
4137 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4140 * activate monitoring at user level
4142 ia64_psr(tregs)->up = 1;
4148 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4150 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4155 for (i = 0; i < count; i++, req++) {
4157 cnum = req->reg_num;
4159 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4161 req->reg_value = PMC_DFL_VAL(cnum);
4163 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4165 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4170 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4175 pfm_check_task_exist(pfm_context_t *ctx)
4177 struct task_struct *g, *t;
4180 read_lock(&tasklist_lock);
4182 do_each_thread (g, t) {
4183 if (t->thread.pfm_context == ctx) {
4187 } while_each_thread (g, t);
4189 read_unlock(&tasklist_lock);
4191 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4197 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4199 struct task_struct *task;
4200 struct thread_struct *thread;
4201 struct pfm_context_t *old;
4202 unsigned long flags;
4204 struct task_struct *owner_task = NULL;
4206 pfarg_load_t *req = (pfarg_load_t *)arg;
4207 unsigned long *pmcs_source, *pmds_source;
4210 int state, is_system, set_dbregs = 0;
4212 state = ctx->ctx_state;
4213 is_system = ctx->ctx_fl_system;
4215 * can only load from unloaded or terminated state
4217 if (state != PFM_CTX_UNLOADED) {
4218 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4224 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4226 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4227 DPRINT(("cannot use blocking mode on self\n"));
4231 ret = pfm_get_task(ctx, req->load_pid, &task);
4233 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4240 * system wide is self monitoring only
4242 if (is_system && task != current) {
4243 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4248 thread = &task->thread;
4252 * cannot load a context which is using range restrictions,
4253 * into a task that is being debugged.
4255 if (ctx->ctx_fl_using_dbreg) {
4256 if (thread->flags & IA64_THREAD_DBG_VALID) {
4258 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4264 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4265 DPRINT(("cannot load [%d] dbregs in use\n", task->pid));
4268 pfm_sessions.pfs_sys_use_dbregs++;
4269 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task->pid, pfm_sessions.pfs_sys_use_dbregs));
4276 if (ret) goto error;
4280 * SMP system-wide monitoring implies self-monitoring.
4282 * The programming model expects the task to
4283 * be pinned on a CPU throughout the session.
4284 * Here we take note of the current CPU at the
4285 * time the context is loaded. No call from
4286 * another CPU will be allowed.
4288 * The pinning via shed_setaffinity()
4289 * must be done by the calling task prior
4292 * systemwide: keep track of CPU this session is supposed to run on
4294 the_cpu = ctx->ctx_cpu = smp_processor_id();
4298 * now reserve the session
4300 ret = pfm_reserve_session(current, is_system, the_cpu);
4301 if (ret) goto error;
4304 * task is necessarily stopped at this point.
4306 * If the previous context was zombie, then it got removed in
4307 * pfm_save_regs(). Therefore we should not see it here.
4308 * If we see a context, then this is an active context
4310 * XXX: needs to be atomic
4312 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4313 thread->pfm_context, ctx));
4315 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4317 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4321 pfm_reset_msgq(ctx);
4323 ctx->ctx_state = PFM_CTX_LOADED;
4326 * link context to task
4328 ctx->ctx_task = task;
4332 * we load as stopped
4334 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4335 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4337 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4339 thread->flags |= IA64_THREAD_PM_VALID;
4343 * propagate into thread-state
4345 pfm_copy_pmds(task, ctx);
4346 pfm_copy_pmcs(task, ctx);
4348 pmcs_source = thread->pmcs;
4349 pmds_source = thread->pmds;
4352 * always the case for system-wide
4354 if (task == current) {
4356 if (is_system == 0) {
4358 /* allow user level control */
4359 ia64_psr(regs)->sp = 0;
4360 DPRINT(("clearing psr.sp for [%d]\n", task->pid));
4362 SET_LAST_CPU(ctx, smp_processor_id());
4364 SET_ACTIVATION(ctx);
4367 * push the other task out, if any
4369 owner_task = GET_PMU_OWNER();
4370 if (owner_task) pfm_lazy_save_regs(owner_task);
4374 * load all PMD from ctx to PMU (as opposed to thread state)
4375 * restore all PMC from ctx to PMU
4377 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4378 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4380 ctx->ctx_reload_pmcs[0] = 0UL;
4381 ctx->ctx_reload_pmds[0] = 0UL;
4384 * guaranteed safe by earlier check against DBG_VALID
4386 if (ctx->ctx_fl_using_dbreg) {
4387 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4388 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4393 SET_PMU_OWNER(task, ctx);
4395 DPRINT(("context loaded on PMU for [%d]\n", task->pid));
4398 * when not current, task MUST be stopped, so this is safe
4400 regs = ia64_task_regs(task);
4402 /* force a full reload */
4403 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4404 SET_LAST_CPU(ctx, -1);
4406 /* initial saved psr (stopped) */
4407 ctx->ctx_saved_psr_up = 0UL;
4408 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4414 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4417 * we must undo the dbregs setting (for system-wide)
4419 if (ret && set_dbregs) {
4421 pfm_sessions.pfs_sys_use_dbregs--;
4425 * release task, there is now a link with the context
4427 if (is_system == 0 && task != current) {
4431 ret = pfm_check_task_exist(ctx);
4433 ctx->ctx_state = PFM_CTX_UNLOADED;
4434 ctx->ctx_task = NULL;
4442 * in this function, we do not need to increase the use count
4443 * for the task via get_task_struct(), because we hold the
4444 * context lock. If the task were to disappear while having
4445 * a context attached, it would go through pfm_exit_thread()
4446 * which also grabs the context lock and would therefore be blocked
4447 * until we are here.
4449 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4452 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4454 struct task_struct *task = PFM_CTX_TASK(ctx);
4455 struct pt_regs *tregs;
4456 int prev_state, is_system;
4459 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task->pid : -1));
4461 prev_state = ctx->ctx_state;
4462 is_system = ctx->ctx_fl_system;
4465 * unload only when necessary
4467 if (prev_state == PFM_CTX_UNLOADED) {
4468 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4473 * clear psr and dcr bits
4475 ret = pfm_stop(ctx, NULL, 0, regs);
4476 if (ret) return ret;
4478 ctx->ctx_state = PFM_CTX_UNLOADED;
4481 * in system mode, we need to update the PMU directly
4482 * and the user level state of the caller, which may not
4483 * necessarily be the creator of the context.
4490 * local PMU is taken care of in pfm_stop()
4492 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4493 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4496 * save PMDs in context
4499 pfm_flush_pmds(current, ctx);
4502 * at this point we are done with the PMU
4503 * so we can unreserve the resource.
4505 if (prev_state != PFM_CTX_ZOMBIE)
4506 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4509 * disconnect context from task
4511 task->thread.pfm_context = NULL;
4513 * disconnect task from context
4515 ctx->ctx_task = NULL;
4518 * There is nothing more to cleanup here.
4526 tregs = task == current ? regs : ia64_task_regs(task);
4528 if (task == current) {
4530 * cancel user level control
4532 ia64_psr(regs)->sp = 1;
4534 DPRINT(("setting psr.sp for [%d]\n", task->pid));
4537 * save PMDs to context
4540 pfm_flush_pmds(task, ctx);
4543 * at this point we are done with the PMU
4544 * so we can unreserve the resource.
4546 * when state was ZOMBIE, we have already unreserved.
4548 if (prev_state != PFM_CTX_ZOMBIE)
4549 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4552 * reset activation counter and psr
4554 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4555 SET_LAST_CPU(ctx, -1);
4558 * PMU state will not be restored
4560 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4563 * break links between context and task
4565 task->thread.pfm_context = NULL;
4566 ctx->ctx_task = NULL;
4568 PFM_SET_WORK_PENDING(task, 0);
4570 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4571 ctx->ctx_fl_can_restart = 0;
4572 ctx->ctx_fl_going_zombie = 0;
4574 DPRINT(("disconnected [%d] from context\n", task->pid));
4581 * called only from exit_thread(): task == current
4582 * we come here only if current has a context attached (loaded or masked)
4585 pfm_exit_thread(struct task_struct *task)
4588 unsigned long flags;
4589 struct pt_regs *regs = ia64_task_regs(task);
4593 ctx = PFM_GET_CTX(task);
4595 PROTECT_CTX(ctx, flags);
4597 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task->pid));
4599 state = ctx->ctx_state;
4601 case PFM_CTX_UNLOADED:
4603 * only comes to thios function if pfm_context is not NULL, i.e., cannot
4604 * be in unloaded state
4606 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task->pid);
4608 case PFM_CTX_LOADED:
4609 case PFM_CTX_MASKED:
4610 ret = pfm_context_unload(ctx, NULL, 0, regs);
4612 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4614 DPRINT(("ctx unloaded for current state was %d\n", state));
4616 pfm_end_notify_user(ctx);
4618 case PFM_CTX_ZOMBIE:
4619 ret = pfm_context_unload(ctx, NULL, 0, regs);
4621 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4626 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task->pid, state);
4629 UNPROTECT_CTX(ctx, flags);
4631 { u64 psr = pfm_get_psr();
4632 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4633 BUG_ON(GET_PMU_OWNER());
4634 BUG_ON(ia64_psr(regs)->up);
4635 BUG_ON(ia64_psr(regs)->pp);
4639 * All memory free operations (especially for vmalloc'ed memory)
4640 * MUST be done with interrupts ENABLED.
4642 if (free_ok) pfm_context_free(ctx);
4646 * functions MUST be listed in the increasing order of their index (see permfon.h)
4648 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4649 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4650 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4651 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4652 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4654 static pfm_cmd_desc_t pfm_cmd_tab[]={
4655 /* 0 */PFM_CMD_NONE,
4656 /* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4657 /* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4658 /* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4659 /* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4660 /* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4661 /* 6 */PFM_CMD_NONE,
4662 /* 7 */PFM_CMD_NONE,
4663 /* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4664 /* 9 */PFM_CMD_NONE,
4665 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4666 /* 11 */PFM_CMD_NONE,
4667 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4668 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4669 /* 14 */PFM_CMD_NONE,
4670 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4671 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4672 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4673 /* 18 */PFM_CMD_NONE,
4674 /* 19 */PFM_CMD_NONE,
4675 /* 20 */PFM_CMD_NONE,
4676 /* 21 */PFM_CMD_NONE,
4677 /* 22 */PFM_CMD_NONE,
4678 /* 23 */PFM_CMD_NONE,
4679 /* 24 */PFM_CMD_NONE,
4680 /* 25 */PFM_CMD_NONE,
4681 /* 26 */PFM_CMD_NONE,
4682 /* 27 */PFM_CMD_NONE,
4683 /* 28 */PFM_CMD_NONE,
4684 /* 29 */PFM_CMD_NONE,
4685 /* 30 */PFM_CMD_NONE,
4686 /* 31 */PFM_CMD_NONE,
4687 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4688 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4690 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4693 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4695 struct task_struct *task;
4696 int state, old_state;
4699 state = ctx->ctx_state;
4700 task = ctx->ctx_task;
4703 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4707 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4711 task->state, PFM_CMD_STOPPED(cmd)));
4714 * self-monitoring always ok.
4716 * for system-wide the caller can either be the creator of the
4717 * context (to one to which the context is attached to) OR
4718 * a task running on the same CPU as the session.
4720 if (task == current || ctx->ctx_fl_system) return 0;
4723 * we are monitoring another thread
4726 case PFM_CTX_UNLOADED:
4728 * if context is UNLOADED we are safe to go
4731 case PFM_CTX_ZOMBIE:
4733 * no command can operate on a zombie context
4735 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4737 case PFM_CTX_MASKED:
4739 * PMU state has been saved to software even though
4740 * the thread may still be running.
4742 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4746 * context is LOADED or MASKED. Some commands may need to have
4749 * We could lift this restriction for UP but it would mean that
4750 * the user has no guarantee the task would not run between
4751 * two successive calls to perfmonctl(). That's probably OK.
4752 * If this user wants to ensure the task does not run, then
4753 * the task must be stopped.
4755 if (PFM_CMD_STOPPED(cmd)) {
4756 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
4757 DPRINT(("[%d] task not in stopped state\n", task->pid));
4761 * task is now stopped, wait for ctxsw out
4763 * This is an interesting point in the code.
4764 * We need to unprotect the context because
4765 * the pfm_save_regs() routines needs to grab
4766 * the same lock. There are danger in doing
4767 * this because it leaves a window open for
4768 * another task to get access to the context
4769 * and possibly change its state. The one thing
4770 * that is not possible is for the context to disappear
4771 * because we are protected by the VFS layer, i.e.,
4772 * get_fd()/put_fd().
4776 UNPROTECT_CTX(ctx, flags);
4778 wait_task_inactive(task);
4780 PROTECT_CTX(ctx, flags);
4783 * we must recheck to verify if state has changed
4785 if (ctx->ctx_state != old_state) {
4786 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4794 * system-call entry point (must return long)
4797 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4799 struct file *file = NULL;
4800 pfm_context_t *ctx = NULL;
4801 unsigned long flags = 0UL;
4802 void *args_k = NULL;
4803 long ret; /* will expand int return types */
4804 size_t base_sz, sz, xtra_sz = 0;
4805 int narg, completed_args = 0, call_made = 0, cmd_flags;
4806 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4807 int (*getsize)(void *arg, size_t *sz);
4808 #define PFM_MAX_ARGSIZE 4096
4811 * reject any call if perfmon was disabled at initialization
4813 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4815 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4816 DPRINT(("invalid cmd=%d\n", cmd));
4820 func = pfm_cmd_tab[cmd].cmd_func;
4821 narg = pfm_cmd_tab[cmd].cmd_narg;
4822 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4823 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4824 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4826 if (unlikely(func == NULL)) {
4827 DPRINT(("invalid cmd=%d\n", cmd));
4831 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4839 * check if number of arguments matches what the command expects
4841 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4845 sz = xtra_sz + base_sz*count;
4847 * limit abuse to min page size
4849 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4850 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", current->pid, sz);
4855 * allocate default-sized argument buffer
4857 if (likely(count && args_k == NULL)) {
4858 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4859 if (args_k == NULL) return -ENOMEM;
4867 * assume sz = 0 for command without parameters
4869 if (sz && copy_from_user(args_k, arg, sz)) {
4870 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4875 * check if command supports extra parameters
4877 if (completed_args == 0 && getsize) {
4879 * get extra parameters size (based on main argument)
4881 ret = (*getsize)(args_k, &xtra_sz);
4882 if (ret) goto error_args;
4886 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4888 /* retry if necessary */
4889 if (likely(xtra_sz)) goto restart_args;
4892 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4897 if (unlikely(file == NULL)) {
4898 DPRINT(("invalid fd %d\n", fd));
4901 if (unlikely(PFM_IS_FILE(file) == 0)) {
4902 DPRINT(("fd %d not related to perfmon\n", fd));
4906 ctx = (pfm_context_t *)file->private_data;
4907 if (unlikely(ctx == NULL)) {
4908 DPRINT(("no context for fd %d\n", fd));
4911 prefetch(&ctx->ctx_state);
4913 PROTECT_CTX(ctx, flags);
4916 * check task is stopped
4918 ret = pfm_check_task_state(ctx, cmd, flags);
4919 if (unlikely(ret)) goto abort_locked;
4922 ret = (*func)(ctx, args_k, count, ia64_task_regs(current));
4928 DPRINT(("context unlocked\n"));
4929 UNPROTECT_CTX(ctx, flags);
4933 /* copy argument back to user, if needed */
4934 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4937 if (args_k) kfree(args_k);
4939 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4945 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4947 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4948 pfm_ovfl_ctrl_t rst_ctrl;
4952 state = ctx->ctx_state;
4954 * Unlock sampling buffer and reset index atomically
4955 * XXX: not really needed when blocking
4957 if (CTX_HAS_SMPL(ctx)) {
4959 rst_ctrl.bits.mask_monitoring = 0;
4960 rst_ctrl.bits.reset_ovfl_pmds = 0;
4962 if (state == PFM_CTX_LOADED)
4963 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4965 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4967 rst_ctrl.bits.mask_monitoring = 0;
4968 rst_ctrl.bits.reset_ovfl_pmds = 1;
4972 if (rst_ctrl.bits.reset_ovfl_pmds) {
4973 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4975 if (rst_ctrl.bits.mask_monitoring == 0) {
4976 DPRINT(("resuming monitoring\n"));
4977 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4979 DPRINT(("stopping monitoring\n"));
4980 //pfm_stop_monitoring(current, regs);
4982 ctx->ctx_state = PFM_CTX_LOADED;
4987 * context MUST BE LOCKED when calling
4988 * can only be called for current
4991 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4995 DPRINT(("entering for [%d]\n", current->pid));
4997 ret = pfm_context_unload(ctx, NULL, 0, regs);
4999 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", current->pid, ret);
5003 * and wakeup controlling task, indicating we are now disconnected
5005 wake_up_interruptible(&ctx->ctx_zombieq);
5008 * given that context is still locked, the controlling
5009 * task will only get access when we return from
5010 * pfm_handle_work().
5014 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
5016 * pfm_handle_work() can be called with interrupts enabled
5017 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5018 * call may sleep, therefore we must re-enable interrupts
5019 * to avoid deadlocks. It is safe to do so because this function
5020 * is called ONLY when returning to user level (PUStk=1), in which case
5021 * there is no risk of kernel stack overflow due to deep
5022 * interrupt nesting.
5025 pfm_handle_work(void)
5028 struct pt_regs *regs;
5029 unsigned long flags, dummy_flags;
5030 unsigned long ovfl_regs;
5031 unsigned int reason;
5034 ctx = PFM_GET_CTX(current);
5036 printk(KERN_ERR "perfmon: [%d] has no PFM context\n", current->pid);
5040 PROTECT_CTX(ctx, flags);
5042 PFM_SET_WORK_PENDING(current, 0);
5044 pfm_clear_task_notify();
5046 regs = ia64_task_regs(current);
5049 * extract reason for being here and clear
5051 reason = ctx->ctx_fl_trap_reason;
5052 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5053 ovfl_regs = ctx->ctx_ovfl_regs[0];
5055 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5058 * must be done before we check for simple-reset mode
5060 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) goto do_zombie;
5063 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5064 if (reason == PFM_TRAP_REASON_RESET) goto skip_blocking;
5067 * restore interrupt mask to what it was on entry.
5068 * Could be enabled/diasbled.
5070 UNPROTECT_CTX(ctx, flags);
5073 * force interrupt enable because of down_interruptible()
5077 DPRINT(("before block sleeping\n"));
5080 * may go through without blocking on SMP systems
5081 * if restart has been received already by the time we call down()
5083 ret = down_interruptible(&ctx->ctx_restart_sem);
5085 DPRINT(("after block sleeping ret=%d\n", ret));
5088 * lock context and mask interrupts again
5089 * We save flags into a dummy because we may have
5090 * altered interrupts mask compared to entry in this
5093 PROTECT_CTX(ctx, dummy_flags);
5096 * we need to read the ovfl_regs only after wake-up
5097 * because we may have had pfm_write_pmds() in between
5098 * and that can changed PMD values and therefore
5099 * ovfl_regs is reset for these new PMD values.
5101 ovfl_regs = ctx->ctx_ovfl_regs[0];
5103 if (ctx->ctx_fl_going_zombie) {
5105 DPRINT(("context is zombie, bailing out\n"));
5106 pfm_context_force_terminate(ctx, regs);
5110 * in case of interruption of down() we don't restart anything
5112 if (ret < 0) goto nothing_to_do;
5115 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5116 ctx->ctx_ovfl_regs[0] = 0UL;
5120 * restore flags as they were upon entry
5122 UNPROTECT_CTX(ctx, flags);
5126 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5128 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5129 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5133 DPRINT(("waking up somebody\n"));
5135 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5138 * safe, we are not in intr handler, nor in ctxsw when
5141 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5147 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5149 pfm_msg_t *msg = NULL;
5151 if (ctx->ctx_fl_no_msg == 0) {
5152 msg = pfm_get_new_msg(ctx);
5154 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5158 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5159 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5160 msg->pfm_ovfl_msg.msg_active_set = 0;
5161 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5162 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5163 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5164 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5165 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5168 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5174 return pfm_notify_user(ctx, msg);
5178 pfm_end_notify_user(pfm_context_t *ctx)
5182 msg = pfm_get_new_msg(ctx);
5184 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5188 memset(msg, 0, sizeof(*msg));
5190 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5191 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5192 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5194 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5199 return pfm_notify_user(ctx, msg);
5203 * main overflow processing routine.
5204 * it can be called from the interrupt path or explicitely during the context switch code
5207 pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs)
5209 pfm_ovfl_arg_t *ovfl_arg;
5211 unsigned long old_val, ovfl_val, new_val;
5212 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5213 unsigned long tstamp;
5214 pfm_ovfl_ctrl_t ovfl_ctrl;
5215 unsigned int i, has_smpl;
5216 int must_notify = 0;
5218 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5221 * sanity test. Should never happen
5223 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5225 tstamp = ia64_get_itc();
5226 mask = pmc0 >> PMU_FIRST_COUNTER;
5227 ovfl_val = pmu_conf->ovfl_val;
5228 has_smpl = CTX_HAS_SMPL(ctx);
5230 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5231 "used_pmds=0x%lx\n",
5233 task ? task->pid: -1,
5234 (regs ? regs->cr_iip : 0),
5235 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5236 ctx->ctx_used_pmds[0]));
5240 * first we update the virtual counters
5241 * assume there was a prior ia64_srlz_d() issued
5243 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5245 /* skip pmd which did not overflow */
5246 if ((mask & 0x1) == 0) continue;
5249 * Note that the pmd is not necessarily 0 at this point as qualified events
5250 * may have happened before the PMU was frozen. The residual count is not
5251 * taken into consideration here but will be with any read of the pmd via
5254 old_val = new_val = ctx->ctx_pmds[i].val;
5255 new_val += 1 + ovfl_val;
5256 ctx->ctx_pmds[i].val = new_val;
5259 * check for overflow condition
5261 if (likely(old_val > new_val)) {
5262 ovfl_pmds |= 1UL << i;
5263 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5266 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5270 ia64_get_pmd(i) & ovfl_val,
5276 * there was no 64-bit overflow, nothing else to do
5278 if (ovfl_pmds == 0UL) return;
5281 * reset all control bits
5287 * if a sampling format module exists, then we "cache" the overflow by
5288 * calling the module's handler() routine.
5291 unsigned long start_cycles, end_cycles;
5292 unsigned long pmd_mask;
5294 int this_cpu = smp_processor_id();
5296 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5297 ovfl_arg = &ctx->ctx_ovfl_arg;
5299 prefetch(ctx->ctx_smpl_hdr);
5301 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5305 if ((pmd_mask & 0x1) == 0) continue;
5307 ovfl_arg->ovfl_pmd = (unsigned char )i;
5308 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5309 ovfl_arg->active_set = 0;
5310 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5311 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5313 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5314 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5315 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5318 * copy values of pmds of interest. Sampling format may copy them
5319 * into sampling buffer.
5322 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5323 if ((smpl_pmds & 0x1) == 0) continue;
5324 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5325 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5329 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5331 start_cycles = ia64_get_itc();
5334 * call custom buffer format record (handler) routine
5336 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5338 end_cycles = ia64_get_itc();
5341 * For those controls, we take the union because they have
5342 * an all or nothing behavior.
5344 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5345 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5346 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5348 * build the bitmask of pmds to reset now
5350 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5352 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5355 * when the module cannot handle the rest of the overflows, we abort right here
5357 if (ret && pmd_mask) {
5358 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5359 pmd_mask<<PMU_FIRST_COUNTER));
5362 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5364 ovfl_pmds &= ~reset_pmds;
5367 * when no sampling module is used, then the default
5368 * is to notify on overflow if requested by user
5370 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5371 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5372 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5373 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5375 * if needed, we reset all overflowed pmds
5377 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5380 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5383 * reset the requested PMD registers using the short reset values
5386 unsigned long bm = reset_pmds;
5387 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5390 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5392 * keep track of what to reset when unblocking
5394 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5397 * check for blocking context
5399 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5401 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5404 * set the perfmon specific checking pending work for the task
5406 PFM_SET_WORK_PENDING(task, 1);
5409 * when coming from ctxsw, current still points to the
5410 * previous task, therefore we must work with task and not current.
5412 pfm_set_task_notify(task);
5415 * defer until state is changed (shorten spin window). the context is locked
5416 * anyway, so the signal receiver would come spin for nothing.
5421 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5422 GET_PMU_OWNER() ? GET_PMU_OWNER()->pid : -1,
5423 PFM_GET_WORK_PENDING(task),
5424 ctx->ctx_fl_trap_reason,
5427 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5429 * in case monitoring must be stopped, we toggle the psr bits
5431 if (ovfl_ctrl.bits.mask_monitoring) {
5432 pfm_mask_monitoring(task);
5433 ctx->ctx_state = PFM_CTX_MASKED;
5434 ctx->ctx_fl_can_restart = 1;
5438 * send notification now
5440 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5445 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5447 task ? task->pid : -1,
5453 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5454 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5455 * come here as zombie only if the task is the current task. In which case, we
5456 * can access the PMU hardware directly.
5458 * Note that zombies do have PM_VALID set. So here we do the minimal.
5460 * In case the context was zombified it could not be reclaimed at the time
5461 * the monitoring program exited. At this point, the PMU reservation has been
5462 * returned, the sampiing buffer has been freed. We must convert this call
5463 * into a spurious interrupt. However, we must also avoid infinite overflows
5464 * by stopping monitoring for this task. We can only come here for a per-task
5465 * context. All we need to do is to stop monitoring using the psr bits which
5466 * are always task private. By re-enabling secure montioring, we ensure that
5467 * the monitored task will not be able to re-activate monitoring.
5468 * The task will eventually be context switched out, at which point the context
5469 * will be reclaimed (that includes releasing ownership of the PMU).
5471 * So there might be a window of time where the number of per-task session is zero
5472 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5473 * context. This is safe because if a per-task session comes in, it will push this one
5474 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5475 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5476 * also push our zombie context out.
5478 * Overall pretty hairy stuff....
5480 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task->pid: -1));
5482 ia64_psr(regs)->up = 0;
5483 ia64_psr(regs)->sp = 1;
5488 pfm_do_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5490 struct task_struct *task;
5492 unsigned long flags;
5494 int this_cpu = smp_processor_id();
5497 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5500 * srlz.d done before arriving here
5502 pmc0 = ia64_get_pmc(0);
5504 task = GET_PMU_OWNER();
5505 ctx = GET_PMU_CTX();
5508 * if we have some pending bits set
5509 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5511 if (PMC0_HAS_OVFL(pmc0) && task) {
5513 * we assume that pmc0.fr is always set here
5517 if (!ctx) goto report_spurious1;
5519 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5520 goto report_spurious2;
5522 PROTECT_CTX_NOPRINT(ctx, flags);
5524 pfm_overflow_handler(task, ctx, pmc0, regs);
5526 UNPROTECT_CTX_NOPRINT(ctx, flags);
5529 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5533 * keep it unfrozen at all times
5540 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5541 this_cpu, task->pid);
5545 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5553 pfm_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5555 unsigned long start_cycles, total_cycles;
5556 unsigned long min, max;
5560 this_cpu = get_cpu();
5561 if (likely(!pfm_alt_intr_handler)) {
5562 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5563 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5565 start_cycles = ia64_get_itc();
5567 ret = pfm_do_interrupt_handler(irq, arg, regs);
5569 total_cycles = ia64_get_itc();
5572 * don't measure spurious interrupts
5574 if (likely(ret == 0)) {
5575 total_cycles -= start_cycles;
5577 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5578 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5580 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5584 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5587 put_cpu_no_resched();
5592 * /proc/perfmon interface, for debug only
5595 #define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
5598 pfm_proc_start(struct seq_file *m, loff_t *pos)
5601 return PFM_PROC_SHOW_HEADER;
5604 while (*pos <= NR_CPUS) {
5605 if (cpu_online(*pos - 1)) {
5606 return (void *)*pos;
5614 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5617 return pfm_proc_start(m, pos);
5621 pfm_proc_stop(struct seq_file *m, void *v)
5626 pfm_proc_show_header(struct seq_file *m)
5628 struct list_head * pos;
5629 pfm_buffer_fmt_t * entry;
5630 unsigned long flags;
5633 "perfmon version : %u.%u\n"
5636 "expert mode : %s\n"
5637 "ovfl_mask : 0x%lx\n"
5638 "PMU flags : 0x%x\n",
5639 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5641 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5642 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5649 "proc_sessions : %u\n"
5650 "sys_sessions : %u\n"
5651 "sys_use_dbregs : %u\n"
5652 "ptrace_use_dbregs : %u\n",
5653 pfm_sessions.pfs_task_sessions,
5654 pfm_sessions.pfs_sys_sessions,
5655 pfm_sessions.pfs_sys_use_dbregs,
5656 pfm_sessions.pfs_ptrace_use_dbregs);
5660 spin_lock(&pfm_buffer_fmt_lock);
5662 list_for_each(pos, &pfm_buffer_fmt_list) {
5663 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5664 seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5675 entry->fmt_uuid[10],
5676 entry->fmt_uuid[11],
5677 entry->fmt_uuid[12],
5678 entry->fmt_uuid[13],
5679 entry->fmt_uuid[14],
5680 entry->fmt_uuid[15],
5683 spin_unlock(&pfm_buffer_fmt_lock);
5688 pfm_proc_show(struct seq_file *m, void *v)
5694 if (v == PFM_PROC_SHOW_HEADER) {
5695 pfm_proc_show_header(m);
5699 /* show info for CPU (v - 1) */
5703 "CPU%-2d overflow intrs : %lu\n"
5704 "CPU%-2d overflow cycles : %lu\n"
5705 "CPU%-2d overflow min : %lu\n"
5706 "CPU%-2d overflow max : %lu\n"
5707 "CPU%-2d smpl handler calls : %lu\n"
5708 "CPU%-2d smpl handler cycles : %lu\n"
5709 "CPU%-2d spurious intrs : %lu\n"
5710 "CPU%-2d replay intrs : %lu\n"
5711 "CPU%-2d syst_wide : %d\n"
5712 "CPU%-2d dcr_pp : %d\n"
5713 "CPU%-2d exclude idle : %d\n"
5714 "CPU%-2d owner : %d\n"
5715 "CPU%-2d context : %p\n"
5716 "CPU%-2d activations : %lu\n",
5717 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5718 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5719 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5720 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5721 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5722 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5723 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5724 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5725 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5726 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5727 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5728 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5729 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5730 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5732 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5734 psr = pfm_get_psr();
5739 "CPU%-2d psr : 0x%lx\n"
5740 "CPU%-2d pmc0 : 0x%lx\n",
5742 cpu, ia64_get_pmc(0));
5744 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5745 if (PMC_IS_COUNTING(i) == 0) continue;
5747 "CPU%-2d pmc%u : 0x%lx\n"
5748 "CPU%-2d pmd%u : 0x%lx\n",
5749 cpu, i, ia64_get_pmc(i),
5750 cpu, i, ia64_get_pmd(i));
5756 struct seq_operations pfm_seq_ops = {
5757 .start = pfm_proc_start,
5758 .next = pfm_proc_next,
5759 .stop = pfm_proc_stop,
5760 .show = pfm_proc_show
5764 pfm_proc_open(struct inode *inode, struct file *file)
5766 return seq_open(file, &pfm_seq_ops);
5771 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5772 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5773 * is active or inactive based on mode. We must rely on the value in
5774 * local_cpu_data->pfm_syst_info
5777 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5779 struct pt_regs *regs;
5781 unsigned long dcr_pp;
5783 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5786 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5787 * on every CPU, so we can rely on the pid to identify the idle task.
5789 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5790 regs = ia64_task_regs(task);
5791 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5795 * if monitoring has started
5798 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5800 * context switching in?
5803 /* mask monitoring for the idle task */
5804 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5810 * context switching out
5811 * restore monitoring for next task
5813 * Due to inlining this odd if-then-else construction generates
5816 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5825 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5827 struct task_struct *task = ctx->ctx_task;
5829 ia64_psr(regs)->up = 0;
5830 ia64_psr(regs)->sp = 1;
5832 if (GET_PMU_OWNER() == task) {
5833 DPRINT(("cleared ownership for [%d]\n", ctx->ctx_task->pid));
5834 SET_PMU_OWNER(NULL, NULL);
5838 * disconnect the task from the context and vice-versa
5840 PFM_SET_WORK_PENDING(task, 0);
5842 task->thread.pfm_context = NULL;
5843 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5845 DPRINT(("force cleanup for [%d]\n", task->pid));
5850 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5853 pfm_save_regs(struct task_struct *task)
5856 struct thread_struct *t;
5857 unsigned long flags;
5861 ctx = PFM_GET_CTX(task);
5862 if (ctx == NULL) return;
5866 * we always come here with interrupts ALREADY disabled by
5867 * the scheduler. So we simply need to protect against concurrent
5868 * access, not CPU concurrency.
5870 flags = pfm_protect_ctx_ctxsw(ctx);
5872 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5873 struct pt_regs *regs = ia64_task_regs(task);
5877 pfm_force_cleanup(ctx, regs);
5879 BUG_ON(ctx->ctx_smpl_hdr);
5881 pfm_unprotect_ctx_ctxsw(ctx, flags);
5883 pfm_context_free(ctx);
5888 * save current PSR: needed because we modify it
5891 psr = pfm_get_psr();
5893 BUG_ON(psr & (IA64_PSR_I));
5897 * This is the last instruction which may generate an overflow
5899 * We do not need to set psr.sp because, it is irrelevant in kernel.
5900 * It will be restored from ipsr when going back to user level
5905 * keep a copy of psr.up (for reload)
5907 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5910 * release ownership of this PMU.
5911 * PM interrupts are masked, so nothing
5914 SET_PMU_OWNER(NULL, NULL);
5917 * we systematically save the PMD as we have no
5918 * guarantee we will be schedule at that same
5921 pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]);
5924 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5925 * we will need it on the restore path to check
5926 * for pending overflow.
5928 t->pmcs[0] = ia64_get_pmc(0);
5931 * unfreeze PMU if had pending overflows
5933 if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5936 * finally, allow context access.
5937 * interrupts will still be masked after this call.
5939 pfm_unprotect_ctx_ctxsw(ctx, flags);
5942 #else /* !CONFIG_SMP */
5944 pfm_save_regs(struct task_struct *task)
5949 ctx = PFM_GET_CTX(task);
5950 if (ctx == NULL) return;
5953 * save current PSR: needed because we modify it
5955 psr = pfm_get_psr();
5957 BUG_ON(psr & (IA64_PSR_I));
5961 * This is the last instruction which may generate an overflow
5963 * We do not need to set psr.sp because, it is irrelevant in kernel.
5964 * It will be restored from ipsr when going back to user level
5969 * keep a copy of psr.up (for reload)
5971 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5975 pfm_lazy_save_regs (struct task_struct *task)
5978 struct thread_struct *t;
5979 unsigned long flags;
5981 { u64 psr = pfm_get_psr();
5982 BUG_ON(psr & IA64_PSR_UP);
5985 ctx = PFM_GET_CTX(task);
5989 * we need to mask PMU overflow here to
5990 * make sure that we maintain pmc0 until
5991 * we save it. overflow interrupts are
5992 * treated as spurious if there is no
5995 * XXX: I don't think this is necessary
5997 PROTECT_CTX(ctx,flags);
6000 * release ownership of this PMU.
6001 * must be done before we save the registers.
6003 * after this call any PMU interrupt is treated
6006 SET_PMU_OWNER(NULL, NULL);
6009 * save all the pmds we use
6011 pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]);
6014 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6015 * it is needed to check for pended overflow
6016 * on the restore path
6018 t->pmcs[0] = ia64_get_pmc(0);
6021 * unfreeze PMU if had pending overflows
6023 if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6026 * now get can unmask PMU interrupts, they will
6027 * be treated as purely spurious and we will not
6028 * lose any information
6030 UNPROTECT_CTX(ctx,flags);
6032 #endif /* CONFIG_SMP */
6036 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6039 pfm_load_regs (struct task_struct *task)
6042 struct thread_struct *t;
6043 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6044 unsigned long flags;
6046 int need_irq_resend;
6048 ctx = PFM_GET_CTX(task);
6049 if (unlikely(ctx == NULL)) return;
6051 BUG_ON(GET_PMU_OWNER());
6055 * possible on unload
6057 if (unlikely((t->flags & IA64_THREAD_PM_VALID) == 0)) return;
6060 * we always come here with interrupts ALREADY disabled by
6061 * the scheduler. So we simply need to protect against concurrent
6062 * access, not CPU concurrency.
6064 flags = pfm_protect_ctx_ctxsw(ctx);
6065 psr = pfm_get_psr();
6067 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6069 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6070 BUG_ON(psr & IA64_PSR_I);
6072 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6073 struct pt_regs *regs = ia64_task_regs(task);
6075 BUG_ON(ctx->ctx_smpl_hdr);
6077 pfm_force_cleanup(ctx, regs);
6079 pfm_unprotect_ctx_ctxsw(ctx, flags);
6082 * this one (kmalloc'ed) is fine with interrupts disabled
6084 pfm_context_free(ctx);
6090 * we restore ALL the debug registers to avoid picking up
6093 if (ctx->ctx_fl_using_dbreg) {
6094 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6095 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6098 * retrieve saved psr.up
6100 psr_up = ctx->ctx_saved_psr_up;
6103 * if we were the last user of the PMU on that CPU,
6104 * then nothing to do except restore psr
6106 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6109 * retrieve partial reload masks (due to user modifications)
6111 pmc_mask = ctx->ctx_reload_pmcs[0];
6112 pmd_mask = ctx->ctx_reload_pmds[0];
6116 * To avoid leaking information to the user level when psr.sp=0,
6117 * we must reload ALL implemented pmds (even the ones we don't use).
6118 * In the kernel we only allow PFM_READ_PMDS on registers which
6119 * we initialized or requested (sampling) so there is no risk there.
6121 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6124 * ALL accessible PMCs are systematically reloaded, unused registers
6125 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6126 * up stale configuration.
6128 * PMC0 is never in the mask. It is always restored separately.
6130 pmc_mask = ctx->ctx_all_pmcs[0];
6133 * when context is MASKED, we will restore PMC with plm=0
6134 * and PMD with stale information, but that's ok, nothing
6137 * XXX: optimize here
6139 if (pmd_mask) pfm_restore_pmds(t->pmds, pmd_mask);
6140 if (pmc_mask) pfm_restore_pmcs(t->pmcs, pmc_mask);
6143 * check for pending overflow at the time the state
6146 if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) {
6148 * reload pmc0 with the overflow information
6149 * On McKinley PMU, this will trigger a PMU interrupt
6151 ia64_set_pmc(0, t->pmcs[0]);
6156 * will replay the PMU interrupt
6158 if (need_irq_resend) hw_resend_irq(NULL, IA64_PERFMON_VECTOR);
6160 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6164 * we just did a reload, so we reset the partial reload fields
6166 ctx->ctx_reload_pmcs[0] = 0UL;
6167 ctx->ctx_reload_pmds[0] = 0UL;
6169 SET_LAST_CPU(ctx, smp_processor_id());
6172 * dump activation value for this PMU
6176 * record current activation for this context
6178 SET_ACTIVATION(ctx);
6181 * establish new ownership.
6183 SET_PMU_OWNER(task, ctx);
6186 * restore the psr.up bit. measurement
6188 * no PMU interrupt can happen at this point
6189 * because we still have interrupts disabled.
6191 if (likely(psr_up)) pfm_set_psr_up();
6194 * allow concurrent access to context
6196 pfm_unprotect_ctx_ctxsw(ctx, flags);
6198 #else /* !CONFIG_SMP */
6200 * reload PMU state for UP kernels
6201 * in 2.5 we come here with interrupts disabled
6204 pfm_load_regs (struct task_struct *task)
6206 struct thread_struct *t;
6208 struct task_struct *owner;
6209 unsigned long pmd_mask, pmc_mask;
6211 int need_irq_resend;
6213 owner = GET_PMU_OWNER();
6214 ctx = PFM_GET_CTX(task);
6216 psr = pfm_get_psr();
6218 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6219 BUG_ON(psr & IA64_PSR_I);
6222 * we restore ALL the debug registers to avoid picking up
6225 * This must be done even when the task is still the owner
6226 * as the registers may have been modified via ptrace()
6227 * (not perfmon) by the previous task.
6229 if (ctx->ctx_fl_using_dbreg) {
6230 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6231 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6235 * retrieved saved psr.up
6237 psr_up = ctx->ctx_saved_psr_up;
6238 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6241 * short path, our state is still there, just
6242 * need to restore psr and we go
6244 * we do not touch either PMC nor PMD. the psr is not touched
6245 * by the overflow_handler. So we are safe w.r.t. to interrupt
6246 * concurrency even without interrupt masking.
6248 if (likely(owner == task)) {
6249 if (likely(psr_up)) pfm_set_psr_up();
6254 * someone else is still using the PMU, first push it out and
6255 * then we'll be able to install our stuff !
6257 * Upon return, there will be no owner for the current PMU
6259 if (owner) pfm_lazy_save_regs(owner);
6262 * To avoid leaking information to the user level when psr.sp=0,
6263 * we must reload ALL implemented pmds (even the ones we don't use).
6264 * In the kernel we only allow PFM_READ_PMDS on registers which
6265 * we initialized or requested (sampling) so there is no risk there.
6267 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6270 * ALL accessible PMCs are systematically reloaded, unused registers
6271 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6272 * up stale configuration.
6274 * PMC0 is never in the mask. It is always restored separately
6276 pmc_mask = ctx->ctx_all_pmcs[0];
6278 pfm_restore_pmds(t->pmds, pmd_mask);
6279 pfm_restore_pmcs(t->pmcs, pmc_mask);
6282 * check for pending overflow at the time the state
6285 if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) {
6287 * reload pmc0 with the overflow information
6288 * On McKinley PMU, this will trigger a PMU interrupt
6290 ia64_set_pmc(0, t->pmcs[0]);
6296 * will replay the PMU interrupt
6298 if (need_irq_resend) hw_resend_irq(NULL, IA64_PERFMON_VECTOR);
6300 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6304 * establish new ownership.
6306 SET_PMU_OWNER(task, ctx);
6309 * restore the psr.up bit. measurement
6311 * no PMU interrupt can happen at this point
6312 * because we still have interrupts disabled.
6314 if (likely(psr_up)) pfm_set_psr_up();
6316 #endif /* CONFIG_SMP */
6319 * this function assumes monitoring is stopped
6322 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6325 unsigned long mask2, val, pmd_val, ovfl_val;
6326 int i, can_access_pmu = 0;
6330 * is the caller the task being monitored (or which initiated the
6331 * session for system wide measurements)
6333 is_self = ctx->ctx_task == task ? 1 : 0;
6336 * can access PMU is task is the owner of the PMU state on the current CPU
6337 * or if we are running on the CPU bound to the context in system-wide mode
6338 * (that is not necessarily the task the context is attached to in this mode).
6339 * In system-wide we always have can_access_pmu true because a task running on an
6340 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6342 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6343 if (can_access_pmu) {
6345 * Mark the PMU as not owned
6346 * This will cause the interrupt handler to do nothing in case an overflow
6347 * interrupt was in-flight
6348 * This also guarantees that pmc0 will contain the final state
6349 * It virtually gives us full control on overflow processing from that point
6352 SET_PMU_OWNER(NULL, NULL);
6353 DPRINT(("releasing ownership\n"));
6356 * read current overflow status:
6358 * we are guaranteed to read the final stable state
6361 pmc0 = ia64_get_pmc(0); /* slow */
6364 * reset freeze bit, overflow status information destroyed
6368 pmc0 = task->thread.pmcs[0];
6370 * clear whatever overflow status bits there were
6372 task->thread.pmcs[0] = 0;
6374 ovfl_val = pmu_conf->ovfl_val;
6376 * we save all the used pmds
6377 * we take care of overflows for counting PMDs
6379 * XXX: sampling situation is not taken into account here
6381 mask2 = ctx->ctx_used_pmds[0];
6383 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6385 for (i = 0; mask2; i++, mask2>>=1) {
6387 /* skip non used pmds */
6388 if ((mask2 & 0x1) == 0) continue;
6391 * can access PMU always true in system wide mode
6393 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : task->thread.pmds[i];
6395 if (PMD_IS_COUNTING(i)) {
6396 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6399 ctx->ctx_pmds[i].val,
6403 * we rebuild the full 64 bit value of the counter
6405 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6408 * now everything is in ctx_pmds[] and we need
6409 * to clear the saved context from save_regs() such that
6410 * pfm_read_pmds() gets the correct value
6415 * take care of overflow inline
6417 if (pmc0 & (1UL << i)) {
6418 val += 1 + ovfl_val;
6419 DPRINT(("[%d] pmd[%d] overflowed\n", task->pid, i));
6423 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task->pid, i, val, pmd_val));
6425 if (is_self) task->thread.pmds[i] = pmd_val;
6427 ctx->ctx_pmds[i].val = val;
6431 static struct irqaction perfmon_irqaction = {
6432 .handler = pfm_interrupt_handler,
6433 .flags = SA_INTERRUPT,
6438 pfm_alt_save_pmu_state(void *data)
6440 struct pt_regs *regs;
6442 regs = ia64_task_regs(current);
6444 DPRINT(("called\n"));
6447 * should not be necessary but
6448 * let's take not risk
6452 ia64_psr(regs)->pp = 0;
6455 * This call is required
6456 * May cause a spurious interrupt on some processors
6464 pfm_alt_restore_pmu_state(void *data)
6466 struct pt_regs *regs;
6468 regs = ia64_task_regs(current);
6470 DPRINT(("called\n"));
6473 * put PMU back in state expected
6478 ia64_psr(regs)->pp = 0;
6481 * perfmon runs with PMU unfrozen at all times
6489 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6494 /* some sanity checks */
6495 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6497 /* do the easy test first */
6498 if (pfm_alt_intr_handler) return -EBUSY;
6500 /* one at a time in the install or remove, just fail the others */
6501 if (!spin_trylock(&pfm_alt_install_check)) {
6505 /* reserve our session */
6506 for_each_online_cpu(reserve_cpu) {
6507 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6508 if (ret) goto cleanup_reserve;
6511 /* save the current system wide pmu states */
6512 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 0, 1);
6514 DPRINT(("on_each_cpu() failed: %d\n", ret));
6515 goto cleanup_reserve;
6518 /* officially change to the alternate interrupt handler */
6519 pfm_alt_intr_handler = hdl;
6521 spin_unlock(&pfm_alt_install_check);
6526 for_each_online_cpu(i) {
6527 /* don't unreserve more than we reserved */
6528 if (i >= reserve_cpu) break;
6530 pfm_unreserve_session(NULL, 1, i);
6533 spin_unlock(&pfm_alt_install_check);
6537 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6540 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6545 if (hdl == NULL) return -EINVAL;
6547 /* cannot remove someone else's handler! */
6548 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6550 /* one at a time in the install or remove, just fail the others */
6551 if (!spin_trylock(&pfm_alt_install_check)) {
6555 pfm_alt_intr_handler = NULL;
6557 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 0, 1);
6559 DPRINT(("on_each_cpu() failed: %d\n", ret));
6562 for_each_online_cpu(i) {
6563 pfm_unreserve_session(NULL, 1, i);
6566 spin_unlock(&pfm_alt_install_check);
6570 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6573 * perfmon initialization routine, called from the initcall() table
6575 static int init_pfm_fs(void);
6583 family = local_cpu_data->family;
6588 if ((*p)->probe() == 0) goto found;
6589 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6600 static struct file_operations pfm_proc_fops = {
6601 .open = pfm_proc_open,
6603 .llseek = seq_lseek,
6604 .release = seq_release,
6610 unsigned int n, n_counters, i;
6612 printk("perfmon: version %u.%u IRQ %u\n",
6615 IA64_PERFMON_VECTOR);
6617 if (pfm_probe_pmu()) {
6618 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6619 local_cpu_data->family);
6624 * compute the number of implemented PMD/PMC from the
6625 * description tables
6628 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6629 if (PMC_IS_IMPL(i) == 0) continue;
6630 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6633 pmu_conf->num_pmcs = n;
6635 n = 0; n_counters = 0;
6636 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6637 if (PMD_IS_IMPL(i) == 0) continue;
6638 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6640 if (PMD_IS_COUNTING(i)) n_counters++;
6642 pmu_conf->num_pmds = n;
6643 pmu_conf->num_counters = n_counters;
6646 * sanity checks on the number of debug registers
6648 if (pmu_conf->use_rr_dbregs) {
6649 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6650 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6654 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6655 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6661 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6665 pmu_conf->num_counters,
6666 ffz(pmu_conf->ovfl_val));
6669 if (pmu_conf->num_pmds >= IA64_NUM_PMD_REGS || pmu_conf->num_pmcs >= IA64_NUM_PMC_REGS) {
6670 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6676 * create /proc/perfmon (mostly for debugging purposes)
6678 perfmon_dir = create_proc_entry("perfmon", S_IRUGO, NULL);
6679 if (perfmon_dir == NULL) {
6680 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6685 * install customized file operations for /proc/perfmon entry
6687 perfmon_dir->proc_fops = &pfm_proc_fops;
6690 * create /proc/sys/kernel/perfmon (for debugging purposes)
6692 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root, 0);
6695 * initialize all our spinlocks
6697 spin_lock_init(&pfm_sessions.pfs_lock);
6698 spin_lock_init(&pfm_buffer_fmt_lock);
6702 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6707 __initcall(pfm_init);
6710 * this function is called before pfm_init()
6713 pfm_init_percpu (void)
6716 * make sure no measurement is active
6717 * (may inherit programmed PMCs from EFI).
6723 * we run with the PMU not frozen at all times
6727 if (smp_processor_id() == 0)
6728 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6730 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6735 * used for debug purposes only
6738 dump_pmu_state(const char *from)
6740 struct task_struct *task;
6741 struct thread_struct *t;
6742 struct pt_regs *regs;
6744 unsigned long psr, dcr, info, flags;
6747 local_irq_save(flags);
6749 this_cpu = smp_processor_id();
6750 regs = ia64_task_regs(current);
6751 info = PFM_CPUINFO_GET();
6752 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6754 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6755 local_irq_restore(flags);
6759 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6766 task = GET_PMU_OWNER();
6767 ctx = GET_PMU_CTX();
6769 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task->pid : -1, ctx);
6771 psr = pfm_get_psr();
6773 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6776 psr & IA64_PSR_PP ? 1 : 0,
6777 psr & IA64_PSR_UP ? 1 : 0,
6778 dcr & IA64_DCR_PP ? 1 : 0,
6781 ia64_psr(regs)->pp);
6783 ia64_psr(regs)->up = 0;
6784 ia64_psr(regs)->pp = 0;
6786 t = ¤t->thread;
6788 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6789 if (PMC_IS_IMPL(i) == 0) continue;
6790 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, t->pmcs[i]);
6793 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6794 if (PMD_IS_IMPL(i) == 0) continue;
6795 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, t->pmds[i]);
6799 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6802 ctx->ctx_smpl_vaddr,
6806 ctx->ctx_saved_psr_up);
6808 local_irq_restore(flags);
6812 * called from process.c:copy_thread(). task is new child.
6815 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6817 struct thread_struct *thread;
6819 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task->pid));
6821 thread = &task->thread;
6824 * cut links inherited from parent (current)
6826 thread->pfm_context = NULL;
6828 PFM_SET_WORK_PENDING(task, 0);
6831 * the psr bits are already set properly in copy_threads()
6834 #else /* !CONFIG_PERFMON */
6836 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6840 #endif /* CONFIG_PERFMON */