2 * linux/drivers/block/ll_rw_blk.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
6 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
7 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
8 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
13 * This handles all read/write requests to block devices
15 #include <linux/config.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/backing-dev.h>
19 #include <linux/bio.h>
20 #include <linux/blkdev.h>
21 #include <linux/highmem.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/blkdev.h>
36 #include <scsi/scsi_cmnd.h>
38 static void blk_unplug_work(void *data);
39 static void blk_unplug_timeout(unsigned long data);
40 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
43 * For the allocated request tables
45 static kmem_cache_t *request_cachep;
48 * For queue allocation
50 static kmem_cache_t *requestq_cachep;
53 * For io context allocations
55 static kmem_cache_t *iocontext_cachep;
57 static wait_queue_head_t congestion_wqh[2] = {
58 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
59 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
63 * Controlling structure to kblockd
65 static struct workqueue_struct *kblockd_workqueue;
67 unsigned long blk_max_low_pfn, blk_max_pfn;
69 EXPORT_SYMBOL(blk_max_low_pfn);
70 EXPORT_SYMBOL(blk_max_pfn);
72 /* Amount of time in which a process may batch requests */
73 #define BLK_BATCH_TIME (HZ/50UL)
75 /* Number of requests a "batching" process may submit */
76 #define BLK_BATCH_REQ 32
79 * Return the threshold (number of used requests) at which the queue is
80 * considered to be congested. It include a little hysteresis to keep the
81 * context switch rate down.
83 static inline int queue_congestion_on_threshold(struct request_queue *q)
85 return q->nr_congestion_on;
89 * The threshold at which a queue is considered to be uncongested
91 static inline int queue_congestion_off_threshold(struct request_queue *q)
93 return q->nr_congestion_off;
96 static void blk_queue_congestion_threshold(struct request_queue *q)
100 nr = q->nr_requests - (q->nr_requests / 8) + 1;
101 if (nr > q->nr_requests)
103 q->nr_congestion_on = nr;
105 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 q->nr_congestion_off = nr;
112 * A queue has just exitted congestion. Note this in the global counter of
113 * congested queues, and wake up anyone who was waiting for requests to be
116 static void clear_queue_congested(request_queue_t *q, int rw)
119 wait_queue_head_t *wqh = &congestion_wqh[rw];
121 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
122 clear_bit(bit, &q->backing_dev_info.state);
123 smp_mb__after_clear_bit();
124 if (waitqueue_active(wqh))
129 * A queue has just entered congestion. Flag that in the queue's VM-visible
130 * state flags and increment the global gounter of congested queues.
132 static void set_queue_congested(request_queue_t *q, int rw)
136 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
137 set_bit(bit, &q->backing_dev_info.state);
141 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
144 * Locates the passed device's request queue and returns the address of its
147 * Will return NULL if the request queue cannot be located.
149 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
151 struct backing_dev_info *ret = NULL;
152 request_queue_t *q = bdev_get_queue(bdev);
155 ret = &q->backing_dev_info;
159 EXPORT_SYMBOL(blk_get_backing_dev_info);
161 void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
164 q->activity_data = data;
167 EXPORT_SYMBOL(blk_queue_activity_fn);
170 * blk_queue_prep_rq - set a prepare_request function for queue
172 * @pfn: prepare_request function
174 * It's possible for a queue to register a prepare_request callback which
175 * is invoked before the request is handed to the request_fn. The goal of
176 * the function is to prepare a request for I/O, it can be used to build a
177 * cdb from the request data for instance.
180 void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
185 EXPORT_SYMBOL(blk_queue_prep_rq);
188 * blk_queue_merge_bvec - set a merge_bvec function for queue
190 * @mbfn: merge_bvec_fn
192 * Usually queues have static limitations on the max sectors or segments that
193 * we can put in a request. Stacking drivers may have some settings that
194 * are dynamic, and thus we have to query the queue whether it is ok to
195 * add a new bio_vec to a bio at a given offset or not. If the block device
196 * has such limitations, it needs to register a merge_bvec_fn to control
197 * the size of bio's sent to it. Note that a block device *must* allow a
198 * single page to be added to an empty bio. The block device driver may want
199 * to use the bio_split() function to deal with these bio's. By default
200 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
203 void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
205 q->merge_bvec_fn = mbfn;
208 EXPORT_SYMBOL(blk_queue_merge_bvec);
211 * blk_queue_make_request - define an alternate make_request function for a device
212 * @q: the request queue for the device to be affected
213 * @mfn: the alternate make_request function
216 * The normal way for &struct bios to be passed to a device
217 * driver is for them to be collected into requests on a request
218 * queue, and then to allow the device driver to select requests
219 * off that queue when it is ready. This works well for many block
220 * devices. However some block devices (typically virtual devices
221 * such as md or lvm) do not benefit from the processing on the
222 * request queue, and are served best by having the requests passed
223 * directly to them. This can be achieved by providing a function
224 * to blk_queue_make_request().
227 * The driver that does this *must* be able to deal appropriately
228 * with buffers in "highmemory". This can be accomplished by either calling
229 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
230 * blk_queue_bounce() to create a buffer in normal memory.
232 void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
237 q->nr_requests = BLKDEV_MAX_RQ;
238 q->max_phys_segments = MAX_PHYS_SEGMENTS;
239 q->max_hw_segments = MAX_HW_SEGMENTS;
240 q->make_request_fn = mfn;
241 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
242 q->backing_dev_info.state = 0;
243 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
244 blk_queue_max_sectors(q, MAX_SECTORS);
245 blk_queue_hardsect_size(q, 512);
246 blk_queue_dma_alignment(q, 511);
247 blk_queue_congestion_threshold(q);
248 q->nr_batching = BLK_BATCH_REQ;
250 q->unplug_thresh = 4; /* hmm */
251 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
252 if (q->unplug_delay == 0)
255 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
257 q->unplug_timer.function = blk_unplug_timeout;
258 q->unplug_timer.data = (unsigned long)q;
261 * by default assume old behaviour and bounce for any highmem page
263 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
265 blk_queue_activity_fn(q, NULL, NULL);
267 INIT_LIST_HEAD(&q->drain_list);
270 EXPORT_SYMBOL(blk_queue_make_request);
272 static inline void rq_init(request_queue_t *q, struct request *rq)
274 INIT_LIST_HEAD(&rq->queuelist);
277 rq->rq_status = RQ_ACTIVE;
278 rq->bio = rq->biotail = NULL;
289 rq->end_io_data = NULL;
293 * blk_queue_ordered - does this queue support ordered writes
294 * @q: the request queue
298 * For journalled file systems, doing ordered writes on a commit
299 * block instead of explicitly doing wait_on_buffer (which is bad
300 * for performance) can be a big win. Block drivers supporting this
301 * feature should call this function and indicate so.
304 void blk_queue_ordered(request_queue_t *q, int flag)
307 case QUEUE_ORDERED_NONE:
309 kmem_cache_free(request_cachep, q->flush_rq);
313 case QUEUE_ORDERED_TAG:
316 case QUEUE_ORDERED_FLUSH:
319 q->flush_rq = kmem_cache_alloc(request_cachep,
323 printk("blk_queue_ordered: bad value %d\n", flag);
328 EXPORT_SYMBOL(blk_queue_ordered);
331 * blk_queue_issue_flush_fn - set function for issuing a flush
332 * @q: the request queue
333 * @iff: the function to be called issuing the flush
336 * If a driver supports issuing a flush command, the support is notified
337 * to the block layer by defining it through this call.
340 void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
342 q->issue_flush_fn = iff;
345 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
348 * Cache flushing for ordered writes handling
350 static void blk_pre_flush_end_io(struct request *flush_rq)
352 struct request *rq = flush_rq->end_io_data;
353 request_queue_t *q = rq->q;
355 rq->flags |= REQ_BAR_PREFLUSH;
357 if (!flush_rq->errors)
358 elv_requeue_request(q, rq);
360 q->end_flush_fn(q, flush_rq);
361 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
366 static void blk_post_flush_end_io(struct request *flush_rq)
368 struct request *rq = flush_rq->end_io_data;
369 request_queue_t *q = rq->q;
371 rq->flags |= REQ_BAR_POSTFLUSH;
373 q->end_flush_fn(q, flush_rq);
374 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
378 struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq)
380 struct request *flush_rq = q->flush_rq;
382 BUG_ON(!blk_barrier_rq(rq));
384 if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags))
387 rq_init(q, flush_rq);
388 flush_rq->elevator_private = NULL;
389 flush_rq->flags = REQ_BAR_FLUSH;
390 flush_rq->rq_disk = rq->rq_disk;
394 * prepare_flush returns 0 if no flush is needed, just mark both
395 * pre and post flush as done in that case
397 if (!q->prepare_flush_fn(q, flush_rq)) {
398 rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH;
399 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
404 * some drivers dequeue requests right away, some only after io
405 * completion. make sure the request is dequeued.
407 if (!list_empty(&rq->queuelist))
408 blkdev_dequeue_request(rq);
410 elv_deactivate_request(q, rq);
412 flush_rq->end_io_data = rq;
413 flush_rq->end_io = blk_pre_flush_end_io;
415 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
419 static void blk_start_post_flush(request_queue_t *q, struct request *rq)
421 struct request *flush_rq = q->flush_rq;
423 BUG_ON(!blk_barrier_rq(rq));
425 rq_init(q, flush_rq);
426 flush_rq->elevator_private = NULL;
427 flush_rq->flags = REQ_BAR_FLUSH;
428 flush_rq->rq_disk = rq->rq_disk;
431 if (q->prepare_flush_fn(q, flush_rq)) {
432 flush_rq->end_io_data = rq;
433 flush_rq->end_io = blk_post_flush_end_io;
435 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
440 static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq,
443 if (sectors > rq->nr_sectors)
444 sectors = rq->nr_sectors;
446 rq->nr_sectors -= sectors;
447 return rq->nr_sectors;
450 static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq,
451 int sectors, int queue_locked)
453 if (q->ordered != QUEUE_ORDERED_FLUSH)
455 if (!blk_fs_request(rq) || !blk_barrier_rq(rq))
457 if (blk_barrier_postflush(rq))
460 if (!blk_check_end_barrier(q, rq, sectors)) {
461 unsigned long flags = 0;
464 spin_lock_irqsave(q->queue_lock, flags);
466 blk_start_post_flush(q, rq);
469 spin_unlock_irqrestore(q->queue_lock, flags);
476 * blk_complete_barrier_rq - complete possible barrier request
477 * @q: the request queue for the device
479 * @sectors: number of sectors to complete
482 * Used in driver end_io handling to determine whether to postpone
483 * completion of a barrier request until a post flush has been done. This
484 * is the unlocked variant, used if the caller doesn't already hold the
487 int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors)
489 return __blk_complete_barrier_rq(q, rq, sectors, 0);
491 EXPORT_SYMBOL(blk_complete_barrier_rq);
494 * blk_complete_barrier_rq_locked - complete possible barrier request
495 * @q: the request queue for the device
497 * @sectors: number of sectors to complete
500 * See blk_complete_barrier_rq(). This variant must be used if the caller
501 * holds the queue lock.
503 int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq,
506 return __blk_complete_barrier_rq(q, rq, sectors, 1);
508 EXPORT_SYMBOL(blk_complete_barrier_rq_locked);
511 * blk_queue_bounce_limit - set bounce buffer limit for queue
512 * @q: the request queue for the device
513 * @dma_addr: bus address limit
516 * Different hardware can have different requirements as to what pages
517 * it can do I/O directly to. A low level driver can call
518 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
519 * buffers for doing I/O to pages residing above @page. By default
520 * the block layer sets this to the highest numbered "low" memory page.
522 void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
524 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
527 * set appropriate bounce gfp mask -- unfortunately we don't have a
528 * full 4GB zone, so we have to resort to low memory for any bounces.
529 * ISA has its own < 16MB zone.
531 if (bounce_pfn < blk_max_low_pfn) {
532 BUG_ON(dma_addr < BLK_BOUNCE_ISA);
533 init_emergency_isa_pool();
534 q->bounce_gfp = GFP_NOIO | GFP_DMA;
536 q->bounce_gfp = GFP_NOIO;
538 q->bounce_pfn = bounce_pfn;
541 EXPORT_SYMBOL(blk_queue_bounce_limit);
544 * blk_queue_max_sectors - set max sectors for a request for this queue
545 * @q: the request queue for the device
546 * @max_sectors: max sectors in the usual 512b unit
549 * Enables a low level driver to set an upper limit on the size of
552 void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
554 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
555 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
556 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
559 q->max_sectors = q->max_hw_sectors = max_sectors;
562 EXPORT_SYMBOL(blk_queue_max_sectors);
565 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
566 * @q: the request queue for the device
567 * @max_segments: max number of segments
570 * Enables a low level driver to set an upper limit on the number of
571 * physical data segments in a request. This would be the largest sized
572 * scatter list the driver could handle.
574 void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
578 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
581 q->max_phys_segments = max_segments;
584 EXPORT_SYMBOL(blk_queue_max_phys_segments);
587 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
588 * @q: the request queue for the device
589 * @max_segments: max number of segments
592 * Enables a low level driver to set an upper limit on the number of
593 * hw data segments in a request. This would be the largest number of
594 * address/length pairs the host adapter can actually give as once
597 void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
601 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
604 q->max_hw_segments = max_segments;
607 EXPORT_SYMBOL(blk_queue_max_hw_segments);
610 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
611 * @q: the request queue for the device
612 * @max_size: max size of segment in bytes
615 * Enables a low level driver to set an upper limit on the size of a
618 void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
620 if (max_size < PAGE_CACHE_SIZE) {
621 max_size = PAGE_CACHE_SIZE;
622 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
625 q->max_segment_size = max_size;
628 EXPORT_SYMBOL(blk_queue_max_segment_size);
631 * blk_queue_hardsect_size - set hardware sector size for the queue
632 * @q: the request queue for the device
633 * @size: the hardware sector size, in bytes
636 * This should typically be set to the lowest possible sector size
637 * that the hardware can operate on (possible without reverting to
638 * even internal read-modify-write operations). Usually the default
639 * of 512 covers most hardware.
641 void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
643 q->hardsect_size = size;
646 EXPORT_SYMBOL(blk_queue_hardsect_size);
649 * Returns the minimum that is _not_ zero, unless both are zero.
651 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
654 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
655 * @t: the stacking driver (top)
656 * @b: the underlying device (bottom)
658 void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
660 /* zero is "infinity" */
661 t->max_sectors = t->max_hw_sectors =
662 min_not_zero(t->max_sectors,b->max_sectors);
664 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
665 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
666 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
667 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
670 EXPORT_SYMBOL(blk_queue_stack_limits);
673 * blk_queue_segment_boundary - set boundary rules for segment merging
674 * @q: the request queue for the device
675 * @mask: the memory boundary mask
677 void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
679 if (mask < PAGE_CACHE_SIZE - 1) {
680 mask = PAGE_CACHE_SIZE - 1;
681 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
684 q->seg_boundary_mask = mask;
687 EXPORT_SYMBOL(blk_queue_segment_boundary);
690 * blk_queue_dma_alignment - set dma length and memory alignment
691 * @q: the request queue for the device
692 * @mask: alignment mask
695 * set required memory and length aligment for direct dma transactions.
696 * this is used when buiding direct io requests for the queue.
699 void blk_queue_dma_alignment(request_queue_t *q, int mask)
701 q->dma_alignment = mask;
704 EXPORT_SYMBOL(blk_queue_dma_alignment);
707 * blk_queue_find_tag - find a request by its tag and queue
709 * @q: The request queue for the device
710 * @tag: The tag of the request
713 * Should be used when a device returns a tag and you want to match
716 * no locks need be held.
718 struct request *blk_queue_find_tag(request_queue_t *q, int tag)
720 struct blk_queue_tag *bqt = q->queue_tags;
722 if (unlikely(bqt == NULL || tag >= bqt->max_depth))
725 return bqt->tag_index[tag];
728 EXPORT_SYMBOL(blk_queue_find_tag);
731 * __blk_queue_free_tags - release tag maintenance info
732 * @q: the request queue for the device
735 * blk_cleanup_queue() will take care of calling this function, if tagging
736 * has been used. So there's no need to call this directly.
738 static void __blk_queue_free_tags(request_queue_t *q)
740 struct blk_queue_tag *bqt = q->queue_tags;
745 if (atomic_dec_and_test(&bqt->refcnt)) {
747 BUG_ON(!list_empty(&bqt->busy_list));
749 kfree(bqt->tag_index);
750 bqt->tag_index = NULL;
758 q->queue_tags = NULL;
759 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
763 * blk_queue_free_tags - release tag maintenance info
764 * @q: the request queue for the device
767 * This is used to disabled tagged queuing to a device, yet leave
770 void blk_queue_free_tags(request_queue_t *q)
772 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
775 EXPORT_SYMBOL(blk_queue_free_tags);
778 init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
780 struct request **tag_index;
781 unsigned long *tag_map;
784 if (depth > q->nr_requests * 2) {
785 depth = q->nr_requests * 2;
786 printk(KERN_ERR "%s: adjusted depth to %d\n",
787 __FUNCTION__, depth);
790 tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
794 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
795 tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
799 memset(tag_index, 0, depth * sizeof(struct request *));
800 memset(tag_map, 0, nr_ulongs * sizeof(unsigned long));
801 tags->max_depth = depth;
802 tags->tag_index = tag_index;
803 tags->tag_map = tag_map;
812 * blk_queue_init_tags - initialize the queue tag info
813 * @q: the request queue for the device
814 * @depth: the maximum queue depth supported
815 * @tags: the tag to use
817 int blk_queue_init_tags(request_queue_t *q, int depth,
818 struct blk_queue_tag *tags)
822 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
824 if (!tags && !q->queue_tags) {
825 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
829 if (init_tag_map(q, tags, depth))
832 INIT_LIST_HEAD(&tags->busy_list);
834 atomic_set(&tags->refcnt, 1);
835 } else if (q->queue_tags) {
836 if ((rc = blk_queue_resize_tags(q, depth)))
838 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
841 atomic_inc(&tags->refcnt);
844 * assign it, all done
846 q->queue_tags = tags;
847 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
854 EXPORT_SYMBOL(blk_queue_init_tags);
857 * blk_queue_resize_tags - change the queueing depth
858 * @q: the request queue for the device
859 * @new_depth: the new max command queueing depth
862 * Must be called with the queue lock held.
864 int blk_queue_resize_tags(request_queue_t *q, int new_depth)
866 struct blk_queue_tag *bqt = q->queue_tags;
867 struct request **tag_index;
868 unsigned long *tag_map;
869 int max_depth, nr_ulongs;
875 * save the old state info, so we can copy it back
877 tag_index = bqt->tag_index;
878 tag_map = bqt->tag_map;
879 max_depth = bqt->max_depth;
881 if (init_tag_map(q, bqt, new_depth))
884 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
885 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
886 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
893 EXPORT_SYMBOL(blk_queue_resize_tags);
896 * blk_queue_end_tag - end tag operations for a request
897 * @q: the request queue for the device
898 * @rq: the request that has completed
901 * Typically called when end_that_request_first() returns 0, meaning
902 * all transfers have been done for a request. It's important to call
903 * this function before end_that_request_last(), as that will put the
904 * request back on the free list thus corrupting the internal tag list.
907 * queue lock must be held.
909 void blk_queue_end_tag(request_queue_t *q, struct request *rq)
911 struct blk_queue_tag *bqt = q->queue_tags;
916 if (unlikely(tag >= bqt->max_depth))
918 * This can happen after tag depth has been reduced.
919 * FIXME: how about a warning or info message here?
923 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
924 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
929 list_del_init(&rq->queuelist);
930 rq->flags &= ~REQ_QUEUED;
933 if (unlikely(bqt->tag_index[tag] == NULL))
934 printk(KERN_ERR "%s: tag %d is missing\n",
937 bqt->tag_index[tag] = NULL;
941 EXPORT_SYMBOL(blk_queue_end_tag);
944 * blk_queue_start_tag - find a free tag and assign it
945 * @q: the request queue for the device
946 * @rq: the block request that needs tagging
949 * This can either be used as a stand-alone helper, or possibly be
950 * assigned as the queue &prep_rq_fn (in which case &struct request
951 * automagically gets a tag assigned). Note that this function
952 * assumes that any type of request can be queued! if this is not
953 * true for your device, you must check the request type before
954 * calling this function. The request will also be removed from
955 * the request queue, so it's the drivers responsibility to readd
956 * it if it should need to be restarted for some reason.
959 * queue lock must be held.
961 int blk_queue_start_tag(request_queue_t *q, struct request *rq)
963 struct blk_queue_tag *bqt = q->queue_tags;
966 if (unlikely((rq->flags & REQ_QUEUED))) {
968 "%s: request %p for device [%s] already tagged %d",
970 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
974 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
975 if (tag >= bqt->max_depth)
978 __set_bit(tag, bqt->tag_map);
980 rq->flags |= REQ_QUEUED;
982 bqt->tag_index[tag] = rq;
983 blkdev_dequeue_request(rq);
984 list_add(&rq->queuelist, &bqt->busy_list);
989 EXPORT_SYMBOL(blk_queue_start_tag);
992 * blk_queue_invalidate_tags - invalidate all pending tags
993 * @q: the request queue for the device
996 * Hardware conditions may dictate a need to stop all pending requests.
997 * In this case, we will safely clear the block side of the tag queue and
998 * readd all requests to the request queue in the right order.
1001 * queue lock must be held.
1003 void blk_queue_invalidate_tags(request_queue_t *q)
1005 struct blk_queue_tag *bqt = q->queue_tags;
1006 struct list_head *tmp, *n;
1009 list_for_each_safe(tmp, n, &bqt->busy_list) {
1010 rq = list_entry_rq(tmp);
1012 if (rq->tag == -1) {
1014 "%s: bad tag found on list\n", __FUNCTION__);
1015 list_del_init(&rq->queuelist);
1016 rq->flags &= ~REQ_QUEUED;
1018 blk_queue_end_tag(q, rq);
1020 rq->flags &= ~REQ_STARTED;
1021 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1025 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1027 static char *rq_flags[] = {
1045 "REQ_DRIVE_TASKFILE",
1052 void blk_dump_rq_flags(struct request *rq, char *msg)
1056 printk("%s: dev %s: flags = ", msg,
1057 rq->rq_disk ? rq->rq_disk->disk_name : "?");
1060 if (rq->flags & (1 << bit))
1061 printk("%s ", rq_flags[bit]);
1063 } while (bit < __REQ_NR_BITS);
1065 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1067 rq->current_nr_sectors);
1068 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1070 if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
1072 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1073 printk("%02x ", rq->cmd[bit]);
1078 EXPORT_SYMBOL(blk_dump_rq_flags);
1080 void blk_recount_segments(request_queue_t *q, struct bio *bio)
1082 struct bio_vec *bv, *bvprv = NULL;
1083 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1084 int high, highprv = 1;
1086 if (unlikely(!bio->bi_io_vec))
1089 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1090 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1091 bio_for_each_segment(bv, bio, i) {
1093 * the trick here is making sure that a high page is never
1094 * considered part of another segment, since that might
1095 * change with the bounce page.
1097 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1098 if (high || highprv)
1099 goto new_hw_segment;
1101 if (seg_size + bv->bv_len > q->max_segment_size)
1103 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1105 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1107 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1108 goto new_hw_segment;
1110 seg_size += bv->bv_len;
1111 hw_seg_size += bv->bv_len;
1116 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1117 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1118 hw_seg_size += bv->bv_len;
1121 if (hw_seg_size > bio->bi_hw_front_size)
1122 bio->bi_hw_front_size = hw_seg_size;
1123 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1129 seg_size = bv->bv_len;
1132 if (hw_seg_size > bio->bi_hw_back_size)
1133 bio->bi_hw_back_size = hw_seg_size;
1134 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1135 bio->bi_hw_front_size = hw_seg_size;
1136 bio->bi_phys_segments = nr_phys_segs;
1137 bio->bi_hw_segments = nr_hw_segs;
1138 bio->bi_flags |= (1 << BIO_SEG_VALID);
1142 static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1145 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1148 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1150 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1154 * bio and nxt are contigous in memory, check if the queue allows
1155 * these two to be merged into one
1157 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1163 static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1166 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1167 blk_recount_segments(q, bio);
1168 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1169 blk_recount_segments(q, nxt);
1170 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1171 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1173 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1180 * map a request to scatterlist, return number of sg entries setup. Caller
1181 * must make sure sg can hold rq->nr_phys_segments entries
1183 int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1185 struct bio_vec *bvec, *bvprv;
1187 int nsegs, i, cluster;
1190 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1193 * for each bio in rq
1196 rq_for_each_bio(bio, rq) {
1198 * for each segment in bio
1200 bio_for_each_segment(bvec, bio, i) {
1201 int nbytes = bvec->bv_len;
1203 if (bvprv && cluster) {
1204 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1207 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1209 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1212 sg[nsegs - 1].length += nbytes;
1215 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1216 sg[nsegs].page = bvec->bv_page;
1217 sg[nsegs].length = nbytes;
1218 sg[nsegs].offset = bvec->bv_offset;
1223 } /* segments in bio */
1229 EXPORT_SYMBOL(blk_rq_map_sg);
1232 * the standard queue merge functions, can be overridden with device
1233 * specific ones if so desired
1236 static inline int ll_new_mergeable(request_queue_t *q,
1237 struct request *req,
1240 int nr_phys_segs = bio_phys_segments(q, bio);
1242 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1243 req->flags |= REQ_NOMERGE;
1244 if (req == q->last_merge)
1245 q->last_merge = NULL;
1250 * A hw segment is just getting larger, bump just the phys
1253 req->nr_phys_segments += nr_phys_segs;
1257 static inline int ll_new_hw_segment(request_queue_t *q,
1258 struct request *req,
1261 int nr_hw_segs = bio_hw_segments(q, bio);
1262 int nr_phys_segs = bio_phys_segments(q, bio);
1264 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1265 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1266 req->flags |= REQ_NOMERGE;
1267 if (req == q->last_merge)
1268 q->last_merge = NULL;
1273 * This will form the start of a new hw segment. Bump both
1276 req->nr_hw_segments += nr_hw_segs;
1277 req->nr_phys_segments += nr_phys_segs;
1281 static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1286 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1287 req->flags |= REQ_NOMERGE;
1288 if (req == q->last_merge)
1289 q->last_merge = NULL;
1292 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1293 blk_recount_segments(q, req->biotail);
1294 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1295 blk_recount_segments(q, bio);
1296 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1297 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1298 !BIOVEC_VIRT_OVERSIZE(len)) {
1299 int mergeable = ll_new_mergeable(q, req, bio);
1302 if (req->nr_hw_segments == 1)
1303 req->bio->bi_hw_front_size = len;
1304 if (bio->bi_hw_segments == 1)
1305 bio->bi_hw_back_size = len;
1310 return ll_new_hw_segment(q, req, bio);
1313 static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1318 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1319 req->flags |= REQ_NOMERGE;
1320 if (req == q->last_merge)
1321 q->last_merge = NULL;
1324 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1325 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1326 blk_recount_segments(q, bio);
1327 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1328 blk_recount_segments(q, req->bio);
1329 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1330 !BIOVEC_VIRT_OVERSIZE(len)) {
1331 int mergeable = ll_new_mergeable(q, req, bio);
1334 if (bio->bi_hw_segments == 1)
1335 bio->bi_hw_front_size = len;
1336 if (req->nr_hw_segments == 1)
1337 req->biotail->bi_hw_back_size = len;
1342 return ll_new_hw_segment(q, req, bio);
1345 static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1346 struct request *next)
1348 int total_phys_segments;
1349 int total_hw_segments;
1352 * First check if the either of the requests are re-queued
1353 * requests. Can't merge them if they are.
1355 if (req->special || next->special)
1359 * Will it become too large?
1361 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1364 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1365 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1366 total_phys_segments--;
1368 if (total_phys_segments > q->max_phys_segments)
1371 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1372 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1373 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1375 * propagate the combined length to the end of the requests
1377 if (req->nr_hw_segments == 1)
1378 req->bio->bi_hw_front_size = len;
1379 if (next->nr_hw_segments == 1)
1380 next->biotail->bi_hw_back_size = len;
1381 total_hw_segments--;
1384 if (total_hw_segments > q->max_hw_segments)
1387 /* Merge is OK... */
1388 req->nr_phys_segments = total_phys_segments;
1389 req->nr_hw_segments = total_hw_segments;
1394 * "plug" the device if there are no outstanding requests: this will
1395 * force the transfer to start only after we have put all the requests
1398 * This is called with interrupts off and no requests on the queue and
1399 * with the queue lock held.
1401 void blk_plug_device(request_queue_t *q)
1403 WARN_ON(!irqs_disabled());
1406 * don't plug a stopped queue, it must be paired with blk_start_queue()
1407 * which will restart the queueing
1409 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1412 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1413 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1416 EXPORT_SYMBOL(blk_plug_device);
1419 * remove the queue from the plugged list, if present. called with
1420 * queue lock held and interrupts disabled.
1422 int blk_remove_plug(request_queue_t *q)
1424 WARN_ON(!irqs_disabled());
1426 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1429 del_timer(&q->unplug_timer);
1433 EXPORT_SYMBOL(blk_remove_plug);
1436 * remove the plug and let it rip..
1438 void __generic_unplug_device(request_queue_t *q)
1440 if (unlikely(test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags)))
1443 if (!blk_remove_plug(q))
1448 EXPORT_SYMBOL(__generic_unplug_device);
1451 * generic_unplug_device - fire a request queue
1452 * @q: The &request_queue_t in question
1455 * Linux uses plugging to build bigger requests queues before letting
1456 * the device have at them. If a queue is plugged, the I/O scheduler
1457 * is still adding and merging requests on the queue. Once the queue
1458 * gets unplugged, the request_fn defined for the queue is invoked and
1459 * transfers started.
1461 void generic_unplug_device(request_queue_t *q)
1463 spin_lock_irq(q->queue_lock);
1464 __generic_unplug_device(q);
1465 spin_unlock_irq(q->queue_lock);
1467 EXPORT_SYMBOL(generic_unplug_device);
1469 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1472 request_queue_t *q = bdi->unplug_io_data;
1475 * devices don't necessarily have an ->unplug_fn defined
1481 static void blk_unplug_work(void *data)
1483 request_queue_t *q = data;
1488 static void blk_unplug_timeout(unsigned long data)
1490 request_queue_t *q = (request_queue_t *)data;
1492 kblockd_schedule_work(&q->unplug_work);
1496 * blk_start_queue - restart a previously stopped queue
1497 * @q: The &request_queue_t in question
1500 * blk_start_queue() will clear the stop flag on the queue, and call
1501 * the request_fn for the queue if it was in a stopped state when
1502 * entered. Also see blk_stop_queue(). Queue lock must be held.
1504 void blk_start_queue(request_queue_t *q)
1506 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1509 * one level of recursion is ok and is much faster than kicking
1510 * the unplug handling
1512 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1514 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1517 kblockd_schedule_work(&q->unplug_work);
1521 EXPORT_SYMBOL(blk_start_queue);
1524 * blk_stop_queue - stop a queue
1525 * @q: The &request_queue_t in question
1528 * The Linux block layer assumes that a block driver will consume all
1529 * entries on the request queue when the request_fn strategy is called.
1530 * Often this will not happen, because of hardware limitations (queue
1531 * depth settings). If a device driver gets a 'queue full' response,
1532 * or if it simply chooses not to queue more I/O at one point, it can
1533 * call this function to prevent the request_fn from being called until
1534 * the driver has signalled it's ready to go again. This happens by calling
1535 * blk_start_queue() to restart queue operations. Queue lock must be held.
1537 void blk_stop_queue(request_queue_t *q)
1540 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1542 EXPORT_SYMBOL(blk_stop_queue);
1545 * blk_sync_queue - cancel any pending callbacks on a queue
1549 * The block layer may perform asynchronous callback activity
1550 * on a queue, such as calling the unplug function after a timeout.
1551 * A block device may call blk_sync_queue to ensure that any
1552 * such activity is cancelled, thus allowing it to release resources
1553 * the the callbacks might use. The caller must already have made sure
1554 * that its ->make_request_fn will not re-add plugging prior to calling
1558 void blk_sync_queue(struct request_queue *q)
1560 del_timer_sync(&q->unplug_timer);
1563 EXPORT_SYMBOL(blk_sync_queue);
1566 * blk_run_queue - run a single device queue
1567 * @q: The queue to run
1569 void blk_run_queue(struct request_queue *q)
1571 unsigned long flags;
1573 spin_lock_irqsave(q->queue_lock, flags);
1575 if (!elv_queue_empty(q))
1577 spin_unlock_irqrestore(q->queue_lock, flags);
1579 EXPORT_SYMBOL(blk_run_queue);
1582 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1583 * @q: the request queue to be released
1586 * blk_cleanup_queue is the pair to blk_init_queue() or
1587 * blk_queue_make_request(). It should be called when a request queue is
1588 * being released; typically when a block device is being de-registered.
1589 * Currently, its primary task it to free all the &struct request
1590 * structures that were allocated to the queue and the queue itself.
1593 * Hopefully the low level driver will have finished any
1594 * outstanding requests first...
1596 void blk_cleanup_queue(request_queue_t * q)
1598 struct request_list *rl = &q->rq;
1600 if (!atomic_dec_and_test(&q->refcnt))
1604 elevator_exit(q->elevator);
1609 mempool_destroy(rl->rq_pool);
1612 __blk_queue_free_tags(q);
1614 blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1616 kmem_cache_free(requestq_cachep, q);
1619 EXPORT_SYMBOL(blk_cleanup_queue);
1621 static int blk_init_free_list(request_queue_t *q)
1623 struct request_list *rl = &q->rq;
1625 rl->count[READ] = rl->count[WRITE] = 0;
1626 rl->starved[READ] = rl->starved[WRITE] = 0;
1627 init_waitqueue_head(&rl->wait[READ]);
1628 init_waitqueue_head(&rl->wait[WRITE]);
1629 init_waitqueue_head(&rl->drain);
1631 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1632 mempool_free_slab, request_cachep, q->node);
1640 static int __make_request(request_queue_t *, struct bio *);
1642 request_queue_t *blk_alloc_queue(int gfp_mask)
1644 return blk_alloc_queue_node(gfp_mask, -1);
1646 EXPORT_SYMBOL(blk_alloc_queue);
1648 request_queue_t *blk_alloc_queue_node(int gfp_mask, int node_id)
1652 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1656 memset(q, 0, sizeof(*q));
1657 init_timer(&q->unplug_timer);
1658 atomic_set(&q->refcnt, 1);
1660 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1661 q->backing_dev_info.unplug_io_data = q;
1665 EXPORT_SYMBOL(blk_alloc_queue_node);
1668 * blk_init_queue - prepare a request queue for use with a block device
1669 * @rfn: The function to be called to process requests that have been
1670 * placed on the queue.
1671 * @lock: Request queue spin lock
1674 * If a block device wishes to use the standard request handling procedures,
1675 * which sorts requests and coalesces adjacent requests, then it must
1676 * call blk_init_queue(). The function @rfn will be called when there
1677 * are requests on the queue that need to be processed. If the device
1678 * supports plugging, then @rfn may not be called immediately when requests
1679 * are available on the queue, but may be called at some time later instead.
1680 * Plugged queues are generally unplugged when a buffer belonging to one
1681 * of the requests on the queue is needed, or due to memory pressure.
1683 * @rfn is not required, or even expected, to remove all requests off the
1684 * queue, but only as many as it can handle at a time. If it does leave
1685 * requests on the queue, it is responsible for arranging that the requests
1686 * get dealt with eventually.
1688 * The queue spin lock must be held while manipulating the requests on the
1691 * Function returns a pointer to the initialized request queue, or NULL if
1692 * it didn't succeed.
1695 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1696 * when the block device is deactivated (such as at module unload).
1699 request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1701 return blk_init_queue_node(rfn, lock, -1);
1703 EXPORT_SYMBOL(blk_init_queue);
1706 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1708 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1714 if (blk_init_free_list(q))
1718 * if caller didn't supply a lock, they get per-queue locking with
1722 spin_lock_init(&q->__queue_lock);
1723 lock = &q->__queue_lock;
1726 q->request_fn = rfn;
1727 q->back_merge_fn = ll_back_merge_fn;
1728 q->front_merge_fn = ll_front_merge_fn;
1729 q->merge_requests_fn = ll_merge_requests_fn;
1730 q->prep_rq_fn = NULL;
1731 q->unplug_fn = generic_unplug_device;
1732 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1733 q->queue_lock = lock;
1735 blk_queue_segment_boundary(q, 0xffffffff);
1737 blk_queue_make_request(q, __make_request);
1738 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1740 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1741 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1746 if (!elevator_init(q, NULL)) {
1747 blk_queue_congestion_threshold(q);
1751 blk_cleanup_queue(q);
1753 kmem_cache_free(requestq_cachep, q);
1756 EXPORT_SYMBOL(blk_init_queue_node);
1758 int blk_get_queue(request_queue_t *q)
1760 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1761 atomic_inc(&q->refcnt);
1768 EXPORT_SYMBOL(blk_get_queue);
1770 static inline void blk_free_request(request_queue_t *q, struct request *rq)
1772 elv_put_request(q, rq);
1773 mempool_free(rq, q->rq.rq_pool);
1776 static inline struct request *
1777 blk_alloc_request(request_queue_t *q, int rw, struct bio *bio, int gfp_mask)
1779 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1785 * first three bits are identical in rq->flags and bio->bi_rw,
1786 * see bio.h and blkdev.h
1790 if (!elv_set_request(q, rq, bio, gfp_mask))
1793 mempool_free(rq, q->rq.rq_pool);
1798 * ioc_batching returns true if the ioc is a valid batching request and
1799 * should be given priority access to a request.
1801 static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
1807 * Make sure the process is able to allocate at least 1 request
1808 * even if the batch times out, otherwise we could theoretically
1811 return ioc->nr_batch_requests == q->nr_batching ||
1812 (ioc->nr_batch_requests > 0
1813 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1817 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1818 * will cause the process to be a "batcher" on all queues in the system. This
1819 * is the behaviour we want though - once it gets a wakeup it should be given
1822 static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
1824 if (!ioc || ioc_batching(q, ioc))
1827 ioc->nr_batch_requests = q->nr_batching;
1828 ioc->last_waited = jiffies;
1831 static void __freed_request(request_queue_t *q, int rw)
1833 struct request_list *rl = &q->rq;
1835 if (rl->count[rw] < queue_congestion_off_threshold(q))
1836 clear_queue_congested(q, rw);
1838 if (rl->count[rw] + 1 <= q->nr_requests) {
1839 if (waitqueue_active(&rl->wait[rw]))
1840 wake_up(&rl->wait[rw]);
1842 blk_clear_queue_full(q, rw);
1847 * A request has just been released. Account for it, update the full and
1848 * congestion status, wake up any waiters. Called under q->queue_lock.
1850 static void freed_request(request_queue_t *q, int rw)
1852 struct request_list *rl = &q->rq;
1856 __freed_request(q, rw);
1858 if (unlikely(rl->starved[rw ^ 1]))
1859 __freed_request(q, rw ^ 1);
1861 if (!rl->count[READ] && !rl->count[WRITE]) {
1863 if (unlikely(waitqueue_active(&rl->drain)))
1864 wake_up(&rl->drain);
1868 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
1870 * Get a free request, queue_lock must be held.
1871 * Returns NULL on failure, with queue_lock held.
1872 * Returns !NULL on success, with queue_lock *not held*.
1874 static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
1877 struct request *rq = NULL;
1878 struct request_list *rl = &q->rq;
1879 struct io_context *ioc = current_io_context(GFP_ATOMIC);
1881 if (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)))
1884 if (rl->count[rw]+1 >= q->nr_requests) {
1886 * The queue will fill after this allocation, so set it as
1887 * full, and mark this process as "batching". This process
1888 * will be allowed to complete a batch of requests, others
1891 if (!blk_queue_full(q, rw)) {
1892 ioc_set_batching(q, ioc);
1893 blk_set_queue_full(q, rw);
1897 switch (elv_may_queue(q, rw, bio)) {
1900 case ELV_MQUEUE_MAY:
1902 case ELV_MQUEUE_MUST:
1906 if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) {
1908 * The queue is full and the allocating process is not a
1909 * "batcher", and not exempted by the IO scheduler
1916 * Only allow batching queuers to allocate up to 50% over the defined
1917 * limit of requests, otherwise we could have thousands of requests
1918 * allocated with any setting of ->nr_requests
1920 if (rl->count[rw] >= (3 * q->nr_requests / 2))
1924 rl->starved[rw] = 0;
1925 if (rl->count[rw] >= queue_congestion_on_threshold(q))
1926 set_queue_congested(q, rw);
1927 spin_unlock_irq(q->queue_lock);
1929 rq = blk_alloc_request(q, rw, bio, gfp_mask);
1932 * Allocation failed presumably due to memory. Undo anything
1933 * we might have messed up.
1935 * Allocating task should really be put onto the front of the
1936 * wait queue, but this is pretty rare.
1938 spin_lock_irq(q->queue_lock);
1939 freed_request(q, rw);
1942 * in the very unlikely event that allocation failed and no
1943 * requests for this direction was pending, mark us starved
1944 * so that freeing of a request in the other direction will
1945 * notice us. another possible fix would be to split the
1946 * rq mempool into READ and WRITE
1949 if (unlikely(rl->count[rw] == 0))
1950 rl->starved[rw] = 1;
1955 if (ioc_batching(q, ioc))
1956 ioc->nr_batch_requests--;
1965 * No available requests for this queue, unplug the device and wait for some
1966 * requests to become available.
1968 * Called with q->queue_lock held, and returns with it unlocked.
1970 static struct request *get_request_wait(request_queue_t *q, int rw,
1975 rq = get_request(q, rw, bio, GFP_NOIO);
1978 struct request_list *rl = &q->rq;
1980 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
1981 TASK_UNINTERRUPTIBLE);
1983 rq = get_request(q, rw, bio, GFP_NOIO);
1986 struct io_context *ioc;
1988 __generic_unplug_device(q);
1989 spin_unlock_irq(q->queue_lock);
1993 * After sleeping, we become a "batching" process and
1994 * will be able to allocate at least one request, and
1995 * up to a big batch of them for a small period time.
1996 * See ioc_batching, ioc_set_batching
1998 ioc = current_io_context(GFP_NOIO);
1999 ioc_set_batching(q, ioc);
2001 spin_lock_irq(q->queue_lock);
2003 finish_wait(&rl->wait[rw], &wait);
2009 struct request *blk_get_request(request_queue_t *q, int rw, int gfp_mask)
2013 BUG_ON(rw != READ && rw != WRITE);
2015 spin_lock_irq(q->queue_lock);
2016 if (gfp_mask & __GFP_WAIT) {
2017 rq = get_request_wait(q, rw, NULL);
2019 rq = get_request(q, rw, NULL, gfp_mask);
2021 spin_unlock_irq(q->queue_lock);
2023 /* q->queue_lock is unlocked at this point */
2027 EXPORT_SYMBOL(blk_get_request);
2030 * blk_requeue_request - put a request back on queue
2031 * @q: request queue where request should be inserted
2032 * @rq: request to be inserted
2035 * Drivers often keep queueing requests until the hardware cannot accept
2036 * more, when that condition happens we need to put the request back
2037 * on the queue. Must be called with queue lock held.
2039 void blk_requeue_request(request_queue_t *q, struct request *rq)
2041 if (blk_rq_tagged(rq))
2042 blk_queue_end_tag(q, rq);
2044 elv_requeue_request(q, rq);
2047 EXPORT_SYMBOL(blk_requeue_request);
2050 * blk_insert_request - insert a special request in to a request queue
2051 * @q: request queue where request should be inserted
2052 * @rq: request to be inserted
2053 * @at_head: insert request at head or tail of queue
2054 * @data: private data
2057 * Many block devices need to execute commands asynchronously, so they don't
2058 * block the whole kernel from preemption during request execution. This is
2059 * accomplished normally by inserting aritficial requests tagged as
2060 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2061 * scheduled for actual execution by the request queue.
2063 * We have the option of inserting the head or the tail of the queue.
2064 * Typically we use the tail for new ioctls and so forth. We use the head
2065 * of the queue for things like a QUEUE_FULL message from a device, or a
2066 * host that is unable to accept a particular command.
2068 void blk_insert_request(request_queue_t *q, struct request *rq,
2069 int at_head, void *data)
2071 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2072 unsigned long flags;
2075 * tell I/O scheduler that this isn't a regular read/write (ie it
2076 * must not attempt merges on this) and that it acts as a soft
2079 rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
2083 spin_lock_irqsave(q->queue_lock, flags);
2086 * If command is tagged, release the tag
2088 if (blk_rq_tagged(rq))
2089 blk_queue_end_tag(q, rq);
2091 drive_stat_acct(rq, rq->nr_sectors, 1);
2092 __elv_add_request(q, rq, where, 0);
2094 if (blk_queue_plugged(q))
2095 __generic_unplug_device(q);
2098 spin_unlock_irqrestore(q->queue_lock, flags);
2101 EXPORT_SYMBOL(blk_insert_request);
2104 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2105 * @q: request queue where request should be inserted
2106 * @rw: READ or WRITE data
2107 * @ubuf: the user buffer
2108 * @len: length of user data
2111 * Data will be mapped directly for zero copy io, if possible. Otherwise
2112 * a kernel bounce buffer is used.
2114 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2115 * still in process context.
2117 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2118 * before being submitted to the device, as pages mapped may be out of
2119 * reach. It's the callers responsibility to make sure this happens. The
2120 * original bio must be passed back in to blk_rq_unmap_user() for proper
2123 struct request *blk_rq_map_user(request_queue_t *q, int rw, void __user *ubuf,
2126 unsigned long uaddr;
2130 if (len > (q->max_sectors << 9))
2131 return ERR_PTR(-EINVAL);
2132 if ((!len && ubuf) || (len && !ubuf))
2133 return ERR_PTR(-EINVAL);
2135 rq = blk_get_request(q, rw, __GFP_WAIT);
2137 return ERR_PTR(-ENOMEM);
2140 * if alignment requirement is satisfied, map in user pages for
2141 * direct dma. else, set up kernel bounce buffers
2143 uaddr = (unsigned long) ubuf;
2144 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2145 bio = bio_map_user(q, NULL, uaddr, len, rw == READ);
2147 bio = bio_copy_user(q, uaddr, len, rw == READ);
2150 rq->bio = rq->biotail = bio;
2151 blk_rq_bio_prep(q, rq, bio);
2153 rq->buffer = rq->data = NULL;
2159 * bio is the err-ptr
2161 blk_put_request(rq);
2162 return (struct request *) bio;
2165 EXPORT_SYMBOL(blk_rq_map_user);
2168 * blk_rq_unmap_user - unmap a request with user data
2169 * @rq: request to be unmapped
2170 * @bio: bio for the request
2171 * @ulen: length of user buffer
2174 * Unmap a request previously mapped by blk_rq_map_user().
2176 int blk_rq_unmap_user(struct request *rq, struct bio *bio, unsigned int ulen)
2181 if (bio_flagged(bio, BIO_USER_MAPPED))
2182 bio_unmap_user(bio);
2184 ret = bio_uncopy_user(bio);
2187 blk_put_request(rq);
2191 EXPORT_SYMBOL(blk_rq_unmap_user);
2194 * blk_execute_rq - insert a request into queue for execution
2195 * @q: queue to insert the request in
2196 * @bd_disk: matching gendisk
2197 * @rq: request to insert
2200 * Insert a fully prepared request at the back of the io scheduler queue
2203 int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2206 DECLARE_COMPLETION(wait);
2207 char sense[SCSI_SENSE_BUFFERSIZE];
2210 rq->rq_disk = bd_disk;
2213 * we need an extra reference to the request, so we can look at
2214 * it after io completion
2219 memset(sense, 0, sizeof(sense));
2224 rq->flags |= REQ_NOMERGE;
2225 rq->waiting = &wait;
2226 rq->end_io = blk_end_sync_rq;
2227 elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
2228 generic_unplug_device(q);
2229 wait_for_completion(&wait);
2238 EXPORT_SYMBOL(blk_execute_rq);
2241 * blkdev_issue_flush - queue a flush
2242 * @bdev: blockdev to issue flush for
2243 * @error_sector: error sector
2246 * Issue a flush for the block device in question. Caller can supply
2247 * room for storing the error offset in case of a flush error, if they
2248 * wish to. Caller must run wait_for_completion() on its own.
2250 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2254 if (bdev->bd_disk == NULL)
2257 q = bdev_get_queue(bdev);
2260 if (!q->issue_flush_fn)
2263 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2266 EXPORT_SYMBOL(blkdev_issue_flush);
2268 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2270 int rw = rq_data_dir(rq);
2272 if (!blk_fs_request(rq) || !rq->rq_disk)
2276 __disk_stat_add(rq->rq_disk, read_sectors, nr_sectors);
2278 __disk_stat_inc(rq->rq_disk, read_merges);
2279 } else if (rw == WRITE) {
2280 __disk_stat_add(rq->rq_disk, write_sectors, nr_sectors);
2282 __disk_stat_inc(rq->rq_disk, write_merges);
2285 disk_round_stats(rq->rq_disk);
2286 rq->rq_disk->in_flight++;
2291 * add-request adds a request to the linked list.
2292 * queue lock is held and interrupts disabled, as we muck with the
2293 * request queue list.
2295 static inline void add_request(request_queue_t * q, struct request * req)
2297 drive_stat_acct(req, req->nr_sectors, 1);
2300 q->activity_fn(q->activity_data, rq_data_dir(req));
2303 * elevator indicated where it wants this request to be
2304 * inserted at elevator_merge time
2306 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2310 * disk_round_stats() - Round off the performance stats on a struct
2313 * The average IO queue length and utilisation statistics are maintained
2314 * by observing the current state of the queue length and the amount of
2315 * time it has been in this state for.
2317 * Normally, that accounting is done on IO completion, but that can result
2318 * in more than a second's worth of IO being accounted for within any one
2319 * second, leading to >100% utilisation. To deal with that, we call this
2320 * function to do a round-off before returning the results when reading
2321 * /proc/diskstats. This accounts immediately for all queue usage up to
2322 * the current jiffies and restarts the counters again.
2324 void disk_round_stats(struct gendisk *disk)
2326 unsigned long now = jiffies;
2328 __disk_stat_add(disk, time_in_queue,
2329 disk->in_flight * (now - disk->stamp));
2332 if (disk->in_flight)
2333 __disk_stat_add(disk, io_ticks, (now - disk->stamp_idle));
2334 disk->stamp_idle = now;
2338 * queue lock must be held
2340 static void __blk_put_request(request_queue_t *q, struct request *req)
2342 struct request_list *rl = req->rl;
2346 if (unlikely(--req->ref_count))
2349 req->rq_status = RQ_INACTIVE;
2353 * Request may not have originated from ll_rw_blk. if not,
2354 * it didn't come out of our reserved rq pools
2357 int rw = rq_data_dir(req);
2359 elv_completed_request(q, req);
2361 BUG_ON(!list_empty(&req->queuelist));
2363 blk_free_request(q, req);
2364 freed_request(q, rw);
2368 void blk_put_request(struct request *req)
2371 * if req->rl isn't set, this request didnt originate from the
2372 * block layer, so it's safe to just disregard it
2375 unsigned long flags;
2376 request_queue_t *q = req->q;
2378 spin_lock_irqsave(q->queue_lock, flags);
2379 __blk_put_request(q, req);
2380 spin_unlock_irqrestore(q->queue_lock, flags);
2384 EXPORT_SYMBOL(blk_put_request);
2387 * blk_end_sync_rq - executes a completion event on a request
2388 * @rq: request to complete
2390 void blk_end_sync_rq(struct request *rq)
2392 struct completion *waiting = rq->waiting;
2395 __blk_put_request(rq->q, rq);
2398 * complete last, if this is a stack request the process (and thus
2399 * the rq pointer) could be invalid right after this complete()
2403 EXPORT_SYMBOL(blk_end_sync_rq);
2406 * blk_congestion_wait - wait for a queue to become uncongested
2407 * @rw: READ or WRITE
2408 * @timeout: timeout in jiffies
2410 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2411 * If no queues are congested then just wait for the next request to be
2414 long blk_congestion_wait(int rw, long timeout)
2418 wait_queue_head_t *wqh = &congestion_wqh[rw];
2420 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2421 ret = io_schedule_timeout(timeout);
2422 finish_wait(wqh, &wait);
2426 EXPORT_SYMBOL(blk_congestion_wait);
2429 * Has to be called with the request spinlock acquired
2431 static int attempt_merge(request_queue_t *q, struct request *req,
2432 struct request *next)
2434 if (!rq_mergeable(req) || !rq_mergeable(next))
2440 if (req->sector + req->nr_sectors != next->sector)
2443 if (rq_data_dir(req) != rq_data_dir(next)
2444 || req->rq_disk != next->rq_disk
2445 || next->waiting || next->special)
2449 * If we are allowed to merge, then append bio list
2450 * from next to rq and release next. merge_requests_fn
2451 * will have updated segment counts, update sector
2454 if (!q->merge_requests_fn(q, req, next))
2458 * At this point we have either done a back merge
2459 * or front merge. We need the smaller start_time of
2460 * the merged requests to be the current request
2461 * for accounting purposes.
2463 if (time_after(req->start_time, next->start_time))
2464 req->start_time = next->start_time;
2466 req->biotail->bi_next = next->bio;
2467 req->biotail = next->biotail;
2469 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2471 elv_merge_requests(q, req, next);
2474 disk_round_stats(req->rq_disk);
2475 req->rq_disk->in_flight--;
2478 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2480 __blk_put_request(q, next);
2484 static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2486 struct request *next = elv_latter_request(q, rq);
2489 return attempt_merge(q, rq, next);
2494 static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2496 struct request *prev = elv_former_request(q, rq);
2499 return attempt_merge(q, prev, rq);
2505 * blk_attempt_remerge - attempt to remerge active head with next request
2506 * @q: The &request_queue_t belonging to the device
2507 * @rq: The head request (usually)
2510 * For head-active devices, the queue can easily be unplugged so quickly
2511 * that proper merging is not done on the front request. This may hurt
2512 * performance greatly for some devices. The block layer cannot safely
2513 * do merging on that first request for these queues, but the driver can
2514 * call this function and make it happen any way. Only the driver knows
2515 * when it is safe to do so.
2517 void blk_attempt_remerge(request_queue_t *q, struct request *rq)
2519 unsigned long flags;
2521 spin_lock_irqsave(q->queue_lock, flags);
2522 attempt_back_merge(q, rq);
2523 spin_unlock_irqrestore(q->queue_lock, flags);
2526 EXPORT_SYMBOL(blk_attempt_remerge);
2528 static int __make_request(request_queue_t *q, struct bio *bio)
2530 struct request *req;
2531 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
2532 unsigned short prio;
2535 sector = bio->bi_sector;
2536 nr_sectors = bio_sectors(bio);
2537 cur_nr_sectors = bio_cur_sectors(bio);
2538 prio = bio_prio(bio);
2540 rw = bio_data_dir(bio);
2541 sync = bio_sync(bio);
2544 * low level driver can indicate that it wants pages above a
2545 * certain limit bounced to low memory (ie for highmem, or even
2546 * ISA dma in theory)
2548 blk_queue_bounce(q, &bio);
2550 spin_lock_prefetch(q->queue_lock);
2552 barrier = bio_barrier(bio);
2553 if (unlikely(barrier) && (q->ordered == QUEUE_ORDERED_NONE)) {
2558 spin_lock_irq(q->queue_lock);
2560 if (unlikely(barrier) || elv_queue_empty(q))
2563 el_ret = elv_merge(q, &req, bio);
2565 case ELEVATOR_BACK_MERGE:
2566 BUG_ON(!rq_mergeable(req));
2568 if (!q->back_merge_fn(q, req, bio))
2571 req->biotail->bi_next = bio;
2573 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2574 req->ioprio = ioprio_best(req->ioprio, prio);
2575 drive_stat_acct(req, nr_sectors, 0);
2576 if (!attempt_back_merge(q, req))
2577 elv_merged_request(q, req);
2580 case ELEVATOR_FRONT_MERGE:
2581 BUG_ON(!rq_mergeable(req));
2583 if (!q->front_merge_fn(q, req, bio))
2586 bio->bi_next = req->bio;
2590 * may not be valid. if the low level driver said
2591 * it didn't need a bounce buffer then it better
2592 * not touch req->buffer either...
2594 req->buffer = bio_data(bio);
2595 req->current_nr_sectors = cur_nr_sectors;
2596 req->hard_cur_sectors = cur_nr_sectors;
2597 req->sector = req->hard_sector = sector;
2598 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2599 req->ioprio = ioprio_best(req->ioprio, prio);
2600 drive_stat_acct(req, nr_sectors, 0);
2601 if (!attempt_front_merge(q, req))
2602 elv_merged_request(q, req);
2605 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2612 * Grab a free request. This is might sleep but can not fail.
2613 * Returns with the queue unlocked.
2615 req = get_request_wait(q, rw, bio);
2618 * After dropping the lock and possibly sleeping here, our request
2619 * may now be mergeable after it had proven unmergeable (above).
2620 * We don't worry about that case for efficiency. It won't happen
2621 * often, and the elevators are able to handle it.
2624 req->flags |= REQ_CMD;
2627 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2629 if (bio_rw_ahead(bio) || bio_failfast(bio))
2630 req->flags |= REQ_FAILFAST;
2633 * REQ_BARRIER implies no merging, but lets make it explicit
2635 if (unlikely(barrier))
2636 req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2639 req->hard_sector = req->sector = sector;
2640 req->hard_nr_sectors = req->nr_sectors = nr_sectors;
2641 req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
2642 req->nr_phys_segments = bio_phys_segments(q, bio);
2643 req->nr_hw_segments = bio_hw_segments(q, bio);
2644 req->buffer = bio_data(bio); /* see ->buffer comment above */
2645 req->waiting = NULL;
2646 req->bio = req->biotail = bio;
2648 req->rq_disk = bio->bi_bdev->bd_disk;
2649 req->start_time = jiffies;
2651 spin_lock_irq(q->queue_lock);
2652 if (elv_queue_empty(q))
2654 add_request(q, req);
2657 __generic_unplug_device(q);
2659 spin_unlock_irq(q->queue_lock);
2663 bio_endio(bio, nr_sectors << 9, err);
2668 * If bio->bi_dev is a partition, remap the location
2670 static inline void blk_partition_remap(struct bio *bio)
2672 struct block_device *bdev = bio->bi_bdev;
2674 if (bdev != bdev->bd_contains) {
2675 struct hd_struct *p = bdev->bd_part;
2677 switch (bio_data_dir(bio)) {
2679 p->read_sectors += bio_sectors(bio);
2683 p->write_sectors += bio_sectors(bio);
2687 bio->bi_sector += p->start_sect;
2688 bio->bi_bdev = bdev->bd_contains;
2692 void blk_finish_queue_drain(request_queue_t *q)
2694 struct request_list *rl = &q->rq;
2698 spin_lock_irq(q->queue_lock);
2699 clear_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2701 while (!list_empty(&q->drain_list)) {
2702 rq = list_entry_rq(q->drain_list.next);
2704 list_del_init(&rq->queuelist);
2705 elv_requeue_request(q, rq);
2712 spin_unlock_irq(q->queue_lock);
2714 wake_up(&rl->wait[0]);
2715 wake_up(&rl->wait[1]);
2716 wake_up(&rl->drain);
2719 static int wait_drain(request_queue_t *q, struct request_list *rl, int dispatch)
2721 int wait = rl->count[READ] + rl->count[WRITE];
2724 wait += !list_empty(&q->queue_head);
2730 * We rely on the fact that only requests allocated through blk_alloc_request()
2731 * have io scheduler private data structures associated with them. Any other
2732 * type of request (allocated on stack or through kmalloc()) should not go
2733 * to the io scheduler core, but be attached to the queue head instead.
2735 void blk_wait_queue_drained(request_queue_t *q, int wait_dispatch)
2737 struct request_list *rl = &q->rq;
2740 spin_lock_irq(q->queue_lock);
2741 set_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2743 while (wait_drain(q, rl, wait_dispatch)) {
2744 prepare_to_wait(&rl->drain, &wait, TASK_UNINTERRUPTIBLE);
2746 if (wait_drain(q, rl, wait_dispatch)) {
2747 __generic_unplug_device(q);
2748 spin_unlock_irq(q->queue_lock);
2750 spin_lock_irq(q->queue_lock);
2753 finish_wait(&rl->drain, &wait);
2756 spin_unlock_irq(q->queue_lock);
2760 * block waiting for the io scheduler being started again.
2762 static inline void block_wait_queue_running(request_queue_t *q)
2766 while (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))) {
2767 struct request_list *rl = &q->rq;
2769 prepare_to_wait_exclusive(&rl->drain, &wait,
2770 TASK_UNINTERRUPTIBLE);
2773 * re-check the condition. avoids using prepare_to_wait()
2774 * in the fast path (queue is running)
2776 if (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))
2779 finish_wait(&rl->drain, &wait);
2783 static void handle_bad_sector(struct bio *bio)
2785 char b[BDEVNAME_SIZE];
2787 printk(KERN_INFO "attempt to access beyond end of device\n");
2788 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
2789 bdevname(bio->bi_bdev, b),
2791 (unsigned long long)bio->bi_sector + bio_sectors(bio),
2792 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
2794 set_bit(BIO_EOF, &bio->bi_flags);
2798 * generic_make_request: hand a buffer to its device driver for I/O
2799 * @bio: The bio describing the location in memory and on the device.
2801 * generic_make_request() is used to make I/O requests of block
2802 * devices. It is passed a &struct bio, which describes the I/O that needs
2805 * generic_make_request() does not return any status. The
2806 * success/failure status of the request, along with notification of
2807 * completion, is delivered asynchronously through the bio->bi_end_io
2808 * function described (one day) else where.
2810 * The caller of generic_make_request must make sure that bi_io_vec
2811 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2812 * set to describe the device address, and the
2813 * bi_end_io and optionally bi_private are set to describe how
2814 * completion notification should be signaled.
2816 * generic_make_request and the drivers it calls may use bi_next if this
2817 * bio happens to be merged with someone else, and may change bi_dev and
2818 * bi_sector for remaps as it sees fit. So the values of these fields
2819 * should NOT be depended on after the call to generic_make_request.
2821 void generic_make_request(struct bio *bio)
2825 int ret, nr_sectors = bio_sectors(bio);
2828 /* Test device or partition size, when known. */
2829 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
2831 sector_t sector = bio->bi_sector;
2833 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2835 * This may well happen - the kernel calls bread()
2836 * without checking the size of the device, e.g., when
2837 * mounting a device.
2839 handle_bad_sector(bio);
2845 * Resolve the mapping until finished. (drivers are
2846 * still free to implement/resolve their own stacking
2847 * by explicitly returning 0)
2849 * NOTE: we don't repeat the blk_size check for each new device.
2850 * Stacking drivers are expected to know what they are doing.
2853 char b[BDEVNAME_SIZE];
2855 q = bdev_get_queue(bio->bi_bdev);
2858 "generic_make_request: Trying to access "
2859 "nonexistent block-device %s (%Lu)\n",
2860 bdevname(bio->bi_bdev, b),
2861 (long long) bio->bi_sector);
2863 bio_endio(bio, bio->bi_size, -EIO);
2867 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
2868 printk("bio too big device %s (%u > %u)\n",
2869 bdevname(bio->bi_bdev, b),
2875 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
2878 block_wait_queue_running(q);
2881 * If this device has partitions, remap block n
2882 * of partition p to block n+start(p) of the disk.
2884 blk_partition_remap(bio);
2886 ret = q->make_request_fn(q, bio);
2890 EXPORT_SYMBOL(generic_make_request);
2893 * submit_bio: submit a bio to the block device layer for I/O
2894 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2895 * @bio: The &struct bio which describes the I/O
2897 * submit_bio() is very similar in purpose to generic_make_request(), and
2898 * uses that function to do most of the work. Both are fairly rough
2899 * interfaces, @bio must be presetup and ready for I/O.
2902 void submit_bio(int rw, struct bio *bio)
2904 int count = bio_sectors(bio);
2906 BIO_BUG_ON(!bio->bi_size);
2907 BIO_BUG_ON(!bio->bi_io_vec);
2910 mod_page_state(pgpgout, count);
2912 mod_page_state(pgpgin, count);
2914 if (unlikely(block_dump)) {
2915 char b[BDEVNAME_SIZE];
2916 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
2917 current->comm, current->pid,
2918 (rw & WRITE) ? "WRITE" : "READ",
2919 (unsigned long long)bio->bi_sector,
2920 bdevname(bio->bi_bdev,b));
2923 generic_make_request(bio);
2926 EXPORT_SYMBOL(submit_bio);
2928 static void blk_recalc_rq_segments(struct request *rq)
2930 struct bio *bio, *prevbio = NULL;
2931 int nr_phys_segs, nr_hw_segs;
2932 unsigned int phys_size, hw_size;
2933 request_queue_t *q = rq->q;
2938 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
2939 rq_for_each_bio(bio, rq) {
2940 /* Force bio hw/phys segs to be recalculated. */
2941 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
2943 nr_phys_segs += bio_phys_segments(q, bio);
2944 nr_hw_segs += bio_hw_segments(q, bio);
2946 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
2947 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
2949 if (blk_phys_contig_segment(q, prevbio, bio) &&
2950 pseg <= q->max_segment_size) {
2952 phys_size += prevbio->bi_size + bio->bi_size;
2956 if (blk_hw_contig_segment(q, prevbio, bio) &&
2957 hseg <= q->max_segment_size) {
2959 hw_size += prevbio->bi_size + bio->bi_size;
2966 rq->nr_phys_segments = nr_phys_segs;
2967 rq->nr_hw_segments = nr_hw_segs;
2970 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
2972 if (blk_fs_request(rq)) {
2973 rq->hard_sector += nsect;
2974 rq->hard_nr_sectors -= nsect;
2977 * Move the I/O submission pointers ahead if required.
2979 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
2980 (rq->sector <= rq->hard_sector)) {
2981 rq->sector = rq->hard_sector;
2982 rq->nr_sectors = rq->hard_nr_sectors;
2983 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
2984 rq->current_nr_sectors = rq->hard_cur_sectors;
2985 rq->buffer = bio_data(rq->bio);
2989 * if total number of sectors is less than the first segment
2990 * size, something has gone terribly wrong
2992 if (rq->nr_sectors < rq->current_nr_sectors) {
2993 printk("blk: request botched\n");
2994 rq->nr_sectors = rq->current_nr_sectors;
2999 static int __end_that_request_first(struct request *req, int uptodate,
3002 int total_bytes, bio_nbytes, error, next_idx = 0;
3006 * extend uptodate bool to allow < 0 value to be direct io error
3009 if (end_io_error(uptodate))
3010 error = !uptodate ? -EIO : uptodate;
3013 * for a REQ_BLOCK_PC request, we want to carry any eventual
3014 * sense key with us all the way through
3016 if (!blk_pc_request(req))
3020 if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
3021 printk("end_request: I/O error, dev %s, sector %llu\n",
3022 req->rq_disk ? req->rq_disk->disk_name : "?",
3023 (unsigned long long)req->sector);
3026 total_bytes = bio_nbytes = 0;
3027 while ((bio = req->bio) != NULL) {
3030 if (nr_bytes >= bio->bi_size) {
3031 req->bio = bio->bi_next;
3032 nbytes = bio->bi_size;
3033 bio_endio(bio, nbytes, error);
3037 int idx = bio->bi_idx + next_idx;
3039 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3040 blk_dump_rq_flags(req, "__end_that");
3041 printk("%s: bio idx %d >= vcnt %d\n",
3043 bio->bi_idx, bio->bi_vcnt);
3047 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3048 BIO_BUG_ON(nbytes > bio->bi_size);
3051 * not a complete bvec done
3053 if (unlikely(nbytes > nr_bytes)) {
3054 bio_nbytes += nr_bytes;
3055 total_bytes += nr_bytes;
3060 * advance to the next vector
3063 bio_nbytes += nbytes;
3066 total_bytes += nbytes;
3069 if ((bio = req->bio)) {
3071 * end more in this run, or just return 'not-done'
3073 if (unlikely(nr_bytes <= 0))
3085 * if the request wasn't completed, update state
3088 bio_endio(bio, bio_nbytes, error);
3089 bio->bi_idx += next_idx;
3090 bio_iovec(bio)->bv_offset += nr_bytes;
3091 bio_iovec(bio)->bv_len -= nr_bytes;
3094 blk_recalc_rq_sectors(req, total_bytes >> 9);
3095 blk_recalc_rq_segments(req);
3100 * end_that_request_first - end I/O on a request
3101 * @req: the request being processed
3102 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3103 * @nr_sectors: number of sectors to end I/O on
3106 * Ends I/O on a number of sectors attached to @req, and sets it up
3107 * for the next range of segments (if any) in the cluster.
3110 * 0 - we are done with this request, call end_that_request_last()
3111 * 1 - still buffers pending for this request
3113 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3115 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3118 EXPORT_SYMBOL(end_that_request_first);
3121 * end_that_request_chunk - end I/O on a request
3122 * @req: the request being processed
3123 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3124 * @nr_bytes: number of bytes to complete
3127 * Ends I/O on a number of bytes attached to @req, and sets it up
3128 * for the next range of segments (if any). Like end_that_request_first(),
3129 * but deals with bytes instead of sectors.
3132 * 0 - we are done with this request, call end_that_request_last()
3133 * 1 - still buffers pending for this request
3135 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3137 return __end_that_request_first(req, uptodate, nr_bytes);
3140 EXPORT_SYMBOL(end_that_request_chunk);
3143 * queue lock must be held
3145 void end_that_request_last(struct request *req)
3147 struct gendisk *disk = req->rq_disk;
3149 if (unlikely(laptop_mode) && blk_fs_request(req))
3150 laptop_io_completion();
3152 if (disk && blk_fs_request(req)) {
3153 unsigned long duration = jiffies - req->start_time;
3154 switch (rq_data_dir(req)) {
3156 __disk_stat_inc(disk, writes);
3157 __disk_stat_add(disk, write_ticks, duration);
3160 __disk_stat_inc(disk, reads);
3161 __disk_stat_add(disk, read_ticks, duration);
3164 disk_round_stats(disk);
3170 __blk_put_request(req->q, req);
3173 EXPORT_SYMBOL(end_that_request_last);
3175 void end_request(struct request *req, int uptodate)
3177 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3178 add_disk_randomness(req->rq_disk);
3179 blkdev_dequeue_request(req);
3180 end_that_request_last(req);
3184 EXPORT_SYMBOL(end_request);
3186 void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3188 /* first three bits are identical in rq->flags and bio->bi_rw */
3189 rq->flags |= (bio->bi_rw & 7);
3191 rq->nr_phys_segments = bio_phys_segments(q, bio);
3192 rq->nr_hw_segments = bio_hw_segments(q, bio);
3193 rq->current_nr_sectors = bio_cur_sectors(bio);
3194 rq->hard_cur_sectors = rq->current_nr_sectors;
3195 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3196 rq->buffer = bio_data(bio);
3198 rq->bio = rq->biotail = bio;
3201 EXPORT_SYMBOL(blk_rq_bio_prep);
3203 int kblockd_schedule_work(struct work_struct *work)
3205 return queue_work(kblockd_workqueue, work);
3208 EXPORT_SYMBOL(kblockd_schedule_work);
3210 void kblockd_flush(void)
3212 flush_workqueue(kblockd_workqueue);
3214 EXPORT_SYMBOL(kblockd_flush);
3216 int __init blk_dev_init(void)
3218 kblockd_workqueue = create_workqueue("kblockd");
3219 if (!kblockd_workqueue)
3220 panic("Failed to create kblockd\n");
3222 request_cachep = kmem_cache_create("blkdev_requests",
3223 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3225 requestq_cachep = kmem_cache_create("blkdev_queue",
3226 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3228 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3229 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3231 blk_max_low_pfn = max_low_pfn;
3232 blk_max_pfn = max_pfn;
3238 * IO Context helper functions
3240 void put_io_context(struct io_context *ioc)
3245 BUG_ON(atomic_read(&ioc->refcount) == 0);
3247 if (atomic_dec_and_test(&ioc->refcount)) {
3248 if (ioc->aic && ioc->aic->dtor)
3249 ioc->aic->dtor(ioc->aic);
3250 if (ioc->cic && ioc->cic->dtor)
3251 ioc->cic->dtor(ioc->cic);
3253 kmem_cache_free(iocontext_cachep, ioc);
3256 EXPORT_SYMBOL(put_io_context);
3258 /* Called by the exitting task */
3259 void exit_io_context(void)
3261 unsigned long flags;
3262 struct io_context *ioc;
3264 local_irq_save(flags);
3266 ioc = current->io_context;
3267 current->io_context = NULL;
3269 task_unlock(current);
3270 local_irq_restore(flags);
3272 if (ioc->aic && ioc->aic->exit)
3273 ioc->aic->exit(ioc->aic);
3274 if (ioc->cic && ioc->cic->exit)
3275 ioc->cic->exit(ioc->cic);
3277 put_io_context(ioc);
3281 * If the current task has no IO context then create one and initialise it.
3282 * Otherwise, return its existing IO context.
3284 * This returned IO context doesn't have a specifically elevated refcount,
3285 * but since the current task itself holds a reference, the context can be
3286 * used in general code, so long as it stays within `current` context.
3288 struct io_context *current_io_context(int gfp_flags)
3290 struct task_struct *tsk = current;
3291 struct io_context *ret;
3293 ret = tsk->io_context;
3297 ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3299 atomic_set(&ret->refcount, 1);
3300 ret->task = current;
3301 ret->set_ioprio = NULL;
3302 ret->last_waited = jiffies; /* doesn't matter... */
3303 ret->nr_batch_requests = 0; /* because this is 0 */
3306 tsk->io_context = ret;
3311 EXPORT_SYMBOL(current_io_context);
3314 * If the current task has no IO context then create one and initialise it.
3315 * If it does have a context, take a ref on it.
3317 * This is always called in the context of the task which submitted the I/O.
3319 struct io_context *get_io_context(int gfp_flags)
3321 struct io_context *ret;
3322 ret = current_io_context(gfp_flags);
3324 atomic_inc(&ret->refcount);
3327 EXPORT_SYMBOL(get_io_context);
3329 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3331 struct io_context *src = *psrc;
3332 struct io_context *dst = *pdst;
3335 BUG_ON(atomic_read(&src->refcount) == 0);
3336 atomic_inc(&src->refcount);
3337 put_io_context(dst);
3341 EXPORT_SYMBOL(copy_io_context);
3343 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3345 struct io_context *temp;
3350 EXPORT_SYMBOL(swap_io_context);
3355 struct queue_sysfs_entry {
3356 struct attribute attr;
3357 ssize_t (*show)(struct request_queue *, char *);
3358 ssize_t (*store)(struct request_queue *, const char *, size_t);
3362 queue_var_show(unsigned int var, char *page)
3364 return sprintf(page, "%d\n", var);
3368 queue_var_store(unsigned long *var, const char *page, size_t count)
3370 char *p = (char *) page;
3372 *var = simple_strtoul(p, &p, 10);
3376 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3378 return queue_var_show(q->nr_requests, (page));
3382 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3384 struct request_list *rl = &q->rq;
3386 int ret = queue_var_store(&q->nr_requests, page, count);
3387 if (q->nr_requests < BLKDEV_MIN_RQ)
3388 q->nr_requests = BLKDEV_MIN_RQ;
3389 blk_queue_congestion_threshold(q);
3391 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3392 set_queue_congested(q, READ);
3393 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3394 clear_queue_congested(q, READ);
3396 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3397 set_queue_congested(q, WRITE);
3398 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3399 clear_queue_congested(q, WRITE);
3401 if (rl->count[READ] >= q->nr_requests) {
3402 blk_set_queue_full(q, READ);
3403 } else if (rl->count[READ]+1 <= q->nr_requests) {
3404 blk_clear_queue_full(q, READ);
3405 wake_up(&rl->wait[READ]);
3408 if (rl->count[WRITE] >= q->nr_requests) {
3409 blk_set_queue_full(q, WRITE);
3410 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3411 blk_clear_queue_full(q, WRITE);
3412 wake_up(&rl->wait[WRITE]);
3417 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3419 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3421 return queue_var_show(ra_kb, (page));
3425 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3427 unsigned long ra_kb;
3428 ssize_t ret = queue_var_store(&ra_kb, page, count);
3430 spin_lock_irq(q->queue_lock);
3431 if (ra_kb > (q->max_sectors >> 1))
3432 ra_kb = (q->max_sectors >> 1);
3434 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3435 spin_unlock_irq(q->queue_lock);
3440 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3442 int max_sectors_kb = q->max_sectors >> 1;
3444 return queue_var_show(max_sectors_kb, (page));
3448 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3450 unsigned long max_sectors_kb,
3451 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3452 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3453 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3456 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3459 * Take the queue lock to update the readahead and max_sectors
3460 * values synchronously:
3462 spin_lock_irq(q->queue_lock);
3464 * Trim readahead window as well, if necessary:
3466 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3467 if (ra_kb > max_sectors_kb)
3468 q->backing_dev_info.ra_pages =
3469 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3471 q->max_sectors = max_sectors_kb << 1;
3472 spin_unlock_irq(q->queue_lock);
3477 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3479 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3481 return queue_var_show(max_hw_sectors_kb, (page));
3485 static struct queue_sysfs_entry queue_requests_entry = {
3486 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3487 .show = queue_requests_show,
3488 .store = queue_requests_store,
3491 static struct queue_sysfs_entry queue_ra_entry = {
3492 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3493 .show = queue_ra_show,
3494 .store = queue_ra_store,
3497 static struct queue_sysfs_entry queue_max_sectors_entry = {
3498 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3499 .show = queue_max_sectors_show,
3500 .store = queue_max_sectors_store,
3503 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3504 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3505 .show = queue_max_hw_sectors_show,
3508 static struct queue_sysfs_entry queue_iosched_entry = {
3509 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3510 .show = elv_iosched_show,
3511 .store = elv_iosched_store,
3514 static struct attribute *default_attrs[] = {
3515 &queue_requests_entry.attr,
3516 &queue_ra_entry.attr,
3517 &queue_max_hw_sectors_entry.attr,
3518 &queue_max_sectors_entry.attr,
3519 &queue_iosched_entry.attr,
3523 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3526 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3528 struct queue_sysfs_entry *entry = to_queue(attr);
3529 struct request_queue *q;
3531 q = container_of(kobj, struct request_queue, kobj);
3535 return entry->show(q, page);
3539 queue_attr_store(struct kobject *kobj, struct attribute *attr,
3540 const char *page, size_t length)
3542 struct queue_sysfs_entry *entry = to_queue(attr);
3543 struct request_queue *q;
3545 q = container_of(kobj, struct request_queue, kobj);
3549 return entry->store(q, page, length);
3552 static struct sysfs_ops queue_sysfs_ops = {
3553 .show = queue_attr_show,
3554 .store = queue_attr_store,
3557 static struct kobj_type queue_ktype = {
3558 .sysfs_ops = &queue_sysfs_ops,
3559 .default_attrs = default_attrs,
3562 int blk_register_queue(struct gendisk *disk)
3566 request_queue_t *q = disk->queue;
3568 if (!q || !q->request_fn)
3571 q->kobj.parent = kobject_get(&disk->kobj);
3572 if (!q->kobj.parent)
3575 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
3576 q->kobj.ktype = &queue_ktype;
3578 ret = kobject_register(&q->kobj);
3582 ret = elv_register_queue(q);
3584 kobject_unregister(&q->kobj);
3591 void blk_unregister_queue(struct gendisk *disk)
3593 request_queue_t *q = disk->queue;
3595 if (q && q->request_fn) {
3596 elv_unregister_queue(q);
3598 kobject_unregister(&q->kobj);
3599 kobject_put(&disk->kobj);