b43: Fix ofdmtab write regression
[linux-2.6] / drivers / net / wireless / zd1211rw / zd_mac.c
1 /* ZD1211 USB-WLAN driver for Linux
2  *
3  * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4  * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5  * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6  * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21  */
22
23 #include <linux/netdevice.h>
24 #include <linux/etherdevice.h>
25 #include <linux/usb.h>
26 #include <linux/jiffies.h>
27 #include <net/ieee80211_radiotap.h>
28
29 #include "zd_def.h"
30 #include "zd_chip.h"
31 #include "zd_mac.h"
32 #include "zd_ieee80211.h"
33 #include "zd_rf.h"
34
35 /* This table contains the hardware specific values for the modulation rates. */
36 static const struct ieee80211_rate zd_rates[] = {
37         { .rate = 10,
38           .val = ZD_CCK_RATE_1M,
39           .flags = IEEE80211_RATE_CCK },
40         { .rate = 20,
41           .val = ZD_CCK_RATE_2M,
42           .val2 = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
43           .flags = IEEE80211_RATE_CCK_2 },
44         { .rate = 55,
45           .val = ZD_CCK_RATE_5_5M,
46           .val2 = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
47           .flags = IEEE80211_RATE_CCK_2 },
48         { .rate = 110,
49           .val = ZD_CCK_RATE_11M,
50           .val2 = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
51           .flags = IEEE80211_RATE_CCK_2 },
52         { .rate = 60,
53           .val = ZD_OFDM_RATE_6M,
54           .flags = IEEE80211_RATE_OFDM },
55         { .rate = 90,
56           .val = ZD_OFDM_RATE_9M,
57           .flags = IEEE80211_RATE_OFDM },
58         { .rate = 120,
59           .val = ZD_OFDM_RATE_12M,
60           .flags = IEEE80211_RATE_OFDM },
61         { .rate = 180,
62           .val = ZD_OFDM_RATE_18M,
63           .flags = IEEE80211_RATE_OFDM },
64         { .rate = 240,
65           .val = ZD_OFDM_RATE_24M,
66           .flags = IEEE80211_RATE_OFDM },
67         { .rate = 360,
68           .val = ZD_OFDM_RATE_36M,
69           .flags = IEEE80211_RATE_OFDM },
70         { .rate = 480,
71           .val = ZD_OFDM_RATE_48M,
72           .flags = IEEE80211_RATE_OFDM },
73         { .rate = 540,
74           .val = ZD_OFDM_RATE_54M,
75           .flags = IEEE80211_RATE_OFDM },
76 };
77
78 static const struct ieee80211_channel zd_channels[] = {
79         { .chan = 1,
80           .freq = 2412},
81         { .chan = 2,
82           .freq = 2417},
83         { .chan = 3,
84           .freq = 2422},
85         { .chan = 4,
86           .freq = 2427},
87         { .chan = 5,
88           .freq = 2432},
89         { .chan = 6,
90           .freq = 2437},
91         { .chan = 7,
92           .freq = 2442},
93         { .chan = 8,
94           .freq = 2447},
95         { .chan = 9,
96           .freq = 2452},
97         { .chan = 10,
98           .freq = 2457},
99         { .chan = 11,
100           .freq = 2462},
101         { .chan = 12,
102           .freq = 2467},
103         { .chan = 13,
104           .freq = 2472},
105         { .chan = 14,
106           .freq = 2484}
107 };
108
109 static void housekeeping_init(struct zd_mac *mac);
110 static void housekeeping_enable(struct zd_mac *mac);
111 static void housekeeping_disable(struct zd_mac *mac);
112
113 int zd_mac_preinit_hw(struct ieee80211_hw *hw)
114 {
115         int r;
116         u8 addr[ETH_ALEN];
117         struct zd_mac *mac = zd_hw_mac(hw);
118
119         r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
120         if (r)
121                 return r;
122
123         SET_IEEE80211_PERM_ADDR(hw, addr);
124
125         return 0;
126 }
127
128 int zd_mac_init_hw(struct ieee80211_hw *hw)
129 {
130         int r;
131         struct zd_mac *mac = zd_hw_mac(hw);
132         struct zd_chip *chip = &mac->chip;
133         u8 default_regdomain;
134
135         r = zd_chip_enable_int(chip);
136         if (r)
137                 goto out;
138         r = zd_chip_init_hw(chip);
139         if (r)
140                 goto disable_int;
141
142         ZD_ASSERT(!irqs_disabled());
143
144         r = zd_read_regdomain(chip, &default_regdomain);
145         if (r)
146                 goto disable_int;
147         spin_lock_irq(&mac->lock);
148         mac->regdomain = mac->default_regdomain = default_regdomain;
149         spin_unlock_irq(&mac->lock);
150
151         /* We must inform the device that we are doing encryption/decryption in
152          * software at the moment. */
153         r = zd_set_encryption_type(chip, ENC_SNIFFER);
154         if (r)
155                 goto disable_int;
156
157         zd_geo_init(hw, mac->regdomain);
158
159         r = 0;
160 disable_int:
161         zd_chip_disable_int(chip);
162 out:
163         return r;
164 }
165
166 void zd_mac_clear(struct zd_mac *mac)
167 {
168         flush_workqueue(zd_workqueue);
169         zd_chip_clear(&mac->chip);
170         ZD_ASSERT(!spin_is_locked(&mac->lock));
171         ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
172 }
173
174 static int set_rx_filter(struct zd_mac *mac)
175 {
176         unsigned long flags;
177         u32 filter = STA_RX_FILTER;
178
179         spin_lock_irqsave(&mac->lock, flags);
180         if (mac->pass_ctrl)
181                 filter |= RX_FILTER_CTRL;
182         spin_unlock_irqrestore(&mac->lock, flags);
183
184         return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
185 }
186
187 static int set_mc_hash(struct zd_mac *mac)
188 {
189         struct zd_mc_hash hash;
190         zd_mc_clear(&hash);
191         return zd_chip_set_multicast_hash(&mac->chip, &hash);
192 }
193
194 static int zd_op_start(struct ieee80211_hw *hw)
195 {
196         struct zd_mac *mac = zd_hw_mac(hw);
197         struct zd_chip *chip = &mac->chip;
198         struct zd_usb *usb = &chip->usb;
199         int r;
200
201         if (!usb->initialized) {
202                 r = zd_usb_init_hw(usb);
203                 if (r)
204                         goto out;
205         }
206
207         r = zd_chip_enable_int(chip);
208         if (r < 0)
209                 goto out;
210
211         r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
212         if (r < 0)
213                 goto disable_int;
214         r = set_rx_filter(mac);
215         if (r)
216                 goto disable_int;
217         r = set_mc_hash(mac);
218         if (r)
219                 goto disable_int;
220         r = zd_chip_switch_radio_on(chip);
221         if (r < 0)
222                 goto disable_int;
223         r = zd_chip_enable_rxtx(chip);
224         if (r < 0)
225                 goto disable_radio;
226         r = zd_chip_enable_hwint(chip);
227         if (r < 0)
228                 goto disable_rxtx;
229
230         housekeeping_enable(mac);
231         return 0;
232 disable_rxtx:
233         zd_chip_disable_rxtx(chip);
234 disable_radio:
235         zd_chip_switch_radio_off(chip);
236 disable_int:
237         zd_chip_disable_int(chip);
238 out:
239         return r;
240 }
241
242 /**
243  * clear_tx_skb_control_block - clears the control block of tx skbuffs
244  * @skb: a &struct sk_buff pointer
245  *
246  * This clears the control block of skbuff buffers, which were transmitted to
247  * the device. Notify that the function is not thread-safe, so prevent
248  * multiple calls.
249  */
250 static void clear_tx_skb_control_block(struct sk_buff *skb)
251 {
252         struct zd_tx_skb_control_block *cb =
253                 (struct zd_tx_skb_control_block *)skb->cb;
254
255         kfree(cb->control);
256         cb->control = NULL;
257 }
258
259 /**
260  * kfree_tx_skb - frees a tx skbuff
261  * @skb: a &struct sk_buff pointer
262  *
263  * Frees the tx skbuff. Frees also the allocated control structure in the
264  * control block if necessary.
265  */
266 static void kfree_tx_skb(struct sk_buff *skb)
267 {
268         clear_tx_skb_control_block(skb);
269         dev_kfree_skb_any(skb);
270 }
271
272 static void zd_op_stop(struct ieee80211_hw *hw)
273 {
274         struct zd_mac *mac = zd_hw_mac(hw);
275         struct zd_chip *chip = &mac->chip;
276         struct sk_buff *skb;
277         struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
278
279         /* The order here deliberately is a little different from the open()
280          * method, since we need to make sure there is no opportunity for RX
281          * frames to be processed by mac80211 after we have stopped it.
282          */
283
284         zd_chip_disable_rxtx(chip);
285         housekeeping_disable(mac);
286         flush_workqueue(zd_workqueue);
287
288         zd_chip_disable_hwint(chip);
289         zd_chip_switch_radio_off(chip);
290         zd_chip_disable_int(chip);
291
292
293         while ((skb = skb_dequeue(ack_wait_queue)))
294                 kfree_tx_skb(skb);
295 }
296
297 /**
298  * init_tx_skb_control_block - initializes skb control block
299  * @skb: a &sk_buff pointer
300  * @dev: pointer to the mac80221 device
301  * @control: mac80211 tx control applying for the frame in @skb
302  *
303  * Initializes the control block of the skbuff to be transmitted.
304  */
305 static int init_tx_skb_control_block(struct sk_buff *skb,
306                                      struct ieee80211_hw *hw,
307                                      struct ieee80211_tx_control *control)
308 {
309         struct zd_tx_skb_control_block *cb =
310                 (struct zd_tx_skb_control_block *)skb->cb;
311
312         ZD_ASSERT(sizeof(*cb) <= sizeof(skb->cb));
313         memset(cb, 0, sizeof(*cb));
314         cb->hw= hw;
315         cb->control = kmalloc(sizeof(*control), GFP_ATOMIC);
316         if (cb->control == NULL)
317                 return -ENOMEM;
318         memcpy(cb->control, control, sizeof(*control));
319
320         return 0;
321 }
322
323 /**
324  * tx_status - reports tx status of a packet if required
325  * @hw - a &struct ieee80211_hw pointer
326  * @skb - a sk-buffer
327  * @status - the tx status of the packet without control information
328  * @success - True for successfull transmission of the frame
329  *
330  * This information calls ieee80211_tx_status_irqsafe() if required by the
331  * control information. It copies the control information into the status
332  * information.
333  *
334  * If no status information has been requested, the skb is freed.
335  */
336 static void tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
337                       struct ieee80211_tx_status *status,
338                       bool success)
339 {
340         struct zd_tx_skb_control_block *cb = (struct zd_tx_skb_control_block *)
341                 skb->cb;
342
343         ZD_ASSERT(cb->control != NULL);
344         memcpy(&status->control, cb->control, sizeof(status->control));
345         if (!success)
346                 status->excessive_retries = 1;
347         clear_tx_skb_control_block(skb);
348         ieee80211_tx_status_irqsafe(hw, skb, status);
349 }
350
351 /**
352  * zd_mac_tx_failed - callback for failed frames
353  * @dev: the mac80211 wireless device
354  *
355  * This function is called if a frame couldn't be succesfully be
356  * transferred. The first frame from the tx queue, will be selected and
357  * reported as error to the upper layers.
358  */
359 void zd_mac_tx_failed(struct ieee80211_hw *hw)
360 {
361         struct sk_buff_head *q = &zd_hw_mac(hw)->ack_wait_queue;
362         struct sk_buff *skb;
363         struct ieee80211_tx_status status = {{0}};
364
365         skb = skb_dequeue(q);
366         if (skb == NULL)
367                 return;
368         tx_status(hw, skb, &status, 0);
369 }
370
371 /**
372  * zd_mac_tx_to_dev - callback for USB layer
373  * @skb: a &sk_buff pointer
374  * @error: error value, 0 if transmission successful
375  *
376  * Informs the MAC layer that the frame has successfully transferred to the
377  * device. If an ACK is required and the transfer to the device has been
378  * successful, the packets are put on the @ack_wait_queue with
379  * the control set removed.
380  */
381 void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
382 {
383         struct zd_tx_skb_control_block *cb =
384                 (struct zd_tx_skb_control_block *)skb->cb;
385         struct ieee80211_hw *hw = cb->hw;
386
387         if (likely(cb->control)) {
388                 skb_pull(skb, sizeof(struct zd_ctrlset));
389                 if (unlikely(error ||
390                     (cb->control->flags & IEEE80211_TXCTL_NO_ACK)))
391                 {
392                         struct ieee80211_tx_status status = {{0}};
393                         tx_status(hw, skb, &status, !error);
394                 } else {
395                         struct sk_buff_head *q =
396                                 &zd_hw_mac(hw)->ack_wait_queue;
397
398                         skb_queue_tail(q, skb);
399                         while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS)
400                                 zd_mac_tx_failed(hw);
401                 }
402         } else {
403                 kfree_tx_skb(skb);
404         }
405 }
406
407 static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
408 {
409         /* ZD_PURE_RATE() must be used to remove the modulation type flag of
410          * the zd-rate values.
411          */
412         static const u8 rate_divisor[] = {
413                 [ZD_PURE_RATE(ZD_CCK_RATE_1M)]   =  1,
414                 [ZD_PURE_RATE(ZD_CCK_RATE_2M)]   =  2,
415                 /* Bits must be doubled. */
416                 [ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
417                 [ZD_PURE_RATE(ZD_CCK_RATE_11M)]  = 11,
418                 [ZD_PURE_RATE(ZD_OFDM_RATE_6M)]  =  6,
419                 [ZD_PURE_RATE(ZD_OFDM_RATE_9M)]  =  9,
420                 [ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
421                 [ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
422                 [ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
423                 [ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
424                 [ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
425                 [ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
426         };
427
428         u32 bits = (u32)tx_length * 8;
429         u32 divisor;
430
431         divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
432         if (divisor == 0)
433                 return -EINVAL;
434
435         switch (zd_rate) {
436         case ZD_CCK_RATE_5_5M:
437                 bits = (2*bits) + 10; /* round up to the next integer */
438                 break;
439         case ZD_CCK_RATE_11M:
440                 if (service) {
441                         u32 t = bits % 11;
442                         *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
443                         if (0 < t && t <= 3) {
444                                 *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
445                         }
446                 }
447                 bits += 10; /* round up to the next integer */
448                 break;
449         }
450
451         return bits/divisor;
452 }
453
454 static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
455                            struct ieee80211_hdr *header, u32 flags)
456 {
457         u16 fctl = le16_to_cpu(header->frame_control);
458
459         /*
460          * CONTROL TODO:
461          * - if backoff needed, enable bit 0
462          * - if burst (backoff not needed) disable bit 0
463          */
464
465         cs->control = 0;
466
467         /* First fragment */
468         if (flags & IEEE80211_TXCTL_FIRST_FRAGMENT)
469                 cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
470
471         /* Multicast */
472         if (is_multicast_ether_addr(header->addr1))
473                 cs->control |= ZD_CS_MULTICAST;
474
475         /* PS-POLL */
476         if ((fctl & (IEEE80211_FCTL_FTYPE|IEEE80211_FCTL_STYPE)) ==
477             (IEEE80211_FTYPE_CTL|IEEE80211_STYPE_PSPOLL))
478                 cs->control |= ZD_CS_PS_POLL_FRAME;
479
480         if (flags & IEEE80211_TXCTL_USE_RTS_CTS)
481                 cs->control |= ZD_CS_RTS;
482
483         if (flags & IEEE80211_TXCTL_USE_CTS_PROTECT)
484                 cs->control |= ZD_CS_SELF_CTS;
485
486         /* FIXME: Management frame? */
487 }
488
489 static int fill_ctrlset(struct zd_mac *mac,
490                         struct sk_buff *skb,
491                         struct ieee80211_tx_control *control)
492 {
493         int r;
494         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
495         unsigned int frag_len = skb->len + FCS_LEN;
496         unsigned int packet_length;
497         struct zd_ctrlset *cs = (struct zd_ctrlset *)
498                 skb_push(skb, sizeof(struct zd_ctrlset));
499
500         ZD_ASSERT(frag_len <= 0xffff);
501
502         cs->modulation = control->tx_rate;
503
504         cs->tx_length = cpu_to_le16(frag_len);
505
506         cs_set_control(mac, cs, hdr, control->flags);
507
508         packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
509         ZD_ASSERT(packet_length <= 0xffff);
510         /* ZD1211B: Computing the length difference this way, gives us
511          * flexibility to compute the packet length.
512          */
513         cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
514                         packet_length - frag_len : packet_length);
515
516         /*
517          * CURRENT LENGTH:
518          * - transmit frame length in microseconds
519          * - seems to be derived from frame length
520          * - see Cal_Us_Service() in zdinlinef.h
521          * - if macp->bTxBurstEnable is enabled, then multiply by 4
522          *  - bTxBurstEnable is never set in the vendor driver
523          *
524          * SERVICE:
525          * - "for PLCP configuration"
526          * - always 0 except in some situations at 802.11b 11M
527          * - see line 53 of zdinlinef.h
528          */
529         cs->service = 0;
530         r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
531                                  le16_to_cpu(cs->tx_length));
532         if (r < 0)
533                 return r;
534         cs->current_length = cpu_to_le16(r);
535         cs->next_frame_length = 0;
536
537         return 0;
538 }
539
540 /**
541  * zd_op_tx - transmits a network frame to the device
542  *
543  * @dev: mac80211 hardware device
544  * @skb: socket buffer
545  * @control: the control structure
546  *
547  * This function transmit an IEEE 802.11 network frame to the device. The
548  * control block of the skbuff will be initialized. If necessary the incoming
549  * mac80211 queues will be stopped.
550  */
551 static int zd_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb,
552                      struct ieee80211_tx_control *control)
553 {
554         struct zd_mac *mac = zd_hw_mac(hw);
555         int r;
556
557         r = fill_ctrlset(mac, skb, control);
558         if (r)
559                 return r;
560
561         r = init_tx_skb_control_block(skb, hw, control);
562         if (r)
563                 return r;
564         r = zd_usb_tx(&mac->chip.usb, skb);
565         if (r) {
566                 clear_tx_skb_control_block(skb);
567                 return r;
568         }
569         return 0;
570 }
571
572 /**
573  * filter_ack - filters incoming packets for acknowledgements
574  * @dev: the mac80211 device
575  * @rx_hdr: received header
576  * @stats: the status for the received packet
577  *
578  * This functions looks for ACK packets and tries to match them with the
579  * frames in the tx queue. If a match is found the frame will be dequeued and
580  * the upper layers is informed about the successful transmission. If
581  * mac80211 queues have been stopped and the number of frames still to be
582  * transmitted is low the queues will be opened again.
583  *
584  * Returns 1 if the frame was an ACK, 0 if it was ignored.
585  */
586 static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
587                       struct ieee80211_rx_status *stats)
588 {
589         u16 fc = le16_to_cpu(rx_hdr->frame_control);
590         struct sk_buff *skb;
591         struct sk_buff_head *q;
592         unsigned long flags;
593
594         if ((fc & (IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) !=
595             (IEEE80211_FTYPE_CTL | IEEE80211_STYPE_ACK))
596                 return 0;
597
598         q = &zd_hw_mac(hw)->ack_wait_queue;
599         spin_lock_irqsave(&q->lock, flags);
600         for (skb = q->next; skb != (struct sk_buff *)q; skb = skb->next) {
601                 struct ieee80211_hdr *tx_hdr;
602
603                 tx_hdr = (struct ieee80211_hdr *)skb->data;
604                 if (likely(!compare_ether_addr(tx_hdr->addr2, rx_hdr->addr1)))
605                 {
606                         struct ieee80211_tx_status status = {{0}};
607                         status.flags = IEEE80211_TX_STATUS_ACK;
608                         status.ack_signal = stats->ssi;
609                         __skb_unlink(skb, q);
610                         tx_status(hw, skb, &status, 1);
611                         goto out;
612                 }
613         }
614 out:
615         spin_unlock_irqrestore(&q->lock, flags);
616         return 1;
617 }
618
619 int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
620 {
621         struct zd_mac *mac = zd_hw_mac(hw);
622         struct ieee80211_rx_status stats;
623         const struct rx_status *status;
624         struct sk_buff *skb;
625         int bad_frame = 0;
626
627         if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
628                      FCS_LEN + sizeof(struct rx_status))
629                 return -EINVAL;
630
631         memset(&stats, 0, sizeof(stats));
632
633         /* Note about pass_failed_fcs and pass_ctrl access below:
634          * mac locking intentionally omitted here, as this is the only unlocked
635          * reader and the only writer is configure_filter. Plus, if there were
636          * any races accessing these variables, it wouldn't really matter.
637          * If mac80211 ever provides a way for us to access filter flags
638          * from outside configure_filter, we could improve on this. Also, this
639          * situation may change once we implement some kind of DMA-into-skb
640          * RX path. */
641
642         /* Caller has to ensure that length >= sizeof(struct rx_status). */
643         status = (struct rx_status *)
644                 (buffer + (length - sizeof(struct rx_status)));
645         if (status->frame_status & ZD_RX_ERROR) {
646                 if (mac->pass_failed_fcs &&
647                                 (status->frame_status & ZD_RX_CRC32_ERROR)) {
648                         stats.flag |= RX_FLAG_FAILED_FCS_CRC;
649                         bad_frame = 1;
650                 } else {
651                         return -EINVAL;
652                 }
653         }
654
655         stats.channel = _zd_chip_get_channel(&mac->chip);
656         stats.freq = zd_channels[stats.channel - 1].freq;
657         stats.phymode = MODE_IEEE80211G;
658         stats.ssi = status->signal_strength;
659         stats.signal = zd_rx_qual_percent(buffer,
660                                           length - sizeof(struct rx_status),
661                                           status);
662         stats.rate = zd_rx_rate(buffer, status);
663
664         length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
665         buffer += ZD_PLCP_HEADER_SIZE;
666
667         /* Except for bad frames, filter each frame to see if it is an ACK, in
668          * which case our internal TX tracking is updated. Normally we then
669          * bail here as there's no need to pass ACKs on up to the stack, but
670          * there is also the case where the stack has requested us to pass
671          * control frames on up (pass_ctrl) which we must consider. */
672         if (!bad_frame &&
673                         filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
674                         && !mac->pass_ctrl)
675                 return 0;
676
677         skb = dev_alloc_skb(length);
678         if (skb == NULL)
679                 return -ENOMEM;
680         memcpy(skb_put(skb, length), buffer, length);
681
682         ieee80211_rx_irqsafe(hw, skb, &stats);
683         return 0;
684 }
685
686 static int zd_op_add_interface(struct ieee80211_hw *hw,
687                                 struct ieee80211_if_init_conf *conf)
688 {
689         struct zd_mac *mac = zd_hw_mac(hw);
690
691         /* using IEEE80211_IF_TYPE_INVALID to indicate no mode selected */
692         if (mac->type != IEEE80211_IF_TYPE_INVALID)
693                 return -EOPNOTSUPP;
694
695         switch (conf->type) {
696         case IEEE80211_IF_TYPE_MNTR:
697         case IEEE80211_IF_TYPE_STA:
698                 mac->type = conf->type;
699                 break;
700         default:
701                 return -EOPNOTSUPP;
702         }
703
704         return zd_write_mac_addr(&mac->chip, conf->mac_addr);
705 }
706
707 static void zd_op_remove_interface(struct ieee80211_hw *hw,
708                                     struct ieee80211_if_init_conf *conf)
709 {
710         struct zd_mac *mac = zd_hw_mac(hw);
711         mac->type = IEEE80211_IF_TYPE_INVALID;
712         zd_write_mac_addr(&mac->chip, NULL);
713 }
714
715 static int zd_op_config(struct ieee80211_hw *hw, struct ieee80211_conf *conf)
716 {
717         struct zd_mac *mac = zd_hw_mac(hw);
718         return zd_chip_set_channel(&mac->chip, conf->channel);
719 }
720
721 static int zd_op_config_interface(struct ieee80211_hw *hw, int if_id,
722                                    struct ieee80211_if_conf *conf)
723 {
724         struct zd_mac *mac = zd_hw_mac(hw);
725
726         spin_lock_irq(&mac->lock);
727         mac->associated = is_valid_ether_addr(conf->bssid);
728         spin_unlock_irq(&mac->lock);
729
730         /* TODO: do hardware bssid filtering */
731         return 0;
732 }
733
734 static void set_multicast_hash_handler(struct work_struct *work)
735 {
736         struct zd_mac *mac =
737                 container_of(work, struct zd_mac, set_multicast_hash_work);
738         struct zd_mc_hash hash;
739
740         spin_lock_irq(&mac->lock);
741         hash = mac->multicast_hash;
742         spin_unlock_irq(&mac->lock);
743
744         zd_chip_set_multicast_hash(&mac->chip, &hash);
745 }
746
747 static void set_rx_filter_handler(struct work_struct *work)
748 {
749         struct zd_mac *mac =
750                 container_of(work, struct zd_mac, set_rx_filter_work);
751         int r;
752
753         dev_dbg_f(zd_mac_dev(mac), "\n");
754         r = set_rx_filter(mac);
755         if (r)
756                 dev_err(zd_mac_dev(mac), "set_rx_filter_handler error %d\n", r);
757 }
758
759 #define SUPPORTED_FIF_FLAGS \
760         (FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
761         FIF_OTHER_BSS)
762 static void zd_op_configure_filter(struct ieee80211_hw *hw,
763                         unsigned int changed_flags,
764                         unsigned int *new_flags,
765                         int mc_count, struct dev_mc_list *mclist)
766 {
767         struct zd_mc_hash hash;
768         struct zd_mac *mac = zd_hw_mac(hw);
769         unsigned long flags;
770         int i;
771
772         /* Only deal with supported flags */
773         changed_flags &= SUPPORTED_FIF_FLAGS;
774         *new_flags &= SUPPORTED_FIF_FLAGS;
775
776         /* changed_flags is always populated but this driver
777          * doesn't support all FIF flags so its possible we don't
778          * need to do anything */
779         if (!changed_flags)
780                 return;
781
782         if (*new_flags & (FIF_PROMISC_IN_BSS | FIF_ALLMULTI)) {
783                 zd_mc_add_all(&hash);
784         } else {
785                 DECLARE_MAC_BUF(macbuf);
786
787                 zd_mc_clear(&hash);
788                 for (i = 0; i < mc_count; i++) {
789                         if (!mclist)
790                                 break;
791                         dev_dbg_f(zd_mac_dev(mac), "mc addr %s\n",
792                                   print_mac(macbuf, mclist->dmi_addr));
793                         zd_mc_add_addr(&hash, mclist->dmi_addr);
794                         mclist = mclist->next;
795                 }
796         }
797
798         spin_lock_irqsave(&mac->lock, flags);
799         mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
800         mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
801         mac->multicast_hash = hash;
802         spin_unlock_irqrestore(&mac->lock, flags);
803         queue_work(zd_workqueue, &mac->set_multicast_hash_work);
804
805         if (changed_flags & FIF_CONTROL)
806                 queue_work(zd_workqueue, &mac->set_rx_filter_work);
807
808         /* no handling required for FIF_OTHER_BSS as we don't currently
809          * do BSSID filtering */
810         /* FIXME: in future it would be nice to enable the probe response
811          * filter (so that the driver doesn't see them) until
812          * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
813          * have to schedule work to enable prbresp reception, which might
814          * happen too late. For now we'll just listen and forward them all the
815          * time. */
816 }
817
818 static void set_rts_cts_work(struct work_struct *work)
819 {
820         struct zd_mac *mac =
821                 container_of(work, struct zd_mac, set_rts_cts_work);
822         unsigned long flags;
823         unsigned int short_preamble;
824
825         mutex_lock(&mac->chip.mutex);
826
827         spin_lock_irqsave(&mac->lock, flags);
828         mac->updating_rts_rate = 0;
829         short_preamble = mac->short_preamble;
830         spin_unlock_irqrestore(&mac->lock, flags);
831
832         zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
833         mutex_unlock(&mac->chip.mutex);
834 }
835
836 static void zd_op_erp_ie_changed(struct ieee80211_hw *hw, u8 changes,
837                                  int cts_protection, int preamble)
838 {
839         struct zd_mac *mac = zd_hw_mac(hw);
840         unsigned long flags;
841
842         dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
843
844         if (changes & IEEE80211_ERP_CHANGE_PREAMBLE) {
845                 spin_lock_irqsave(&mac->lock, flags);
846                 mac->short_preamble = !preamble;
847                 if (!mac->updating_rts_rate) {
848                         mac->updating_rts_rate = 1;
849                         /* FIXME: should disable TX here, until work has
850                          * completed and RTS_CTS reg is updated */
851                         queue_work(zd_workqueue, &mac->set_rts_cts_work);
852                 }
853                 spin_unlock_irqrestore(&mac->lock, flags);
854         }
855 }
856
857 static const struct ieee80211_ops zd_ops = {
858         .tx                     = zd_op_tx,
859         .start                  = zd_op_start,
860         .stop                   = zd_op_stop,
861         .add_interface          = zd_op_add_interface,
862         .remove_interface       = zd_op_remove_interface,
863         .config                 = zd_op_config,
864         .config_interface       = zd_op_config_interface,
865         .configure_filter       = zd_op_configure_filter,
866         .erp_ie_changed         = zd_op_erp_ie_changed,
867 };
868
869 struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
870 {
871         struct zd_mac *mac;
872         struct ieee80211_hw *hw;
873         int i;
874
875         hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
876         if (!hw) {
877                 dev_dbg_f(&intf->dev, "out of memory\n");
878                 return NULL;
879         }
880
881         mac = zd_hw_mac(hw);
882
883         memset(mac, 0, sizeof(*mac));
884         spin_lock_init(&mac->lock);
885         mac->hw = hw;
886
887         mac->type = IEEE80211_IF_TYPE_INVALID;
888
889         memcpy(mac->channels, zd_channels, sizeof(zd_channels));
890         memcpy(mac->rates, zd_rates, sizeof(zd_rates));
891         mac->modes[0].mode = MODE_IEEE80211G;
892         mac->modes[0].num_rates = ARRAY_SIZE(zd_rates);
893         mac->modes[0].rates = mac->rates;
894         mac->modes[0].num_channels = ARRAY_SIZE(zd_channels);
895         mac->modes[0].channels = mac->channels;
896         mac->modes[1].mode = MODE_IEEE80211B;
897         mac->modes[1].num_rates = 4;
898         mac->modes[1].rates = mac->rates;
899         mac->modes[1].num_channels = ARRAY_SIZE(zd_channels);
900         mac->modes[1].channels = mac->channels;
901
902         hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
903                      IEEE80211_HW_DEFAULT_REG_DOMAIN_CONFIGURED;
904         hw->max_rssi = 100;
905         hw->max_signal = 100;
906
907         hw->queues = 1;
908         hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
909
910         skb_queue_head_init(&mac->ack_wait_queue);
911
912         for (i = 0; i < 2; i++) {
913                 if (ieee80211_register_hwmode(hw, &mac->modes[i])) {
914                         dev_dbg_f(&intf->dev, "cannot register hwmode\n");
915                         ieee80211_free_hw(hw);
916                         return NULL;
917                 }
918         }
919
920         zd_chip_init(&mac->chip, hw, intf);
921         housekeeping_init(mac);
922         INIT_WORK(&mac->set_multicast_hash_work, set_multicast_hash_handler);
923         INIT_WORK(&mac->set_rts_cts_work, set_rts_cts_work);
924         INIT_WORK(&mac->set_rx_filter_work, set_rx_filter_handler);
925
926         SET_IEEE80211_DEV(hw, &intf->dev);
927         return hw;
928 }
929
930 #define LINK_LED_WORK_DELAY HZ
931
932 static void link_led_handler(struct work_struct *work)
933 {
934         struct zd_mac *mac =
935                 container_of(work, struct zd_mac, housekeeping.link_led_work.work);
936         struct zd_chip *chip = &mac->chip;
937         int is_associated;
938         int r;
939
940         spin_lock_irq(&mac->lock);
941         is_associated = mac->associated;
942         spin_unlock_irq(&mac->lock);
943
944         r = zd_chip_control_leds(chip,
945                                  is_associated ? LED_ASSOCIATED : LED_SCANNING);
946         if (r)
947                 dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
948
949         queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
950                            LINK_LED_WORK_DELAY);
951 }
952
953 static void housekeeping_init(struct zd_mac *mac)
954 {
955         INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
956 }
957
958 static void housekeeping_enable(struct zd_mac *mac)
959 {
960         dev_dbg_f(zd_mac_dev(mac), "\n");
961         queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
962                            0);
963 }
964
965 static void housekeeping_disable(struct zd_mac *mac)
966 {
967         dev_dbg_f(zd_mac_dev(mac), "\n");
968         cancel_rearming_delayed_workqueue(zd_workqueue,
969                 &mac->housekeeping.link_led_work);
970         zd_chip_control_leds(&mac->chip, LED_OFF);
971 }