2 * Support for IDE interfaces on PowerMacs.
4 * These IDE interfaces are memory-mapped and have a DBDMA channel
7 * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
8 * Copyright (C) 2007 Bartlomiej Zolnierkiewicz
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * Some code taken from drivers/ide/ide-dma.c:
17 * Copyright (c) 1995-1998 Mark Lord
19 * TODO: - Use pre-calculated (kauai) timing tables all the time and
20 * get rid of the "rounded" tables used previously, so we have the
21 * same table format for all controllers and can then just have one
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/ide.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/pci.h>
33 #include <linux/adb.h>
34 #include <linux/pmu.h>
35 #include <linux/scatterlist.h>
39 #include <asm/dbdma.h>
41 #include <asm/pci-bridge.h>
42 #include <asm/machdep.h>
43 #include <asm/pmac_feature.h>
44 #include <asm/sections.h>
48 #include <asm/mediabay.h>
51 #include "../ide-timing.h"
55 #define DMA_WAIT_TIMEOUT 50
57 typedef struct pmac_ide_hwif {
58 unsigned long regbase;
62 unsigned cable_80 : 1;
63 unsigned mediabay : 1;
64 unsigned broken_dma : 1;
65 unsigned broken_dma_warn : 1;
66 struct device_node* node;
67 struct macio_dev *mdev;
69 volatile u32 __iomem * *kauai_fcr;
70 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
71 /* Those fields are duplicating what is in hwif. We currently
72 * can't use the hwif ones because of some assumptions that are
73 * beeing done by the generic code about the kind of dma controller
74 * and format of the dma table. This will have to be fixed though.
76 volatile struct dbdma_regs __iomem * dma_regs;
77 struct dbdma_cmd* dma_table_cpu;
82 static pmac_ide_hwif_t pmac_ide[MAX_HWIFS];
83 static int pmac_ide_count;
86 controller_ohare, /* OHare based */
87 controller_heathrow, /* Heathrow/Paddington */
88 controller_kl_ata3, /* KeyLargo ATA-3 */
89 controller_kl_ata4, /* KeyLargo ATA-4 */
90 controller_un_ata6, /* UniNorth2 ATA-6 */
91 controller_k2_ata6, /* K2 ATA-6 */
92 controller_sh_ata6, /* Shasta ATA-6 */
95 static const char* model_name[] = {
96 "OHare ATA", /* OHare based */
97 "Heathrow ATA", /* Heathrow/Paddington */
98 "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
99 "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
100 "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
101 "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
102 "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
106 * Extra registers, both 32-bit little-endian
108 #define IDE_TIMING_CONFIG 0x200
109 #define IDE_INTERRUPT 0x300
111 /* Kauai (U2) ATA has different register setup */
112 #define IDE_KAUAI_PIO_CONFIG 0x200
113 #define IDE_KAUAI_ULTRA_CONFIG 0x210
114 #define IDE_KAUAI_POLL_CONFIG 0x220
117 * Timing configuration register definitions
120 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
121 #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
122 #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
123 #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
124 #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
126 /* 133Mhz cell, found in shasta.
127 * See comments about 100 Mhz Uninorth 2...
128 * Note that PIO_MASK and MDMA_MASK seem to overlap
130 #define TR_133_PIOREG_PIO_MASK 0xff000fff
131 #define TR_133_PIOREG_MDMA_MASK 0x00fff800
132 #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
133 #define TR_133_UDMAREG_UDMA_EN 0x00000001
135 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
136 * this one yet, it appears as a pci device (106b/0033) on uninorth
137 * internal PCI bus and it's clock is controlled like gem or fw. It
138 * appears to be an evolution of keylargo ATA4 with a timing register
139 * extended to 2 32bits registers and a similar DBDMA channel. Other
140 * registers seem to exist but I can't tell much about them.
142 * So far, I'm using pre-calculated tables for this extracted from
143 * the values used by the MacOS X driver.
145 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
146 * register controls the UDMA timings. At least, it seems bit 0
147 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
148 * cycle time in units of 10ns. Bits 8..15 are used by I don't
149 * know their meaning yet
151 #define TR_100_PIOREG_PIO_MASK 0xff000fff
152 #define TR_100_PIOREG_MDMA_MASK 0x00fff000
153 #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
154 #define TR_100_UDMAREG_UDMA_EN 0x00000001
157 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
158 * 40 connector cable and to 4 on 80 connector one.
159 * Clock unit is 15ns (66Mhz)
161 * 3 Values can be programmed:
162 * - Write data setup, which appears to match the cycle time. They
163 * also call it DIOW setup.
164 * - Ready to pause time (from spec)
165 * - Address setup. That one is weird. I don't see where exactly
166 * it fits in UDMA cycles, I got it's name from an obscure piece
167 * of commented out code in Darwin. They leave it to 0, we do as
168 * well, despite a comment that would lead to think it has a
170 * Apple also add 60ns to the write data setup (or cycle time ?) on
173 #define TR_66_UDMA_MASK 0xfff00000
174 #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
175 #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
176 #define TR_66_UDMA_ADDRSETUP_SHIFT 29
177 #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
178 #define TR_66_UDMA_RDY2PAUS_SHIFT 25
179 #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
180 #define TR_66_UDMA_WRDATASETUP_SHIFT 21
181 #define TR_66_MDMA_MASK 0x000ffc00
182 #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
183 #define TR_66_MDMA_RECOVERY_SHIFT 15
184 #define TR_66_MDMA_ACCESS_MASK 0x00007c00
185 #define TR_66_MDMA_ACCESS_SHIFT 10
186 #define TR_66_PIO_MASK 0x000003ff
187 #define TR_66_PIO_RECOVERY_MASK 0x000003e0
188 #define TR_66_PIO_RECOVERY_SHIFT 5
189 #define TR_66_PIO_ACCESS_MASK 0x0000001f
190 #define TR_66_PIO_ACCESS_SHIFT 0
192 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
193 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
195 * The access time and recovery time can be programmed. Some older
196 * Darwin code base limit OHare to 150ns cycle time. I decided to do
197 * the same here fore safety against broken old hardware ;)
198 * The HalfTick bit, when set, adds half a clock (15ns) to the access
199 * time and removes one from recovery. It's not supported on KeyLargo
200 * implementation afaik. The E bit appears to be set for PIO mode 0 and
201 * is used to reach long timings used in this mode.
203 #define TR_33_MDMA_MASK 0x003ff800
204 #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
205 #define TR_33_MDMA_RECOVERY_SHIFT 16
206 #define TR_33_MDMA_ACCESS_MASK 0x0000f800
207 #define TR_33_MDMA_ACCESS_SHIFT 11
208 #define TR_33_MDMA_HALFTICK 0x00200000
209 #define TR_33_PIO_MASK 0x000007ff
210 #define TR_33_PIO_E 0x00000400
211 #define TR_33_PIO_RECOVERY_MASK 0x000003e0
212 #define TR_33_PIO_RECOVERY_SHIFT 5
213 #define TR_33_PIO_ACCESS_MASK 0x0000001f
214 #define TR_33_PIO_ACCESS_SHIFT 0
217 * Interrupt register definitions
219 #define IDE_INTR_DMA 0x80000000
220 #define IDE_INTR_DEVICE 0x40000000
223 * FCR Register on Kauai. Not sure what bit 0x4 is ...
225 #define KAUAI_FCR_UATA_MAGIC 0x00000004
226 #define KAUAI_FCR_UATA_RESET_N 0x00000002
227 #define KAUAI_FCR_UATA_ENABLE 0x00000001
229 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
231 /* Rounded Multiword DMA timings
233 * I gave up finding a generic formula for all controller
234 * types and instead, built tables based on timing values
235 * used by Apple in Darwin's implementation.
237 struct mdma_timings_t {
243 struct mdma_timings_t mdma_timings_33[] =
256 struct mdma_timings_t mdma_timings_33k[] =
269 struct mdma_timings_t mdma_timings_66[] =
282 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
284 int addrSetup; /* ??? */
287 } kl66_udma_timings[] =
289 { 0, 180, 120 }, /* Mode 0 */
290 { 0, 150, 90 }, /* 1 */
291 { 0, 120, 60 }, /* 2 */
292 { 0, 90, 45 }, /* 3 */
293 { 0, 90, 30 } /* 4 */
296 /* UniNorth 2 ATA/100 timings */
297 struct kauai_timing {
302 static struct kauai_timing kauai_pio_timings[] =
304 { 930 , 0x08000fff },
305 { 600 , 0x08000a92 },
306 { 383 , 0x0800060f },
307 { 360 , 0x08000492 },
308 { 330 , 0x0800048f },
309 { 300 , 0x080003cf },
310 { 270 , 0x080003cc },
311 { 240 , 0x0800038b },
312 { 239 , 0x0800030c },
313 { 180 , 0x05000249 },
314 { 120 , 0x04000148 },
318 static struct kauai_timing kauai_mdma_timings[] =
320 { 1260 , 0x00fff000 },
321 { 480 , 0x00618000 },
322 { 360 , 0x00492000 },
323 { 270 , 0x0038e000 },
324 { 240 , 0x0030c000 },
325 { 210 , 0x002cb000 },
326 { 180 , 0x00249000 },
327 { 150 , 0x00209000 },
328 { 120 , 0x00148000 },
332 static struct kauai_timing kauai_udma_timings[] =
334 { 120 , 0x000070c0 },
343 static struct kauai_timing shasta_pio_timings[] =
345 { 930 , 0x08000fff },
346 { 600 , 0x0A000c97 },
347 { 383 , 0x07000712 },
348 { 360 , 0x040003cd },
349 { 330 , 0x040003cd },
350 { 300 , 0x040003cd },
351 { 270 , 0x040003cd },
352 { 240 , 0x040003cd },
353 { 239 , 0x040003cd },
354 { 180 , 0x0400028b },
355 { 120 , 0x0400010a },
359 static struct kauai_timing shasta_mdma_timings[] =
361 { 1260 , 0x00fff000 },
362 { 480 , 0x00820800 },
363 { 360 , 0x00820800 },
364 { 270 , 0x00820800 },
365 { 240 , 0x00820800 },
366 { 210 , 0x00820800 },
367 { 180 , 0x00820800 },
368 { 150 , 0x0028b000 },
369 { 120 , 0x001ca000 },
373 static struct kauai_timing shasta_udma133_timings[] =
375 { 120 , 0x00035901, },
376 { 90 , 0x000348b1, },
377 { 60 , 0x00033881, },
378 { 45 , 0x00033861, },
379 { 30 , 0x00033841, },
380 { 20 , 0x00033031, },
381 { 15 , 0x00033021, },
387 kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
391 for (i=0; table[i].cycle_time; i++)
392 if (cycle_time > table[i+1].cycle_time)
393 return table[i].timing_reg;
398 /* allow up to 256 DBDMA commands per xfer */
399 #define MAX_DCMDS 256
402 * Wait 1s for disk to answer on IDE bus after a hard reset
403 * of the device (via GPIO/FCR).
405 * Some devices seem to "pollute" the bus even after dropping
406 * the BSY bit (typically some combo drives slave on the UDMA
407 * bus) after a hard reset. Since we hard reset all drives on
408 * KeyLargo ATA66, we have to keep that delay around. I may end
409 * up not hard resetting anymore on these and keep the delay only
410 * for older interfaces instead (we have to reset when coming
411 * from MacOS...) --BenH.
413 #define IDE_WAKEUP_DELAY (1*HZ)
415 static int pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif);
416 static int pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq);
417 static void pmac_ide_selectproc(ide_drive_t *drive);
418 static void pmac_ide_kauai_selectproc(ide_drive_t *drive);
420 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
423 * N.B. this can't be an initfunc, because the media-bay task can
424 * call ide_[un]register at any time.
427 pmac_ide_init_hwif_ports(hw_regs_t *hw,
428 unsigned long data_port, unsigned long ctrl_port,
436 for (ix = 0; ix < MAX_HWIFS; ++ix)
437 if (data_port == pmac_ide[ix].regbase)
441 return; /* not an IDE PMAC interface */
443 for (i = 0; i < 8; ++i)
444 hw->io_ports[i] = data_port + i * 0x10;
445 hw->io_ports[8] = data_port + 0x160;
448 *irq = pmac_ide[ix].irq;
450 hw->dev = &pmac_ide[ix].mdev->ofdev.dev;
453 #define PMAC_IDE_REG(x) ((void __iomem *)(IDE_DATA_REG+(x)))
456 * Apply the timings of the proper unit (master/slave) to the shared
457 * timing register when selecting that unit. This version is for
458 * ASICs with a single timing register
461 pmac_ide_selectproc(ide_drive_t *drive)
463 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
468 if (drive->select.b.unit & 0x01)
469 writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
471 writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
472 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
476 * Apply the timings of the proper unit (master/slave) to the shared
477 * timing register when selecting that unit. This version is for
478 * ASICs with a dual timing register (Kauai)
481 pmac_ide_kauai_selectproc(ide_drive_t *drive)
483 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
488 if (drive->select.b.unit & 0x01) {
489 writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
490 writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
492 writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
493 writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
495 (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
499 * Force an update of controller timing values for a given drive
502 pmac_ide_do_update_timings(ide_drive_t *drive)
504 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
509 if (pmif->kind == controller_sh_ata6 ||
510 pmif->kind == controller_un_ata6 ||
511 pmif->kind == controller_k2_ata6)
512 pmac_ide_kauai_selectproc(drive);
514 pmac_ide_selectproc(drive);
518 pmac_outbsync(ide_drive_t *drive, u8 value, unsigned long port)
522 writeb(value, (void __iomem *) port);
523 tmp = readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
527 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
530 pmac_ide_set_pio_mode(ide_drive_t *drive, const u8 pio)
533 unsigned accessTicks, recTicks;
534 unsigned accessTime, recTime;
535 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
536 unsigned int cycle_time;
541 /* which drive is it ? */
542 timings = &pmif->timings[drive->select.b.unit & 0x01];
545 cycle_time = ide_pio_cycle_time(drive, pio);
547 switch (pmif->kind) {
548 case controller_sh_ata6: {
550 u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
551 t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
554 case controller_un_ata6:
555 case controller_k2_ata6: {
557 u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
558 t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
561 case controller_kl_ata4:
563 recTime = cycle_time - ide_pio_timings[pio].active_time
564 - ide_pio_timings[pio].setup_time;
565 recTime = max(recTime, 150U);
566 accessTime = ide_pio_timings[pio].active_time;
567 accessTime = max(accessTime, 150U);
568 accessTicks = SYSCLK_TICKS_66(accessTime);
569 accessTicks = min(accessTicks, 0x1fU);
570 recTicks = SYSCLK_TICKS_66(recTime);
571 recTicks = min(recTicks, 0x1fU);
572 t = (t & ~TR_66_PIO_MASK) |
573 (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
574 (recTicks << TR_66_PIO_RECOVERY_SHIFT);
579 recTime = cycle_time - ide_pio_timings[pio].active_time
580 - ide_pio_timings[pio].setup_time;
581 recTime = max(recTime, 150U);
582 accessTime = ide_pio_timings[pio].active_time;
583 accessTime = max(accessTime, 150U);
584 accessTicks = SYSCLK_TICKS(accessTime);
585 accessTicks = min(accessTicks, 0x1fU);
586 accessTicks = max(accessTicks, 4U);
587 recTicks = SYSCLK_TICKS(recTime);
588 recTicks = min(recTicks, 0x1fU);
589 recTicks = max(recTicks, 5U) - 4;
591 recTicks--; /* guess, but it's only for PIO0, so... */
594 t = (t & ~TR_33_PIO_MASK) |
595 (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
596 (recTicks << TR_33_PIO_RECOVERY_SHIFT);
603 #ifdef IDE_PMAC_DEBUG
604 printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
605 drive->name, pio, *timings);
609 pmac_ide_do_update_timings(drive);
612 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
615 * Calculate KeyLargo ATA/66 UDMA timings
618 set_timings_udma_ata4(u32 *timings, u8 speed)
620 unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
622 if (speed > XFER_UDMA_4)
625 rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
626 wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
627 addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
629 *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
630 (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
631 (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
632 (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
634 #ifdef IDE_PMAC_DEBUG
635 printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
636 speed & 0xf, *timings);
643 * Calculate Kauai ATA/100 UDMA timings
646 set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
648 struct ide_timing *t = ide_timing_find_mode(speed);
651 if (speed > XFER_UDMA_5 || t == NULL)
653 tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
654 *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
655 *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
661 * Calculate Shasta ATA/133 UDMA timings
664 set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
666 struct ide_timing *t = ide_timing_find_mode(speed);
669 if (speed > XFER_UDMA_6 || t == NULL)
671 tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
672 *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
673 *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
679 * Calculate MDMA timings for all cells
682 set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
685 int cycleTime, accessTime = 0, recTime = 0;
686 unsigned accessTicks, recTicks;
687 struct hd_driveid *id = drive->id;
688 struct mdma_timings_t* tm = NULL;
691 /* Get default cycle time for mode */
692 switch(speed & 0xf) {
693 case 0: cycleTime = 480; break;
694 case 1: cycleTime = 150; break;
695 case 2: cycleTime = 120; break;
701 /* Check if drive provides explicit DMA cycle time */
702 if ((id->field_valid & 2) && id->eide_dma_time)
703 cycleTime = max_t(int, id->eide_dma_time, cycleTime);
705 /* OHare limits according to some old Apple sources */
706 if ((intf_type == controller_ohare) && (cycleTime < 150))
708 /* Get the proper timing array for this controller */
710 case controller_sh_ata6:
711 case controller_un_ata6:
712 case controller_k2_ata6:
714 case controller_kl_ata4:
715 tm = mdma_timings_66;
717 case controller_kl_ata3:
718 tm = mdma_timings_33k;
721 tm = mdma_timings_33;
725 /* Lookup matching access & recovery times */
728 if (tm[i+1].cycleTime < cycleTime)
732 cycleTime = tm[i].cycleTime;
733 accessTime = tm[i].accessTime;
734 recTime = tm[i].recoveryTime;
736 #ifdef IDE_PMAC_DEBUG
737 printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
738 drive->name, cycleTime, accessTime, recTime);
742 case controller_sh_ata6: {
744 u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
745 *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
746 *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
748 case controller_un_ata6:
749 case controller_k2_ata6: {
751 u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
752 *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
753 *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
756 case controller_kl_ata4:
758 accessTicks = SYSCLK_TICKS_66(accessTime);
759 accessTicks = min(accessTicks, 0x1fU);
760 accessTicks = max(accessTicks, 0x1U);
761 recTicks = SYSCLK_TICKS_66(recTime);
762 recTicks = min(recTicks, 0x1fU);
763 recTicks = max(recTicks, 0x3U);
764 /* Clear out mdma bits and disable udma */
765 *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
766 (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
767 (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
769 case controller_kl_ata3:
770 /* 33Mhz cell on KeyLargo */
771 accessTicks = SYSCLK_TICKS(accessTime);
772 accessTicks = max(accessTicks, 1U);
773 accessTicks = min(accessTicks, 0x1fU);
774 accessTime = accessTicks * IDE_SYSCLK_NS;
775 recTicks = SYSCLK_TICKS(recTime);
776 recTicks = max(recTicks, 1U);
777 recTicks = min(recTicks, 0x1fU);
778 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
779 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
780 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
783 /* 33Mhz cell on others */
785 int origAccessTime = accessTime;
786 int origRecTime = recTime;
788 accessTicks = SYSCLK_TICKS(accessTime);
789 accessTicks = max(accessTicks, 1U);
790 accessTicks = min(accessTicks, 0x1fU);
791 accessTime = accessTicks * IDE_SYSCLK_NS;
792 recTicks = SYSCLK_TICKS(recTime);
793 recTicks = max(recTicks, 2U) - 1;
794 recTicks = min(recTicks, 0x1fU);
795 recTime = (recTicks + 1) * IDE_SYSCLK_NS;
796 if ((accessTicks > 1) &&
797 ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
798 ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
802 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
803 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
804 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
806 *timings |= TR_33_MDMA_HALFTICK;
809 #ifdef IDE_PMAC_DEBUG
810 printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
811 drive->name, speed & 0xf, *timings);
814 #endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */
816 static void pmac_ide_set_dma_mode(ide_drive_t *drive, const u8 speed)
818 int unit = (drive->select.b.unit & 0x01);
820 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
821 u32 *timings, *timings2, tl[2];
823 timings = &pmif->timings[unit];
824 timings2 = &pmif->timings[unit+2];
826 /* Copy timings to local image */
830 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
831 if (speed >= XFER_UDMA_0) {
832 if (pmif->kind == controller_kl_ata4)
833 ret = set_timings_udma_ata4(&tl[0], speed);
834 else if (pmif->kind == controller_un_ata6
835 || pmif->kind == controller_k2_ata6)
836 ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
837 else if (pmif->kind == controller_sh_ata6)
838 ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
842 set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
843 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
847 /* Apply timings to controller */
851 pmac_ide_do_update_timings(drive);
855 * Blast some well known "safe" values to the timing registers at init or
856 * wakeup from sleep time, before we do real calculation
859 sanitize_timings(pmac_ide_hwif_t *pmif)
861 unsigned int value, value2 = 0;
864 case controller_sh_ata6:
868 case controller_un_ata6:
869 case controller_k2_ata6:
873 case controller_kl_ata4:
876 case controller_kl_ata3:
879 case controller_heathrow:
880 case controller_ohare:
885 pmif->timings[0] = pmif->timings[1] = value;
886 pmif->timings[2] = pmif->timings[3] = value2;
890 pmac_ide_get_base(int index)
892 return pmac_ide[index].regbase;
896 pmac_ide_check_base(unsigned long base)
900 for (ix = 0; ix < MAX_HWIFS; ++ix)
901 if (base == pmac_ide[ix].regbase)
907 pmac_ide_get_irq(unsigned long base)
911 for (ix = 0; ix < MAX_HWIFS; ++ix)
912 if (base == pmac_ide[ix].regbase)
913 return pmac_ide[ix].irq;
917 static int ide_majors[] = { 3, 22, 33, 34, 56, 57 };
920 pmac_find_ide_boot(char *bootdevice, int n)
925 * Look through the list of IDE interfaces for this one.
927 for (i = 0; i < pmac_ide_count; ++i) {
929 if (!pmac_ide[i].node || !pmac_ide[i].node->full_name)
931 name = pmac_ide[i].node->full_name;
932 if (memcmp(name, bootdevice, n) == 0 && name[n] == 0) {
933 /* XXX should cope with the 2nd drive as well... */
934 return MKDEV(ide_majors[i], 0);
941 /* Suspend call back, should be called after the child devices
942 * have actually been suspended
945 pmac_ide_do_suspend(ide_hwif_t *hwif)
947 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
949 /* We clear the timings */
950 pmif->timings[0] = 0;
951 pmif->timings[1] = 0;
953 disable_irq(pmif->irq);
955 /* The media bay will handle itself just fine */
959 /* Kauai has bus control FCRs directly here */
960 if (pmif->kauai_fcr) {
961 u32 fcr = readl(pmif->kauai_fcr);
962 fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
963 writel(fcr, pmif->kauai_fcr);
966 /* Disable the bus on older machines and the cell on kauai */
967 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
973 /* Resume call back, should be called before the child devices
977 pmac_ide_do_resume(ide_hwif_t *hwif)
979 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
981 /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
982 if (!pmif->mediabay) {
983 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
984 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
986 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
988 /* Kauai has it different */
989 if (pmif->kauai_fcr) {
990 u32 fcr = readl(pmif->kauai_fcr);
991 fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
992 writel(fcr, pmif->kauai_fcr);
995 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
998 /* Sanitize drive timings */
999 sanitize_timings(pmif);
1001 enable_irq(pmif->irq);
1006 static const struct ide_port_info pmac_port_info = {
1007 .chipset = ide_pmac,
1008 .host_flags = IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
1009 IDE_HFLAG_PIO_NO_DOWNGRADE |
1010 IDE_HFLAG_POST_SET_MODE |
1011 IDE_HFLAG_NO_DMA | /* no SFF-style DMA */
1012 IDE_HFLAG_UNMASK_IRQS,
1013 .pio_mask = ATA_PIO4,
1014 .mwdma_mask = ATA_MWDMA2,
1018 * Setup, register & probe an IDE channel driven by this driver, this is
1019 * called by one of the 2 probe functions (macio or PCI). Note that a channel
1020 * that ends up beeing free of any device is not kept around by this driver
1021 * (it is kept in 2.4). This introduce an interface numbering change on some
1022 * rare machines unfortunately, but it's better this way.
1024 static int __devinit
1025 pmac_ide_setup_device(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif, hw_regs_t *hw)
1027 struct device_node *np = pmif->node;
1029 u8 idx[4] = { 0xff, 0xff, 0xff, 0xff };
1030 struct ide_port_info d = pmac_port_info;
1033 pmif->broken_dma = pmif->broken_dma_warn = 0;
1034 if (of_device_is_compatible(np, "shasta-ata")) {
1035 pmif->kind = controller_sh_ata6;
1036 d.udma_mask = ATA_UDMA6;
1037 } else if (of_device_is_compatible(np, "kauai-ata")) {
1038 pmif->kind = controller_un_ata6;
1039 d.udma_mask = ATA_UDMA5;
1040 } else if (of_device_is_compatible(np, "K2-UATA")) {
1041 pmif->kind = controller_k2_ata6;
1042 d.udma_mask = ATA_UDMA5;
1043 } else if (of_device_is_compatible(np, "keylargo-ata")) {
1044 if (strcmp(np->name, "ata-4") == 0) {
1045 pmif->kind = controller_kl_ata4;
1046 d.udma_mask = ATA_UDMA4;
1048 pmif->kind = controller_kl_ata3;
1049 } else if (of_device_is_compatible(np, "heathrow-ata")) {
1050 pmif->kind = controller_heathrow;
1052 pmif->kind = controller_ohare;
1053 pmif->broken_dma = 1;
1056 bidp = of_get_property(np, "AAPL,bus-id", NULL);
1057 pmif->aapl_bus_id = bidp ? *bidp : 0;
1059 /* Get cable type from device-tree */
1060 if (pmif->kind == controller_kl_ata4 || pmif->kind == controller_un_ata6
1061 || pmif->kind == controller_k2_ata6
1062 || pmif->kind == controller_sh_ata6) {
1063 const char* cable = of_get_property(np, "cable-type", NULL);
1064 if (cable && !strncmp(cable, "80-", 3))
1067 /* G5's seem to have incorrect cable type in device-tree. Let's assume
1068 * they have a 80 conductor cable, this seem to be always the case unless
1069 * the user mucked around
1071 if (of_device_is_compatible(np, "K2-UATA") ||
1072 of_device_is_compatible(np, "shasta-ata"))
1075 /* On Kauai-type controllers, we make sure the FCR is correct */
1076 if (pmif->kauai_fcr)
1077 writel(KAUAI_FCR_UATA_MAGIC |
1078 KAUAI_FCR_UATA_RESET_N |
1079 KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
1083 /* Make sure we have sane timings */
1084 sanitize_timings(pmif);
1086 #ifndef CONFIG_PPC64
1087 /* XXX FIXME: Media bay stuff need re-organizing */
1088 if (np->parent && np->parent->name
1089 && strcasecmp(np->parent->name, "media-bay") == 0) {
1090 #ifdef CONFIG_PMAC_MEDIABAY
1091 media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq, hwif->index);
1092 #endif /* CONFIG_PMAC_MEDIABAY */
1095 pmif->aapl_bus_id = 1;
1096 } else if (pmif->kind == controller_ohare) {
1097 /* The code below is having trouble on some ohare machines
1098 * (timing related ?). Until I can put my hand on one of these
1099 * units, I keep the old way
1101 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1105 /* This is necessary to enable IDE when net-booting */
1106 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1107 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1109 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1110 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1113 /* Setup MMIO ops */
1114 default_hwif_mmiops(hwif);
1115 hwif->OUTBSYNC = pmac_outbsync;
1117 /* Tell common code _not_ to mess with resources */
1119 hwif->hwif_data = pmif;
1120 ide_init_port_hw(hwif, hw);
1121 hwif->noprobe = pmif->mediabay;
1122 hwif->hold = pmif->mediabay;
1123 hwif->cbl = pmif->cable_80 ? ATA_CBL_PATA80 : ATA_CBL_PATA40;
1124 hwif->set_pio_mode = pmac_ide_set_pio_mode;
1125 if (pmif->kind == controller_un_ata6
1126 || pmif->kind == controller_k2_ata6
1127 || pmif->kind == controller_sh_ata6)
1128 hwif->selectproc = pmac_ide_kauai_selectproc;
1130 hwif->selectproc = pmac_ide_selectproc;
1131 hwif->set_dma_mode = pmac_ide_set_dma_mode;
1133 printk(KERN_INFO "ide%d: Found Apple %s controller, bus ID %d%s, irq %d\n",
1134 hwif->index, model_name[pmif->kind], pmif->aapl_bus_id,
1135 pmif->mediabay ? " (mediabay)" : "", hwif->irq);
1137 #ifdef CONFIG_PMAC_MEDIABAY
1138 if (pmif->mediabay && check_media_bay_by_base(pmif->regbase, MB_CD) == 0)
1140 #endif /* CONFIG_PMAC_MEDIABAY */
1142 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1143 if (pmif->cable_80 == 0)
1144 d.udma_mask &= ATA_UDMA2;
1145 /* has a DBDMA controller channel */
1146 if (pmif->dma_regs == 0 || pmac_ide_setup_dma(pmif, hwif) < 0)
1148 d.udma_mask = d.mwdma_mask = 0;
1150 idx[0] = hwif->index;
1152 ide_device_add(idx, &d);
1158 * Attach to a macio probed interface
1160 static int __devinit
1161 pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
1164 unsigned long regbase;
1167 pmac_ide_hwif_t *pmif;
1172 while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
1173 || pmac_ide[i].node != NULL))
1175 if (i >= MAX_HWIFS) {
1176 printk(KERN_ERR "ide-pmac: MacIO interface attach with no slot\n");
1177 printk(KERN_ERR " %s\n", mdev->ofdev.node->full_name);
1181 pmif = &pmac_ide[i];
1182 hwif = &ide_hwifs[i];
1184 if (macio_resource_count(mdev) == 0) {
1185 printk(KERN_WARNING "ide%d: no address for %s\n",
1186 i, mdev->ofdev.node->full_name);
1190 /* Request memory resource for IO ports */
1191 if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1192 printk(KERN_ERR "ide%d: can't request mmio resource !\n", i);
1196 /* XXX This is bogus. Should be fixed in the registry by checking
1197 * the kind of host interrupt controller, a bit like gatwick
1198 * fixes in irq.c. That works well enough for the single case
1199 * where that happens though...
1201 if (macio_irq_count(mdev) == 0) {
1202 printk(KERN_WARNING "ide%d: no intrs for device %s, using 13\n",
1203 i, mdev->ofdev.node->full_name);
1204 irq = irq_create_mapping(NULL, 13);
1206 irq = macio_irq(mdev, 0);
1208 base = ioremap(macio_resource_start(mdev, 0), 0x400);
1209 regbase = (unsigned long) base;
1211 hwif->dev = &mdev->bus->pdev->dev;
1214 pmif->node = mdev->ofdev.node;
1215 pmif->regbase = regbase;
1217 pmif->kauai_fcr = NULL;
1218 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1219 if (macio_resource_count(mdev) >= 2) {
1220 if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1221 printk(KERN_WARNING "ide%d: can't request DMA resource !\n", i);
1223 pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1225 pmif->dma_regs = NULL;
1226 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1227 dev_set_drvdata(&mdev->ofdev.dev, hwif);
1229 memset(&hw, 0, sizeof(hw));
1230 pmac_ide_init_hwif_ports(&hw, pmif->regbase, 0, NULL);
1232 hw.dev = &mdev->ofdev.dev;
1234 rc = pmac_ide_setup_device(pmif, hwif, &hw);
1236 /* The inteface is released to the common IDE layer */
1237 dev_set_drvdata(&mdev->ofdev.dev, NULL);
1239 if (pmif->dma_regs) {
1240 iounmap(pmif->dma_regs);
1241 macio_release_resource(mdev, 1);
1243 memset(pmif, 0, sizeof(*pmif));
1244 macio_release_resource(mdev, 0);
1251 pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1253 ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1256 if (mesg.event != mdev->ofdev.dev.power.power_state.event
1257 && mesg.event == PM_EVENT_SUSPEND) {
1258 rc = pmac_ide_do_suspend(hwif);
1260 mdev->ofdev.dev.power.power_state = mesg;
1267 pmac_ide_macio_resume(struct macio_dev *mdev)
1269 ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1272 if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1273 rc = pmac_ide_do_resume(hwif);
1275 mdev->ofdev.dev.power.power_state = PMSG_ON;
1282 * Attach to a PCI probed interface
1284 static int __devinit
1285 pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
1288 struct device_node *np;
1289 pmac_ide_hwif_t *pmif;
1291 unsigned long rbase, rlen;
1295 np = pci_device_to_OF_node(pdev);
1297 printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1301 while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
1302 || pmac_ide[i].node != NULL))
1304 if (i >= MAX_HWIFS) {
1305 printk(KERN_ERR "ide-pmac: PCI interface attach with no slot\n");
1306 printk(KERN_ERR " %s\n", np->full_name);
1310 pmif = &pmac_ide[i];
1311 hwif = &ide_hwifs[i];
1313 if (pci_enable_device(pdev)) {
1314 printk(KERN_WARNING "ide%i: Can't enable PCI device for %s\n",
1318 pci_set_master(pdev);
1320 if (pci_request_regions(pdev, "Kauai ATA")) {
1321 printk(KERN_ERR "ide%d: Cannot obtain PCI resources for %s\n",
1326 hwif->dev = &pdev->dev;
1330 rbase = pci_resource_start(pdev, 0);
1331 rlen = pci_resource_len(pdev, 0);
1333 base = ioremap(rbase, rlen);
1334 pmif->regbase = (unsigned long) base + 0x2000;
1335 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1336 pmif->dma_regs = base + 0x1000;
1337 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1338 pmif->kauai_fcr = base;
1339 pmif->irq = pdev->irq;
1341 pci_set_drvdata(pdev, hwif);
1343 memset(&hw, 0, sizeof(hw));
1344 pmac_ide_init_hwif_ports(&hw, pmif->regbase, 0, NULL);
1346 hw.dev = &pdev->dev;
1348 rc = pmac_ide_setup_device(pmif, hwif, &hw);
1350 /* The inteface is released to the common IDE layer */
1351 pci_set_drvdata(pdev, NULL);
1353 memset(pmif, 0, sizeof(*pmif));
1354 pci_release_regions(pdev);
1361 pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1363 ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
1366 if (mesg.event != pdev->dev.power.power_state.event
1367 && mesg.event == PM_EVENT_SUSPEND) {
1368 rc = pmac_ide_do_suspend(hwif);
1370 pdev->dev.power.power_state = mesg;
1377 pmac_ide_pci_resume(struct pci_dev *pdev)
1379 ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
1382 if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1383 rc = pmac_ide_do_resume(hwif);
1385 pdev->dev.power.power_state = PMSG_ON;
1391 static struct of_device_id pmac_ide_macio_match[] =
1408 static struct macio_driver pmac_ide_macio_driver =
1411 .match_table = pmac_ide_macio_match,
1412 .probe = pmac_ide_macio_attach,
1413 .suspend = pmac_ide_macio_suspend,
1414 .resume = pmac_ide_macio_resume,
1417 static const struct pci_device_id pmac_ide_pci_match[] = {
1418 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA), 0 },
1419 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100), 0 },
1420 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100), 0 },
1421 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA), 0 },
1422 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA), 0 },
1426 static struct pci_driver pmac_ide_pci_driver = {
1428 .id_table = pmac_ide_pci_match,
1429 .probe = pmac_ide_pci_attach,
1430 .suspend = pmac_ide_pci_suspend,
1431 .resume = pmac_ide_pci_resume,
1433 MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1435 int __init pmac_ide_probe(void)
1439 if (!machine_is(powermac))
1442 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1443 error = pci_register_driver(&pmac_ide_pci_driver);
1446 error = macio_register_driver(&pmac_ide_macio_driver);
1448 pci_unregister_driver(&pmac_ide_pci_driver);
1452 error = macio_register_driver(&pmac_ide_macio_driver);
1455 error = pci_register_driver(&pmac_ide_pci_driver);
1457 macio_unregister_driver(&pmac_ide_macio_driver);
1465 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1468 * pmac_ide_build_dmatable builds the DBDMA command list
1469 * for a transfer and sets the DBDMA channel to point to it.
1472 pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq)
1474 struct dbdma_cmd *table;
1476 ide_hwif_t *hwif = HWIF(drive);
1477 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1478 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1479 struct scatterlist *sg;
1480 int wr = (rq_data_dir(rq) == WRITE);
1482 /* DMA table is already aligned */
1483 table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1485 /* Make sure DMA controller is stopped (necessary ?) */
1486 writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1487 while (readl(&dma->status) & RUN)
1490 hwif->sg_nents = i = ide_build_sglist(drive, rq);
1495 /* Build DBDMA commands list */
1496 sg = hwif->sg_table;
1497 while (i && sg_dma_len(sg)) {
1501 cur_addr = sg_dma_address(sg);
1502 cur_len = sg_dma_len(sg);
1504 if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1505 if (pmif->broken_dma_warn == 0) {
1506 printk(KERN_WARNING "%s: DMA on non aligned address, "
1507 "switching to PIO on Ohare chipset\n", drive->name);
1508 pmif->broken_dma_warn = 1;
1510 goto use_pio_instead;
1513 unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1515 if (count++ >= MAX_DCMDS) {
1516 printk(KERN_WARNING "%s: DMA table too small\n",
1518 goto use_pio_instead;
1520 st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
1521 st_le16(&table->req_count, tc);
1522 st_le32(&table->phy_addr, cur_addr);
1524 table->xfer_status = 0;
1525 table->res_count = 0;
1534 /* convert the last command to an input/output last command */
1536 st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
1537 /* add the stop command to the end of the list */
1538 memset(table, 0, sizeof(struct dbdma_cmd));
1539 st_le16(&table->command, DBDMA_STOP);
1541 writel(hwif->dmatable_dma, &dma->cmdptr);
1545 printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1548 ide_destroy_dmatable(drive);
1550 return 0; /* revert to PIO for this request */
1553 /* Teardown mappings after DMA has completed. */
1555 pmac_ide_destroy_dmatable (ide_drive_t *drive)
1557 ide_hwif_t *hwif = drive->hwif;
1559 if (hwif->sg_nents) {
1560 ide_destroy_dmatable(drive);
1566 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1567 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1570 pmac_ide_dma_setup(ide_drive_t *drive)
1572 ide_hwif_t *hwif = HWIF(drive);
1573 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1574 struct request *rq = HWGROUP(drive)->rq;
1575 u8 unit = (drive->select.b.unit & 0x01);
1580 ata4 = (pmif->kind == controller_kl_ata4);
1582 if (!pmac_ide_build_dmatable(drive, rq)) {
1583 ide_map_sg(drive, rq);
1587 /* Apple adds 60ns to wrDataSetup on reads */
1588 if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1589 writel(pmif->timings[unit] + (!rq_data_dir(rq) ? 0x00800000UL : 0),
1590 PMAC_IDE_REG(IDE_TIMING_CONFIG));
1591 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1594 drive->waiting_for_dma = 1;
1600 pmac_ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
1602 /* issue cmd to drive */
1603 ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL);
1607 * Kick the DMA controller into life after the DMA command has been issued
1611 pmac_ide_dma_start(ide_drive_t *drive)
1613 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1614 volatile struct dbdma_regs __iomem *dma;
1616 dma = pmif->dma_regs;
1618 writel((RUN << 16) | RUN, &dma->control);
1619 /* Make sure it gets to the controller right now */
1620 (void)readl(&dma->control);
1624 * After a DMA transfer, make sure the controller is stopped
1627 pmac_ide_dma_end (ide_drive_t *drive)
1629 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1630 volatile struct dbdma_regs __iomem *dma;
1635 dma = pmif->dma_regs;
1637 drive->waiting_for_dma = 0;
1638 dstat = readl(&dma->status);
1639 writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1640 pmac_ide_destroy_dmatable(drive);
1641 /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1642 * in theory, but with ATAPI decices doing buffer underruns, that would
1643 * cause us to disable DMA, which isn't what we want
1645 return (dstat & (RUN|DEAD)) != RUN;
1649 * Check out that the interrupt we got was for us. We can't always know this
1650 * for sure with those Apple interfaces (well, we could on the recent ones but
1651 * that's not implemented yet), on the other hand, we don't have shared interrupts
1652 * so it's not really a problem
1655 pmac_ide_dma_test_irq (ide_drive_t *drive)
1657 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1658 volatile struct dbdma_regs __iomem *dma;
1659 unsigned long status, timeout;
1663 dma = pmif->dma_regs;
1665 /* We have to things to deal with here:
1667 * - The dbdma won't stop if the command was started
1668 * but completed with an error without transferring all
1669 * datas. This happens when bad blocks are met during
1670 * a multi-block transfer.
1672 * - The dbdma fifo hasn't yet finished flushing to
1673 * to system memory when the disk interrupt occurs.
1677 /* If ACTIVE is cleared, the STOP command have passed and
1678 * transfer is complete.
1680 status = readl(&dma->status);
1681 if (!(status & ACTIVE))
1683 if (!drive->waiting_for_dma)
1684 printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1685 called while not waiting\n", HWIF(drive)->index);
1687 /* If dbdma didn't execute the STOP command yet, the
1688 * active bit is still set. We consider that we aren't
1689 * sharing interrupts (which is hopefully the case with
1690 * those controllers) and so we just try to flush the
1691 * channel for pending data in the fifo
1694 writel((FLUSH << 16) | FLUSH, &dma->control);
1698 status = readl(&dma->status);
1699 if ((status & FLUSH) == 0)
1701 if (++timeout > 100) {
1702 printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1703 timeout flushing channel\n", HWIF(drive)->index);
1710 static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
1715 pmac_ide_dma_lost_irq (ide_drive_t *drive)
1717 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1718 volatile struct dbdma_regs __iomem *dma;
1719 unsigned long status;
1723 dma = pmif->dma_regs;
1725 status = readl(&dma->status);
1726 printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1730 * Allocate the data structures needed for using DMA with an interface
1731 * and fill the proper list of functions pointers
1733 static int __devinit pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif)
1735 struct pci_dev *dev = to_pci_dev(hwif->dev);
1737 /* We won't need pci_dev if we switch to generic consistent
1743 * Allocate space for the DBDMA commands.
1744 * The +2 is +1 for the stop command and +1 to allow for
1745 * aligning the start address to a multiple of 16 bytes.
1747 pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent(
1749 (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
1750 &hwif->dmatable_dma);
1751 if (pmif->dma_table_cpu == NULL) {
1752 printk(KERN_ERR "%s: unable to allocate DMA command list\n",
1757 hwif->sg_max_nents = MAX_DCMDS;
1759 hwif->dma_host_set = &pmac_ide_dma_host_set;
1760 hwif->dma_setup = &pmac_ide_dma_setup;
1761 hwif->dma_exec_cmd = &pmac_ide_dma_exec_cmd;
1762 hwif->dma_start = &pmac_ide_dma_start;
1763 hwif->ide_dma_end = &pmac_ide_dma_end;
1764 hwif->ide_dma_test_irq = &pmac_ide_dma_test_irq;
1765 hwif->dma_timeout = &ide_dma_timeout;
1766 hwif->dma_lost_irq = &pmac_ide_dma_lost_irq;
1771 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1773 module_init(pmac_ide_probe);