1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
3 Written 1998-2001 by Donald Becker.
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
30 Linux kernel version history:
33 - Jeff Garzik: softnet 'n stuff
36 - Justin Guyett: softnet and locking fixes
37 - Jeff Garzik: use PCI interface
40 - Urban Widmark: minor cleanups, merges from Becker 1.03a/1.04 versions
43 - Urban Widmark: use PCI DMA interface (with thanks to the eepro100.c
44 code) update "Theory of Operation" with
45 softnet/locking changes
46 - Dave Miller: PCI DMA and endian fixups
47 - Jeff Garzik: MOD_xxx race fixes, updated PCI resource allocation
50 - Urban Widmark: fix gcc 2.95.2 problem and
51 remove writel's to fixed address 0x7c
54 - Urban Widmark: mdio locking, bounce buffer changes
55 merges from Beckers 1.05 version
56 added netif_running_on/off support
59 - Urban Widmark: merges from Beckers 1.08b version (VT6102 + mdio)
60 set netif_running_on/off on startup, del_timer_sync
63 - Manfred Spraul: added reset into tx_timeout
66 - Urban Widmark: merges from Beckers 1.10 version
67 (media selection + eeprom reload)
68 - David Vrabel: merges from D-Link "1.11" version
69 (disable WOL and PME on startup)
72 - Manfred Spraul: use "singlecopy" for unaligned buffers
73 don't allocate bounce buffers for !ReqTxAlign cards
76 - David Woodhouse: Set dev->base_addr before the first time we call
77 wait_for_reset(). It's a lot happier that way.
78 Free np->tx_bufs only if we actually allocated it.
81 - Martin Eriksson: Allow Memory-Mapped IO to be enabled.
85 - Replace some MII-related magic numbers with constants
88 - fixes comments for Rhine-III
89 - removes W_MAX_TIMEOUT (unused)
90 - adds HasDavicomPhy for Rhine-I (basis: linuxfet driver; my card
91 is R-I and has Davicom chip, flag is referenced in kernel driver)
92 - sends chip_id as a parameter to wait_for_reset since np is not
93 initialized on first call
94 - changes mmio "else if (chip_id==VT6102)" to "else" so it will work
95 for Rhine-III's (documentation says same bit is correct)
96 - transmit frame queue message is off by one - fixed
97 - adds IntrNormalSummary to "Something Wicked" exclusion list
98 so normal interrupts will not trigger the message (src: Donald Becker)
100 - show confused chip where to continue after Tx error
101 - location of collision counter is chip specific
102 - allow selecting backoff algorithm (module parameter)
105 - Use new MII lib helper generic_mii_ioctl
107 LK1.1.16 (Roger Luethi)
109 - Handle Tx buffer underrun
110 - Fix bugs in full duplex handling
111 - New reset code uses "force reset" cmd on Rhine-II
114 LK1.1.17 (Roger Luethi)
115 - Fix race in via_rhine_start_tx()
116 - On errors, wait for Tx engine to turn off before scavenging
117 - Handle Tx descriptor write-back race on Rhine-II
118 - Force flushing for PCI posted writes
119 - More reset code changes
121 LK1.1.18 (Roger Luethi)
122 - No filtering multicast in promisc mode (Edward Peng)
123 - Fix for Rhine-I Tx timeouts
125 LK1.1.19 (Roger Luethi)
126 - Increase Tx threshold for unspecified errors
128 LK1.2.0-2.6 (Roger Luethi)
130 - Rewrite PHY, media handling (remove options, full_duplex, backoff)
131 - Fix Tx engine race for good
135 #define DRV_NAME "via-rhine"
136 #define DRV_VERSION "1.2.0-2.6"
137 #define DRV_RELDATE "June-10-2004"
140 /* A few user-configurable values.
141 These may be modified when a driver module is loaded. */
143 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
144 static int max_interrupt_work = 20;
146 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
147 Setting to > 1518 effectively disables this feature. */
148 static int rx_copybreak;
151 * In case you are looking for 'options[]' or 'full_duplex[]', they
152 * are gone. Use ethtool(8) instead.
155 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
156 The Rhine has a 64 element 8390-like hash table. */
157 static const int multicast_filter_limit = 32;
160 /* Operational parameters that are set at compile time. */
162 /* Keep the ring sizes a power of two for compile efficiency.
163 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
164 Making the Tx ring too large decreases the effectiveness of channel
165 bonding and packet priority.
166 There are no ill effects from too-large receive rings. */
167 #define TX_RING_SIZE 16
168 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
169 #define RX_RING_SIZE 16
172 /* Operational parameters that usually are not changed. */
174 /* Time in jiffies before concluding the transmitter is hung. */
175 #define TX_TIMEOUT (2*HZ)
177 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
179 #include <linux/module.h>
180 #include <linux/moduleparam.h>
181 #include <linux/kernel.h>
182 #include <linux/string.h>
183 #include <linux/timer.h>
184 #include <linux/errno.h>
185 #include <linux/ioport.h>
186 #include <linux/slab.h>
187 #include <linux/interrupt.h>
188 #include <linux/pci.h>
189 #include <linux/dma-mapping.h>
190 #include <linux/netdevice.h>
191 #include <linux/etherdevice.h>
192 #include <linux/skbuff.h>
193 #include <linux/init.h>
194 #include <linux/delay.h>
195 #include <linux/mii.h>
196 #include <linux/ethtool.h>
197 #include <linux/crc32.h>
198 #include <linux/bitops.h>
199 #include <asm/processor.h> /* Processor type for cache alignment. */
202 #include <asm/uaccess.h>
204 /* These identify the driver base version and may not be removed. */
205 static char version[] __devinitdata =
206 KERN_INFO DRV_NAME ".c:v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker\n";
208 /* This driver was written to use PCI memory space. Some early versions
209 of the Rhine may only work correctly with I/O space accesses. */
210 #ifdef CONFIG_VIA_RHINE_MMIO
215 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
216 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
217 MODULE_LICENSE("GPL");
219 module_param(max_interrupt_work, int, 0);
220 module_param(debug, int, 0);
221 module_param(rx_copybreak, int, 0);
222 MODULE_PARM_DESC(max_interrupt_work, "VIA Rhine maximum events handled per interrupt");
223 MODULE_PARM_DESC(debug, "VIA Rhine debug level (0-7)");
224 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
229 I. Board Compatibility
231 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
234 II. Board-specific settings
236 Boards with this chip are functional only in a bus-master PCI slot.
238 Many operational settings are loaded from the EEPROM to the Config word at
239 offset 0x78. For most of these settings, this driver assumes that they are
241 If this driver is compiled to use PCI memory space operations the EEPROM
242 must be configured to enable memory ops.
244 III. Driver operation
248 This driver uses two statically allocated fixed-size descriptor lists
249 formed into rings by a branch from the final descriptor to the beginning of
250 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
252 IIIb/c. Transmit/Receive Structure
254 This driver attempts to use a zero-copy receive and transmit scheme.
256 Alas, all data buffers are required to start on a 32 bit boundary, so
257 the driver must often copy transmit packets into bounce buffers.
259 The driver allocates full frame size skbuffs for the Rx ring buffers at
260 open() time and passes the skb->data field to the chip as receive data
261 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
262 a fresh skbuff is allocated and the frame is copied to the new skbuff.
263 When the incoming frame is larger, the skbuff is passed directly up the
264 protocol stack. Buffers consumed this way are replaced by newly allocated
265 skbuffs in the last phase of rhine_rx().
267 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
268 using a full-sized skbuff for small frames vs. the copying costs of larger
269 frames. New boards are typically used in generously configured machines
270 and the underfilled buffers have negligible impact compared to the benefit of
271 a single allocation size, so the default value of zero results in never
272 copying packets. When copying is done, the cost is usually mitigated by using
273 a combined copy/checksum routine. Copying also preloads the cache, which is
274 most useful with small frames.
276 Since the VIA chips are only able to transfer data to buffers on 32 bit
277 boundaries, the IP header at offset 14 in an ethernet frame isn't
278 longword aligned for further processing. Copying these unaligned buffers
279 has the beneficial effect of 16-byte aligning the IP header.
281 IIId. Synchronization
283 The driver runs as two independent, single-threaded flows of control. One
284 is the send-packet routine, which enforces single-threaded use by the
285 dev->priv->lock spinlock. The other thread is the interrupt handler, which
286 is single threaded by the hardware and interrupt handling software.
288 The send packet thread has partial control over the Tx ring. It locks the
289 dev->priv->lock whenever it's queuing a Tx packet. If the next slot in the ring
290 is not available it stops the transmit queue by calling netif_stop_queue.
292 The interrupt handler has exclusive control over the Rx ring and records stats
293 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
294 empty by incrementing the dirty_tx mark. If at least half of the entries in
295 the Rx ring are available the transmit queue is woken up if it was stopped.
301 Preliminary VT86C100A manual from http://www.via.com.tw/
302 http://www.scyld.com/expert/100mbps.html
303 http://www.scyld.com/expert/NWay.html
304 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
305 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
310 The VT86C100A manual is not reliable information.
311 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
312 in significant performance degradation for bounce buffer copies on transmit
313 and unaligned IP headers on receive.
314 The chip does not pad to minimum transmit length.
319 /* This table drives the PCI probe routines. It's mostly boilerplate in all
320 of the drivers, and will likely be provided by some future kernel.
321 Note the matching code -- the first table entry matchs all 56** cards but
322 second only the 1234 card.
329 VT8231 = 0x50, /* Integrated MAC */
330 VT8233 = 0x60, /* Integrated MAC */
331 VT8235 = 0x74, /* Integrated MAC */
332 VT8237 = 0x78, /* Integrated MAC */
339 VT6105M = 0x90, /* Management adapter */
343 rqWOL = 0x0001, /* Wake-On-LAN support */
344 rqForceReset = 0x0002,
345 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
346 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
347 rqRhineI = 0x0100, /* See comment below */
350 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
351 * MMIO as well as for the collision counter and the Tx FIFO underflow
352 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
355 /* Beware of PCI posted writes */
356 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
358 static struct pci_device_id rhine_pci_tbl[] =
360 {0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, /* VT86C100A */
361 {0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, /* VT6102 */
362 {0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, /* 6105{,L,LOM} */
363 {0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, /* VT6105M */
364 { } /* terminate list */
366 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
369 /* Offsets to the device registers. */
370 enum register_offsets {
371 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
373 IntrStatus=0x0C, IntrEnable=0x0E,
374 MulticastFilter0=0x10, MulticastFilter1=0x14,
375 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
376 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E,
377 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
378 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
379 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
380 StickyHW=0x83, IntrStatus2=0x84,
381 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
382 WOLcrClr1=0xA6, WOLcgClr=0xA7,
383 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
386 /* Bits in ConfigD */
388 BackOptional=0x01, BackModify=0x02,
389 BackCaptureEffect=0x04, BackRandom=0x08
393 /* Registers we check that mmio and reg are the same. */
394 static const int mmio_verify_registers[] = {
395 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
400 /* Bits in the interrupt status/mask registers. */
401 enum intr_status_bits {
402 IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020,
403 IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210,
405 IntrStatsMax=0x0080, IntrRxEarly=0x0100,
406 IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000,
407 IntrTxAborted=0x2000, IntrLinkChange=0x4000,
409 IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260,
410 IntrTxDescRace=0x080000, /* mapped from IntrStatus2 */
411 IntrTxErrSummary=0x082218,
414 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
423 /* The Rx and Tx buffer descriptors. */
426 u32 desc_length; /* Chain flag, Buffer/frame length */
432 u32 desc_length; /* Chain flag, Tx Config, Frame length */
437 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
438 #define TXDESC 0x00e08000
440 enum rx_status_bits {
441 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
444 /* Bits in *_desc.*_status */
445 enum desc_status_bits {
449 /* Bits in ChipCmd. */
451 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
452 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
453 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
454 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
457 struct rhine_private {
458 /* Descriptor rings */
459 struct rx_desc *rx_ring;
460 struct tx_desc *tx_ring;
461 dma_addr_t rx_ring_dma;
462 dma_addr_t tx_ring_dma;
464 /* The addresses of receive-in-place skbuffs. */
465 struct sk_buff *rx_skbuff[RX_RING_SIZE];
466 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
468 /* The saved address of a sent-in-place packet/buffer, for later free(). */
469 struct sk_buff *tx_skbuff[TX_RING_SIZE];
470 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
472 /* Tx bounce buffers (Rhine-I only) */
473 unsigned char *tx_buf[TX_RING_SIZE];
474 unsigned char *tx_bufs;
475 dma_addr_t tx_bufs_dma;
477 struct pci_dev *pdev;
479 struct net_device_stats stats;
482 /* Frequently used values: keep some adjacent for cache effect. */
484 struct rx_desc *rx_head_desc;
485 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
486 unsigned int cur_tx, dirty_tx;
487 unsigned int rx_buf_sz; /* Based on MTU+slack. */
490 u8 tx_thresh, rx_thresh;
492 struct mii_if_info mii_if;
493 struct work_struct tx_timeout_task;
494 struct work_struct check_media_task;
498 static int mdio_read(struct net_device *dev, int phy_id, int location);
499 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
500 static int rhine_open(struct net_device *dev);
501 static void rhine_tx_timeout(struct net_device *dev);
502 static void rhine_tx_timeout_task(struct net_device *dev);
503 static void rhine_check_media_task(struct net_device *dev);
504 static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev);
505 static irqreturn_t rhine_interrupt(int irq, void *dev_instance, struct pt_regs *regs);
506 static void rhine_tx(struct net_device *dev);
507 static void rhine_rx(struct net_device *dev);
508 static void rhine_error(struct net_device *dev, int intr_status);
509 static void rhine_set_rx_mode(struct net_device *dev);
510 static struct net_device_stats *rhine_get_stats(struct net_device *dev);
511 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
512 static struct ethtool_ops netdev_ethtool_ops;
513 static int rhine_close(struct net_device *dev);
514 static void rhine_shutdown (struct pci_dev *pdev);
516 #define RHINE_WAIT_FOR(condition) do { \
518 while (!(condition) && --i) \
520 if (debug > 1 && i < 512) \
521 printk(KERN_INFO "%s: %4d cycles used @ %s:%d\n", \
522 DRV_NAME, 1024-i, __func__, __LINE__); \
525 static inline u32 get_intr_status(struct net_device *dev)
527 struct rhine_private *rp = netdev_priv(dev);
528 void __iomem *ioaddr = rp->base;
531 intr_status = ioread16(ioaddr + IntrStatus);
532 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
533 if (rp->quirks & rqStatusWBRace)
534 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
539 * Get power related registers into sane state.
540 * Notify user about past WOL event.
542 static void rhine_power_init(struct net_device *dev)
544 struct rhine_private *rp = netdev_priv(dev);
545 void __iomem *ioaddr = rp->base;
548 if (rp->quirks & rqWOL) {
549 /* Make sure chip is in power state D0 */
550 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
552 /* Disable "force PME-enable" */
553 iowrite8(0x80, ioaddr + WOLcgClr);
555 /* Clear power-event config bits (WOL) */
556 iowrite8(0xFF, ioaddr + WOLcrClr);
557 /* More recent cards can manage two additional patterns */
558 if (rp->quirks & rq6patterns)
559 iowrite8(0x03, ioaddr + WOLcrClr1);
561 /* Save power-event status bits */
562 wolstat = ioread8(ioaddr + PwrcsrSet);
563 if (rp->quirks & rq6patterns)
564 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
566 /* Clear power-event status bits */
567 iowrite8(0xFF, ioaddr + PwrcsrClr);
568 if (rp->quirks & rq6patterns)
569 iowrite8(0x03, ioaddr + PwrcsrClr1);
575 reason = "Magic packet";
578 reason = "Link went up";
581 reason = "Link went down";
584 reason = "Unicast packet";
587 reason = "Multicast/broadcast packet";
592 printk(KERN_INFO "%s: Woke system up. Reason: %s.\n",
598 static void rhine_chip_reset(struct net_device *dev)
600 struct rhine_private *rp = netdev_priv(dev);
601 void __iomem *ioaddr = rp->base;
603 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
606 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
607 printk(KERN_INFO "%s: Reset not complete yet. "
608 "Trying harder.\n", DRV_NAME);
611 if (rp->quirks & rqForceReset)
612 iowrite8(0x40, ioaddr + MiscCmd);
614 /* Reset can take somewhat longer (rare) */
615 RHINE_WAIT_FOR(!(ioread8(ioaddr + ChipCmd1) & Cmd1Reset));
619 printk(KERN_INFO "%s: Reset %s.\n", dev->name,
620 (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) ?
621 "failed" : "succeeded");
625 static void enable_mmio(long pioaddr, u32 quirks)
628 if (quirks & rqRhineI) {
629 /* More recent docs say that this bit is reserved ... */
630 n = inb(pioaddr + ConfigA) | 0x20;
631 outb(n, pioaddr + ConfigA);
633 n = inb(pioaddr + ConfigD) | 0x80;
634 outb(n, pioaddr + ConfigD);
640 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
641 * (plus 0x6C for Rhine-I/II)
643 static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
645 struct rhine_private *rp = netdev_priv(dev);
646 void __iomem *ioaddr = rp->base;
648 outb(0x20, pioaddr + MACRegEEcsr);
649 RHINE_WAIT_FOR(!(inb(pioaddr + MACRegEEcsr) & 0x20));
653 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
654 * MMIO. If reloading EEPROM was done first this could be avoided, but
655 * it is not known if that still works with the "win98-reboot" problem.
657 enable_mmio(pioaddr, rp->quirks);
660 /* Turn off EEPROM-controlled wake-up (magic packet) */
661 if (rp->quirks & rqWOL)
662 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
666 #ifdef CONFIG_NET_POLL_CONTROLLER
667 static void rhine_poll(struct net_device *dev)
669 disable_irq(dev->irq);
670 rhine_interrupt(dev->irq, (void *)dev, NULL);
671 enable_irq(dev->irq);
675 static void rhine_hw_init(struct net_device *dev, long pioaddr)
677 struct rhine_private *rp = netdev_priv(dev);
679 /* Reset the chip to erase previous misconfiguration. */
680 rhine_chip_reset(dev);
682 /* Rhine-I needs extra time to recuperate before EEPROM reload */
683 if (rp->quirks & rqRhineI)
686 /* Reload EEPROM controlled bytes cleared by soft reset */
687 rhine_reload_eeprom(pioaddr, dev);
690 static int __devinit rhine_init_one(struct pci_dev *pdev,
691 const struct pci_device_id *ent)
693 struct net_device *dev;
694 struct rhine_private *rp;
700 void __iomem *ioaddr;
709 /* when built into the kernel, we only print version if device is found */
711 static int printed_version;
712 if (!printed_version++)
716 pci_read_config_byte(pdev, PCI_REVISION_ID, &pci_rev);
722 if (pci_rev < VTunknown0) {
726 else if (pci_rev >= VT6102) {
727 quirks = rqWOL | rqForceReset;
728 if (pci_rev < VT6105) {
730 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
733 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
734 if (pci_rev >= VT6105_B0)
735 quirks |= rq6patterns;
736 if (pci_rev < VT6105M)
739 name = "Rhine III (Management Adapter)";
743 rc = pci_enable_device(pdev);
747 /* this should always be supported */
748 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
750 printk(KERN_ERR "32-bit PCI DMA addresses not supported by "
756 if ((pci_resource_len(pdev, 0) < io_size) ||
757 (pci_resource_len(pdev, 1) < io_size)) {
759 printk(KERN_ERR "Insufficient PCI resources, aborting\n");
763 pioaddr = pci_resource_start(pdev, 0);
764 memaddr = pci_resource_start(pdev, 1);
766 pci_set_master(pdev);
768 dev = alloc_etherdev(sizeof(struct rhine_private));
771 printk(KERN_ERR "alloc_etherdev failed\n");
774 SET_MODULE_OWNER(dev);
775 SET_NETDEV_DEV(dev, &pdev->dev);
777 rp = netdev_priv(dev);
779 rp->pioaddr = pioaddr;
782 rc = pci_request_regions(pdev, DRV_NAME);
784 goto err_out_free_netdev;
786 ioaddr = pci_iomap(pdev, bar, io_size);
789 printk(KERN_ERR "ioremap failed for device %s, region 0x%X "
790 "@ 0x%lX\n", pci_name(pdev), io_size, memaddr);
791 goto err_out_free_res;
795 enable_mmio(pioaddr, quirks);
797 /* Check that selected MMIO registers match the PIO ones */
799 while (mmio_verify_registers[i]) {
800 int reg = mmio_verify_registers[i++];
801 unsigned char a = inb(pioaddr+reg);
802 unsigned char b = readb(ioaddr+reg);
805 printk(KERN_ERR "MMIO do not match PIO [%02x] "
806 "(%02x != %02x)\n", reg, a, b);
810 #endif /* USE_MMIO */
812 dev->base_addr = (unsigned long)ioaddr;
815 /* Get chip registers into a sane state */
816 rhine_power_init(dev);
817 rhine_hw_init(dev, pioaddr);
819 for (i = 0; i < 6; i++)
820 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
821 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
823 if (!is_valid_ether_addr(dev->perm_addr)) {
825 printk(KERN_ERR "Invalid MAC address\n");
829 /* For Rhine-I/II, phy_id is loaded from EEPROM */
831 phy_id = ioread8(ioaddr + 0x6C);
833 dev->irq = pdev->irq;
835 spin_lock_init(&rp->lock);
836 rp->mii_if.dev = dev;
837 rp->mii_if.mdio_read = mdio_read;
838 rp->mii_if.mdio_write = mdio_write;
839 rp->mii_if.phy_id_mask = 0x1f;
840 rp->mii_if.reg_num_mask = 0x1f;
842 /* The chip-specific entries in the device structure. */
843 dev->open = rhine_open;
844 dev->hard_start_xmit = rhine_start_tx;
845 dev->stop = rhine_close;
846 dev->get_stats = rhine_get_stats;
847 dev->set_multicast_list = rhine_set_rx_mode;
848 dev->do_ioctl = netdev_ioctl;
849 dev->ethtool_ops = &netdev_ethtool_ops;
850 dev->tx_timeout = rhine_tx_timeout;
851 dev->watchdog_timeo = TX_TIMEOUT;
852 #ifdef CONFIG_NET_POLL_CONTROLLER
853 dev->poll_controller = rhine_poll;
855 if (rp->quirks & rqRhineI)
856 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
858 INIT_WORK(&rp->tx_timeout_task,
859 (void (*)(void *))rhine_tx_timeout_task, dev);
861 INIT_WORK(&rp->check_media_task,
862 (void (*)(void *))rhine_check_media_task, dev);
864 /* dev->name not defined before register_netdev()! */
865 rc = register_netdev(dev);
869 printk(KERN_INFO "%s: VIA %s at 0x%lx, ",
878 for (i = 0; i < 5; i++)
879 printk("%2.2x:", dev->dev_addr[i]);
880 printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], pdev->irq);
882 pci_set_drvdata(pdev, dev);
886 int mii_status = mdio_read(dev, phy_id, 1);
887 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
888 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
889 if (mii_status != 0xffff && mii_status != 0x0000) {
890 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
891 printk(KERN_INFO "%s: MII PHY found at address "
892 "%d, status 0x%4.4x advertising %4.4x "
893 "Link %4.4x.\n", dev->name, phy_id,
894 mii_status, rp->mii_if.advertising,
895 mdio_read(dev, phy_id, 5));
897 /* set IFF_RUNNING */
898 if (mii_status & BMSR_LSTATUS)
899 netif_carrier_on(dev);
901 netif_carrier_off(dev);
905 rp->mii_if.phy_id = phy_id;
910 pci_iounmap(pdev, ioaddr);
912 pci_release_regions(pdev);
919 static int alloc_ring(struct net_device* dev)
921 struct rhine_private *rp = netdev_priv(dev);
925 ring = pci_alloc_consistent(rp->pdev,
926 RX_RING_SIZE * sizeof(struct rx_desc) +
927 TX_RING_SIZE * sizeof(struct tx_desc),
930 printk(KERN_ERR "Could not allocate DMA memory.\n");
933 if (rp->quirks & rqRhineI) {
934 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
935 PKT_BUF_SZ * TX_RING_SIZE,
937 if (rp->tx_bufs == NULL) {
938 pci_free_consistent(rp->pdev,
939 RX_RING_SIZE * sizeof(struct rx_desc) +
940 TX_RING_SIZE * sizeof(struct tx_desc),
947 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
948 rp->rx_ring_dma = ring_dma;
949 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
954 static void free_ring(struct net_device* dev)
956 struct rhine_private *rp = netdev_priv(dev);
958 pci_free_consistent(rp->pdev,
959 RX_RING_SIZE * sizeof(struct rx_desc) +
960 TX_RING_SIZE * sizeof(struct tx_desc),
961 rp->rx_ring, rp->rx_ring_dma);
965 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
966 rp->tx_bufs, rp->tx_bufs_dma);
972 static void alloc_rbufs(struct net_device *dev)
974 struct rhine_private *rp = netdev_priv(dev);
978 rp->dirty_rx = rp->cur_rx = 0;
980 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
981 rp->rx_head_desc = &rp->rx_ring[0];
982 next = rp->rx_ring_dma;
984 /* Init the ring entries */
985 for (i = 0; i < RX_RING_SIZE; i++) {
986 rp->rx_ring[i].rx_status = 0;
987 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
988 next += sizeof(struct rx_desc);
989 rp->rx_ring[i].next_desc = cpu_to_le32(next);
990 rp->rx_skbuff[i] = NULL;
992 /* Mark the last entry as wrapping the ring. */
993 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
995 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
996 for (i = 0; i < RX_RING_SIZE; i++) {
997 struct sk_buff *skb = dev_alloc_skb(rp->rx_buf_sz);
998 rp->rx_skbuff[i] = skb;
1001 skb->dev = dev; /* Mark as being used by this device. */
1003 rp->rx_skbuff_dma[i] =
1004 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
1005 PCI_DMA_FROMDEVICE);
1007 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
1008 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
1010 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1013 static void free_rbufs(struct net_device* dev)
1015 struct rhine_private *rp = netdev_priv(dev);
1018 /* Free all the skbuffs in the Rx queue. */
1019 for (i = 0; i < RX_RING_SIZE; i++) {
1020 rp->rx_ring[i].rx_status = 0;
1021 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1022 if (rp->rx_skbuff[i]) {
1023 pci_unmap_single(rp->pdev,
1024 rp->rx_skbuff_dma[i],
1025 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1026 dev_kfree_skb(rp->rx_skbuff[i]);
1028 rp->rx_skbuff[i] = NULL;
1032 static void alloc_tbufs(struct net_device* dev)
1034 struct rhine_private *rp = netdev_priv(dev);
1038 rp->dirty_tx = rp->cur_tx = 0;
1039 next = rp->tx_ring_dma;
1040 for (i = 0; i < TX_RING_SIZE; i++) {
1041 rp->tx_skbuff[i] = NULL;
1042 rp->tx_ring[i].tx_status = 0;
1043 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1044 next += sizeof(struct tx_desc);
1045 rp->tx_ring[i].next_desc = cpu_to_le32(next);
1046 if (rp->quirks & rqRhineI)
1047 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1049 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
1053 static void free_tbufs(struct net_device* dev)
1055 struct rhine_private *rp = netdev_priv(dev);
1058 for (i = 0; i < TX_RING_SIZE; i++) {
1059 rp->tx_ring[i].tx_status = 0;
1060 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1061 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1062 if (rp->tx_skbuff[i]) {
1063 if (rp->tx_skbuff_dma[i]) {
1064 pci_unmap_single(rp->pdev,
1065 rp->tx_skbuff_dma[i],
1066 rp->tx_skbuff[i]->len,
1069 dev_kfree_skb(rp->tx_skbuff[i]);
1071 rp->tx_skbuff[i] = NULL;
1072 rp->tx_buf[i] = NULL;
1076 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1078 struct rhine_private *rp = netdev_priv(dev);
1079 void __iomem *ioaddr = rp->base;
1081 mii_check_media(&rp->mii_if, debug, init_media);
1083 if (rp->mii_if.full_duplex)
1084 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1087 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1090 printk(KERN_INFO "%s: force_media %d, carrier %d\n", dev->name,
1091 rp->mii_if.force_media, netif_carrier_ok(dev));
1094 /* Called after status of force_media possibly changed */
1095 static void rhine_set_carrier(struct mii_if_info *mii)
1097 if (mii->force_media) {
1098 /* autoneg is off: Link is always assumed to be up */
1099 if (!netif_carrier_ok(mii->dev))
1100 netif_carrier_on(mii->dev);
1102 else /* Let MMI library update carrier status */
1103 rhine_check_media(mii->dev, 0);
1105 printk(KERN_INFO "%s: force_media %d, carrier %d\n",
1106 mii->dev->name, mii->force_media,
1107 netif_carrier_ok(mii->dev));
1110 static void rhine_check_media_task(struct net_device *dev)
1112 rhine_check_media(dev, 0);
1115 static void init_registers(struct net_device *dev)
1117 struct rhine_private *rp = netdev_priv(dev);
1118 void __iomem *ioaddr = rp->base;
1121 for (i = 0; i < 6; i++)
1122 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1124 /* Initialize other registers. */
1125 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1126 /* Configure initial FIFO thresholds. */
1127 iowrite8(0x20, ioaddr + TxConfig);
1128 rp->tx_thresh = 0x20;
1129 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1131 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1132 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1134 rhine_set_rx_mode(dev);
1136 /* Enable interrupts by setting the interrupt mask. */
1137 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
1138 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
1139 IntrTxDone | IntrTxError | IntrTxUnderrun |
1140 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1141 ioaddr + IntrEnable);
1143 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1145 rhine_check_media(dev, 1);
1148 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1149 static void rhine_enable_linkmon(void __iomem *ioaddr)
1151 iowrite8(0, ioaddr + MIICmd);
1152 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1153 iowrite8(0x80, ioaddr + MIICmd);
1155 RHINE_WAIT_FOR((ioread8(ioaddr + MIIRegAddr) & 0x20));
1157 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1160 /* Disable MII link status auto-polling (required for MDIO access) */
1161 static void rhine_disable_linkmon(void __iomem *ioaddr, u32 quirks)
1163 iowrite8(0, ioaddr + MIICmd);
1165 if (quirks & rqRhineI) {
1166 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1168 /* Do not call from ISR! */
1171 /* 0x80 must be set immediately before turning it off */
1172 iowrite8(0x80, ioaddr + MIICmd);
1174 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x20);
1176 /* Heh. Now clear 0x80 again. */
1177 iowrite8(0, ioaddr + MIICmd);
1180 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x80);
1183 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1185 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1187 struct rhine_private *rp = netdev_priv(dev);
1188 void __iomem *ioaddr = rp->base;
1191 rhine_disable_linkmon(ioaddr, rp->quirks);
1193 /* rhine_disable_linkmon already cleared MIICmd */
1194 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1195 iowrite8(regnum, ioaddr + MIIRegAddr);
1196 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1197 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x40));
1198 result = ioread16(ioaddr + MIIData);
1200 rhine_enable_linkmon(ioaddr);
1204 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1206 struct rhine_private *rp = netdev_priv(dev);
1207 void __iomem *ioaddr = rp->base;
1209 rhine_disable_linkmon(ioaddr, rp->quirks);
1211 /* rhine_disable_linkmon already cleared MIICmd */
1212 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1213 iowrite8(regnum, ioaddr + MIIRegAddr);
1214 iowrite16(value, ioaddr + MIIData);
1215 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1216 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x20));
1218 rhine_enable_linkmon(ioaddr);
1221 static int rhine_open(struct net_device *dev)
1223 struct rhine_private *rp = netdev_priv(dev);
1224 void __iomem *ioaddr = rp->base;
1227 rc = request_irq(rp->pdev->irq, &rhine_interrupt, SA_SHIRQ, dev->name,
1233 printk(KERN_DEBUG "%s: rhine_open() irq %d.\n",
1234 dev->name, rp->pdev->irq);
1236 rc = alloc_ring(dev);
1238 free_irq(rp->pdev->irq, dev);
1243 rhine_chip_reset(dev);
1244 init_registers(dev);
1246 printk(KERN_DEBUG "%s: Done rhine_open(), status %4.4x "
1247 "MII status: %4.4x.\n",
1248 dev->name, ioread16(ioaddr + ChipCmd),
1249 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1251 netif_start_queue(dev);
1256 static void rhine_tx_timeout(struct net_device *dev)
1258 struct rhine_private *rp = netdev_priv(dev);
1261 * Move bulk of work outside of interrupt context
1263 schedule_work(&rp->tx_timeout_task);
1266 static void rhine_tx_timeout_task(struct net_device *dev)
1268 struct rhine_private *rp = netdev_priv(dev);
1269 void __iomem *ioaddr = rp->base;
1271 printk(KERN_WARNING "%s: Transmit timed out, status %4.4x, PHY status "
1272 "%4.4x, resetting...\n",
1273 dev->name, ioread16(ioaddr + IntrStatus),
1274 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1276 /* protect against concurrent rx interrupts */
1277 disable_irq(rp->pdev->irq);
1279 spin_lock(&rp->lock);
1281 /* clear all descriptors */
1287 /* Reinitialize the hardware. */
1288 rhine_chip_reset(dev);
1289 init_registers(dev);
1291 spin_unlock(&rp->lock);
1292 enable_irq(rp->pdev->irq);
1294 dev->trans_start = jiffies;
1295 rp->stats.tx_errors++;
1296 netif_wake_queue(dev);
1299 static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev)
1301 struct rhine_private *rp = netdev_priv(dev);
1302 void __iomem *ioaddr = rp->base;
1305 /* Caution: the write order is important here, set the field
1306 with the "ownership" bits last. */
1308 /* Calculate the next Tx descriptor entry. */
1309 entry = rp->cur_tx % TX_RING_SIZE;
1311 if (skb->len < ETH_ZLEN) {
1312 skb = skb_padto(skb, ETH_ZLEN);
1317 rp->tx_skbuff[entry] = skb;
1319 if ((rp->quirks & rqRhineI) &&
1320 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_HW)) {
1321 /* Must use alignment buffer. */
1322 if (skb->len > PKT_BUF_SZ) {
1323 /* packet too long, drop it */
1325 rp->tx_skbuff[entry] = NULL;
1326 rp->stats.tx_dropped++;
1329 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1330 rp->tx_skbuff_dma[entry] = 0;
1331 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1332 (rp->tx_buf[entry] -
1335 rp->tx_skbuff_dma[entry] =
1336 pci_map_single(rp->pdev, skb->data, skb->len,
1338 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1341 rp->tx_ring[entry].desc_length =
1342 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1345 spin_lock_irq(&rp->lock);
1347 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1352 /* Non-x86 Todo: explicitly flush cache lines here. */
1354 /* Wake the potentially-idle transmit channel */
1355 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1359 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1360 netif_stop_queue(dev);
1362 dev->trans_start = jiffies;
1364 spin_unlock_irq(&rp->lock);
1367 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
1368 dev->name, rp->cur_tx-1, entry);
1373 /* The interrupt handler does all of the Rx thread work and cleans up
1374 after the Tx thread. */
1375 static irqreturn_t rhine_interrupt(int irq, void *dev_instance, struct pt_regs *rgs)
1377 struct net_device *dev = dev_instance;
1378 struct rhine_private *rp = netdev_priv(dev);
1379 void __iomem *ioaddr = rp->base;
1381 int boguscnt = max_interrupt_work;
1384 while ((intr_status = get_intr_status(dev))) {
1387 /* Acknowledge all of the current interrupt sources ASAP. */
1388 if (intr_status & IntrTxDescRace)
1389 iowrite8(0x08, ioaddr + IntrStatus2);
1390 iowrite16(intr_status & 0xffff, ioaddr + IntrStatus);
1394 printk(KERN_DEBUG "%s: Interrupt, status %8.8x.\n",
1395 dev->name, intr_status);
1397 if (intr_status & (IntrRxDone | IntrRxErr | IntrRxDropped |
1398 IntrRxWakeUp | IntrRxEmpty | IntrRxNoBuf))
1401 if (intr_status & (IntrTxErrSummary | IntrTxDone)) {
1402 if (intr_status & IntrTxErrSummary) {
1403 /* Avoid scavenging before Tx engine turned off */
1404 RHINE_WAIT_FOR(!(ioread8(ioaddr+ChipCmd) & CmdTxOn));
1406 ioread8(ioaddr+ChipCmd) & CmdTxOn)
1407 printk(KERN_WARNING "%s: "
1408 "rhine_interrupt() Tx engine"
1409 "still on.\n", dev->name);
1414 /* Abnormal error summary/uncommon events handlers. */
1415 if (intr_status & (IntrPCIErr | IntrLinkChange |
1416 IntrStatsMax | IntrTxError | IntrTxAborted |
1417 IntrTxUnderrun | IntrTxDescRace))
1418 rhine_error(dev, intr_status);
1420 if (--boguscnt < 0) {
1421 printk(KERN_WARNING "%s: Too much work at interrupt, "
1423 dev->name, intr_status);
1429 printk(KERN_DEBUG "%s: exiting interrupt, status=%8.8x.\n",
1430 dev->name, ioread16(ioaddr + IntrStatus));
1431 return IRQ_RETVAL(handled);
1434 /* This routine is logically part of the interrupt handler, but isolated
1436 static void rhine_tx(struct net_device *dev)
1438 struct rhine_private *rp = netdev_priv(dev);
1439 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1441 spin_lock(&rp->lock);
1443 /* find and cleanup dirty tx descriptors */
1444 while (rp->dirty_tx != rp->cur_tx) {
1445 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1447 printk(KERN_DEBUG "Tx scavenge %d status %8.8x.\n",
1449 if (txstatus & DescOwn)
1451 if (txstatus & 0x8000) {
1453 printk(KERN_DEBUG "%s: Transmit error, "
1454 "Tx status %8.8x.\n",
1455 dev->name, txstatus);
1456 rp->stats.tx_errors++;
1457 if (txstatus & 0x0400) rp->stats.tx_carrier_errors++;
1458 if (txstatus & 0x0200) rp->stats.tx_window_errors++;
1459 if (txstatus & 0x0100) rp->stats.tx_aborted_errors++;
1460 if (txstatus & 0x0080) rp->stats.tx_heartbeat_errors++;
1461 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1462 (txstatus & 0x0800) || (txstatus & 0x1000)) {
1463 rp->stats.tx_fifo_errors++;
1464 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1465 break; /* Keep the skb - we try again */
1467 /* Transmitter restarted in 'abnormal' handler. */
1469 if (rp->quirks & rqRhineI)
1470 rp->stats.collisions += (txstatus >> 3) & 0x0F;
1472 rp->stats.collisions += txstatus & 0x0F;
1474 printk(KERN_DEBUG "collisions: %1.1x:%1.1x\n",
1475 (txstatus >> 3) & 0xF,
1477 rp->stats.tx_bytes += rp->tx_skbuff[entry]->len;
1478 rp->stats.tx_packets++;
1480 /* Free the original skb. */
1481 if (rp->tx_skbuff_dma[entry]) {
1482 pci_unmap_single(rp->pdev,
1483 rp->tx_skbuff_dma[entry],
1484 rp->tx_skbuff[entry]->len,
1487 dev_kfree_skb_irq(rp->tx_skbuff[entry]);
1488 rp->tx_skbuff[entry] = NULL;
1489 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1491 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1492 netif_wake_queue(dev);
1494 spin_unlock(&rp->lock);
1497 /* This routine is logically part of the interrupt handler, but isolated
1498 for clarity and better register allocation. */
1499 static void rhine_rx(struct net_device *dev)
1501 struct rhine_private *rp = netdev_priv(dev);
1502 int entry = rp->cur_rx % RX_RING_SIZE;
1503 int boguscnt = rp->dirty_rx + RX_RING_SIZE - rp->cur_rx;
1506 printk(KERN_DEBUG "%s: rhine_rx(), entry %d status %8.8x.\n",
1508 le32_to_cpu(rp->rx_head_desc->rx_status));
1511 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1512 while (!(rp->rx_head_desc->rx_status & cpu_to_le32(DescOwn))) {
1513 struct rx_desc *desc = rp->rx_head_desc;
1514 u32 desc_status = le32_to_cpu(desc->rx_status);
1515 int data_size = desc_status >> 16;
1518 printk(KERN_DEBUG "rhine_rx() status is %8.8x.\n",
1522 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1523 if ((desc_status & RxWholePkt) != RxWholePkt) {
1524 printk(KERN_WARNING "%s: Oversized Ethernet "
1525 "frame spanned multiple buffers, entry "
1526 "%#x length %d status %8.8x!\n",
1527 dev->name, entry, data_size,
1529 printk(KERN_WARNING "%s: Oversized Ethernet "
1530 "frame %p vs %p.\n", dev->name,
1531 rp->rx_head_desc, &rp->rx_ring[entry]);
1532 rp->stats.rx_length_errors++;
1533 } else if (desc_status & RxErr) {
1534 /* There was a error. */
1536 printk(KERN_DEBUG "rhine_rx() Rx "
1537 "error was %8.8x.\n",
1539 rp->stats.rx_errors++;
1540 if (desc_status & 0x0030) rp->stats.rx_length_errors++;
1541 if (desc_status & 0x0048) rp->stats.rx_fifo_errors++;
1542 if (desc_status & 0x0004) rp->stats.rx_frame_errors++;
1543 if (desc_status & 0x0002) {
1544 /* this can also be updated outside the interrupt handler */
1545 spin_lock(&rp->lock);
1546 rp->stats.rx_crc_errors++;
1547 spin_unlock(&rp->lock);
1551 struct sk_buff *skb;
1552 /* Length should omit the CRC */
1553 int pkt_len = data_size - 4;
1555 /* Check if the packet is long enough to accept without
1556 copying to a minimally-sized skbuff. */
1557 if (pkt_len < rx_copybreak &&
1558 (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1560 skb_reserve(skb, 2); /* 16 byte align the IP header */
1561 pci_dma_sync_single_for_cpu(rp->pdev,
1562 rp->rx_skbuff_dma[entry],
1564 PCI_DMA_FROMDEVICE);
1566 eth_copy_and_sum(skb,
1567 rp->rx_skbuff[entry]->data,
1569 skb_put(skb, pkt_len);
1570 pci_dma_sync_single_for_device(rp->pdev,
1571 rp->rx_skbuff_dma[entry],
1573 PCI_DMA_FROMDEVICE);
1575 skb = rp->rx_skbuff[entry];
1577 printk(KERN_ERR "%s: Inconsistent Rx "
1578 "descriptor chain.\n",
1582 rp->rx_skbuff[entry] = NULL;
1583 skb_put(skb, pkt_len);
1584 pci_unmap_single(rp->pdev,
1585 rp->rx_skbuff_dma[entry],
1587 PCI_DMA_FROMDEVICE);
1589 skb->protocol = eth_type_trans(skb, dev);
1591 dev->last_rx = jiffies;
1592 rp->stats.rx_bytes += pkt_len;
1593 rp->stats.rx_packets++;
1595 entry = (++rp->cur_rx) % RX_RING_SIZE;
1596 rp->rx_head_desc = &rp->rx_ring[entry];
1599 /* Refill the Rx ring buffers. */
1600 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1601 struct sk_buff *skb;
1602 entry = rp->dirty_rx % RX_RING_SIZE;
1603 if (rp->rx_skbuff[entry] == NULL) {
1604 skb = dev_alloc_skb(rp->rx_buf_sz);
1605 rp->rx_skbuff[entry] = skb;
1607 break; /* Better luck next round. */
1608 skb->dev = dev; /* Mark as being used by this device. */
1609 rp->rx_skbuff_dma[entry] =
1610 pci_map_single(rp->pdev, skb->data,
1612 PCI_DMA_FROMDEVICE);
1613 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1615 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1620 * Clears the "tally counters" for CRC errors and missed frames(?).
1621 * It has been reported that some chips need a write of 0 to clear
1622 * these, for others the counters are set to 1 when written to and
1623 * instead cleared when read. So we clear them both ways ...
1625 static inline void clear_tally_counters(void __iomem *ioaddr)
1627 iowrite32(0, ioaddr + RxMissed);
1628 ioread16(ioaddr + RxCRCErrs);
1629 ioread16(ioaddr + RxMissed);
1632 static void rhine_restart_tx(struct net_device *dev) {
1633 struct rhine_private *rp = netdev_priv(dev);
1634 void __iomem *ioaddr = rp->base;
1635 int entry = rp->dirty_tx % TX_RING_SIZE;
1639 * If new errors occured, we need to sort them out before doing Tx.
1640 * In that case the ISR will be back here RSN anyway.
1642 intr_status = get_intr_status(dev);
1644 if ((intr_status & IntrTxErrSummary) == 0) {
1646 /* We know better than the chip where it should continue. */
1647 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1648 ioaddr + TxRingPtr);
1650 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1652 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1657 /* This should never happen */
1659 printk(KERN_WARNING "%s: rhine_restart_tx() "
1660 "Another error occured %8.8x.\n",
1661 dev->name, intr_status);
1666 static void rhine_error(struct net_device *dev, int intr_status)
1668 struct rhine_private *rp = netdev_priv(dev);
1669 void __iomem *ioaddr = rp->base;
1671 spin_lock(&rp->lock);
1673 if (intr_status & IntrLinkChange)
1674 schedule_work(&rp->check_media_task);
1675 if (intr_status & IntrStatsMax) {
1676 rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1677 rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1678 clear_tally_counters(ioaddr);
1680 if (intr_status & IntrTxAborted) {
1682 printk(KERN_INFO "%s: Abort %8.8x, frame dropped.\n",
1683 dev->name, intr_status);
1685 if (intr_status & IntrTxUnderrun) {
1686 if (rp->tx_thresh < 0xE0)
1687 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1689 printk(KERN_INFO "%s: Transmitter underrun, Tx "
1690 "threshold now %2.2x.\n",
1691 dev->name, rp->tx_thresh);
1693 if (intr_status & IntrTxDescRace) {
1695 printk(KERN_INFO "%s: Tx descriptor write-back race.\n",
1698 if ((intr_status & IntrTxError) &&
1699 (intr_status & (IntrTxAborted |
1700 IntrTxUnderrun | IntrTxDescRace)) == 0) {
1701 if (rp->tx_thresh < 0xE0) {
1702 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1705 printk(KERN_INFO "%s: Unspecified error. Tx "
1706 "threshold now %2.2x.\n",
1707 dev->name, rp->tx_thresh);
1709 if (intr_status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace |
1711 rhine_restart_tx(dev);
1713 if (intr_status & ~(IntrLinkChange | IntrStatsMax | IntrTxUnderrun |
1714 IntrTxError | IntrTxAborted | IntrNormalSummary |
1717 printk(KERN_ERR "%s: Something Wicked happened! "
1718 "%8.8x.\n", dev->name, intr_status);
1721 spin_unlock(&rp->lock);
1724 static struct net_device_stats *rhine_get_stats(struct net_device *dev)
1726 struct rhine_private *rp = netdev_priv(dev);
1727 void __iomem *ioaddr = rp->base;
1728 unsigned long flags;
1730 spin_lock_irqsave(&rp->lock, flags);
1731 rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1732 rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1733 clear_tally_counters(ioaddr);
1734 spin_unlock_irqrestore(&rp->lock, flags);
1739 static void rhine_set_rx_mode(struct net_device *dev)
1741 struct rhine_private *rp = netdev_priv(dev);
1742 void __iomem *ioaddr = rp->base;
1743 u32 mc_filter[2]; /* Multicast hash filter */
1744 u8 rx_mode; /* Note: 0x02=accept runt, 0x01=accept errs */
1746 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1747 /* Unconditionally log net taps. */
1748 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n",
1751 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1752 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1753 } else if ((dev->mc_count > multicast_filter_limit)
1754 || (dev->flags & IFF_ALLMULTI)) {
1755 /* Too many to match, or accept all multicasts. */
1756 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1757 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1760 struct dev_mc_list *mclist;
1762 memset(mc_filter, 0, sizeof(mc_filter));
1763 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1764 i++, mclist = mclist->next) {
1765 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1767 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1769 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1770 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1773 iowrite8(rp->rx_thresh | rx_mode, ioaddr + RxConfig);
1776 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1778 struct rhine_private *rp = netdev_priv(dev);
1780 strcpy(info->driver, DRV_NAME);
1781 strcpy(info->version, DRV_VERSION);
1782 strcpy(info->bus_info, pci_name(rp->pdev));
1785 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1787 struct rhine_private *rp = netdev_priv(dev);
1790 spin_lock_irq(&rp->lock);
1791 rc = mii_ethtool_gset(&rp->mii_if, cmd);
1792 spin_unlock_irq(&rp->lock);
1797 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1799 struct rhine_private *rp = netdev_priv(dev);
1802 spin_lock_irq(&rp->lock);
1803 rc = mii_ethtool_sset(&rp->mii_if, cmd);
1804 spin_unlock_irq(&rp->lock);
1805 rhine_set_carrier(&rp->mii_if);
1810 static int netdev_nway_reset(struct net_device *dev)
1812 struct rhine_private *rp = netdev_priv(dev);
1814 return mii_nway_restart(&rp->mii_if);
1817 static u32 netdev_get_link(struct net_device *dev)
1819 struct rhine_private *rp = netdev_priv(dev);
1821 return mii_link_ok(&rp->mii_if);
1824 static u32 netdev_get_msglevel(struct net_device *dev)
1829 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1834 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1836 struct rhine_private *rp = netdev_priv(dev);
1838 if (!(rp->quirks & rqWOL))
1841 spin_lock_irq(&rp->lock);
1842 wol->supported = WAKE_PHY | WAKE_MAGIC |
1843 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1844 wol->wolopts = rp->wolopts;
1845 spin_unlock_irq(&rp->lock);
1848 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1850 struct rhine_private *rp = netdev_priv(dev);
1851 u32 support = WAKE_PHY | WAKE_MAGIC |
1852 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1854 if (!(rp->quirks & rqWOL))
1857 if (wol->wolopts & ~support)
1860 spin_lock_irq(&rp->lock);
1861 rp->wolopts = wol->wolopts;
1862 spin_unlock_irq(&rp->lock);
1867 static struct ethtool_ops netdev_ethtool_ops = {
1868 .get_drvinfo = netdev_get_drvinfo,
1869 .get_settings = netdev_get_settings,
1870 .set_settings = netdev_set_settings,
1871 .nway_reset = netdev_nway_reset,
1872 .get_link = netdev_get_link,
1873 .get_msglevel = netdev_get_msglevel,
1874 .set_msglevel = netdev_set_msglevel,
1875 .get_wol = rhine_get_wol,
1876 .set_wol = rhine_set_wol,
1877 .get_sg = ethtool_op_get_sg,
1878 .get_tx_csum = ethtool_op_get_tx_csum,
1879 .get_perm_addr = ethtool_op_get_perm_addr,
1882 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1884 struct rhine_private *rp = netdev_priv(dev);
1887 if (!netif_running(dev))
1890 spin_lock_irq(&rp->lock);
1891 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
1892 spin_unlock_irq(&rp->lock);
1893 rhine_set_carrier(&rp->mii_if);
1898 static int rhine_close(struct net_device *dev)
1900 struct rhine_private *rp = netdev_priv(dev);
1901 void __iomem *ioaddr = rp->base;
1903 spin_lock_irq(&rp->lock);
1905 netif_stop_queue(dev);
1908 printk(KERN_DEBUG "%s: Shutting down ethercard, "
1909 "status was %4.4x.\n",
1910 dev->name, ioread16(ioaddr + ChipCmd));
1912 /* Switch to loopback mode to avoid hardware races. */
1913 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
1915 /* Disable interrupts by clearing the interrupt mask. */
1916 iowrite16(0x0000, ioaddr + IntrEnable);
1918 /* Stop the chip's Tx and Rx processes. */
1919 iowrite16(CmdStop, ioaddr + ChipCmd);
1921 spin_unlock_irq(&rp->lock);
1923 free_irq(rp->pdev->irq, dev);
1925 flush_scheduled_work();
1935 static void __devexit rhine_remove_one(struct pci_dev *pdev)
1937 struct net_device *dev = pci_get_drvdata(pdev);
1938 struct rhine_private *rp = netdev_priv(dev);
1940 unregister_netdev(dev);
1942 pci_iounmap(pdev, rp->base);
1943 pci_release_regions(pdev);
1946 pci_disable_device(pdev);
1947 pci_set_drvdata(pdev, NULL);
1950 static void rhine_shutdown (struct pci_dev *pdev)
1952 struct net_device *dev = pci_get_drvdata(pdev);
1953 struct rhine_private *rp = netdev_priv(dev);
1954 void __iomem *ioaddr = rp->base;
1956 if (!(rp->quirks & rqWOL))
1957 return; /* Nothing to do for non-WOL adapters */
1959 rhine_power_init(dev);
1961 /* Make sure we use pattern 0, 1 and not 4, 5 */
1962 if (rp->quirks & rq6patterns)
1963 iowrite8(0x04, ioaddr + 0xA7);
1965 if (rp->wolopts & WAKE_MAGIC) {
1966 iowrite8(WOLmagic, ioaddr + WOLcrSet);
1968 * Turn EEPROM-controlled wake-up back on -- some hardware may
1969 * not cooperate otherwise.
1971 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
1974 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
1975 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
1977 if (rp->wolopts & WAKE_PHY)
1978 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
1980 if (rp->wolopts & WAKE_UCAST)
1981 iowrite8(WOLucast, ioaddr + WOLcrSet);
1984 /* Enable legacy WOL (for old motherboards) */
1985 iowrite8(0x01, ioaddr + PwcfgSet);
1986 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
1989 /* Hit power state D3 (sleep) */
1990 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1992 /* TODO: Check use of pci_enable_wake() */
1997 static int rhine_suspend(struct pci_dev *pdev, pm_message_t state)
1999 struct net_device *dev = pci_get_drvdata(pdev);
2000 struct rhine_private *rp = netdev_priv(dev);
2001 unsigned long flags;
2003 if (!netif_running(dev))
2006 netif_device_detach(dev);
2007 pci_save_state(pdev);
2009 spin_lock_irqsave(&rp->lock, flags);
2010 rhine_shutdown(pdev);
2011 spin_unlock_irqrestore(&rp->lock, flags);
2013 free_irq(dev->irq, dev);
2017 static int rhine_resume(struct pci_dev *pdev)
2019 struct net_device *dev = pci_get_drvdata(pdev);
2020 struct rhine_private *rp = netdev_priv(dev);
2021 unsigned long flags;
2024 if (!netif_running(dev))
2027 if (request_irq(dev->irq, rhine_interrupt, SA_SHIRQ, dev->name, dev))
2028 printk(KERN_ERR "via-rhine %s: request_irq failed\n", dev->name);
2030 ret = pci_set_power_state(pdev, PCI_D0);
2032 printk(KERN_INFO "%s: Entering power state D0 %s (%d).\n",
2033 dev->name, ret ? "failed" : "succeeded", ret);
2035 pci_restore_state(pdev);
2037 spin_lock_irqsave(&rp->lock, flags);
2039 enable_mmio(rp->pioaddr, rp->quirks);
2041 rhine_power_init(dev);
2046 init_registers(dev);
2047 spin_unlock_irqrestore(&rp->lock, flags);
2049 netif_device_attach(dev);
2053 #endif /* CONFIG_PM */
2055 static struct pci_driver rhine_driver = {
2057 .id_table = rhine_pci_tbl,
2058 .probe = rhine_init_one,
2059 .remove = __devexit_p(rhine_remove_one),
2061 .suspend = rhine_suspend,
2062 .resume = rhine_resume,
2063 #endif /* CONFIG_PM */
2064 .shutdown = rhine_shutdown,
2068 static int __init rhine_init(void)
2070 /* when a module, this is printed whether or not devices are found in probe */
2074 return pci_module_init(&rhine_driver);
2078 static void __exit rhine_cleanup(void)
2080 pci_unregister_driver(&rhine_driver);
2084 module_init(rhine_init);
2085 module_exit(rhine_cleanup);