Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/cooloney/blackfi...
[linux-2.6] / drivers / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19 #include "vmx.h"
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/profile.h>
25 #include <linux/sched.h>
26 #include <asm/io.h>
27 #include <asm/desc.h>
28
29 #include "segment_descriptor.h"
30
31 MODULE_AUTHOR("Qumranet");
32 MODULE_LICENSE("GPL");
33
34 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
35 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
36
37 #ifdef CONFIG_X86_64
38 #define HOST_IS_64 1
39 #else
40 #define HOST_IS_64 0
41 #endif
42
43 static struct vmcs_descriptor {
44         int size;
45         int order;
46         u32 revision_id;
47 } vmcs_descriptor;
48
49 #define VMX_SEGMENT_FIELD(seg)                                  \
50         [VCPU_SREG_##seg] = {                                   \
51                 .selector = GUEST_##seg##_SELECTOR,             \
52                 .base = GUEST_##seg##_BASE,                     \
53                 .limit = GUEST_##seg##_LIMIT,                   \
54                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
55         }
56
57 static struct kvm_vmx_segment_field {
58         unsigned selector;
59         unsigned base;
60         unsigned limit;
61         unsigned ar_bytes;
62 } kvm_vmx_segment_fields[] = {
63         VMX_SEGMENT_FIELD(CS),
64         VMX_SEGMENT_FIELD(DS),
65         VMX_SEGMENT_FIELD(ES),
66         VMX_SEGMENT_FIELD(FS),
67         VMX_SEGMENT_FIELD(GS),
68         VMX_SEGMENT_FIELD(SS),
69         VMX_SEGMENT_FIELD(TR),
70         VMX_SEGMENT_FIELD(LDTR),
71 };
72
73 /*
74  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
75  * away by decrementing the array size.
76  */
77 static const u32 vmx_msr_index[] = {
78 #ifdef CONFIG_X86_64
79         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
80 #endif
81         MSR_EFER, MSR_K6_STAR,
82 };
83 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
84
85 #ifdef CONFIG_X86_64
86 static unsigned msr_offset_kernel_gs_base;
87 #define NR_64BIT_MSRS 4
88 /*
89  * avoid save/load MSR_SYSCALL_MASK and MSR_LSTAR by std vt
90  * mechanism (cpu bug AA24)
91  */
92 #define NR_BAD_MSRS 2
93 #else
94 #define NR_64BIT_MSRS 0
95 #define NR_BAD_MSRS 0
96 #endif
97
98 static inline int is_page_fault(u32 intr_info)
99 {
100         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
101                              INTR_INFO_VALID_MASK)) ==
102                 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
103 }
104
105 static inline int is_no_device(u32 intr_info)
106 {
107         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
108                              INTR_INFO_VALID_MASK)) ==
109                 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
110 }
111
112 static inline int is_external_interrupt(u32 intr_info)
113 {
114         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
115                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
116 }
117
118 static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
119 {
120         int i;
121
122         for (i = 0; i < vcpu->nmsrs; ++i)
123                 if (vcpu->guest_msrs[i].index == msr)
124                         return &vcpu->guest_msrs[i];
125         return NULL;
126 }
127
128 static void vmcs_clear(struct vmcs *vmcs)
129 {
130         u64 phys_addr = __pa(vmcs);
131         u8 error;
132
133         asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
134                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
135                       : "cc", "memory");
136         if (error)
137                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
138                        vmcs, phys_addr);
139 }
140
141 static void __vcpu_clear(void *arg)
142 {
143         struct kvm_vcpu *vcpu = arg;
144         int cpu = raw_smp_processor_id();
145
146         if (vcpu->cpu == cpu)
147                 vmcs_clear(vcpu->vmcs);
148         if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
149                 per_cpu(current_vmcs, cpu) = NULL;
150 }
151
152 static void vcpu_clear(struct kvm_vcpu *vcpu)
153 {
154         if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
155                 smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
156         else
157                 __vcpu_clear(vcpu);
158         vcpu->launched = 0;
159 }
160
161 static unsigned long vmcs_readl(unsigned long field)
162 {
163         unsigned long value;
164
165         asm volatile (ASM_VMX_VMREAD_RDX_RAX
166                       : "=a"(value) : "d"(field) : "cc");
167         return value;
168 }
169
170 static u16 vmcs_read16(unsigned long field)
171 {
172         return vmcs_readl(field);
173 }
174
175 static u32 vmcs_read32(unsigned long field)
176 {
177         return vmcs_readl(field);
178 }
179
180 static u64 vmcs_read64(unsigned long field)
181 {
182 #ifdef CONFIG_X86_64
183         return vmcs_readl(field);
184 #else
185         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
186 #endif
187 }
188
189 static noinline void vmwrite_error(unsigned long field, unsigned long value)
190 {
191         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
192                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
193         dump_stack();
194 }
195
196 static void vmcs_writel(unsigned long field, unsigned long value)
197 {
198         u8 error;
199
200         asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
201                        : "=q"(error) : "a"(value), "d"(field) : "cc" );
202         if (unlikely(error))
203                 vmwrite_error(field, value);
204 }
205
206 static void vmcs_write16(unsigned long field, u16 value)
207 {
208         vmcs_writel(field, value);
209 }
210
211 static void vmcs_write32(unsigned long field, u32 value)
212 {
213         vmcs_writel(field, value);
214 }
215
216 static void vmcs_write64(unsigned long field, u64 value)
217 {
218 #ifdef CONFIG_X86_64
219         vmcs_writel(field, value);
220 #else
221         vmcs_writel(field, value);
222         asm volatile ("");
223         vmcs_writel(field+1, value >> 32);
224 #endif
225 }
226
227 static void vmcs_clear_bits(unsigned long field, u32 mask)
228 {
229         vmcs_writel(field, vmcs_readl(field) & ~mask);
230 }
231
232 static void vmcs_set_bits(unsigned long field, u32 mask)
233 {
234         vmcs_writel(field, vmcs_readl(field) | mask);
235 }
236
237 /*
238  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
239  * vcpu mutex is already taken.
240  */
241 static void vmx_vcpu_load(struct kvm_vcpu *vcpu)
242 {
243         u64 phys_addr = __pa(vcpu->vmcs);
244         int cpu;
245
246         cpu = get_cpu();
247
248         if (vcpu->cpu != cpu)
249                 vcpu_clear(vcpu);
250
251         if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
252                 u8 error;
253
254                 per_cpu(current_vmcs, cpu) = vcpu->vmcs;
255                 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
256                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
257                               : "cc");
258                 if (error)
259                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
260                                vcpu->vmcs, phys_addr);
261         }
262
263         if (vcpu->cpu != cpu) {
264                 struct descriptor_table dt;
265                 unsigned long sysenter_esp;
266
267                 vcpu->cpu = cpu;
268                 /*
269                  * Linux uses per-cpu TSS and GDT, so set these when switching
270                  * processors.
271                  */
272                 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
273                 get_gdt(&dt);
274                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
275
276                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
277                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
278         }
279 }
280
281 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
282 {
283         kvm_put_guest_fpu(vcpu);
284         put_cpu();
285 }
286
287 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
288 {
289         vcpu_clear(vcpu);
290 }
291
292 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
293 {
294         return vmcs_readl(GUEST_RFLAGS);
295 }
296
297 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
298 {
299         vmcs_writel(GUEST_RFLAGS, rflags);
300 }
301
302 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
303 {
304         unsigned long rip;
305         u32 interruptibility;
306
307         rip = vmcs_readl(GUEST_RIP);
308         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
309         vmcs_writel(GUEST_RIP, rip);
310
311         /*
312          * We emulated an instruction, so temporary interrupt blocking
313          * should be removed, if set.
314          */
315         interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
316         if (interruptibility & 3)
317                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
318                              interruptibility & ~3);
319         vcpu->interrupt_window_open = 1;
320 }
321
322 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
323 {
324         printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
325                vmcs_readl(GUEST_RIP));
326         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
327         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
328                      GP_VECTOR |
329                      INTR_TYPE_EXCEPTION |
330                      INTR_INFO_DELIEVER_CODE_MASK |
331                      INTR_INFO_VALID_MASK);
332 }
333
334 /*
335  * Set up the vmcs to automatically save and restore system
336  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
337  * mode, as fiddling with msrs is very expensive.
338  */
339 static void setup_msrs(struct kvm_vcpu *vcpu)
340 {
341         int nr_skip, nr_good_msrs;
342
343         if (is_long_mode(vcpu))
344                 nr_skip = NR_BAD_MSRS;
345         else
346                 nr_skip = NR_64BIT_MSRS;
347         nr_good_msrs = vcpu->nmsrs - nr_skip;
348
349         /*
350          * MSR_K6_STAR is only needed on long mode guests, and only
351          * if efer.sce is enabled.
352          */
353         if (find_msr_entry(vcpu, MSR_K6_STAR)) {
354                 --nr_good_msrs;
355 #ifdef CONFIG_X86_64
356                 if (is_long_mode(vcpu) && (vcpu->shadow_efer & EFER_SCE))
357                         ++nr_good_msrs;
358 #endif
359         }
360
361         vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
362                     virt_to_phys(vcpu->guest_msrs + nr_skip));
363         vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
364                     virt_to_phys(vcpu->guest_msrs + nr_skip));
365         vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
366                     virt_to_phys(vcpu->host_msrs + nr_skip));
367         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
368         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs);  /* 22.2.2 */
369         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
370 }
371
372 /*
373  * reads and returns guest's timestamp counter "register"
374  * guest_tsc = host_tsc + tsc_offset    -- 21.3
375  */
376 static u64 guest_read_tsc(void)
377 {
378         u64 host_tsc, tsc_offset;
379
380         rdtscll(host_tsc);
381         tsc_offset = vmcs_read64(TSC_OFFSET);
382         return host_tsc + tsc_offset;
383 }
384
385 /*
386  * writes 'guest_tsc' into guest's timestamp counter "register"
387  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
388  */
389 static void guest_write_tsc(u64 guest_tsc)
390 {
391         u64 host_tsc;
392
393         rdtscll(host_tsc);
394         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
395 }
396
397 static void reload_tss(void)
398 {
399 #ifndef CONFIG_X86_64
400
401         /*
402          * VT restores TR but not its size.  Useless.
403          */
404         struct descriptor_table gdt;
405         struct segment_descriptor *descs;
406
407         get_gdt(&gdt);
408         descs = (void *)gdt.base;
409         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
410         load_TR_desc();
411 #endif
412 }
413
414 /*
415  * Reads an msr value (of 'msr_index') into 'pdata'.
416  * Returns 0 on success, non-0 otherwise.
417  * Assumes vcpu_load() was already called.
418  */
419 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
420 {
421         u64 data;
422         struct vmx_msr_entry *msr;
423
424         if (!pdata) {
425                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
426                 return -EINVAL;
427         }
428
429         switch (msr_index) {
430 #ifdef CONFIG_X86_64
431         case MSR_FS_BASE:
432                 data = vmcs_readl(GUEST_FS_BASE);
433                 break;
434         case MSR_GS_BASE:
435                 data = vmcs_readl(GUEST_GS_BASE);
436                 break;
437         case MSR_EFER:
438                 return kvm_get_msr_common(vcpu, msr_index, pdata);
439 #endif
440         case MSR_IA32_TIME_STAMP_COUNTER:
441                 data = guest_read_tsc();
442                 break;
443         case MSR_IA32_SYSENTER_CS:
444                 data = vmcs_read32(GUEST_SYSENTER_CS);
445                 break;
446         case MSR_IA32_SYSENTER_EIP:
447                 data = vmcs_readl(GUEST_SYSENTER_EIP);
448                 break;
449         case MSR_IA32_SYSENTER_ESP:
450                 data = vmcs_readl(GUEST_SYSENTER_ESP);
451                 break;
452         default:
453                 msr = find_msr_entry(vcpu, msr_index);
454                 if (msr) {
455                         data = msr->data;
456                         break;
457                 }
458                 return kvm_get_msr_common(vcpu, msr_index, pdata);
459         }
460
461         *pdata = data;
462         return 0;
463 }
464
465 /*
466  * Writes msr value into into the appropriate "register".
467  * Returns 0 on success, non-0 otherwise.
468  * Assumes vcpu_load() was already called.
469  */
470 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
471 {
472         struct vmx_msr_entry *msr;
473         switch (msr_index) {
474 #ifdef CONFIG_X86_64
475         case MSR_EFER:
476                 return kvm_set_msr_common(vcpu, msr_index, data);
477         case MSR_FS_BASE:
478                 vmcs_writel(GUEST_FS_BASE, data);
479                 break;
480         case MSR_GS_BASE:
481                 vmcs_writel(GUEST_GS_BASE, data);
482                 break;
483 #endif
484         case MSR_IA32_SYSENTER_CS:
485                 vmcs_write32(GUEST_SYSENTER_CS, data);
486                 break;
487         case MSR_IA32_SYSENTER_EIP:
488                 vmcs_writel(GUEST_SYSENTER_EIP, data);
489                 break;
490         case MSR_IA32_SYSENTER_ESP:
491                 vmcs_writel(GUEST_SYSENTER_ESP, data);
492                 break;
493         case MSR_IA32_TIME_STAMP_COUNTER:
494                 guest_write_tsc(data);
495                 break;
496         default:
497                 msr = find_msr_entry(vcpu, msr_index);
498                 if (msr) {
499                         msr->data = data;
500                         break;
501                 }
502                 return kvm_set_msr_common(vcpu, msr_index, data);
503                 msr->data = data;
504                 break;
505         }
506
507         return 0;
508 }
509
510 /*
511  * Sync the rsp and rip registers into the vcpu structure.  This allows
512  * registers to be accessed by indexing vcpu->regs.
513  */
514 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
515 {
516         vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
517         vcpu->rip = vmcs_readl(GUEST_RIP);
518 }
519
520 /*
521  * Syncs rsp and rip back into the vmcs.  Should be called after possible
522  * modification.
523  */
524 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
525 {
526         vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
527         vmcs_writel(GUEST_RIP, vcpu->rip);
528 }
529
530 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
531 {
532         unsigned long dr7 = 0x400;
533         u32 exception_bitmap;
534         int old_singlestep;
535
536         exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
537         old_singlestep = vcpu->guest_debug.singlestep;
538
539         vcpu->guest_debug.enabled = dbg->enabled;
540         if (vcpu->guest_debug.enabled) {
541                 int i;
542
543                 dr7 |= 0x200;  /* exact */
544                 for (i = 0; i < 4; ++i) {
545                         if (!dbg->breakpoints[i].enabled)
546                                 continue;
547                         vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
548                         dr7 |= 2 << (i*2);    /* global enable */
549                         dr7 |= 0 << (i*4+16); /* execution breakpoint */
550                 }
551
552                 exception_bitmap |= (1u << 1);  /* Trap debug exceptions */
553
554                 vcpu->guest_debug.singlestep = dbg->singlestep;
555         } else {
556                 exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
557                 vcpu->guest_debug.singlestep = 0;
558         }
559
560         if (old_singlestep && !vcpu->guest_debug.singlestep) {
561                 unsigned long flags;
562
563                 flags = vmcs_readl(GUEST_RFLAGS);
564                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
565                 vmcs_writel(GUEST_RFLAGS, flags);
566         }
567
568         vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
569         vmcs_writel(GUEST_DR7, dr7);
570
571         return 0;
572 }
573
574 static __init int cpu_has_kvm_support(void)
575 {
576         unsigned long ecx = cpuid_ecx(1);
577         return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
578 }
579
580 static __init int vmx_disabled_by_bios(void)
581 {
582         u64 msr;
583
584         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
585         return (msr & 5) == 1; /* locked but not enabled */
586 }
587
588 static void hardware_enable(void *garbage)
589 {
590         int cpu = raw_smp_processor_id();
591         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
592         u64 old;
593
594         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
595         if ((old & 5) != 5)
596                 /* enable and lock */
597                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
598         write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
599         asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
600                       : "memory", "cc");
601 }
602
603 static void hardware_disable(void *garbage)
604 {
605         asm volatile (ASM_VMX_VMXOFF : : : "cc");
606 }
607
608 static __init void setup_vmcs_descriptor(void)
609 {
610         u32 vmx_msr_low, vmx_msr_high;
611
612         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
613         vmcs_descriptor.size = vmx_msr_high & 0x1fff;
614         vmcs_descriptor.order = get_order(vmcs_descriptor.size);
615         vmcs_descriptor.revision_id = vmx_msr_low;
616 }
617
618 static struct vmcs *alloc_vmcs_cpu(int cpu)
619 {
620         int node = cpu_to_node(cpu);
621         struct page *pages;
622         struct vmcs *vmcs;
623
624         pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
625         if (!pages)
626                 return NULL;
627         vmcs = page_address(pages);
628         memset(vmcs, 0, vmcs_descriptor.size);
629         vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
630         return vmcs;
631 }
632
633 static struct vmcs *alloc_vmcs(void)
634 {
635         return alloc_vmcs_cpu(raw_smp_processor_id());
636 }
637
638 static void free_vmcs(struct vmcs *vmcs)
639 {
640         free_pages((unsigned long)vmcs, vmcs_descriptor.order);
641 }
642
643 static void free_kvm_area(void)
644 {
645         int cpu;
646
647         for_each_online_cpu(cpu)
648                 free_vmcs(per_cpu(vmxarea, cpu));
649 }
650
651 extern struct vmcs *alloc_vmcs_cpu(int cpu);
652
653 static __init int alloc_kvm_area(void)
654 {
655         int cpu;
656
657         for_each_online_cpu(cpu) {
658                 struct vmcs *vmcs;
659
660                 vmcs = alloc_vmcs_cpu(cpu);
661                 if (!vmcs) {
662                         free_kvm_area();
663                         return -ENOMEM;
664                 }
665
666                 per_cpu(vmxarea, cpu) = vmcs;
667         }
668         return 0;
669 }
670
671 static __init int hardware_setup(void)
672 {
673         setup_vmcs_descriptor();
674         return alloc_kvm_area();
675 }
676
677 static __exit void hardware_unsetup(void)
678 {
679         free_kvm_area();
680 }
681
682 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
683 {
684         if (vcpu->rmode.active)
685                 vmcs_write32(EXCEPTION_BITMAP, ~0);
686         else
687                 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
688 }
689
690 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
691 {
692         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
693
694         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
695                 vmcs_write16(sf->selector, save->selector);
696                 vmcs_writel(sf->base, save->base);
697                 vmcs_write32(sf->limit, save->limit);
698                 vmcs_write32(sf->ar_bytes, save->ar);
699         } else {
700                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
701                         << AR_DPL_SHIFT;
702                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
703         }
704 }
705
706 static void enter_pmode(struct kvm_vcpu *vcpu)
707 {
708         unsigned long flags;
709
710         vcpu->rmode.active = 0;
711
712         vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
713         vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
714         vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
715
716         flags = vmcs_readl(GUEST_RFLAGS);
717         flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
718         flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
719         vmcs_writel(GUEST_RFLAGS, flags);
720
721         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
722                         (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
723
724         update_exception_bitmap(vcpu);
725
726         fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
727         fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
728         fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
729         fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
730
731         vmcs_write16(GUEST_SS_SELECTOR, 0);
732         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
733
734         vmcs_write16(GUEST_CS_SELECTOR,
735                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
736         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
737 }
738
739 static int rmode_tss_base(struct kvm* kvm)
740 {
741         gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
742         return base_gfn << PAGE_SHIFT;
743 }
744
745 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
746 {
747         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
748
749         save->selector = vmcs_read16(sf->selector);
750         save->base = vmcs_readl(sf->base);
751         save->limit = vmcs_read32(sf->limit);
752         save->ar = vmcs_read32(sf->ar_bytes);
753         vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
754         vmcs_write32(sf->limit, 0xffff);
755         vmcs_write32(sf->ar_bytes, 0xf3);
756 }
757
758 static void enter_rmode(struct kvm_vcpu *vcpu)
759 {
760         unsigned long flags;
761
762         vcpu->rmode.active = 1;
763
764         vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
765         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
766
767         vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
768         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
769
770         vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
771         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
772
773         flags = vmcs_readl(GUEST_RFLAGS);
774         vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
775
776         flags |= IOPL_MASK | X86_EFLAGS_VM;
777
778         vmcs_writel(GUEST_RFLAGS, flags);
779         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
780         update_exception_bitmap(vcpu);
781
782         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
783         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
784         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
785
786         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
787         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
788         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
789                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
790         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
791
792         fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
793         fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
794         fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
795         fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
796 }
797
798 #ifdef CONFIG_X86_64
799
800 static void enter_lmode(struct kvm_vcpu *vcpu)
801 {
802         u32 guest_tr_ar;
803
804         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
805         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
806                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
807                        __FUNCTION__);
808                 vmcs_write32(GUEST_TR_AR_BYTES,
809                              (guest_tr_ar & ~AR_TYPE_MASK)
810                              | AR_TYPE_BUSY_64_TSS);
811         }
812
813         vcpu->shadow_efer |= EFER_LMA;
814
815         find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
816         vmcs_write32(VM_ENTRY_CONTROLS,
817                      vmcs_read32(VM_ENTRY_CONTROLS)
818                      | VM_ENTRY_CONTROLS_IA32E_MASK);
819 }
820
821 static void exit_lmode(struct kvm_vcpu *vcpu)
822 {
823         vcpu->shadow_efer &= ~EFER_LMA;
824
825         vmcs_write32(VM_ENTRY_CONTROLS,
826                      vmcs_read32(VM_ENTRY_CONTROLS)
827                      & ~VM_ENTRY_CONTROLS_IA32E_MASK);
828 }
829
830 #endif
831
832 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
833 {
834         vcpu->cr4 &= KVM_GUEST_CR4_MASK;
835         vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
836 }
837
838 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
839 {
840         if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
841                 enter_pmode(vcpu);
842
843         if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
844                 enter_rmode(vcpu);
845
846 #ifdef CONFIG_X86_64
847         if (vcpu->shadow_efer & EFER_LME) {
848                 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
849                         enter_lmode(vcpu);
850                 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
851                         exit_lmode(vcpu);
852         }
853 #endif
854
855         if (!(cr0 & CR0_TS_MASK)) {
856                 vcpu->fpu_active = 1;
857                 vmcs_clear_bits(EXCEPTION_BITMAP, CR0_TS_MASK);
858         }
859
860         vmcs_writel(CR0_READ_SHADOW, cr0);
861         vmcs_writel(GUEST_CR0,
862                     (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
863         vcpu->cr0 = cr0;
864 }
865
866 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
867 {
868         vmcs_writel(GUEST_CR3, cr3);
869
870         if (!(vcpu->cr0 & CR0_TS_MASK)) {
871                 vcpu->fpu_active = 0;
872                 vmcs_set_bits(GUEST_CR0, CR0_TS_MASK);
873                 vmcs_set_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
874         }
875 }
876
877 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
878 {
879         vmcs_writel(CR4_READ_SHADOW, cr4);
880         vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
881                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
882         vcpu->cr4 = cr4;
883 }
884
885 #ifdef CONFIG_X86_64
886
887 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
888 {
889         struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
890
891         vcpu->shadow_efer = efer;
892         if (efer & EFER_LMA) {
893                 vmcs_write32(VM_ENTRY_CONTROLS,
894                                      vmcs_read32(VM_ENTRY_CONTROLS) |
895                                      VM_ENTRY_CONTROLS_IA32E_MASK);
896                 msr->data = efer;
897
898         } else {
899                 vmcs_write32(VM_ENTRY_CONTROLS,
900                                      vmcs_read32(VM_ENTRY_CONTROLS) &
901                                      ~VM_ENTRY_CONTROLS_IA32E_MASK);
902
903                 msr->data = efer & ~EFER_LME;
904         }
905         setup_msrs(vcpu);
906 }
907
908 #endif
909
910 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
911 {
912         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
913
914         return vmcs_readl(sf->base);
915 }
916
917 static void vmx_get_segment(struct kvm_vcpu *vcpu,
918                             struct kvm_segment *var, int seg)
919 {
920         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
921         u32 ar;
922
923         var->base = vmcs_readl(sf->base);
924         var->limit = vmcs_read32(sf->limit);
925         var->selector = vmcs_read16(sf->selector);
926         ar = vmcs_read32(sf->ar_bytes);
927         if (ar & AR_UNUSABLE_MASK)
928                 ar = 0;
929         var->type = ar & 15;
930         var->s = (ar >> 4) & 1;
931         var->dpl = (ar >> 5) & 3;
932         var->present = (ar >> 7) & 1;
933         var->avl = (ar >> 12) & 1;
934         var->l = (ar >> 13) & 1;
935         var->db = (ar >> 14) & 1;
936         var->g = (ar >> 15) & 1;
937         var->unusable = (ar >> 16) & 1;
938 }
939
940 static void vmx_set_segment(struct kvm_vcpu *vcpu,
941                             struct kvm_segment *var, int seg)
942 {
943         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
944         u32 ar;
945
946         vmcs_writel(sf->base, var->base);
947         vmcs_write32(sf->limit, var->limit);
948         vmcs_write16(sf->selector, var->selector);
949         if (vcpu->rmode.active && var->s) {
950                 /*
951                  * Hack real-mode segments into vm86 compatibility.
952                  */
953                 if (var->base == 0xffff0000 && var->selector == 0xf000)
954                         vmcs_writel(sf->base, 0xf0000);
955                 ar = 0xf3;
956         } else if (var->unusable)
957                 ar = 1 << 16;
958         else {
959                 ar = var->type & 15;
960                 ar |= (var->s & 1) << 4;
961                 ar |= (var->dpl & 3) << 5;
962                 ar |= (var->present & 1) << 7;
963                 ar |= (var->avl & 1) << 12;
964                 ar |= (var->l & 1) << 13;
965                 ar |= (var->db & 1) << 14;
966                 ar |= (var->g & 1) << 15;
967         }
968         if (ar == 0) /* a 0 value means unusable */
969                 ar = AR_UNUSABLE_MASK;
970         vmcs_write32(sf->ar_bytes, ar);
971 }
972
973 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
974 {
975         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
976
977         *db = (ar >> 14) & 1;
978         *l = (ar >> 13) & 1;
979 }
980
981 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
982 {
983         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
984         dt->base = vmcs_readl(GUEST_IDTR_BASE);
985 }
986
987 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
988 {
989         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
990         vmcs_writel(GUEST_IDTR_BASE, dt->base);
991 }
992
993 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
994 {
995         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
996         dt->base = vmcs_readl(GUEST_GDTR_BASE);
997 }
998
999 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1000 {
1001         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1002         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1003 }
1004
1005 static int init_rmode_tss(struct kvm* kvm)
1006 {
1007         struct page *p1, *p2, *p3;
1008         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1009         char *page;
1010
1011         p1 = gfn_to_page(kvm, fn++);
1012         p2 = gfn_to_page(kvm, fn++);
1013         p3 = gfn_to_page(kvm, fn);
1014
1015         if (!p1 || !p2 || !p3) {
1016                 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
1017                 return 0;
1018         }
1019
1020         page = kmap_atomic(p1, KM_USER0);
1021         memset(page, 0, PAGE_SIZE);
1022         *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1023         kunmap_atomic(page, KM_USER0);
1024
1025         page = kmap_atomic(p2, KM_USER0);
1026         memset(page, 0, PAGE_SIZE);
1027         kunmap_atomic(page, KM_USER0);
1028
1029         page = kmap_atomic(p3, KM_USER0);
1030         memset(page, 0, PAGE_SIZE);
1031         *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
1032         kunmap_atomic(page, KM_USER0);
1033
1034         return 1;
1035 }
1036
1037 static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
1038 {
1039         u32 msr_high, msr_low;
1040
1041         rdmsr(msr, msr_low, msr_high);
1042
1043         val &= msr_high;
1044         val |= msr_low;
1045         vmcs_write32(vmcs_field, val);
1046 }
1047
1048 static void seg_setup(int seg)
1049 {
1050         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1051
1052         vmcs_write16(sf->selector, 0);
1053         vmcs_writel(sf->base, 0);
1054         vmcs_write32(sf->limit, 0xffff);
1055         vmcs_write32(sf->ar_bytes, 0x93);
1056 }
1057
1058 /*
1059  * Sets up the vmcs for emulated real mode.
1060  */
1061 static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
1062 {
1063         u32 host_sysenter_cs;
1064         u32 junk;
1065         unsigned long a;
1066         struct descriptor_table dt;
1067         int i;
1068         int ret = 0;
1069         extern asmlinkage void kvm_vmx_return(void);
1070
1071         if (!init_rmode_tss(vcpu->kvm)) {
1072                 ret = -ENOMEM;
1073                 goto out;
1074         }
1075
1076         memset(vcpu->regs, 0, sizeof(vcpu->regs));
1077         vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
1078         vcpu->cr8 = 0;
1079         vcpu->apic_base = 0xfee00000 |
1080                         /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
1081                         MSR_IA32_APICBASE_ENABLE;
1082
1083         fx_init(vcpu);
1084
1085         /*
1086          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1087          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
1088          */
1089         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1090         vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1091         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1092         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1093
1094         seg_setup(VCPU_SREG_DS);
1095         seg_setup(VCPU_SREG_ES);
1096         seg_setup(VCPU_SREG_FS);
1097         seg_setup(VCPU_SREG_GS);
1098         seg_setup(VCPU_SREG_SS);
1099
1100         vmcs_write16(GUEST_TR_SELECTOR, 0);
1101         vmcs_writel(GUEST_TR_BASE, 0);
1102         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1103         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1104
1105         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1106         vmcs_writel(GUEST_LDTR_BASE, 0);
1107         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1108         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1109
1110         vmcs_write32(GUEST_SYSENTER_CS, 0);
1111         vmcs_writel(GUEST_SYSENTER_ESP, 0);
1112         vmcs_writel(GUEST_SYSENTER_EIP, 0);
1113
1114         vmcs_writel(GUEST_RFLAGS, 0x02);
1115         vmcs_writel(GUEST_RIP, 0xfff0);
1116         vmcs_writel(GUEST_RSP, 0);
1117
1118         //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1119         vmcs_writel(GUEST_DR7, 0x400);
1120
1121         vmcs_writel(GUEST_GDTR_BASE, 0);
1122         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1123
1124         vmcs_writel(GUEST_IDTR_BASE, 0);
1125         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1126
1127         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1128         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1129         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1130
1131         /* I/O */
1132         vmcs_write64(IO_BITMAP_A, 0);
1133         vmcs_write64(IO_BITMAP_B, 0);
1134
1135         guest_write_tsc(0);
1136
1137         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1138
1139         /* Special registers */
1140         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1141
1142         /* Control */
1143         vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
1144                                PIN_BASED_VM_EXEC_CONTROL,
1145                                PIN_BASED_EXT_INTR_MASK   /* 20.6.1 */
1146                                | PIN_BASED_NMI_EXITING   /* 20.6.1 */
1147                         );
1148         vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
1149                                CPU_BASED_VM_EXEC_CONTROL,
1150                                CPU_BASED_HLT_EXITING         /* 20.6.2 */
1151                                | CPU_BASED_CR8_LOAD_EXITING    /* 20.6.2 */
1152                                | CPU_BASED_CR8_STORE_EXITING   /* 20.6.2 */
1153                                | CPU_BASED_UNCOND_IO_EXITING   /* 20.6.2 */
1154                                | CPU_BASED_MOV_DR_EXITING
1155                                | CPU_BASED_USE_TSC_OFFSETING   /* 21.3 */
1156                         );
1157
1158         vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
1159         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1160         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1161         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
1162
1163         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
1164         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
1165         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
1166
1167         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
1168         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1169         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1170         vmcs_write16(HOST_FS_SELECTOR, read_fs());    /* 22.2.4 */
1171         vmcs_write16(HOST_GS_SELECTOR, read_gs());    /* 22.2.4 */
1172         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1173 #ifdef CONFIG_X86_64
1174         rdmsrl(MSR_FS_BASE, a);
1175         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1176         rdmsrl(MSR_GS_BASE, a);
1177         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1178 #else
1179         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1180         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1181 #endif
1182
1183         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
1184
1185         get_idt(&dt);
1186         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
1187
1188
1189         vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
1190
1191         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1192         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1193         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1194         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
1195         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1196         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
1197
1198         for (i = 0; i < NR_VMX_MSR; ++i) {
1199                 u32 index = vmx_msr_index[i];
1200                 u32 data_low, data_high;
1201                 u64 data;
1202                 int j = vcpu->nmsrs;
1203
1204                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1205                         continue;
1206                 if (wrmsr_safe(index, data_low, data_high) < 0)
1207                         continue;
1208                 data = data_low | ((u64)data_high << 32);
1209                 vcpu->host_msrs[j].index = index;
1210                 vcpu->host_msrs[j].reserved = 0;
1211                 vcpu->host_msrs[j].data = data;
1212                 vcpu->guest_msrs[j] = vcpu->host_msrs[j];
1213 #ifdef CONFIG_X86_64
1214                 if (index == MSR_KERNEL_GS_BASE)
1215                         msr_offset_kernel_gs_base = j;
1216 #endif
1217                 ++vcpu->nmsrs;
1218         }
1219
1220         setup_msrs(vcpu);
1221
1222         vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
1223                                (HOST_IS_64 << 9));  /* 22.2,1, 20.7.1 */
1224
1225         /* 22.2.1, 20.8.1 */
1226         vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
1227                                VM_ENTRY_CONTROLS, 0);
1228         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
1229
1230 #ifdef CONFIG_X86_64
1231         vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1232         vmcs_writel(TPR_THRESHOLD, 0);
1233 #endif
1234
1235         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1236         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1237
1238         vcpu->cr0 = 0x60000010;
1239         vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
1240         vmx_set_cr4(vcpu, 0);
1241 #ifdef CONFIG_X86_64
1242         vmx_set_efer(vcpu, 0);
1243 #endif
1244
1245         return 0;
1246
1247 out:
1248         return ret;
1249 }
1250
1251 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1252 {
1253         u16 ent[2];
1254         u16 cs;
1255         u16 ip;
1256         unsigned long flags;
1257         unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1258         u16 sp =  vmcs_readl(GUEST_RSP);
1259         u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1260
1261         if (sp > ss_limit || sp < 6 ) {
1262                 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1263                             __FUNCTION__,
1264                             vmcs_readl(GUEST_RSP),
1265                             vmcs_readl(GUEST_SS_BASE),
1266                             vmcs_read32(GUEST_SS_LIMIT));
1267                 return;
1268         }
1269
1270         if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
1271                                                                 sizeof(ent)) {
1272                 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1273                 return;
1274         }
1275
1276         flags =  vmcs_readl(GUEST_RFLAGS);
1277         cs =  vmcs_readl(GUEST_CS_BASE) >> 4;
1278         ip =  vmcs_readl(GUEST_RIP);
1279
1280
1281         if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
1282             kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
1283             kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
1284                 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1285                 return;
1286         }
1287
1288         vmcs_writel(GUEST_RFLAGS, flags &
1289                     ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1290         vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1291         vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1292         vmcs_writel(GUEST_RIP, ent[0]);
1293         vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1294 }
1295
1296 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1297 {
1298         int word_index = __ffs(vcpu->irq_summary);
1299         int bit_index = __ffs(vcpu->irq_pending[word_index]);
1300         int irq = word_index * BITS_PER_LONG + bit_index;
1301
1302         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1303         if (!vcpu->irq_pending[word_index])
1304                 clear_bit(word_index, &vcpu->irq_summary);
1305
1306         if (vcpu->rmode.active) {
1307                 inject_rmode_irq(vcpu, irq);
1308                 return;
1309         }
1310         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1311                         irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1312 }
1313
1314
1315 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1316                                        struct kvm_run *kvm_run)
1317 {
1318         u32 cpu_based_vm_exec_control;
1319
1320         vcpu->interrupt_window_open =
1321                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1322                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1323
1324         if (vcpu->interrupt_window_open &&
1325             vcpu->irq_summary &&
1326             !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1327                 /*
1328                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1329                  */
1330                 kvm_do_inject_irq(vcpu);
1331
1332         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1333         if (!vcpu->interrupt_window_open &&
1334             (vcpu->irq_summary || kvm_run->request_interrupt_window))
1335                 /*
1336                  * Interrupts blocked.  Wait for unblock.
1337                  */
1338                 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1339         else
1340                 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1341         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1342 }
1343
1344 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1345 {
1346         struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1347
1348         set_debugreg(dbg->bp[0], 0);
1349         set_debugreg(dbg->bp[1], 1);
1350         set_debugreg(dbg->bp[2], 2);
1351         set_debugreg(dbg->bp[3], 3);
1352
1353         if (dbg->singlestep) {
1354                 unsigned long flags;
1355
1356                 flags = vmcs_readl(GUEST_RFLAGS);
1357                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1358                 vmcs_writel(GUEST_RFLAGS, flags);
1359         }
1360 }
1361
1362 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1363                                   int vec, u32 err_code)
1364 {
1365         if (!vcpu->rmode.active)
1366                 return 0;
1367
1368         if (vec == GP_VECTOR && err_code == 0)
1369                 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1370                         return 1;
1371         return 0;
1372 }
1373
1374 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1375 {
1376         u32 intr_info, error_code;
1377         unsigned long cr2, rip;
1378         u32 vect_info;
1379         enum emulation_result er;
1380         int r;
1381
1382         vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1383         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1384
1385         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1386                                                 !is_page_fault(intr_info)) {
1387                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1388                        "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1389         }
1390
1391         if (is_external_interrupt(vect_info)) {
1392                 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1393                 set_bit(irq, vcpu->irq_pending);
1394                 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1395         }
1396
1397         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1398                 asm ("int $2");
1399                 return 1;
1400         }
1401
1402         if (is_no_device(intr_info)) {
1403                 vcpu->fpu_active = 1;
1404                 vmcs_clear_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
1405                 if (!(vcpu->cr0 & CR0_TS_MASK))
1406                         vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
1407                 return 1;
1408         }
1409
1410         error_code = 0;
1411         rip = vmcs_readl(GUEST_RIP);
1412         if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1413                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1414         if (is_page_fault(intr_info)) {
1415                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1416
1417                 spin_lock(&vcpu->kvm->lock);
1418                 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1419                 if (r < 0) {
1420                         spin_unlock(&vcpu->kvm->lock);
1421                         return r;
1422                 }
1423                 if (!r) {
1424                         spin_unlock(&vcpu->kvm->lock);
1425                         return 1;
1426                 }
1427
1428                 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1429                 spin_unlock(&vcpu->kvm->lock);
1430
1431                 switch (er) {
1432                 case EMULATE_DONE:
1433                         return 1;
1434                 case EMULATE_DO_MMIO:
1435                         ++vcpu->stat.mmio_exits;
1436                         kvm_run->exit_reason = KVM_EXIT_MMIO;
1437                         return 0;
1438                  case EMULATE_FAIL:
1439                         vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1440                         break;
1441                 default:
1442                         BUG();
1443                 }
1444         }
1445
1446         if (vcpu->rmode.active &&
1447             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1448                                                                 error_code))
1449                 return 1;
1450
1451         if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1452                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1453                 return 0;
1454         }
1455         kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1456         kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1457         kvm_run->ex.error_code = error_code;
1458         return 0;
1459 }
1460
1461 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1462                                      struct kvm_run *kvm_run)
1463 {
1464         ++vcpu->stat.irq_exits;
1465         return 1;
1466 }
1467
1468 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1469 {
1470         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1471         return 0;
1472 }
1473
1474 static int get_io_count(struct kvm_vcpu *vcpu, unsigned long *count)
1475 {
1476         u64 inst;
1477         gva_t rip;
1478         int countr_size;
1479         int i, n;
1480
1481         if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
1482                 countr_size = 2;
1483         } else {
1484                 u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
1485
1486                 countr_size = (cs_ar & AR_L_MASK) ? 8:
1487                               (cs_ar & AR_DB_MASK) ? 4: 2;
1488         }
1489
1490         rip =  vmcs_readl(GUEST_RIP);
1491         if (countr_size != 8)
1492                 rip += vmcs_readl(GUEST_CS_BASE);
1493
1494         n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
1495
1496         for (i = 0; i < n; i++) {
1497                 switch (((u8*)&inst)[i]) {
1498                 case 0xf0:
1499                 case 0xf2:
1500                 case 0xf3:
1501                 case 0x2e:
1502                 case 0x36:
1503                 case 0x3e:
1504                 case 0x26:
1505                 case 0x64:
1506                 case 0x65:
1507                 case 0x66:
1508                         break;
1509                 case 0x67:
1510                         countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
1511                 default:
1512                         goto done;
1513                 }
1514         }
1515         return 0;
1516 done:
1517         countr_size *= 8;
1518         *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
1519         //printk("cx: %lx\n", vcpu->regs[VCPU_REGS_RCX]);
1520         return 1;
1521 }
1522
1523 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1524 {
1525         u64 exit_qualification;
1526         int size, down, in, string, rep;
1527         unsigned port;
1528         unsigned long count;
1529         gva_t address;
1530
1531         ++vcpu->stat.io_exits;
1532         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1533         in = (exit_qualification & 8) != 0;
1534         size = (exit_qualification & 7) + 1;
1535         string = (exit_qualification & 16) != 0;
1536         down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1537         count = 1;
1538         rep = (exit_qualification & 32) != 0;
1539         port = exit_qualification >> 16;
1540         address = 0;
1541         if (string) {
1542                 if (rep && !get_io_count(vcpu, &count))
1543                         return 1;
1544                 address = vmcs_readl(GUEST_LINEAR_ADDRESS);
1545         }
1546         return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
1547                              address, rep, port);
1548 }
1549
1550 static void
1551 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1552 {
1553         /*
1554          * Patch in the VMCALL instruction:
1555          */
1556         hypercall[0] = 0x0f;
1557         hypercall[1] = 0x01;
1558         hypercall[2] = 0xc1;
1559         hypercall[3] = 0xc3;
1560 }
1561
1562 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1563 {
1564         u64 exit_qualification;
1565         int cr;
1566         int reg;
1567
1568         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1569         cr = exit_qualification & 15;
1570         reg = (exit_qualification >> 8) & 15;
1571         switch ((exit_qualification >> 4) & 3) {
1572         case 0: /* mov to cr */
1573                 switch (cr) {
1574                 case 0:
1575                         vcpu_load_rsp_rip(vcpu);
1576                         set_cr0(vcpu, vcpu->regs[reg]);
1577                         skip_emulated_instruction(vcpu);
1578                         return 1;
1579                 case 3:
1580                         vcpu_load_rsp_rip(vcpu);
1581                         set_cr3(vcpu, vcpu->regs[reg]);
1582                         skip_emulated_instruction(vcpu);
1583                         return 1;
1584                 case 4:
1585                         vcpu_load_rsp_rip(vcpu);
1586                         set_cr4(vcpu, vcpu->regs[reg]);
1587                         skip_emulated_instruction(vcpu);
1588                         return 1;
1589                 case 8:
1590                         vcpu_load_rsp_rip(vcpu);
1591                         set_cr8(vcpu, vcpu->regs[reg]);
1592                         skip_emulated_instruction(vcpu);
1593                         return 1;
1594                 };
1595                 break;
1596         case 2: /* clts */
1597                 vcpu_load_rsp_rip(vcpu);
1598                 vcpu->fpu_active = 1;
1599                 vmcs_clear_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
1600                 vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
1601                 vcpu->cr0 &= ~CR0_TS_MASK;
1602                 vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
1603                 skip_emulated_instruction(vcpu);
1604                 return 1;
1605         case 1: /*mov from cr*/
1606                 switch (cr) {
1607                 case 3:
1608                         vcpu_load_rsp_rip(vcpu);
1609                         vcpu->regs[reg] = vcpu->cr3;
1610                         vcpu_put_rsp_rip(vcpu);
1611                         skip_emulated_instruction(vcpu);
1612                         return 1;
1613                 case 8:
1614                         vcpu_load_rsp_rip(vcpu);
1615                         vcpu->regs[reg] = vcpu->cr8;
1616                         vcpu_put_rsp_rip(vcpu);
1617                         skip_emulated_instruction(vcpu);
1618                         return 1;
1619                 }
1620                 break;
1621         case 3: /* lmsw */
1622                 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1623
1624                 skip_emulated_instruction(vcpu);
1625                 return 1;
1626         default:
1627                 break;
1628         }
1629         kvm_run->exit_reason = 0;
1630         printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
1631                (int)(exit_qualification >> 4) & 3, cr);
1632         return 0;
1633 }
1634
1635 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1636 {
1637         u64 exit_qualification;
1638         unsigned long val;
1639         int dr, reg;
1640
1641         /*
1642          * FIXME: this code assumes the host is debugging the guest.
1643          *        need to deal with guest debugging itself too.
1644          */
1645         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1646         dr = exit_qualification & 7;
1647         reg = (exit_qualification >> 8) & 15;
1648         vcpu_load_rsp_rip(vcpu);
1649         if (exit_qualification & 16) {
1650                 /* mov from dr */
1651                 switch (dr) {
1652                 case 6:
1653                         val = 0xffff0ff0;
1654                         break;
1655                 case 7:
1656                         val = 0x400;
1657                         break;
1658                 default:
1659                         val = 0;
1660                 }
1661                 vcpu->regs[reg] = val;
1662         } else {
1663                 /* mov to dr */
1664         }
1665         vcpu_put_rsp_rip(vcpu);
1666         skip_emulated_instruction(vcpu);
1667         return 1;
1668 }
1669
1670 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1671 {
1672         kvm_emulate_cpuid(vcpu);
1673         return 1;
1674 }
1675
1676 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1677 {
1678         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1679         u64 data;
1680
1681         if (vmx_get_msr(vcpu, ecx, &data)) {
1682                 vmx_inject_gp(vcpu, 0);
1683                 return 1;
1684         }
1685
1686         /* FIXME: handling of bits 32:63 of rax, rdx */
1687         vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1688         vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1689         skip_emulated_instruction(vcpu);
1690         return 1;
1691 }
1692
1693 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1694 {
1695         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1696         u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1697                 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1698
1699         if (vmx_set_msr(vcpu, ecx, data) != 0) {
1700                 vmx_inject_gp(vcpu, 0);
1701                 return 1;
1702         }
1703
1704         skip_emulated_instruction(vcpu);
1705         return 1;
1706 }
1707
1708 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1709                               struct kvm_run *kvm_run)
1710 {
1711         kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
1712         kvm_run->cr8 = vcpu->cr8;
1713         kvm_run->apic_base = vcpu->apic_base;
1714         kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1715                                                   vcpu->irq_summary == 0);
1716 }
1717
1718 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1719                                    struct kvm_run *kvm_run)
1720 {
1721         /*
1722          * If the user space waits to inject interrupts, exit as soon as
1723          * possible
1724          */
1725         if (kvm_run->request_interrupt_window &&
1726             !vcpu->irq_summary) {
1727                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1728                 ++vcpu->stat.irq_window_exits;
1729                 return 0;
1730         }
1731         return 1;
1732 }
1733
1734 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1735 {
1736         skip_emulated_instruction(vcpu);
1737         if (vcpu->irq_summary)
1738                 return 1;
1739
1740         kvm_run->exit_reason = KVM_EXIT_HLT;
1741         ++vcpu->stat.halt_exits;
1742         return 0;
1743 }
1744
1745 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1746 {
1747         skip_emulated_instruction(vcpu);
1748         return kvm_hypercall(vcpu, kvm_run);
1749 }
1750
1751 /*
1752  * The exit handlers return 1 if the exit was handled fully and guest execution
1753  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
1754  * to be done to userspace and return 0.
1755  */
1756 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
1757                                       struct kvm_run *kvm_run) = {
1758         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
1759         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
1760         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
1761         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
1762         [EXIT_REASON_CR_ACCESS]               = handle_cr,
1763         [EXIT_REASON_DR_ACCESS]               = handle_dr,
1764         [EXIT_REASON_CPUID]                   = handle_cpuid,
1765         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
1766         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
1767         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
1768         [EXIT_REASON_HLT]                     = handle_halt,
1769         [EXIT_REASON_VMCALL]                  = handle_vmcall,
1770 };
1771
1772 static const int kvm_vmx_max_exit_handlers =
1773         sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
1774
1775 /*
1776  * The guest has exited.  See if we can fix it or if we need userspace
1777  * assistance.
1778  */
1779 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1780 {
1781         u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1782         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
1783
1784         if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
1785                                 exit_reason != EXIT_REASON_EXCEPTION_NMI )
1786                 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
1787                        "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
1788         if (exit_reason < kvm_vmx_max_exit_handlers
1789             && kvm_vmx_exit_handlers[exit_reason])
1790                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
1791         else {
1792                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1793                 kvm_run->hw.hardware_exit_reason = exit_reason;
1794         }
1795         return 0;
1796 }
1797
1798 /*
1799  * Check if userspace requested an interrupt window, and that the
1800  * interrupt window is open.
1801  *
1802  * No need to exit to userspace if we already have an interrupt queued.
1803  */
1804 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1805                                           struct kvm_run *kvm_run)
1806 {
1807         return (!vcpu->irq_summary &&
1808                 kvm_run->request_interrupt_window &&
1809                 vcpu->interrupt_window_open &&
1810                 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
1811 }
1812
1813 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1814 {
1815         u8 fail;
1816         u16 fs_sel, gs_sel, ldt_sel;
1817         int fs_gs_ldt_reload_needed;
1818         int r;
1819
1820 again:
1821         /*
1822          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1823          * allow segment selectors with cpl > 0 or ti == 1.
1824          */
1825         fs_sel = read_fs();
1826         gs_sel = read_gs();
1827         ldt_sel = read_ldt();
1828         fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
1829         if (!fs_gs_ldt_reload_needed) {
1830                 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1831                 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1832         } else {
1833                 vmcs_write16(HOST_FS_SELECTOR, 0);
1834                 vmcs_write16(HOST_GS_SELECTOR, 0);
1835         }
1836
1837 #ifdef CONFIG_X86_64
1838         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1839         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1840 #else
1841         vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
1842         vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
1843 #endif
1844
1845         if (!vcpu->mmio_read_completed)
1846                 do_interrupt_requests(vcpu, kvm_run);
1847
1848         if (vcpu->guest_debug.enabled)
1849                 kvm_guest_debug_pre(vcpu);
1850
1851         kvm_load_guest_fpu(vcpu);
1852
1853         /*
1854          * Loading guest fpu may have cleared host cr0.ts
1855          */
1856         vmcs_writel(HOST_CR0, read_cr0());
1857
1858 #ifdef CONFIG_X86_64
1859         if (is_long_mode(vcpu)) {
1860                 save_msrs(vcpu->host_msrs + msr_offset_kernel_gs_base, 1);
1861                 load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1862         }
1863 #endif
1864
1865         asm (
1866                 /* Store host registers */
1867                 "pushf \n\t"
1868 #ifdef CONFIG_X86_64
1869                 "push %%rax; push %%rbx; push %%rdx;"
1870                 "push %%rsi; push %%rdi; push %%rbp;"
1871                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
1872                 "push %%r12; push %%r13; push %%r14; push %%r15;"
1873                 "push %%rcx \n\t"
1874                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1875 #else
1876                 "pusha; push %%ecx \n\t"
1877                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1878 #endif
1879                 /* Check if vmlaunch of vmresume is needed */
1880                 "cmp $0, %1 \n\t"
1881                 /* Load guest registers.  Don't clobber flags. */
1882 #ifdef CONFIG_X86_64
1883                 "mov %c[cr2](%3), %%rax \n\t"
1884                 "mov %%rax, %%cr2 \n\t"
1885                 "mov %c[rax](%3), %%rax \n\t"
1886                 "mov %c[rbx](%3), %%rbx \n\t"
1887                 "mov %c[rdx](%3), %%rdx \n\t"
1888                 "mov %c[rsi](%3), %%rsi \n\t"
1889                 "mov %c[rdi](%3), %%rdi \n\t"
1890                 "mov %c[rbp](%3), %%rbp \n\t"
1891                 "mov %c[r8](%3),  %%r8  \n\t"
1892                 "mov %c[r9](%3),  %%r9  \n\t"
1893                 "mov %c[r10](%3), %%r10 \n\t"
1894                 "mov %c[r11](%3), %%r11 \n\t"
1895                 "mov %c[r12](%3), %%r12 \n\t"
1896                 "mov %c[r13](%3), %%r13 \n\t"
1897                 "mov %c[r14](%3), %%r14 \n\t"
1898                 "mov %c[r15](%3), %%r15 \n\t"
1899                 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
1900 #else
1901                 "mov %c[cr2](%3), %%eax \n\t"
1902                 "mov %%eax,   %%cr2 \n\t"
1903                 "mov %c[rax](%3), %%eax \n\t"
1904                 "mov %c[rbx](%3), %%ebx \n\t"
1905                 "mov %c[rdx](%3), %%edx \n\t"
1906                 "mov %c[rsi](%3), %%esi \n\t"
1907                 "mov %c[rdi](%3), %%edi \n\t"
1908                 "mov %c[rbp](%3), %%ebp \n\t"
1909                 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
1910 #endif
1911                 /* Enter guest mode */
1912                 "jne launched \n\t"
1913                 ASM_VMX_VMLAUNCH "\n\t"
1914                 "jmp kvm_vmx_return \n\t"
1915                 "launched: " ASM_VMX_VMRESUME "\n\t"
1916                 ".globl kvm_vmx_return \n\t"
1917                 "kvm_vmx_return: "
1918                 /* Save guest registers, load host registers, keep flags */
1919 #ifdef CONFIG_X86_64
1920                 "xchg %3,     (%%rsp) \n\t"
1921                 "mov %%rax, %c[rax](%3) \n\t"
1922                 "mov %%rbx, %c[rbx](%3) \n\t"
1923                 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
1924                 "mov %%rdx, %c[rdx](%3) \n\t"
1925                 "mov %%rsi, %c[rsi](%3) \n\t"
1926                 "mov %%rdi, %c[rdi](%3) \n\t"
1927                 "mov %%rbp, %c[rbp](%3) \n\t"
1928                 "mov %%r8,  %c[r8](%3) \n\t"
1929                 "mov %%r9,  %c[r9](%3) \n\t"
1930                 "mov %%r10, %c[r10](%3) \n\t"
1931                 "mov %%r11, %c[r11](%3) \n\t"
1932                 "mov %%r12, %c[r12](%3) \n\t"
1933                 "mov %%r13, %c[r13](%3) \n\t"
1934                 "mov %%r14, %c[r14](%3) \n\t"
1935                 "mov %%r15, %c[r15](%3) \n\t"
1936                 "mov %%cr2, %%rax   \n\t"
1937                 "mov %%rax, %c[cr2](%3) \n\t"
1938                 "mov (%%rsp), %3 \n\t"
1939
1940                 "pop  %%rcx; pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
1941                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
1942                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
1943                 "pop  %%rdx; pop  %%rbx; pop  %%rax \n\t"
1944 #else
1945                 "xchg %3, (%%esp) \n\t"
1946                 "mov %%eax, %c[rax](%3) \n\t"
1947                 "mov %%ebx, %c[rbx](%3) \n\t"
1948                 "pushl (%%esp); popl %c[rcx](%3) \n\t"
1949                 "mov %%edx, %c[rdx](%3) \n\t"
1950                 "mov %%esi, %c[rsi](%3) \n\t"
1951                 "mov %%edi, %c[rdi](%3) \n\t"
1952                 "mov %%ebp, %c[rbp](%3) \n\t"
1953                 "mov %%cr2, %%eax  \n\t"
1954                 "mov %%eax, %c[cr2](%3) \n\t"
1955                 "mov (%%esp), %3 \n\t"
1956
1957                 "pop %%ecx; popa \n\t"
1958 #endif
1959                 "setbe %0 \n\t"
1960                 "popf \n\t"
1961               : "=q" (fail)
1962               : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
1963                 "c"(vcpu),
1964                 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
1965                 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1966                 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1967                 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1968                 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1969                 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1970                 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
1971 #ifdef CONFIG_X86_64
1972                 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1973                 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1974                 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1975                 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1976                 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1977                 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1978                 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1979                 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
1980 #endif
1981                 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
1982               : "cc", "memory" );
1983
1984         /*
1985          * Reload segment selectors ASAP. (it's needed for a functional
1986          * kernel: x86 relies on having __KERNEL_PDA in %fs and x86_64
1987          * relies on having 0 in %gs for the CPU PDA to work.)
1988          */
1989         if (fs_gs_ldt_reload_needed) {
1990                 load_ldt(ldt_sel);
1991                 load_fs(fs_sel);
1992                 /*
1993                  * If we have to reload gs, we must take care to
1994                  * preserve our gs base.
1995                  */
1996                 local_irq_disable();
1997                 load_gs(gs_sel);
1998 #ifdef CONFIG_X86_64
1999                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
2000 #endif
2001                 local_irq_enable();
2002
2003                 reload_tss();
2004         }
2005         ++vcpu->stat.exits;
2006
2007 #ifdef CONFIG_X86_64
2008         if (is_long_mode(vcpu)) {
2009                 save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
2010                 load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
2011         }
2012 #endif
2013
2014         vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2015
2016         asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2017
2018         if (fail) {
2019                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2020                 kvm_run->fail_entry.hardware_entry_failure_reason
2021                         = vmcs_read32(VM_INSTRUCTION_ERROR);
2022                 r = 0;
2023         } else {
2024                 /*
2025                  * Profile KVM exit RIPs:
2026                  */
2027                 if (unlikely(prof_on == KVM_PROFILING))
2028                         profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
2029
2030                 vcpu->launched = 1;
2031                 r = kvm_handle_exit(kvm_run, vcpu);
2032                 if (r > 0) {
2033                         /* Give scheduler a change to reschedule. */
2034                         if (signal_pending(current)) {
2035                                 ++vcpu->stat.signal_exits;
2036                                 post_kvm_run_save(vcpu, kvm_run);
2037                                 kvm_run->exit_reason = KVM_EXIT_INTR;
2038                                 return -EINTR;
2039                         }
2040
2041                         if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2042                                 ++vcpu->stat.request_irq_exits;
2043                                 post_kvm_run_save(vcpu, kvm_run);
2044                                 kvm_run->exit_reason = KVM_EXIT_INTR;
2045                                 return -EINTR;
2046                         }
2047
2048                         kvm_resched(vcpu);
2049                         goto again;
2050                 }
2051         }
2052
2053         post_kvm_run_save(vcpu, kvm_run);
2054         return r;
2055 }
2056
2057 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2058 {
2059         vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
2060 }
2061
2062 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
2063                                   unsigned long addr,
2064                                   u32 err_code)
2065 {
2066         u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2067
2068         ++vcpu->stat.pf_guest;
2069
2070         if (is_page_fault(vect_info)) {
2071                 printk(KERN_DEBUG "inject_page_fault: "
2072                        "double fault 0x%lx @ 0x%lx\n",
2073                        addr, vmcs_readl(GUEST_RIP));
2074                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
2075                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2076                              DF_VECTOR |
2077                              INTR_TYPE_EXCEPTION |
2078                              INTR_INFO_DELIEVER_CODE_MASK |
2079                              INTR_INFO_VALID_MASK);
2080                 return;
2081         }
2082         vcpu->cr2 = addr;
2083         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
2084         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2085                      PF_VECTOR |
2086                      INTR_TYPE_EXCEPTION |
2087                      INTR_INFO_DELIEVER_CODE_MASK |
2088                      INTR_INFO_VALID_MASK);
2089
2090 }
2091
2092 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2093 {
2094         if (vcpu->vmcs) {
2095                 on_each_cpu(__vcpu_clear, vcpu, 0, 1);
2096                 free_vmcs(vcpu->vmcs);
2097                 vcpu->vmcs = NULL;
2098         }
2099 }
2100
2101 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2102 {
2103         vmx_free_vmcs(vcpu);
2104 }
2105
2106 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
2107 {
2108         struct vmcs *vmcs;
2109
2110         vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2111         if (!vcpu->guest_msrs)
2112                 return -ENOMEM;
2113
2114         vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2115         if (!vcpu->host_msrs)
2116                 goto out_free_guest_msrs;
2117
2118         vmcs = alloc_vmcs();
2119         if (!vmcs)
2120                 goto out_free_msrs;
2121
2122         vmcs_clear(vmcs);
2123         vcpu->vmcs = vmcs;
2124         vcpu->launched = 0;
2125         vcpu->fpu_active = 1;
2126
2127         return 0;
2128
2129 out_free_msrs:
2130         kfree(vcpu->host_msrs);
2131         vcpu->host_msrs = NULL;
2132
2133 out_free_guest_msrs:
2134         kfree(vcpu->guest_msrs);
2135         vcpu->guest_msrs = NULL;
2136
2137         return -ENOMEM;
2138 }
2139
2140 static struct kvm_arch_ops vmx_arch_ops = {
2141         .cpu_has_kvm_support = cpu_has_kvm_support,
2142         .disabled_by_bios = vmx_disabled_by_bios,
2143         .hardware_setup = hardware_setup,
2144         .hardware_unsetup = hardware_unsetup,
2145         .hardware_enable = hardware_enable,
2146         .hardware_disable = hardware_disable,
2147
2148         .vcpu_create = vmx_create_vcpu,
2149         .vcpu_free = vmx_free_vcpu,
2150
2151         .vcpu_load = vmx_vcpu_load,
2152         .vcpu_put = vmx_vcpu_put,
2153         .vcpu_decache = vmx_vcpu_decache,
2154
2155         .set_guest_debug = set_guest_debug,
2156         .get_msr = vmx_get_msr,
2157         .set_msr = vmx_set_msr,
2158         .get_segment_base = vmx_get_segment_base,
2159         .get_segment = vmx_get_segment,
2160         .set_segment = vmx_set_segment,
2161         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2162         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2163         .set_cr0 = vmx_set_cr0,
2164         .set_cr3 = vmx_set_cr3,
2165         .set_cr4 = vmx_set_cr4,
2166 #ifdef CONFIG_X86_64
2167         .set_efer = vmx_set_efer,
2168 #endif
2169         .get_idt = vmx_get_idt,
2170         .set_idt = vmx_set_idt,
2171         .get_gdt = vmx_get_gdt,
2172         .set_gdt = vmx_set_gdt,
2173         .cache_regs = vcpu_load_rsp_rip,
2174         .decache_regs = vcpu_put_rsp_rip,
2175         .get_rflags = vmx_get_rflags,
2176         .set_rflags = vmx_set_rflags,
2177
2178         .tlb_flush = vmx_flush_tlb,
2179         .inject_page_fault = vmx_inject_page_fault,
2180
2181         .inject_gp = vmx_inject_gp,
2182
2183         .run = vmx_vcpu_run,
2184         .skip_emulated_instruction = skip_emulated_instruction,
2185         .vcpu_setup = vmx_vcpu_setup,
2186         .patch_hypercall = vmx_patch_hypercall,
2187 };
2188
2189 static int __init vmx_init(void)
2190 {
2191         return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
2192 }
2193
2194 static void __exit vmx_exit(void)
2195 {
2196         kvm_exit_arch();
2197 }
2198
2199 module_init(vmx_init)
2200 module_exit(vmx_exit)