2 * Network device driver for the BMAC ethernet controller on
3 * Apple Powermacs. Assumes it's under a DBDMA controller.
5 * Copyright (C) 1998 Randy Gobbel.
7 * May 1999, Al Viro: proper release of /proc/net/bmac entry, switched to
8 * dynamic procfs inode.
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/netdevice.h>
13 #include <linux/etherdevice.h>
14 #include <linux/delay.h>
15 #include <linux/string.h>
16 #include <linux/timer.h>
17 #include <linux/proc_fs.h>
18 #include <linux/init.h>
19 #include <linux/spinlock.h>
20 #include <linux/crc32.h>
21 #include <linux/bitrev.h>
23 #include <asm/dbdma.h>
26 #include <asm/pgtable.h>
27 #include <asm/machdep.h>
28 #include <asm/pmac_feature.h>
29 #include <asm/macio.h>
34 #define trunc_page(x) ((void *)(((unsigned long)(x)) & ~((unsigned long)(PAGE_SIZE - 1))))
35 #define round_page(x) trunc_page(((unsigned long)(x)) + ((unsigned long)(PAGE_SIZE - 1)))
38 * CRC polynomial - used in working out multicast filter bits.
40 #define ENET_CRCPOLY 0x04c11db7
42 /* switch to use multicast code lifted from sunhme driver */
43 #define SUNHME_MULTICAST
47 #define MAX_TX_ACTIVE 1
49 #define ETHERMINPACKET 64
51 #define RX_BUFLEN (ETHERMTU + 14 + ETHERCRC + 2)
52 #define TX_TIMEOUT HZ /* 1 second */
54 /* Bits in transmit DMA status */
55 #define TX_DMA_ERR 0x80
60 /* volatile struct bmac *bmac; */
61 struct sk_buff_head *queue;
62 volatile struct dbdma_regs __iomem *tx_dma;
64 volatile struct dbdma_regs __iomem *rx_dma;
66 volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */
67 volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */
68 struct macio_dev *mdev;
70 struct sk_buff *rx_bufs[N_RX_RING];
73 struct sk_buff *tx_bufs[N_TX_RING];
76 unsigned char tx_fullup;
77 struct net_device_stats stats;
78 struct timer_list tx_timeout;
82 unsigned short hash_use_count[64];
83 unsigned short hash_table_mask[4];
87 #if 0 /* Move that to ethtool */
89 typedef struct bmac_reg_entry {
91 unsigned short reg_offset;
94 #define N_REG_ENTRIES 31
96 static bmac_reg_entry_t reg_entries[N_REG_ENTRIES] = {
98 {"MEMDATAHI", MEMDATAHI},
99 {"MEMDATALO", MEMDATALO},
132 static unsigned char *bmac_emergency_rxbuf;
135 * Number of bytes of private data per BMAC: allow enough for
136 * the rx and tx dma commands plus a branch dma command each,
137 * and another 16 bytes to allow us to align the dma command
138 * buffers on a 16 byte boundary.
140 #define PRIV_BYTES (sizeof(struct bmac_data) \
141 + (N_RX_RING + N_TX_RING + 4) * sizeof(struct dbdma_cmd) \
142 + sizeof(struct sk_buff_head))
144 static int bmac_open(struct net_device *dev);
145 static int bmac_close(struct net_device *dev);
146 static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev);
147 static struct net_device_stats *bmac_stats(struct net_device *dev);
148 static void bmac_set_multicast(struct net_device *dev);
149 static void bmac_reset_and_enable(struct net_device *dev);
150 static void bmac_start_chip(struct net_device *dev);
151 static void bmac_init_chip(struct net_device *dev);
152 static void bmac_init_registers(struct net_device *dev);
153 static void bmac_enable_and_reset_chip(struct net_device *dev);
154 static int bmac_set_address(struct net_device *dev, void *addr);
155 static irqreturn_t bmac_misc_intr(int irq, void *dev_id);
156 static irqreturn_t bmac_txdma_intr(int irq, void *dev_id);
157 static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id);
158 static void bmac_set_timeout(struct net_device *dev);
159 static void bmac_tx_timeout(unsigned long data);
160 static int bmac_output(struct sk_buff *skb, struct net_device *dev);
161 static void bmac_start(struct net_device *dev);
163 #define DBDMA_SET(x) ( ((x) | (x) << 16) )
164 #define DBDMA_CLEAR(x) ( (x) << 16)
167 dbdma_st32(volatile __u32 __iomem *a, unsigned long x)
169 __asm__ volatile( "stwbrx %0,0,%1" : : "r" (x), "r" (a) : "memory");
173 static inline unsigned long
174 dbdma_ld32(volatile __u32 __iomem *a)
177 __asm__ volatile ("lwbrx %0,0,%1" : "=r" (swap) : "r" (a));
182 dbdma_continue(volatile struct dbdma_regs __iomem *dmap)
184 dbdma_st32(&dmap->control,
185 DBDMA_SET(RUN|WAKE) | DBDMA_CLEAR(PAUSE|DEAD));
190 dbdma_reset(volatile struct dbdma_regs __iomem *dmap)
192 dbdma_st32(&dmap->control,
193 DBDMA_CLEAR(ACTIVE|DEAD|WAKE|FLUSH|PAUSE|RUN));
195 while (dbdma_ld32(&dmap->status) & RUN)
200 dbdma_setcmd(volatile struct dbdma_cmd *cp,
201 unsigned short cmd, unsigned count, unsigned long addr,
202 unsigned long cmd_dep)
204 out_le16(&cp->command, cmd);
205 out_le16(&cp->req_count, count);
206 out_le32(&cp->phy_addr, addr);
207 out_le32(&cp->cmd_dep, cmd_dep);
208 out_le16(&cp->xfer_status, 0);
209 out_le16(&cp->res_count, 0);
213 void bmwrite(struct net_device *dev, unsigned long reg_offset, unsigned data )
215 out_le16((void __iomem *)dev->base_addr + reg_offset, data);
220 unsigned short bmread(struct net_device *dev, unsigned long reg_offset )
222 return in_le16((void __iomem *)dev->base_addr + reg_offset);
226 bmac_enable_and_reset_chip(struct net_device *dev)
228 struct bmac_data *bp = netdev_priv(dev);
229 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
230 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
237 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 1);
240 #define MIFDELAY udelay(10)
243 bmac_mif_readbits(struct net_device *dev, int nb)
245 unsigned int val = 0;
248 bmwrite(dev, MIFCSR, 0);
250 if (bmread(dev, MIFCSR) & 8)
252 bmwrite(dev, MIFCSR, 1);
255 bmwrite(dev, MIFCSR, 0);
257 bmwrite(dev, MIFCSR, 1);
263 bmac_mif_writebits(struct net_device *dev, unsigned int val, int nb)
268 b = (val & (1 << nb))? 6: 4;
269 bmwrite(dev, MIFCSR, b);
271 bmwrite(dev, MIFCSR, b|1);
277 bmac_mif_read(struct net_device *dev, unsigned int addr)
281 bmwrite(dev, MIFCSR, 4);
283 bmac_mif_writebits(dev, ~0U, 32);
284 bmac_mif_writebits(dev, 6, 4);
285 bmac_mif_writebits(dev, addr, 10);
286 bmwrite(dev, MIFCSR, 2);
288 bmwrite(dev, MIFCSR, 1);
290 val = bmac_mif_readbits(dev, 17);
291 bmwrite(dev, MIFCSR, 4);
297 bmac_mif_write(struct net_device *dev, unsigned int addr, unsigned int val)
299 bmwrite(dev, MIFCSR, 4);
301 bmac_mif_writebits(dev, ~0U, 32);
302 bmac_mif_writebits(dev, 5, 4);
303 bmac_mif_writebits(dev, addr, 10);
304 bmac_mif_writebits(dev, 2, 2);
305 bmac_mif_writebits(dev, val, 16);
306 bmac_mif_writebits(dev, 3, 2);
310 bmac_init_registers(struct net_device *dev)
312 struct bmac_data *bp = netdev_priv(dev);
313 volatile unsigned short regValue;
314 unsigned short *pWord16;
317 /* XXDEBUG(("bmac: enter init_registers\n")); */
319 bmwrite(dev, RXRST, RxResetValue);
320 bmwrite(dev, TXRST, TxResetBit);
326 regValue = bmread(dev, TXRST); /* wait for reset to clear..acknowledge */
327 } while ((regValue & TxResetBit) && i > 0);
329 if (!bp->is_bmac_plus) {
330 regValue = bmread(dev, XCVRIF);
331 regValue |= ClkBit | SerialMode | COLActiveLow;
332 bmwrite(dev, XCVRIF, regValue);
336 bmwrite(dev, RSEED, (unsigned short)0x1968);
338 regValue = bmread(dev, XIFC);
339 regValue |= TxOutputEnable;
340 bmwrite(dev, XIFC, regValue);
344 /* set collision counters to 0 */
345 bmwrite(dev, NCCNT, 0);
346 bmwrite(dev, NTCNT, 0);
347 bmwrite(dev, EXCNT, 0);
348 bmwrite(dev, LTCNT, 0);
350 /* set rx counters to 0 */
351 bmwrite(dev, FRCNT, 0);
352 bmwrite(dev, LECNT, 0);
353 bmwrite(dev, AECNT, 0);
354 bmwrite(dev, FECNT, 0);
355 bmwrite(dev, RXCV, 0);
357 /* set tx fifo information */
358 bmwrite(dev, TXTH, 4); /* 4 octets before tx starts */
360 bmwrite(dev, TXFIFOCSR, 0); /* first disable txFIFO */
361 bmwrite(dev, TXFIFOCSR, TxFIFOEnable );
363 /* set rx fifo information */
364 bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */
365 bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
367 //bmwrite(dev, TXCFG, TxMACEnable); /* TxNeverGiveUp maybe later */
368 bmread(dev, STATUS); /* read it just to clear it */
370 /* zero out the chip Hash Filter registers */
371 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
372 bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
373 bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
374 bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
375 bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
377 pWord16 = (unsigned short *)dev->dev_addr;
378 bmwrite(dev, MADD0, *pWord16++);
379 bmwrite(dev, MADD1, *pWord16++);
380 bmwrite(dev, MADD2, *pWord16);
382 bmwrite(dev, RXCFG, RxCRCNoStrip | RxHashFilterEnable | RxRejectOwnPackets);
384 bmwrite(dev, INTDISABLE, EnableNormal);
391 bmac_disable_interrupts(struct net_device *dev)
393 bmwrite(dev, INTDISABLE, DisableAll);
397 bmac_enable_interrupts(struct net_device *dev)
399 bmwrite(dev, INTDISABLE, EnableNormal);
405 bmac_start_chip(struct net_device *dev)
407 struct bmac_data *bp = netdev_priv(dev);
408 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
409 unsigned short oldConfig;
411 /* enable rx dma channel */
414 oldConfig = bmread(dev, TXCFG);
415 bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
417 /* turn on rx plus any other bits already on (promiscuous possibly) */
418 oldConfig = bmread(dev, RXCFG);
419 bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
424 bmac_init_phy(struct net_device *dev)
427 struct bmac_data *bp = netdev_priv(dev);
429 printk(KERN_DEBUG "phy registers:");
430 for (addr = 0; addr < 32; ++addr) {
432 printk("\n" KERN_DEBUG);
433 printk(" %.4x", bmac_mif_read(dev, addr));
436 if (bp->is_bmac_plus) {
437 unsigned int capable, ctrl;
439 ctrl = bmac_mif_read(dev, 0);
440 capable = ((bmac_mif_read(dev, 1) & 0xf800) >> 6) | 1;
441 if (bmac_mif_read(dev, 4) != capable
442 || (ctrl & 0x1000) == 0) {
443 bmac_mif_write(dev, 4, capable);
444 bmac_mif_write(dev, 0, 0x1200);
446 bmac_mif_write(dev, 0, 0x1000);
450 static void bmac_init_chip(struct net_device *dev)
453 bmac_init_registers(dev);
457 static int bmac_suspend(struct macio_dev *mdev, pm_message_t state)
459 struct net_device* dev = macio_get_drvdata(mdev);
460 struct bmac_data *bp = netdev_priv(dev);
462 unsigned short config;
465 netif_device_detach(dev);
466 /* prolly should wait for dma to finish & turn off the chip */
467 spin_lock_irqsave(&bp->lock, flags);
468 if (bp->timeout_active) {
469 del_timer(&bp->tx_timeout);
470 bp->timeout_active = 0;
472 disable_irq(dev->irq);
473 disable_irq(bp->tx_dma_intr);
474 disable_irq(bp->rx_dma_intr);
476 spin_unlock_irqrestore(&bp->lock, flags);
478 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
479 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
481 config = bmread(dev, RXCFG);
482 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
483 config = bmread(dev, TXCFG);
484 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
485 bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
486 /* disable rx and tx dma */
487 st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
488 st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
489 /* free some skb's */
490 for (i=0; i<N_RX_RING; i++) {
491 if (bp->rx_bufs[i] != NULL) {
492 dev_kfree_skb(bp->rx_bufs[i]);
493 bp->rx_bufs[i] = NULL;
496 for (i = 0; i<N_TX_RING; i++) {
497 if (bp->tx_bufs[i] != NULL) {
498 dev_kfree_skb(bp->tx_bufs[i]);
499 bp->tx_bufs[i] = NULL;
503 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
507 static int bmac_resume(struct macio_dev *mdev)
509 struct net_device* dev = macio_get_drvdata(mdev);
510 struct bmac_data *bp = netdev_priv(dev);
512 /* see if this is enough */
514 bmac_reset_and_enable(dev);
516 enable_irq(dev->irq);
517 enable_irq(bp->tx_dma_intr);
518 enable_irq(bp->rx_dma_intr);
519 netif_device_attach(dev);
523 #endif /* CONFIG_PM */
525 static int bmac_set_address(struct net_device *dev, void *addr)
527 struct bmac_data *bp = netdev_priv(dev);
528 unsigned char *p = addr;
529 unsigned short *pWord16;
533 XXDEBUG(("bmac: enter set_address\n"));
534 spin_lock_irqsave(&bp->lock, flags);
536 for (i = 0; i < 6; ++i) {
537 dev->dev_addr[i] = p[i];
539 /* load up the hardware address */
540 pWord16 = (unsigned short *)dev->dev_addr;
541 bmwrite(dev, MADD0, *pWord16++);
542 bmwrite(dev, MADD1, *pWord16++);
543 bmwrite(dev, MADD2, *pWord16);
545 spin_unlock_irqrestore(&bp->lock, flags);
546 XXDEBUG(("bmac: exit set_address\n"));
550 static inline void bmac_set_timeout(struct net_device *dev)
552 struct bmac_data *bp = netdev_priv(dev);
555 spin_lock_irqsave(&bp->lock, flags);
556 if (bp->timeout_active)
557 del_timer(&bp->tx_timeout);
558 bp->tx_timeout.expires = jiffies + TX_TIMEOUT;
559 bp->tx_timeout.function = bmac_tx_timeout;
560 bp->tx_timeout.data = (unsigned long) dev;
561 add_timer(&bp->tx_timeout);
562 bp->timeout_active = 1;
563 spin_unlock_irqrestore(&bp->lock, flags);
567 bmac_construct_xmt(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
575 baddr = virt_to_bus(vaddr);
577 dbdma_setcmd(cp, (OUTPUT_LAST | INTR_ALWAYS | WAIT_IFCLR), len, baddr, 0);
581 bmac_construct_rxbuff(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
583 unsigned char *addr = skb? skb->data: bmac_emergency_rxbuf;
585 dbdma_setcmd(cp, (INPUT_LAST | INTR_ALWAYS), RX_BUFLEN,
586 virt_to_bus(addr), 0);
590 bmac_init_tx_ring(struct bmac_data *bp)
592 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
594 memset((char *)bp->tx_cmds, 0, (N_TX_RING+1) * sizeof(struct dbdma_cmd));
600 /* put a branch at the end of the tx command list */
601 dbdma_setcmd(&bp->tx_cmds[N_TX_RING],
602 (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->tx_cmds));
606 out_le32(&td->wait_sel, 0x00200020);
607 out_le32(&td->cmdptr, virt_to_bus(bp->tx_cmds));
611 bmac_init_rx_ring(struct bmac_data *bp)
613 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
617 /* initialize list of sk_buffs for receiving and set up recv dma */
618 memset((char *)bp->rx_cmds, 0,
619 (N_RX_RING + 1) * sizeof(struct dbdma_cmd));
620 for (i = 0; i < N_RX_RING; i++) {
621 if ((skb = bp->rx_bufs[i]) == NULL) {
622 bp->rx_bufs[i] = skb = dev_alloc_skb(RX_BUFLEN+2);
626 bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
632 /* Put a branch back to the beginning of the receive command list */
633 dbdma_setcmd(&bp->rx_cmds[N_RX_RING],
634 (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->rx_cmds));
638 out_le32(&rd->cmdptr, virt_to_bus(bp->rx_cmds));
644 static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev)
646 struct bmac_data *bp = netdev_priv(dev);
647 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
650 /* see if there's a free slot in the tx ring */
651 /* XXDEBUG(("bmac_xmit_start: empty=%d fill=%d\n", */
652 /* bp->tx_empty, bp->tx_fill)); */
656 if (i == bp->tx_empty) {
657 netif_stop_queue(dev);
659 XXDEBUG(("bmac_transmit_packet: tx ring full\n"));
660 return -1; /* can't take it at the moment */
663 dbdma_setcmd(&bp->tx_cmds[i], DBDMA_STOP, 0, 0, 0);
665 bmac_construct_xmt(skb, &bp->tx_cmds[bp->tx_fill]);
667 bp->tx_bufs[bp->tx_fill] = skb;
670 bp->stats.tx_bytes += skb->len;
677 static int rxintcount;
679 static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id)
681 struct net_device *dev = (struct net_device *) dev_id;
682 struct bmac_data *bp = netdev_priv(dev);
683 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
684 volatile struct dbdma_cmd *cp;
687 unsigned int residual;
691 spin_lock_irqsave(&bp->lock, flags);
693 if (++rxintcount < 10) {
694 XXDEBUG(("bmac_rxdma_intr\n"));
701 cp = &bp->rx_cmds[i];
702 stat = ld_le16(&cp->xfer_status);
703 residual = ld_le16(&cp->res_count);
704 if ((stat & ACTIVE) == 0)
706 nb = RX_BUFLEN - residual - 2;
707 if (nb < (ETHERMINPACKET - ETHERCRC)) {
709 bp->stats.rx_length_errors++;
710 bp->stats.rx_errors++;
712 skb = bp->rx_bufs[i];
713 bp->rx_bufs[i] = NULL;
718 skb->protocol = eth_type_trans(skb, dev);
720 dev->last_rx = jiffies;
721 ++bp->stats.rx_packets;
722 bp->stats.rx_bytes += nb;
724 ++bp->stats.rx_dropped;
726 dev->last_rx = jiffies;
727 if ((skb = bp->rx_bufs[i]) == NULL) {
728 bp->rx_bufs[i] = skb = dev_alloc_skb(RX_BUFLEN+2);
730 skb_reserve(bp->rx_bufs[i], 2);
732 bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
733 st_le16(&cp->res_count, 0);
734 st_le16(&cp->xfer_status, 0);
736 if (++i >= N_RX_RING) i = 0;
745 spin_unlock_irqrestore(&bp->lock, flags);
747 if (rxintcount < 10) {
748 XXDEBUG(("bmac_rxdma_intr done\n"));
753 static int txintcount;
755 static irqreturn_t bmac_txdma_intr(int irq, void *dev_id)
757 struct net_device *dev = (struct net_device *) dev_id;
758 struct bmac_data *bp = netdev_priv(dev);
759 volatile struct dbdma_cmd *cp;
763 spin_lock_irqsave(&bp->lock, flags);
765 if (txintcount++ < 10) {
766 XXDEBUG(("bmac_txdma_intr\n"));
769 /* del_timer(&bp->tx_timeout); */
770 /* bp->timeout_active = 0; */
773 cp = &bp->tx_cmds[bp->tx_empty];
774 stat = ld_le16(&cp->xfer_status);
775 if (txintcount < 10) {
776 XXDEBUG(("bmac_txdma_xfer_stat=%#0x\n", stat));
778 if (!(stat & ACTIVE)) {
780 * status field might not have been filled by DBDMA
782 if (cp == bus_to_virt(in_le32(&bp->tx_dma->cmdptr)))
786 if (bp->tx_bufs[bp->tx_empty]) {
787 ++bp->stats.tx_packets;
788 dev_kfree_skb_irq(bp->tx_bufs[bp->tx_empty]);
790 bp->tx_bufs[bp->tx_empty] = NULL;
792 netif_wake_queue(dev);
793 if (++bp->tx_empty >= N_TX_RING)
795 if (bp->tx_empty == bp->tx_fill)
799 spin_unlock_irqrestore(&bp->lock, flags);
801 if (txintcount < 10) {
802 XXDEBUG(("bmac_txdma_intr done->bmac_start\n"));
809 static struct net_device_stats *bmac_stats(struct net_device *dev)
811 struct bmac_data *p = netdev_priv(dev);
816 #ifndef SUNHME_MULTICAST
817 /* Real fast bit-reversal algorithm, 6-bit values */
818 static int reverse6[64] = {
819 0x0,0x20,0x10,0x30,0x8,0x28,0x18,0x38,
820 0x4,0x24,0x14,0x34,0xc,0x2c,0x1c,0x3c,
821 0x2,0x22,0x12,0x32,0xa,0x2a,0x1a,0x3a,
822 0x6,0x26,0x16,0x36,0xe,0x2e,0x1e,0x3e,
823 0x1,0x21,0x11,0x31,0x9,0x29,0x19,0x39,
824 0x5,0x25,0x15,0x35,0xd,0x2d,0x1d,0x3d,
825 0x3,0x23,0x13,0x33,0xb,0x2b,0x1b,0x3b,
826 0x7,0x27,0x17,0x37,0xf,0x2f,0x1f,0x3f
830 crc416(unsigned int curval, unsigned short nxtval)
832 register unsigned int counter, cur = curval, next = nxtval;
833 register int high_crc_set, low_data_set;
836 next = ((next & 0x00FF) << 8) | (next >> 8);
838 /* Compute bit-by-bit */
839 for (counter = 0; counter < 16; ++counter) {
840 /* is high CRC bit set? */
841 if ((cur & 0x80000000) == 0) high_crc_set = 0;
842 else high_crc_set = 1;
846 if ((next & 0x0001) == 0) low_data_set = 0;
847 else low_data_set = 1;
852 if (high_crc_set ^ low_data_set) cur = cur ^ ENET_CRCPOLY;
858 bmac_crc(unsigned short *address)
862 XXDEBUG(("bmac_crc: addr=%#04x, %#04x, %#04x\n", *address, address[1], address[2]));
863 newcrc = crc416(0xffffffff, *address); /* address bits 47 - 32 */
864 newcrc = crc416(newcrc, address[1]); /* address bits 31 - 16 */
865 newcrc = crc416(newcrc, address[2]); /* address bits 15 - 0 */
871 * Add requested mcast addr to BMac's hash table filter.
876 bmac_addhash(struct bmac_data *bp, unsigned char *addr)
881 if (!(*addr)) return;
882 crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
883 crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */
884 if (bp->hash_use_count[crc]++) return; /* This bit is already set */
886 mask = (unsigned char)1 << mask;
887 bp->hash_use_count[crc/16] |= mask;
891 bmac_removehash(struct bmac_data *bp, unsigned char *addr)
896 /* Now, delete the address from the filter copy, as indicated */
897 crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
898 crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */
899 if (bp->hash_use_count[crc] == 0) return; /* That bit wasn't in use! */
900 if (--bp->hash_use_count[crc]) return; /* That bit is still in use */
902 mask = ((unsigned char)1 << mask) ^ 0xffff; /* To turn off bit */
903 bp->hash_table_mask[crc/16] &= mask;
907 * Sync the adapter with the software copy of the multicast mask
908 * (logical address filter).
912 bmac_rx_off(struct net_device *dev)
914 unsigned short rx_cfg;
916 rx_cfg = bmread(dev, RXCFG);
917 rx_cfg &= ~RxMACEnable;
918 bmwrite(dev, RXCFG, rx_cfg);
920 rx_cfg = bmread(dev, RXCFG);
921 } while (rx_cfg & RxMACEnable);
925 bmac_rx_on(struct net_device *dev, int hash_enable, int promisc_enable)
927 unsigned short rx_cfg;
929 rx_cfg = bmread(dev, RXCFG);
930 rx_cfg |= RxMACEnable;
931 if (hash_enable) rx_cfg |= RxHashFilterEnable;
932 else rx_cfg &= ~RxHashFilterEnable;
933 if (promisc_enable) rx_cfg |= RxPromiscEnable;
934 else rx_cfg &= ~RxPromiscEnable;
935 bmwrite(dev, RXRST, RxResetValue);
936 bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */
937 bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
938 bmwrite(dev, RXCFG, rx_cfg );
943 bmac_update_hash_table_mask(struct net_device *dev, struct bmac_data *bp)
945 bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
946 bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
947 bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
948 bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
953 bmac_add_multi(struct net_device *dev,
954 struct bmac_data *bp, unsigned char *addr)
956 /* XXDEBUG(("bmac: enter bmac_add_multi\n")); */
957 bmac_addhash(bp, addr);
959 bmac_update_hash_table_mask(dev, bp);
960 bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
961 /* XXDEBUG(("bmac: exit bmac_add_multi\n")); */
965 bmac_remove_multi(struct net_device *dev,
966 struct bmac_data *bp, unsigned char *addr)
968 bmac_removehash(bp, addr);
970 bmac_update_hash_table_mask(dev, bp);
971 bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
975 /* Set or clear the multicast filter for this adaptor.
976 num_addrs == -1 Promiscuous mode, receive all packets
977 num_addrs == 0 Normal mode, clear multicast list
978 num_addrs > 0 Multicast mode, receive normal and MC packets, and do
979 best-effort filtering.
981 static void bmac_set_multicast(struct net_device *dev)
983 struct dev_mc_list *dmi;
984 struct bmac_data *bp = netdev_priv(dev);
985 int num_addrs = dev->mc_count;
986 unsigned short rx_cfg;
992 XXDEBUG(("bmac: enter bmac_set_multicast, n_addrs=%d\n", num_addrs));
994 if((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
995 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0xffff;
996 bmac_update_hash_table_mask(dev, bp);
997 rx_cfg = bmac_rx_on(dev, 1, 0);
998 XXDEBUG(("bmac: all multi, rx_cfg=%#08x\n"));
999 } else if ((dev->flags & IFF_PROMISC) || (num_addrs < 0)) {
1000 rx_cfg = bmread(dev, RXCFG);
1001 rx_cfg |= RxPromiscEnable;
1002 bmwrite(dev, RXCFG, rx_cfg);
1003 rx_cfg = bmac_rx_on(dev, 0, 1);
1004 XXDEBUG(("bmac: promisc mode enabled, rx_cfg=%#08x\n", rx_cfg));
1006 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
1007 for (i=0; i<64; i++) bp->hash_use_count[i] = 0;
1008 if (num_addrs == 0) {
1009 rx_cfg = bmac_rx_on(dev, 0, 0);
1010 XXDEBUG(("bmac: multi disabled, rx_cfg=%#08x\n", rx_cfg));
1012 for (dmi=dev->mc_list; dmi!=NULL; dmi=dmi->next)
1013 bmac_addhash(bp, dmi->dmi_addr);
1014 bmac_update_hash_table_mask(dev, bp);
1015 rx_cfg = bmac_rx_on(dev, 1, 0);
1016 XXDEBUG(("bmac: multi enabled, rx_cfg=%#08x\n", rx_cfg));
1019 /* XXDEBUG(("bmac: exit bmac_set_multicast\n")); */
1021 #else /* ifdef SUNHME_MULTICAST */
1023 /* The version of set_multicast below was lifted from sunhme.c */
1025 static void bmac_set_multicast(struct net_device *dev)
1027 struct dev_mc_list *dmi = dev->mc_list;
1030 unsigned short rx_cfg;
1033 if((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
1034 bmwrite(dev, BHASH0, 0xffff);
1035 bmwrite(dev, BHASH1, 0xffff);
1036 bmwrite(dev, BHASH2, 0xffff);
1037 bmwrite(dev, BHASH3, 0xffff);
1038 } else if(dev->flags & IFF_PROMISC) {
1039 rx_cfg = bmread(dev, RXCFG);
1040 rx_cfg |= RxPromiscEnable;
1041 bmwrite(dev, RXCFG, rx_cfg);
1045 rx_cfg = bmread(dev, RXCFG);
1046 rx_cfg &= ~RxPromiscEnable;
1047 bmwrite(dev, RXCFG, rx_cfg);
1049 for(i = 0; i < 4; i++) hash_table[i] = 0;
1051 for(i = 0; i < dev->mc_count; i++) {
1052 addrs = dmi->dmi_addr;
1058 crc = ether_crc_le(6, addrs);
1060 hash_table[crc >> 4] |= 1 << (crc & 0xf);
1062 bmwrite(dev, BHASH0, hash_table[0]);
1063 bmwrite(dev, BHASH1, hash_table[1]);
1064 bmwrite(dev, BHASH2, hash_table[2]);
1065 bmwrite(dev, BHASH3, hash_table[3]);
1068 #endif /* SUNHME_MULTICAST */
1070 static int miscintcount;
1072 static irqreturn_t bmac_misc_intr(int irq, void *dev_id)
1074 struct net_device *dev = (struct net_device *) dev_id;
1075 struct bmac_data *bp = netdev_priv(dev);
1076 unsigned int status = bmread(dev, STATUS);
1077 if (miscintcount++ < 10) {
1078 XXDEBUG(("bmac_misc_intr\n"));
1080 /* XXDEBUG(("bmac_misc_intr, status=%#08x\n", status)); */
1081 /* bmac_txdma_intr_inner(irq, dev_id); */
1082 /* if (status & FrameReceived) bp->stats.rx_dropped++; */
1083 if (status & RxErrorMask) bp->stats.rx_errors++;
1084 if (status & RxCRCCntExp) bp->stats.rx_crc_errors++;
1085 if (status & RxLenCntExp) bp->stats.rx_length_errors++;
1086 if (status & RxOverFlow) bp->stats.rx_over_errors++;
1087 if (status & RxAlignCntExp) bp->stats.rx_frame_errors++;
1089 /* if (status & FrameSent) bp->stats.tx_dropped++; */
1090 if (status & TxErrorMask) bp->stats.tx_errors++;
1091 if (status & TxUnderrun) bp->stats.tx_fifo_errors++;
1092 if (status & TxNormalCollExp) bp->stats.collisions++;
1097 * Procedure for reading EEPROM
1099 #define SROMAddressLength 5
1100 #define DataInOn 0x0008
1101 #define DataInOff 0x0000
1103 #define ChipSelect 0x0001
1104 #define SDIShiftCount 3
1105 #define SD0ShiftCount 2
1106 #define DelayValue 1000 /* number of microseconds */
1107 #define SROMStartOffset 10 /* this is in words */
1108 #define SROMReadCount 3 /* number of words to read from SROM */
1109 #define SROMAddressBits 6
1110 #define EnetAddressOffset 20
1112 static unsigned char
1113 bmac_clock_out_bit(struct net_device *dev)
1115 unsigned short data;
1118 bmwrite(dev, SROMCSR, ChipSelect | Clk);
1121 data = bmread(dev, SROMCSR);
1123 val = (data >> SD0ShiftCount) & 1;
1125 bmwrite(dev, SROMCSR, ChipSelect);
1132 bmac_clock_in_bit(struct net_device *dev, unsigned int val)
1134 unsigned short data;
1136 if (val != 0 && val != 1) return;
1138 data = (val << SDIShiftCount);
1139 bmwrite(dev, SROMCSR, data | ChipSelect );
1142 bmwrite(dev, SROMCSR, data | ChipSelect | Clk );
1145 bmwrite(dev, SROMCSR, data | ChipSelect);
1150 reset_and_select_srom(struct net_device *dev)
1153 bmwrite(dev, SROMCSR, 0);
1156 /* send it the read command (110) */
1157 bmac_clock_in_bit(dev, 1);
1158 bmac_clock_in_bit(dev, 1);
1159 bmac_clock_in_bit(dev, 0);
1162 static unsigned short
1163 read_srom(struct net_device *dev, unsigned int addr, unsigned int addr_len)
1165 unsigned short data, val;
1168 /* send out the address we want to read from */
1169 for (i = 0; i < addr_len; i++) {
1170 val = addr >> (addr_len-i-1);
1171 bmac_clock_in_bit(dev, val & 1);
1174 /* Now read in the 16-bit data */
1176 for (i = 0; i < 16; i++) {
1177 val = bmac_clock_out_bit(dev);
1181 bmwrite(dev, SROMCSR, 0);
1187 * It looks like Cogent and SMC use different methods for calculating
1188 * checksums. What a pain..
1192 bmac_verify_checksum(struct net_device *dev)
1194 unsigned short data, storedCS;
1196 reset_and_select_srom(dev);
1197 data = read_srom(dev, 3, SROMAddressBits);
1198 storedCS = ((data >> 8) & 0x0ff) | ((data << 8) & 0xff00);
1205 bmac_get_station_address(struct net_device *dev, unsigned char *ea)
1208 unsigned short data;
1210 for (i = 0; i < 6; i++)
1212 reset_and_select_srom(dev);
1213 data = read_srom(dev, i + EnetAddressOffset/2, SROMAddressBits);
1214 ea[2*i] = bitrev8(data & 0x0ff);
1215 ea[2*i+1] = bitrev8((data >> 8) & 0x0ff);
1219 static void bmac_reset_and_enable(struct net_device *dev)
1221 struct bmac_data *bp = netdev_priv(dev);
1222 unsigned long flags;
1223 struct sk_buff *skb;
1224 unsigned char *data;
1226 spin_lock_irqsave(&bp->lock, flags);
1227 bmac_enable_and_reset_chip(dev);
1228 bmac_init_tx_ring(bp);
1229 bmac_init_rx_ring(bp);
1230 bmac_init_chip(dev);
1231 bmac_start_chip(dev);
1232 bmwrite(dev, INTDISABLE, EnableNormal);
1236 * It seems that the bmac can't receive until it's transmitted
1237 * a packet. So we give it a dummy packet to transmit.
1239 skb = dev_alloc_skb(ETHERMINPACKET);
1241 data = skb_put(skb, ETHERMINPACKET);
1242 memset(data, 0, ETHERMINPACKET);
1243 memcpy(data, dev->dev_addr, 6);
1244 memcpy(data+6, dev->dev_addr, 6);
1245 bmac_transmit_packet(skb, dev);
1247 spin_unlock_irqrestore(&bp->lock, flags);
1250 static int __devinit bmac_probe(struct macio_dev *mdev, const struct of_device_id *match)
1253 struct bmac_data *bp;
1254 const unsigned char *prop_addr;
1255 unsigned char addr[6];
1256 struct net_device *dev;
1257 int is_bmac_plus = ((int)match->data) != 0;
1259 if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
1260 printk(KERN_ERR "BMAC: can't use, need 3 addrs and 3 intrs\n");
1263 prop_addr = of_get_property(macio_get_of_node(mdev),
1264 "mac-address", NULL);
1265 if (prop_addr == NULL) {
1266 prop_addr = of_get_property(macio_get_of_node(mdev),
1267 "local-mac-address", NULL);
1268 if (prop_addr == NULL) {
1269 printk(KERN_ERR "BMAC: Can't get mac-address\n");
1273 memcpy(addr, prop_addr, sizeof(addr));
1275 dev = alloc_etherdev(PRIV_BYTES);
1277 printk(KERN_ERR "BMAC: alloc_etherdev failed, out of memory\n");
1281 bp = netdev_priv(dev);
1282 SET_MODULE_OWNER(dev);
1283 SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
1284 macio_set_drvdata(mdev, dev);
1287 spin_lock_init(&bp->lock);
1289 if (macio_request_resources(mdev, "bmac")) {
1290 printk(KERN_ERR "BMAC: can't request IO resource !\n");
1294 dev->base_addr = (unsigned long)
1295 ioremap(macio_resource_start(mdev, 0), macio_resource_len(mdev, 0));
1296 if (dev->base_addr == 0)
1299 dev->irq = macio_irq(mdev, 0);
1301 bmac_enable_and_reset_chip(dev);
1302 bmwrite(dev, INTDISABLE, DisableAll);
1304 rev = addr[0] == 0 && addr[1] == 0xA0;
1305 for (j = 0; j < 6; ++j)
1306 dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
1308 /* Enable chip without interrupts for now */
1309 bmac_enable_and_reset_chip(dev);
1310 bmwrite(dev, INTDISABLE, DisableAll);
1312 dev->open = bmac_open;
1313 dev->stop = bmac_close;
1314 dev->hard_start_xmit = bmac_output;
1315 dev->get_stats = bmac_stats;
1316 dev->set_multicast_list = bmac_set_multicast;
1317 dev->set_mac_address = bmac_set_address;
1319 bmac_get_station_address(dev, addr);
1320 if (bmac_verify_checksum(dev) != 0)
1321 goto err_out_iounmap;
1323 bp->is_bmac_plus = is_bmac_plus;
1324 bp->tx_dma = ioremap(macio_resource_start(mdev, 1), macio_resource_len(mdev, 1));
1326 goto err_out_iounmap;
1327 bp->tx_dma_intr = macio_irq(mdev, 1);
1328 bp->rx_dma = ioremap(macio_resource_start(mdev, 2), macio_resource_len(mdev, 2));
1330 goto err_out_iounmap_tx;
1331 bp->rx_dma_intr = macio_irq(mdev, 2);
1333 bp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(bp + 1);
1334 bp->rx_cmds = bp->tx_cmds + N_TX_RING + 1;
1336 bp->queue = (struct sk_buff_head *)(bp->rx_cmds + N_RX_RING + 1);
1337 skb_queue_head_init(bp->queue);
1339 init_timer(&bp->tx_timeout);
1341 ret = request_irq(dev->irq, bmac_misc_intr, 0, "BMAC-misc", dev);
1343 printk(KERN_ERR "BMAC: can't get irq %d\n", dev->irq);
1344 goto err_out_iounmap_rx;
1346 ret = request_irq(bp->tx_dma_intr, bmac_txdma_intr, 0, "BMAC-txdma", dev);
1348 printk(KERN_ERR "BMAC: can't get irq %d\n", bp->tx_dma_intr);
1351 ret = request_irq(bp->rx_dma_intr, bmac_rxdma_intr, 0, "BMAC-rxdma", dev);
1353 printk(KERN_ERR "BMAC: can't get irq %d\n", bp->rx_dma_intr);
1357 /* Mask chip interrupts and disable chip, will be
1358 * re-enabled on open()
1360 disable_irq(dev->irq);
1361 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1363 if (register_netdev(dev) != 0) {
1364 printk(KERN_ERR "BMAC: Ethernet registration failed\n");
1368 printk(KERN_INFO "%s: BMAC%s at", dev->name, (is_bmac_plus? "+": ""));
1369 for (j = 0; j < 6; ++j)
1370 printk("%c%.2x", (j? ':': ' '), dev->dev_addr[j]);
1371 XXDEBUG((", base_addr=%#0lx", dev->base_addr));
1377 free_irq(bp->rx_dma_intr, dev);
1379 free_irq(bp->tx_dma_intr, dev);
1381 free_irq(dev->irq, dev);
1383 iounmap(bp->rx_dma);
1385 iounmap(bp->tx_dma);
1387 iounmap((void __iomem *)dev->base_addr);
1389 macio_release_resources(mdev);
1391 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1397 static int bmac_open(struct net_device *dev)
1399 struct bmac_data *bp = netdev_priv(dev);
1400 /* XXDEBUG(("bmac: enter open\n")); */
1401 /* reset the chip */
1403 bmac_reset_and_enable(dev);
1404 enable_irq(dev->irq);
1408 static int bmac_close(struct net_device *dev)
1410 struct bmac_data *bp = netdev_priv(dev);
1411 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1412 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1413 unsigned short config;
1418 /* disable rx and tx */
1419 config = bmread(dev, RXCFG);
1420 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1422 config = bmread(dev, TXCFG);
1423 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1425 bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
1427 /* disable rx and tx dma */
1428 st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
1429 st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
1431 /* free some skb's */
1432 XXDEBUG(("bmac: free rx bufs\n"));
1433 for (i=0; i<N_RX_RING; i++) {
1434 if (bp->rx_bufs[i] != NULL) {
1435 dev_kfree_skb(bp->rx_bufs[i]);
1436 bp->rx_bufs[i] = NULL;
1439 XXDEBUG(("bmac: free tx bufs\n"));
1440 for (i = 0; i<N_TX_RING; i++) {
1441 if (bp->tx_bufs[i] != NULL) {
1442 dev_kfree_skb(bp->tx_bufs[i]);
1443 bp->tx_bufs[i] = NULL;
1446 XXDEBUG(("bmac: all bufs freed\n"));
1449 disable_irq(dev->irq);
1450 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1456 bmac_start(struct net_device *dev)
1458 struct bmac_data *bp = netdev_priv(dev);
1460 struct sk_buff *skb;
1461 unsigned long flags;
1466 spin_lock_irqsave(&bp->lock, flags);
1468 i = bp->tx_fill + 1;
1471 if (i == bp->tx_empty)
1473 skb = skb_dequeue(bp->queue);
1476 bmac_transmit_packet(skb, dev);
1478 spin_unlock_irqrestore(&bp->lock, flags);
1482 bmac_output(struct sk_buff *skb, struct net_device *dev)
1484 struct bmac_data *bp = netdev_priv(dev);
1485 skb_queue_tail(bp->queue, skb);
1490 static void bmac_tx_timeout(unsigned long data)
1492 struct net_device *dev = (struct net_device *) data;
1493 struct bmac_data *bp = netdev_priv(dev);
1494 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1495 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1496 volatile struct dbdma_cmd *cp;
1497 unsigned long flags;
1498 unsigned short config, oldConfig;
1501 XXDEBUG(("bmac: tx_timeout called\n"));
1502 spin_lock_irqsave(&bp->lock, flags);
1503 bp->timeout_active = 0;
1505 /* update various counters */
1506 /* bmac_handle_misc_intrs(bp, 0); */
1508 cp = &bp->tx_cmds[bp->tx_empty];
1509 /* XXDEBUG((KERN_DEBUG "bmac: tx dmastat=%x %x runt=%d pr=%x fs=%x fc=%x\n", */
1510 /* ld_le32(&td->status), ld_le16(&cp->xfer_status), bp->tx_bad_runt, */
1511 /* mb->pr, mb->xmtfs, mb->fifofc)); */
1513 /* turn off both tx and rx and reset the chip */
1514 config = bmread(dev, RXCFG);
1515 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1516 config = bmread(dev, TXCFG);
1517 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1518 out_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1519 printk(KERN_ERR "bmac: transmit timeout - resetting\n");
1520 bmac_enable_and_reset_chip(dev);
1522 /* restart rx dma */
1523 cp = bus_to_virt(ld_le32(&rd->cmdptr));
1524 out_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1525 out_le16(&cp->xfer_status, 0);
1526 out_le32(&rd->cmdptr, virt_to_bus(cp));
1527 out_le32(&rd->control, DBDMA_SET(RUN|WAKE));
1529 /* fix up the transmit side */
1530 XXDEBUG((KERN_DEBUG "bmac: tx empty=%d fill=%d fullup=%d\n",
1531 bp->tx_empty, bp->tx_fill, bp->tx_fullup));
1533 ++bp->stats.tx_errors;
1534 if (i != bp->tx_fill) {
1535 dev_kfree_skb(bp->tx_bufs[i]);
1536 bp->tx_bufs[i] = NULL;
1537 if (++i >= N_TX_RING) i = 0;
1541 netif_wake_queue(dev);
1542 if (i != bp->tx_fill) {
1543 cp = &bp->tx_cmds[i];
1544 out_le16(&cp->xfer_status, 0);
1545 out_le16(&cp->command, OUTPUT_LAST);
1546 out_le32(&td->cmdptr, virt_to_bus(cp));
1547 out_le32(&td->control, DBDMA_SET(RUN));
1548 /* bmac_set_timeout(dev); */
1549 XXDEBUG((KERN_DEBUG "bmac: starting %d\n", i));
1552 /* turn it back on */
1553 oldConfig = bmread(dev, RXCFG);
1554 bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
1555 oldConfig = bmread(dev, TXCFG);
1556 bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
1558 spin_unlock_irqrestore(&bp->lock, flags);
1562 static void dump_dbdma(volatile struct dbdma_cmd *cp,int count)
1566 for (i=0;i< count;i++) {
1569 printk("dbdma req 0x%x addr 0x%x baddr 0x%x xfer/res 0x%x\n",
1581 bmac_proc_info(char *buffer, char **start, off_t offset, int length)
1588 if (bmac_devs == NULL)
1591 len += sprintf(buffer, "BMAC counters & registers\n");
1593 for (i = 0; i<N_REG_ENTRIES; i++) {
1594 len += sprintf(buffer + len, "%s: %#08x\n",
1595 reg_entries[i].name,
1596 bmread(bmac_devs, reg_entries[i].reg_offset));
1604 if (pos > offset+length) break;
1607 *start = buffer + (offset - begin);
1608 len -= (offset - begin);
1610 if (len > length) len = length;
1616 static int __devexit bmac_remove(struct macio_dev *mdev)
1618 struct net_device *dev = macio_get_drvdata(mdev);
1619 struct bmac_data *bp = netdev_priv(dev);
1621 unregister_netdev(dev);
1623 free_irq(dev->irq, dev);
1624 free_irq(bp->tx_dma_intr, dev);
1625 free_irq(bp->rx_dma_intr, dev);
1627 iounmap((void __iomem *)dev->base_addr);
1628 iounmap(bp->tx_dma);
1629 iounmap(bp->rx_dma);
1631 macio_release_resources(mdev);
1638 static struct of_device_id bmac_match[] =
1646 .compatible = "bmac+",
1651 MODULE_DEVICE_TABLE (of, bmac_match);
1653 static struct macio_driver bmac_driver =
1656 .match_table = bmac_match,
1657 .probe = bmac_probe,
1658 .remove = bmac_remove,
1660 .suspend = bmac_suspend,
1661 .resume = bmac_resume,
1666 static int __init bmac_init(void)
1668 if (bmac_emergency_rxbuf == NULL) {
1669 bmac_emergency_rxbuf = kmalloc(RX_BUFLEN, GFP_KERNEL);
1670 if (bmac_emergency_rxbuf == NULL) {
1671 printk(KERN_ERR "BMAC: can't allocate emergency RX buffer\n");
1676 return macio_register_driver(&bmac_driver);
1679 static void __exit bmac_exit(void)
1681 macio_unregister_driver(&bmac_driver);
1683 kfree(bmac_emergency_rxbuf);
1684 bmac_emergency_rxbuf = NULL;
1687 MODULE_AUTHOR("Randy Gobbel/Paul Mackerras");
1688 MODULE_DESCRIPTION("PowerMac BMAC ethernet driver.");
1689 MODULE_LICENSE("GPL");
1691 module_init(bmac_init);
1692 module_exit(bmac_exit);