Merge branch 'master'
[linux-2.6] / drivers / net / sb1250-mac.c
1 /*
2  * Copyright (C) 2001,2002,2003 Broadcom Corporation
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  *
19  * This driver is designed for the Broadcom SiByte SOC built-in
20  * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
21  */
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/string.h>
25 #include <linux/timer.h>
26 #include <linux/errno.h>
27 #include <linux/ioport.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/init.h>
34 #include <linux/config.h>
35 #include <linux/bitops.h>
36 #include <asm/processor.h>              /* Processor type for cache alignment. */
37 #include <asm/io.h>
38 #include <asm/cache.h>
39
40 /* This is only here until the firmware is ready.  In that case,
41    the firmware leaves the ethernet address in the register for us. */
42 #ifdef CONFIG_SIBYTE_STANDALONE
43 #define SBMAC_ETH0_HWADDR "40:00:00:00:01:00"
44 #define SBMAC_ETH1_HWADDR "40:00:00:00:01:01"
45 #define SBMAC_ETH2_HWADDR "40:00:00:00:01:02"
46 #endif
47
48
49 /* These identify the driver base version and may not be removed. */
50 #if 0
51 static char version1[] __devinitdata =
52 "sb1250-mac.c:1.00 1/11/2001 Written by Mitch Lichtenberg\n";
53 #endif
54
55
56 /* Operational parameters that usually are not changed. */
57
58 #define CONFIG_SBMAC_COALESCE
59
60 #define MAX_UNITS 3             /* More are supported, limit only on options */
61
62 /* Time in jiffies before concluding the transmitter is hung. */
63 #define TX_TIMEOUT  (2*HZ)
64
65
66 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
67 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
68
69 /* A few user-configurable values which may be modified when a driver
70    module is loaded. */
71
72 /* 1 normal messages, 0 quiet .. 7 verbose. */
73 static int debug = 1;
74 module_param(debug, int, S_IRUGO);
75 MODULE_PARM_DESC(debug, "Debug messages");
76
77 /* mii status msgs */
78 static int noisy_mii = 1;
79 module_param(noisy_mii, int, S_IRUGO);
80 MODULE_PARM_DESC(noisy_mii, "MII status messages");
81
82 /* Used to pass the media type, etc.
83    Both 'options[]' and 'full_duplex[]' should exist for driver
84    interoperability.
85    The media type is usually passed in 'options[]'.
86 */
87 #ifdef MODULE
88 static int options[MAX_UNITS] = {-1, -1, -1};
89 module_param_array(options, int, NULL, S_IRUGO);
90 MODULE_PARM_DESC(options, "1-" __MODULE_STRING(MAX_UNITS));
91
92 static int full_duplex[MAX_UNITS] = {-1, -1, -1};
93 module_param_array(full_duplex, int, NULL, S_IRUGO);
94 MODULE_PARM_DESC(full_duplex, "1-" __MODULE_STRING(MAX_UNITS));
95 #endif
96
97 #ifdef CONFIG_SBMAC_COALESCE
98 static int int_pktcnt = 0;
99 module_param(int_pktcnt, int, S_IRUGO);
100 MODULE_PARM_DESC(int_pktcnt, "Packet count");
101
102 static int int_timeout = 0;
103 module_param(int_timeout, int, S_IRUGO);
104 MODULE_PARM_DESC(int_timeout, "Timeout value");
105 #endif
106
107 #include <asm/sibyte/sb1250.h>
108 #include <asm/sibyte/sb1250_defs.h>
109 #include <asm/sibyte/sb1250_regs.h>
110 #include <asm/sibyte/sb1250_mac.h>
111 #include <asm/sibyte/sb1250_dma.h>
112 #include <asm/sibyte/sb1250_int.h>
113 #include <asm/sibyte/sb1250_scd.h>
114
115
116 /**********************************************************************
117  *  Simple types
118  ********************************************************************* */
119
120
121 typedef enum { sbmac_speed_auto, sbmac_speed_10,
122                sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
123
124 typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
125                sbmac_duplex_full } sbmac_duplex_t;
126
127 typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
128                sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
129
130 typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
131                sbmac_state_broken } sbmac_state_t;
132
133
134 /**********************************************************************
135  *  Macros
136  ********************************************************************* */
137
138
139 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
140                           (d)->sbdma_dscrtable : (d)->f+1)
141
142
143 #define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
144
145 #define SBMAC_MAX_TXDESCR       32
146 #define SBMAC_MAX_RXDESCR       32
147
148 #define ETHER_ALIGN     2
149 #define ETHER_ADDR_LEN  6
150 #define ENET_PACKET_SIZE        1518
151 /*#define ENET_PACKET_SIZE      9216 */
152
153 /**********************************************************************
154  *  DMA Descriptor structure
155  ********************************************************************* */
156
157 typedef struct sbdmadscr_s {
158         uint64_t  dscr_a;
159         uint64_t  dscr_b;
160 } sbdmadscr_t;
161
162 typedef unsigned long paddr_t;
163
164 /**********************************************************************
165  *  DMA Controller structure
166  ********************************************************************* */
167
168 typedef struct sbmacdma_s {
169
170         /*
171          * This stuff is used to identify the channel and the registers
172          * associated with it.
173          */
174
175         struct sbmac_softc *sbdma_eth;          /* back pointer to associated MAC */
176         int              sbdma_channel; /* channel number */
177         int              sbdma_txdir;       /* direction (1=transmit) */
178         int              sbdma_maxdescr;        /* total # of descriptors in ring */
179 #ifdef CONFIG_SBMAC_COALESCE
180         int              sbdma_int_pktcnt;  /* # descriptors rx/tx before interrupt*/
181         int              sbdma_int_timeout; /* # usec rx/tx interrupt */
182 #endif
183
184         volatile void __iomem *sbdma_config0;   /* DMA config register 0 */
185         volatile void __iomem *sbdma_config1;   /* DMA config register 1 */
186         volatile void __iomem *sbdma_dscrbase;  /* Descriptor base address */
187         volatile void __iomem *sbdma_dscrcnt;     /* Descriptor count register */
188         volatile void __iomem *sbdma_curdscr;   /* current descriptor address */
189
190         /*
191          * This stuff is for maintenance of the ring
192          */
193
194         sbdmadscr_t     *sbdma_dscrtable;       /* base of descriptor table */
195         sbdmadscr_t     *sbdma_dscrtable_end; /* end of descriptor table */
196
197         struct sk_buff **sbdma_ctxtable;    /* context table, one per descr */
198
199         paddr_t          sbdma_dscrtable_phys; /* and also the phys addr */
200         sbdmadscr_t     *sbdma_addptr;  /* next dscr for sw to add */
201         sbdmadscr_t     *sbdma_remptr;  /* next dscr for sw to remove */
202 } sbmacdma_t;
203
204
205 /**********************************************************************
206  *  Ethernet softc structure
207  ********************************************************************* */
208
209 struct sbmac_softc {
210
211         /*
212          * Linux-specific things
213          */
214
215         struct net_device *sbm_dev;             /* pointer to linux device */
216         spinlock_t sbm_lock;            /* spin lock */
217         struct timer_list sbm_timer;            /* for monitoring MII */
218         struct net_device_stats sbm_stats;
219         int sbm_devflags;                       /* current device flags */
220
221         int          sbm_phy_oldbmsr;
222         int          sbm_phy_oldanlpar;
223         int          sbm_phy_oldk1stsr;
224         int          sbm_phy_oldlinkstat;
225         int sbm_buffersize;
226
227         unsigned char sbm_phys[2];
228
229         /*
230          * Controller-specific things
231          */
232
233         volatile void __iomem *sbm_base;          /* MAC's base address */
234         sbmac_state_t    sbm_state;         /* current state */
235
236         volatile void __iomem   *sbm_macenable; /* MAC Enable Register */
237         volatile void __iomem   *sbm_maccfg;    /* MAC Configuration Register */
238         volatile void __iomem   *sbm_fifocfg;   /* FIFO configuration register */
239         volatile void __iomem   *sbm_framecfg;  /* Frame configuration register */
240         volatile void __iomem   *sbm_rxfilter;  /* receive filter register */
241         volatile void __iomem   *sbm_isr;       /* Interrupt status register */
242         volatile void __iomem   *sbm_imr;       /* Interrupt mask register */
243         volatile void __iomem   *sbm_mdio;      /* MDIO register */
244
245         sbmac_speed_t    sbm_speed;             /* current speed */
246         sbmac_duplex_t   sbm_duplex;    /* current duplex */
247         sbmac_fc_t       sbm_fc;                /* current flow control setting */
248
249         unsigned char    sbm_hwaddr[ETHER_ADDR_LEN];
250
251         sbmacdma_t       sbm_txdma;             /* for now, only use channel 0 */
252         sbmacdma_t       sbm_rxdma;
253         int              rx_hw_checksum;
254         int              sbe_idx;
255 };
256
257
258 /**********************************************************************
259  *  Externs
260  ********************************************************************* */
261
262 /**********************************************************************
263  *  Prototypes
264  ********************************************************************* */
265
266 static void sbdma_initctx(sbmacdma_t *d,
267                           struct sbmac_softc *s,
268                           int chan,
269                           int txrx,
270                           int maxdescr);
271 static void sbdma_channel_start(sbmacdma_t *d, int rxtx);
272 static int sbdma_add_rcvbuffer(sbmacdma_t *d,struct sk_buff *m);
273 static int sbdma_add_txbuffer(sbmacdma_t *d,struct sk_buff *m);
274 static void sbdma_emptyring(sbmacdma_t *d);
275 static void sbdma_fillring(sbmacdma_t *d);
276 static void sbdma_rx_process(struct sbmac_softc *sc,sbmacdma_t *d);
277 static void sbdma_tx_process(struct sbmac_softc *sc,sbmacdma_t *d);
278 static int sbmac_initctx(struct sbmac_softc *s);
279 static void sbmac_channel_start(struct sbmac_softc *s);
280 static void sbmac_channel_stop(struct sbmac_softc *s);
281 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,sbmac_state_t);
282 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff);
283 static uint64_t sbmac_addr2reg(unsigned char *ptr);
284 static irqreturn_t sbmac_intr(int irq,void *dev_instance,struct pt_regs *rgs);
285 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
286 static void sbmac_setmulti(struct sbmac_softc *sc);
287 static int sbmac_init(struct net_device *dev, int idx);
288 static int sbmac_set_speed(struct sbmac_softc *s,sbmac_speed_t speed);
289 static int sbmac_set_duplex(struct sbmac_softc *s,sbmac_duplex_t duplex,sbmac_fc_t fc);
290
291 static int sbmac_open(struct net_device *dev);
292 static void sbmac_timer(unsigned long data);
293 static void sbmac_tx_timeout (struct net_device *dev);
294 static struct net_device_stats *sbmac_get_stats(struct net_device *dev);
295 static void sbmac_set_rx_mode(struct net_device *dev);
296 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
297 static int sbmac_close(struct net_device *dev);
298 static int sbmac_mii_poll(struct sbmac_softc *s,int noisy);
299
300 static void sbmac_mii_sync(struct sbmac_softc *s);
301 static void sbmac_mii_senddata(struct sbmac_softc *s,unsigned int data, int bitcnt);
302 static unsigned int sbmac_mii_read(struct sbmac_softc *s,int phyaddr,int regidx);
303 static void sbmac_mii_write(struct sbmac_softc *s,int phyaddr,int regidx,
304                             unsigned int regval);
305
306
307 /**********************************************************************
308  *  Globals
309  ********************************************************************* */
310
311 static uint64_t sbmac_orig_hwaddr[MAX_UNITS];
312
313
314 /**********************************************************************
315  *  MDIO constants
316  ********************************************************************* */
317
318 #define MII_COMMAND_START       0x01
319 #define MII_COMMAND_READ        0x02
320 #define MII_COMMAND_WRITE       0x01
321 #define MII_COMMAND_ACK         0x02
322
323 #define BMCR_RESET     0x8000
324 #define BMCR_LOOPBACK  0x4000
325 #define BMCR_SPEED0    0x2000
326 #define BMCR_ANENABLE  0x1000
327 #define BMCR_POWERDOWN 0x0800
328 #define BMCR_ISOLATE   0x0400
329 #define BMCR_RESTARTAN 0x0200
330 #define BMCR_DUPLEX    0x0100
331 #define BMCR_COLTEST   0x0080
332 #define BMCR_SPEED1    0x0040
333 #define BMCR_SPEED1000  BMCR_SPEED1
334 #define BMCR_SPEED100   BMCR_SPEED0
335 #define BMCR_SPEED10    0
336
337 #define BMSR_100BT4     0x8000
338 #define BMSR_100BT_FDX  0x4000
339 #define BMSR_100BT_HDX  0x2000
340 #define BMSR_10BT_FDX   0x1000
341 #define BMSR_10BT_HDX   0x0800
342 #define BMSR_100BT2_FDX 0x0400
343 #define BMSR_100BT2_HDX 0x0200
344 #define BMSR_1000BT_XSR 0x0100
345 #define BMSR_PRESUP     0x0040
346 #define BMSR_ANCOMPLT   0x0020
347 #define BMSR_REMFAULT   0x0010
348 #define BMSR_AUTONEG    0x0008
349 #define BMSR_LINKSTAT   0x0004
350 #define BMSR_JABDETECT  0x0002
351 #define BMSR_EXTCAPAB   0x0001
352
353 #define PHYIDR1         0x2000
354 #define PHYIDR2         0x5C60
355
356 #define ANAR_NP         0x8000
357 #define ANAR_RF         0x2000
358 #define ANAR_ASYPAUSE   0x0800
359 #define ANAR_PAUSE      0x0400
360 #define ANAR_T4         0x0200
361 #define ANAR_TXFD       0x0100
362 #define ANAR_TXHD       0x0080
363 #define ANAR_10FD       0x0040
364 #define ANAR_10HD       0x0020
365 #define ANAR_PSB        0x0001
366
367 #define ANLPAR_NP       0x8000
368 #define ANLPAR_ACK      0x4000
369 #define ANLPAR_RF       0x2000
370 #define ANLPAR_ASYPAUSE 0x0800
371 #define ANLPAR_PAUSE    0x0400
372 #define ANLPAR_T4       0x0200
373 #define ANLPAR_TXFD     0x0100
374 #define ANLPAR_TXHD     0x0080
375 #define ANLPAR_10FD     0x0040
376 #define ANLPAR_10HD     0x0020
377 #define ANLPAR_PSB      0x0001  /* 802.3 */
378
379 #define ANER_PDF        0x0010
380 #define ANER_LPNPABLE   0x0008
381 #define ANER_NPABLE     0x0004
382 #define ANER_PAGERX     0x0002
383 #define ANER_LPANABLE   0x0001
384
385 #define ANNPTR_NP       0x8000
386 #define ANNPTR_MP       0x2000
387 #define ANNPTR_ACK2     0x1000
388 #define ANNPTR_TOGTX    0x0800
389 #define ANNPTR_CODE     0x0008
390
391 #define ANNPRR_NP       0x8000
392 #define ANNPRR_MP       0x2000
393 #define ANNPRR_ACK3     0x1000
394 #define ANNPRR_TOGTX    0x0800
395 #define ANNPRR_CODE     0x0008
396
397 #define K1TCR_TESTMODE  0x0000
398 #define K1TCR_MSMCE     0x1000
399 #define K1TCR_MSCV      0x0800
400 #define K1TCR_RPTR      0x0400
401 #define K1TCR_1000BT_FDX 0x200
402 #define K1TCR_1000BT_HDX 0x100
403
404 #define K1STSR_MSMCFLT  0x8000
405 #define K1STSR_MSCFGRES 0x4000
406 #define K1STSR_LRSTAT   0x2000
407 #define K1STSR_RRSTAT   0x1000
408 #define K1STSR_LP1KFD   0x0800
409 #define K1STSR_LP1KHD   0x0400
410 #define K1STSR_LPASMDIR 0x0200
411
412 #define K1SCR_1KX_FDX   0x8000
413 #define K1SCR_1KX_HDX   0x4000
414 #define K1SCR_1KT_FDX   0x2000
415 #define K1SCR_1KT_HDX   0x1000
416
417 #define STRAP_PHY1      0x0800
418 #define STRAP_NCMODE    0x0400
419 #define STRAP_MANMSCFG  0x0200
420 #define STRAP_ANENABLE  0x0100
421 #define STRAP_MSVAL     0x0080
422 #define STRAP_1KHDXADV  0x0010
423 #define STRAP_1KFDXADV  0x0008
424 #define STRAP_100ADV    0x0004
425 #define STRAP_SPEEDSEL  0x0000
426 #define STRAP_SPEED100  0x0001
427
428 #define PHYSUP_SPEED1000 0x10
429 #define PHYSUP_SPEED100  0x08
430 #define PHYSUP_SPEED10   0x00
431 #define PHYSUP_LINKUP    0x04
432 #define PHYSUP_FDX       0x02
433
434 #define MII_BMCR        0x00    /* Basic mode control register (rw) */
435 #define MII_BMSR        0x01    /* Basic mode status register (ro) */
436 #define MII_K1STSR      0x0A    /* 1K Status Register (ro) */
437 #define MII_ANLPAR      0x05    /* Autonegotiation lnk partner abilities (rw) */
438
439
440 #define M_MAC_MDIO_DIR_OUTPUT   0               /* for clarity */
441
442 #define ENABLE          1
443 #define DISABLE         0
444
445 /**********************************************************************
446  *  SBMAC_MII_SYNC(s)
447  *
448  *  Synchronize with the MII - send a pattern of bits to the MII
449  *  that will guarantee that it is ready to accept a command.
450  *
451  *  Input parameters:
452  *         s - sbmac structure
453  *
454  *  Return value:
455  *         nothing
456  ********************************************************************* */
457
458 static void sbmac_mii_sync(struct sbmac_softc *s)
459 {
460         int cnt;
461         uint64_t bits;
462         int mac_mdio_genc;
463
464         mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
465
466         bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
467
468         __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
469
470         for (cnt = 0; cnt < 32; cnt++) {
471                 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
472                 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
473         }
474 }
475
476 /**********************************************************************
477  *  SBMAC_MII_SENDDATA(s,data,bitcnt)
478  *
479  *  Send some bits to the MII.  The bits to be sent are right-
480  *  justified in the 'data' parameter.
481  *
482  *  Input parameters:
483  *         s - sbmac structure
484  *         data - data to send
485  *         bitcnt - number of bits to send
486  ********************************************************************* */
487
488 static void sbmac_mii_senddata(struct sbmac_softc *s,unsigned int data, int bitcnt)
489 {
490         int i;
491         uint64_t bits;
492         unsigned int curmask;
493         int mac_mdio_genc;
494
495         mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
496
497         bits = M_MAC_MDIO_DIR_OUTPUT;
498         __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
499
500         curmask = 1 << (bitcnt - 1);
501
502         for (i = 0; i < bitcnt; i++) {
503                 if (data & curmask)
504                         bits |= M_MAC_MDIO_OUT;
505                 else bits &= ~M_MAC_MDIO_OUT;
506                 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
507                 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
508                 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
509                 curmask >>= 1;
510         }
511 }
512
513
514
515 /**********************************************************************
516  *  SBMAC_MII_READ(s,phyaddr,regidx)
517  *
518  *  Read a PHY register.
519  *
520  *  Input parameters:
521  *         s - sbmac structure
522  *         phyaddr - PHY's address
523  *         regidx = index of register to read
524  *
525  *  Return value:
526  *         value read, or 0 if an error occurred.
527  ********************************************************************* */
528
529 static unsigned int sbmac_mii_read(struct sbmac_softc *s,int phyaddr,int regidx)
530 {
531         int idx;
532         int error;
533         int regval;
534         int mac_mdio_genc;
535
536         /*
537          * Synchronize ourselves so that the PHY knows the next
538          * thing coming down is a command
539          */
540
541         sbmac_mii_sync(s);
542
543         /*
544          * Send the data to the PHY.  The sequence is
545          * a "start" command (2 bits)
546          * a "read" command (2 bits)
547          * the PHY addr (5 bits)
548          * the register index (5 bits)
549          */
550
551         sbmac_mii_senddata(s,MII_COMMAND_START, 2);
552         sbmac_mii_senddata(s,MII_COMMAND_READ, 2);
553         sbmac_mii_senddata(s,phyaddr, 5);
554         sbmac_mii_senddata(s,regidx, 5);
555
556         mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
557
558         /*
559          * Switch the port around without a clock transition.
560          */
561         __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
562
563         /*
564          * Send out a clock pulse to signal we want the status
565          */
566
567         __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
568         __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
569
570         /*
571          * If an error occurred, the PHY will signal '1' back
572          */
573         error = __raw_readq(s->sbm_mdio) & M_MAC_MDIO_IN;
574
575         /*
576          * Issue an 'idle' clock pulse, but keep the direction
577          * the same.
578          */
579         __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
580         __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
581
582         regval = 0;
583
584         for (idx = 0; idx < 16; idx++) {
585                 regval <<= 1;
586
587                 if (error == 0) {
588                         if (__raw_readq(s->sbm_mdio) & M_MAC_MDIO_IN)
589                                 regval |= 1;
590                 }
591
592                 __raw_writeq(M_MAC_MDIO_DIR_INPUT|M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
593                 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
594         }
595
596         /* Switch back to output */
597         __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, s->sbm_mdio);
598
599         if (error == 0)
600                 return regval;
601         return 0;
602 }
603
604
605 /**********************************************************************
606  *  SBMAC_MII_WRITE(s,phyaddr,regidx,regval)
607  *
608  *  Write a value to a PHY register.
609  *
610  *  Input parameters:
611  *         s - sbmac structure
612  *         phyaddr - PHY to use
613  *         regidx - register within the PHY
614  *         regval - data to write to register
615  *
616  *  Return value:
617  *         nothing
618  ********************************************************************* */
619
620 static void sbmac_mii_write(struct sbmac_softc *s,int phyaddr,int regidx,
621                             unsigned int regval)
622 {
623         int mac_mdio_genc;
624
625         sbmac_mii_sync(s);
626
627         sbmac_mii_senddata(s,MII_COMMAND_START,2);
628         sbmac_mii_senddata(s,MII_COMMAND_WRITE,2);
629         sbmac_mii_senddata(s,phyaddr, 5);
630         sbmac_mii_senddata(s,regidx, 5);
631         sbmac_mii_senddata(s,MII_COMMAND_ACK,2);
632         sbmac_mii_senddata(s,regval,16);
633
634         mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
635
636         __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, s->sbm_mdio);
637 }
638
639
640
641 /**********************************************************************
642  *  SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
643  *
644  *  Initialize a DMA channel context.  Since there are potentially
645  *  eight DMA channels per MAC, it's nice to do this in a standard
646  *  way.
647  *
648  *  Input parameters:
649  *         d - sbmacdma_t structure (DMA channel context)
650  *         s - sbmac_softc structure (pointer to a MAC)
651  *         chan - channel number (0..1 right now)
652  *         txrx - Identifies DMA_TX or DMA_RX for channel direction
653  *      maxdescr - number of descriptors
654  *
655  *  Return value:
656  *         nothing
657  ********************************************************************* */
658
659 static void sbdma_initctx(sbmacdma_t *d,
660                           struct sbmac_softc *s,
661                           int chan,
662                           int txrx,
663                           int maxdescr)
664 {
665         /*
666          * Save away interesting stuff in the structure
667          */
668
669         d->sbdma_eth       = s;
670         d->sbdma_channel   = chan;
671         d->sbdma_txdir     = txrx;
672
673 #if 0
674         /* RMON clearing */
675         s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
676 #endif
677
678         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_BYTES)));
679         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_COLLISIONS)));
680         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_LATE_COL)));
681         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_EX_COL)));
682         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_FCS_ERROR)));
683         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_ABORT)));
684         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_BAD)));
685         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_GOOD)));
686         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_RUNT)));
687         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_OVERSIZE)));
688         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BYTES)));
689         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_MCAST)));
690         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BCAST)));
691         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BAD)));
692         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_GOOD)));
693         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_RUNT)));
694         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_OVERSIZE)));
695         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_FCS_ERROR)));
696         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_LENGTH_ERROR)));
697         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_CODE_ERROR)));
698         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_ALIGN_ERROR)));
699
700         /*
701          * initialize register pointers
702          */
703
704         d->sbdma_config0 =
705                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
706         d->sbdma_config1 =
707                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
708         d->sbdma_dscrbase =
709                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
710         d->sbdma_dscrcnt =
711                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
712         d->sbdma_curdscr =
713                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
714
715         /*
716          * Allocate memory for the ring
717          */
718
719         d->sbdma_maxdescr = maxdescr;
720
721         d->sbdma_dscrtable = (sbdmadscr_t *)
722                 kmalloc((d->sbdma_maxdescr+1)*sizeof(sbdmadscr_t), GFP_KERNEL);
723
724         /*
725          * The descriptor table must be aligned to at least 16 bytes or the
726          * MAC will corrupt it.
727          */
728         d->sbdma_dscrtable = (sbdmadscr_t *)
729                 ALIGN((unsigned long)d->sbdma_dscrtable, sizeof(sbdmadscr_t));
730
731         memset(d->sbdma_dscrtable,0,d->sbdma_maxdescr*sizeof(sbdmadscr_t));
732
733         d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
734
735         d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
736
737         /*
738          * And context table
739          */
740
741         d->sbdma_ctxtable = (struct sk_buff **)
742                 kmalloc(d->sbdma_maxdescr*sizeof(struct sk_buff *), GFP_KERNEL);
743
744         memset(d->sbdma_ctxtable,0,d->sbdma_maxdescr*sizeof(struct sk_buff *));
745
746 #ifdef CONFIG_SBMAC_COALESCE
747         /*
748          * Setup Rx/Tx DMA coalescing defaults
749          */
750
751         if ( int_pktcnt ) {
752                 d->sbdma_int_pktcnt = int_pktcnt;
753         } else {
754                 d->sbdma_int_pktcnt = 1;
755         }
756
757         if ( int_timeout ) {
758                 d->sbdma_int_timeout = int_timeout;
759         } else {
760                 d->sbdma_int_timeout = 0;
761         }
762 #endif
763
764 }
765
766 /**********************************************************************
767  *  SBDMA_CHANNEL_START(d)
768  *
769  *  Initialize the hardware registers for a DMA channel.
770  *
771  *  Input parameters:
772  *         d - DMA channel to init (context must be previously init'd
773  *         rxtx - DMA_RX or DMA_TX depending on what type of channel
774  *
775  *  Return value:
776  *         nothing
777  ********************************************************************* */
778
779 static void sbdma_channel_start(sbmacdma_t *d, int rxtx )
780 {
781         /*
782          * Turn on the DMA channel
783          */
784
785 #ifdef CONFIG_SBMAC_COALESCE
786         __raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
787                        0, d->sbdma_config1);
788         __raw_writeq(M_DMA_EOP_INT_EN |
789                        V_DMA_RINGSZ(d->sbdma_maxdescr) |
790                        V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
791                        0, d->sbdma_config0);
792 #else
793         __raw_writeq(0, d->sbdma_config1);
794         __raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
795                        0, d->sbdma_config0);
796 #endif
797
798         __raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
799
800         /*
801          * Initialize ring pointers
802          */
803
804         d->sbdma_addptr = d->sbdma_dscrtable;
805         d->sbdma_remptr = d->sbdma_dscrtable;
806 }
807
808 /**********************************************************************
809  *  SBDMA_CHANNEL_STOP(d)
810  *
811  *  Initialize the hardware registers for a DMA channel.
812  *
813  *  Input parameters:
814  *         d - DMA channel to init (context must be previously init'd
815  *
816  *  Return value:
817  *         nothing
818  ********************************************************************* */
819
820 static void sbdma_channel_stop(sbmacdma_t *d)
821 {
822         /*
823          * Turn off the DMA channel
824          */
825
826         __raw_writeq(0, d->sbdma_config1);
827
828         __raw_writeq(0, d->sbdma_dscrbase);
829
830         __raw_writeq(0, d->sbdma_config0);
831
832         /*
833          * Zero ring pointers
834          */
835
836         d->sbdma_addptr = NULL;
837         d->sbdma_remptr = NULL;
838 }
839
840 static void sbdma_align_skb(struct sk_buff *skb,int power2,int offset)
841 {
842         unsigned long addr;
843         unsigned long newaddr;
844
845         addr = (unsigned long) skb->data;
846
847         newaddr = (addr + power2 - 1) & ~(power2 - 1);
848
849         skb_reserve(skb,newaddr-addr+offset);
850 }
851
852
853 /**********************************************************************
854  *  SBDMA_ADD_RCVBUFFER(d,sb)
855  *
856  *  Add a buffer to the specified DMA channel.   For receive channels,
857  *  this queues a buffer for inbound packets.
858  *
859  *  Input parameters:
860  *         d - DMA channel descriptor
861  *         sb - sk_buff to add, or NULL if we should allocate one
862  *
863  *  Return value:
864  *         0 if buffer could not be added (ring is full)
865  *         1 if buffer added successfully
866  ********************************************************************* */
867
868
869 static int sbdma_add_rcvbuffer(sbmacdma_t *d,struct sk_buff *sb)
870 {
871         sbdmadscr_t *dsc;
872         sbdmadscr_t *nextdsc;
873         struct sk_buff *sb_new = NULL;
874         int pktsize = ENET_PACKET_SIZE;
875
876         /* get pointer to our current place in the ring */
877
878         dsc = d->sbdma_addptr;
879         nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
880
881         /*
882          * figure out if the ring is full - if the next descriptor
883          * is the same as the one that we're going to remove from
884          * the ring, the ring is full
885          */
886
887         if (nextdsc == d->sbdma_remptr) {
888                 return -ENOSPC;
889         }
890
891         /*
892          * Allocate a sk_buff if we don't already have one.
893          * If we do have an sk_buff, reset it so that it's empty.
894          *
895          * Note: sk_buffs don't seem to be guaranteed to have any sort
896          * of alignment when they are allocated.  Therefore, allocate enough
897          * extra space to make sure that:
898          *
899          *    1. the data does not start in the middle of a cache line.
900          *    2. The data does not end in the middle of a cache line
901          *    3. The buffer can be aligned such that the IP addresses are
902          *       naturally aligned.
903          *
904          *  Remember, the SOCs MAC writes whole cache lines at a time,
905          *  without reading the old contents first.  So, if the sk_buff's
906          *  data portion starts in the middle of a cache line, the SOC
907          *  DMA will trash the beginning (and ending) portions.
908          */
909
910         if (sb == NULL) {
911                 sb_new = dev_alloc_skb(ENET_PACKET_SIZE + SMP_CACHE_BYTES * 2 + ETHER_ALIGN);
912                 if (sb_new == NULL) {
913                         printk(KERN_INFO "%s: sk_buff allocation failed\n",
914                                d->sbdma_eth->sbm_dev->name);
915                         return -ENOBUFS;
916                 }
917
918                 sbdma_align_skb(sb_new, SMP_CACHE_BYTES, ETHER_ALIGN);
919
920                 /* mark skbuff owned by our device */
921                 sb_new->dev = d->sbdma_eth->sbm_dev;
922         }
923         else {
924                 sb_new = sb;
925                 /*
926                  * nothing special to reinit buffer, it's already aligned
927                  * and sb->data already points to a good place.
928                  */
929         }
930
931         /*
932          * fill in the descriptor
933          */
934
935 #ifdef CONFIG_SBMAC_COALESCE
936         /*
937          * Do not interrupt per DMA transfer.
938          */
939         dsc->dscr_a = virt_to_phys(sb_new->data) |
940                 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize+ETHER_ALIGN)) | 0;
941 #else
942         dsc->dscr_a = virt_to_phys(sb_new->data) |
943                 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize+ETHER_ALIGN)) |
944                 M_DMA_DSCRA_INTERRUPT;
945 #endif
946
947         /* receiving: no options */
948         dsc->dscr_b = 0;
949
950         /*
951          * fill in the context
952          */
953
954         d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
955
956         /*
957          * point at next packet
958          */
959
960         d->sbdma_addptr = nextdsc;
961
962         /*
963          * Give the buffer to the DMA engine.
964          */
965
966         __raw_writeq(1, d->sbdma_dscrcnt);
967
968         return 0;                                       /* we did it */
969 }
970
971 /**********************************************************************
972  *  SBDMA_ADD_TXBUFFER(d,sb)
973  *
974  *  Add a transmit buffer to the specified DMA channel, causing a
975  *  transmit to start.
976  *
977  *  Input parameters:
978  *         d - DMA channel descriptor
979  *         sb - sk_buff to add
980  *
981  *  Return value:
982  *         0 transmit queued successfully
983  *         otherwise error code
984  ********************************************************************* */
985
986
987 static int sbdma_add_txbuffer(sbmacdma_t *d,struct sk_buff *sb)
988 {
989         sbdmadscr_t *dsc;
990         sbdmadscr_t *nextdsc;
991         uint64_t phys;
992         uint64_t ncb;
993         int length;
994
995         /* get pointer to our current place in the ring */
996
997         dsc = d->sbdma_addptr;
998         nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
999
1000         /*
1001          * figure out if the ring is full - if the next descriptor
1002          * is the same as the one that we're going to remove from
1003          * the ring, the ring is full
1004          */
1005
1006         if (nextdsc == d->sbdma_remptr) {
1007                 return -ENOSPC;
1008         }
1009
1010         /*
1011          * Under Linux, it's not necessary to copy/coalesce buffers
1012          * like it is on NetBSD.  We think they're all contiguous,
1013          * but that may not be true for GBE.
1014          */
1015
1016         length = sb->len;
1017
1018         /*
1019          * fill in the descriptor.  Note that the number of cache
1020          * blocks in the descriptor is the number of blocks
1021          * *spanned*, so we need to add in the offset (if any)
1022          * while doing the calculation.
1023          */
1024
1025         phys = virt_to_phys(sb->data);
1026         ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
1027
1028         dsc->dscr_a = phys |
1029                 V_DMA_DSCRA_A_SIZE(ncb) |
1030 #ifndef CONFIG_SBMAC_COALESCE
1031                 M_DMA_DSCRA_INTERRUPT |
1032 #endif
1033                 M_DMA_ETHTX_SOP;
1034
1035         /* transmitting: set outbound options and length */
1036
1037         dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
1038                 V_DMA_DSCRB_PKT_SIZE(length);
1039
1040         /*
1041          * fill in the context
1042          */
1043
1044         d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
1045
1046         /*
1047          * point at next packet
1048          */
1049
1050         d->sbdma_addptr = nextdsc;
1051
1052         /*
1053          * Give the buffer to the DMA engine.
1054          */
1055
1056         __raw_writeq(1, d->sbdma_dscrcnt);
1057
1058         return 0;                                       /* we did it */
1059 }
1060
1061
1062
1063
1064 /**********************************************************************
1065  *  SBDMA_EMPTYRING(d)
1066  *
1067  *  Free all allocated sk_buffs on the specified DMA channel;
1068  *
1069  *  Input parameters:
1070  *         d  - DMA channel
1071  *
1072  *  Return value:
1073  *         nothing
1074  ********************************************************************* */
1075
1076 static void sbdma_emptyring(sbmacdma_t *d)
1077 {
1078         int idx;
1079         struct sk_buff *sb;
1080
1081         for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
1082                 sb = d->sbdma_ctxtable[idx];
1083                 if (sb) {
1084                         dev_kfree_skb(sb);
1085                         d->sbdma_ctxtable[idx] = NULL;
1086                 }
1087         }
1088 }
1089
1090
1091 /**********************************************************************
1092  *  SBDMA_FILLRING(d)
1093  *
1094  *  Fill the specified DMA channel (must be receive channel)
1095  *  with sk_buffs
1096  *
1097  *  Input parameters:
1098  *         d - DMA channel
1099  *
1100  *  Return value:
1101  *         nothing
1102  ********************************************************************* */
1103
1104 static void sbdma_fillring(sbmacdma_t *d)
1105 {
1106         int idx;
1107
1108         for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++) {
1109                 if (sbdma_add_rcvbuffer(d,NULL) != 0)
1110                         break;
1111         }
1112 }
1113
1114
1115 /**********************************************************************
1116  *  SBDMA_RX_PROCESS(sc,d)
1117  *
1118  *  Process "completed" receive buffers on the specified DMA channel.
1119  *  Note that this isn't really ideal for priority channels, since
1120  *  it processes all of the packets on a given channel before
1121  *  returning.
1122  *
1123  *  Input parameters:
1124  *         sc - softc structure
1125  *         d - DMA channel context
1126  *
1127  *  Return value:
1128  *         nothing
1129  ********************************************************************* */
1130
1131 static void sbdma_rx_process(struct sbmac_softc *sc,sbmacdma_t *d)
1132 {
1133         int curidx;
1134         int hwidx;
1135         sbdmadscr_t *dsc;
1136         struct sk_buff *sb;
1137         int len;
1138
1139         for (;;) {
1140                 /*
1141                  * figure out where we are (as an index) and where
1142                  * the hardware is (also as an index)
1143                  *
1144                  * This could be done faster if (for example) the
1145                  * descriptor table was page-aligned and contiguous in
1146                  * both virtual and physical memory -- you could then
1147                  * just compare the low-order bits of the virtual address
1148                  * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1149                  */
1150
1151                 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1152                 hwidx = (int) (((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1153                                 d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
1154
1155                 /*
1156                  * If they're the same, that means we've processed all
1157                  * of the descriptors up to (but not including) the one that
1158                  * the hardware is working on right now.
1159                  */
1160
1161                 if (curidx == hwidx)
1162                         break;
1163
1164                 /*
1165                  * Otherwise, get the packet's sk_buff ptr back
1166                  */
1167
1168                 dsc = &(d->sbdma_dscrtable[curidx]);
1169                 sb = d->sbdma_ctxtable[curidx];
1170                 d->sbdma_ctxtable[curidx] = NULL;
1171
1172                 len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1173
1174                 /*
1175                  * Check packet status.  If good, process it.
1176                  * If not, silently drop it and put it back on the
1177                  * receive ring.
1178                  */
1179
1180                 if (!(dsc->dscr_a & M_DMA_ETHRX_BAD)) {
1181
1182                         /*
1183                          * Add a new buffer to replace the old one.  If we fail
1184                          * to allocate a buffer, we're going to drop this
1185                          * packet and put it right back on the receive ring.
1186                          */
1187
1188                         if (sbdma_add_rcvbuffer(d,NULL) == -ENOBUFS) {
1189                                 sc->sbm_stats.rx_dropped++;
1190                                 sbdma_add_rcvbuffer(d,sb); /* re-add old buffer */
1191                         } else {
1192                                 /*
1193                                  * Set length into the packet
1194                                  */
1195                                 skb_put(sb,len);
1196
1197                                 /*
1198                                  * Buffer has been replaced on the
1199                                  * receive ring.  Pass the buffer to
1200                                  * the kernel
1201                                  */
1202                                 sc->sbm_stats.rx_bytes += len;
1203                                 sc->sbm_stats.rx_packets++;
1204                                 sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1205                                 /* Check hw IPv4/TCP checksum if supported */
1206                                 if (sc->rx_hw_checksum == ENABLE) {
1207                                         if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1208                                             !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1209                                                 sb->ip_summed = CHECKSUM_UNNECESSARY;
1210                                                 /* don't need to set sb->csum */
1211                                         } else {
1212                                                 sb->ip_summed = CHECKSUM_NONE;
1213                                         }
1214                                 }
1215
1216                                 netif_rx(sb);
1217                         }
1218                 } else {
1219                         /*
1220                          * Packet was mangled somehow.  Just drop it and
1221                          * put it back on the receive ring.
1222                          */
1223                         sc->sbm_stats.rx_errors++;
1224                         sbdma_add_rcvbuffer(d,sb);
1225                 }
1226
1227
1228                 /*
1229                  * .. and advance to the next buffer.
1230                  */
1231
1232                 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1233
1234         }
1235 }
1236
1237
1238
1239 /**********************************************************************
1240  *  SBDMA_TX_PROCESS(sc,d)
1241  *
1242  *  Process "completed" transmit buffers on the specified DMA channel.
1243  *  This is normally called within the interrupt service routine.
1244  *  Note that this isn't really ideal for priority channels, since
1245  *  it processes all of the packets on a given channel before
1246  *  returning.
1247  *
1248  *  Input parameters:
1249  *      sc - softc structure
1250  *         d - DMA channel context
1251  *
1252  *  Return value:
1253  *         nothing
1254  ********************************************************************* */
1255
1256 static void sbdma_tx_process(struct sbmac_softc *sc,sbmacdma_t *d)
1257 {
1258         int curidx;
1259         int hwidx;
1260         sbdmadscr_t *dsc;
1261         struct sk_buff *sb;
1262         unsigned long flags;
1263
1264         spin_lock_irqsave(&(sc->sbm_lock), flags);
1265
1266         for (;;) {
1267                 /*
1268                  * figure out where we are (as an index) and where
1269                  * the hardware is (also as an index)
1270                  *
1271                  * This could be done faster if (for example) the
1272                  * descriptor table was page-aligned and contiguous in
1273                  * both virtual and physical memory -- you could then
1274                  * just compare the low-order bits of the virtual address
1275                  * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1276                  */
1277
1278                 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1279                 hwidx = (int) (((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1280                                 d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
1281
1282                 /*
1283                  * If they're the same, that means we've processed all
1284                  * of the descriptors up to (but not including) the one that
1285                  * the hardware is working on right now.
1286                  */
1287
1288                 if (curidx == hwidx)
1289                         break;
1290
1291                 /*
1292                  * Otherwise, get the packet's sk_buff ptr back
1293                  */
1294
1295                 dsc = &(d->sbdma_dscrtable[curidx]);
1296                 sb = d->sbdma_ctxtable[curidx];
1297                 d->sbdma_ctxtable[curidx] = NULL;
1298
1299                 /*
1300                  * Stats
1301                  */
1302
1303                 sc->sbm_stats.tx_bytes += sb->len;
1304                 sc->sbm_stats.tx_packets++;
1305
1306                 /*
1307                  * for transmits, we just free buffers.
1308                  */
1309
1310                 dev_kfree_skb_irq(sb);
1311
1312                 /*
1313                  * .. and advance to the next buffer.
1314                  */
1315
1316                 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1317
1318         }
1319
1320         /*
1321          * Decide if we should wake up the protocol or not.
1322          * Other drivers seem to do this when we reach a low
1323          * watermark on the transmit queue.
1324          */
1325
1326         netif_wake_queue(d->sbdma_eth->sbm_dev);
1327
1328         spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1329
1330 }
1331
1332
1333
1334 /**********************************************************************
1335  *  SBMAC_INITCTX(s)
1336  *
1337  *  Initialize an Ethernet context structure - this is called
1338  *  once per MAC on the 1250.  Memory is allocated here, so don't
1339  *  call it again from inside the ioctl routines that bring the
1340  *  interface up/down
1341  *
1342  *  Input parameters:
1343  *         s - sbmac context structure
1344  *
1345  *  Return value:
1346  *         0
1347  ********************************************************************* */
1348
1349 static int sbmac_initctx(struct sbmac_softc *s)
1350 {
1351
1352         /*
1353          * figure out the addresses of some ports
1354          */
1355
1356         s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1357         s->sbm_maccfg    = s->sbm_base + R_MAC_CFG;
1358         s->sbm_fifocfg   = s->sbm_base + R_MAC_THRSH_CFG;
1359         s->sbm_framecfg  = s->sbm_base + R_MAC_FRAMECFG;
1360         s->sbm_rxfilter  = s->sbm_base + R_MAC_ADFILTER_CFG;
1361         s->sbm_isr       = s->sbm_base + R_MAC_STATUS;
1362         s->sbm_imr       = s->sbm_base + R_MAC_INT_MASK;
1363         s->sbm_mdio      = s->sbm_base + R_MAC_MDIO;
1364
1365         s->sbm_phys[0]   = 1;
1366         s->sbm_phys[1]   = 0;
1367
1368         s->sbm_phy_oldbmsr = 0;
1369         s->sbm_phy_oldanlpar = 0;
1370         s->sbm_phy_oldk1stsr = 0;
1371         s->sbm_phy_oldlinkstat = 0;
1372
1373         /*
1374          * Initialize the DMA channels.  Right now, only one per MAC is used
1375          * Note: Only do this _once_, as it allocates memory from the kernel!
1376          */
1377
1378         sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1379         sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1380
1381         /*
1382          * initial state is OFF
1383          */
1384
1385         s->sbm_state = sbmac_state_off;
1386
1387         /*
1388          * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
1389          */
1390
1391         s->sbm_speed = sbmac_speed_10;
1392         s->sbm_duplex = sbmac_duplex_half;
1393         s->sbm_fc = sbmac_fc_disabled;
1394
1395         return 0;
1396 }
1397
1398
1399 static void sbdma_uninitctx(struct sbmacdma_s *d)
1400 {
1401         if (d->sbdma_dscrtable) {
1402                 kfree(d->sbdma_dscrtable);
1403                 d->sbdma_dscrtable = NULL;
1404         }
1405
1406         if (d->sbdma_ctxtable) {
1407                 kfree(d->sbdma_ctxtable);
1408                 d->sbdma_ctxtable = NULL;
1409         }
1410 }
1411
1412
1413 static void sbmac_uninitctx(struct sbmac_softc *sc)
1414 {
1415         sbdma_uninitctx(&(sc->sbm_txdma));
1416         sbdma_uninitctx(&(sc->sbm_rxdma));
1417 }
1418
1419
1420 /**********************************************************************
1421  *  SBMAC_CHANNEL_START(s)
1422  *
1423  *  Start packet processing on this MAC.
1424  *
1425  *  Input parameters:
1426  *         s - sbmac structure
1427  *
1428  *  Return value:
1429  *         nothing
1430  ********************************************************************* */
1431
1432 static void sbmac_channel_start(struct sbmac_softc *s)
1433 {
1434         uint64_t reg;
1435         volatile void __iomem *port;
1436         uint64_t cfg,fifo,framecfg;
1437         int idx, th_value;
1438
1439         /*
1440          * Don't do this if running
1441          */
1442
1443         if (s->sbm_state == sbmac_state_on)
1444                 return;
1445
1446         /*
1447          * Bring the controller out of reset, but leave it off.
1448          */
1449
1450         __raw_writeq(0, s->sbm_macenable);
1451
1452         /*
1453          * Ignore all received packets
1454          */
1455
1456         __raw_writeq(0, s->sbm_rxfilter);
1457
1458         /*
1459          * Calculate values for various control registers.
1460          */
1461
1462         cfg = M_MAC_RETRY_EN |
1463                 M_MAC_TX_HOLD_SOP_EN |
1464                 V_MAC_TX_PAUSE_CNT_16K |
1465                 M_MAC_AP_STAT_EN |
1466                 M_MAC_FAST_SYNC |
1467                 M_MAC_SS_EN |
1468                 0;
1469
1470         /*
1471          * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1472          * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1473          * Use a larger RD_THRSH for gigabit
1474          */
1475         if (periph_rev >= 2)
1476                 th_value = 64;
1477         else
1478                 th_value = 28;
1479
1480         fifo = V_MAC_TX_WR_THRSH(4) |   /* Must be '4' or '8' */
1481                 ((s->sbm_speed == sbmac_speed_1000)
1482                  ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1483                 V_MAC_TX_RL_THRSH(4) |
1484                 V_MAC_RX_PL_THRSH(4) |
1485                 V_MAC_RX_RD_THRSH(4) |  /* Must be '4' */
1486                 V_MAC_RX_PL_THRSH(4) |
1487                 V_MAC_RX_RL_THRSH(8) |
1488                 0;
1489
1490         framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1491                 V_MAC_MAX_FRAMESZ_DEFAULT |
1492                 V_MAC_BACKOFF_SEL(1);
1493
1494         /*
1495          * Clear out the hash address map
1496          */
1497
1498         port = s->sbm_base + R_MAC_HASH_BASE;
1499         for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1500                 __raw_writeq(0, port);
1501                 port += sizeof(uint64_t);
1502         }
1503
1504         /*
1505          * Clear out the exact-match table
1506          */
1507
1508         port = s->sbm_base + R_MAC_ADDR_BASE;
1509         for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1510                 __raw_writeq(0, port);
1511                 port += sizeof(uint64_t);
1512         }
1513
1514         /*
1515          * Clear out the DMA Channel mapping table registers
1516          */
1517
1518         port = s->sbm_base + R_MAC_CHUP0_BASE;
1519         for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1520                 __raw_writeq(0, port);
1521                 port += sizeof(uint64_t);
1522         }
1523
1524
1525         port = s->sbm_base + R_MAC_CHLO0_BASE;
1526         for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1527                 __raw_writeq(0, port);
1528                 port += sizeof(uint64_t);
1529         }
1530
1531         /*
1532          * Program the hardware address.  It goes into the hardware-address
1533          * register as well as the first filter register.
1534          */
1535
1536         reg = sbmac_addr2reg(s->sbm_hwaddr);
1537
1538         port = s->sbm_base + R_MAC_ADDR_BASE;
1539         __raw_writeq(reg, port);
1540         port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1541
1542 #ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1543         /*
1544          * Pass1 SOCs do not receive packets addressed to the
1545          * destination address in the R_MAC_ETHERNET_ADDR register.
1546          * Set the value to zero.
1547          */
1548         __raw_writeq(0, port);
1549 #else
1550         __raw_writeq(reg, port);
1551 #endif
1552
1553         /*
1554          * Set the receive filter for no packets, and write values
1555          * to the various config registers
1556          */
1557
1558         __raw_writeq(0, s->sbm_rxfilter);
1559         __raw_writeq(0, s->sbm_imr);
1560         __raw_writeq(framecfg, s->sbm_framecfg);
1561         __raw_writeq(fifo, s->sbm_fifocfg);
1562         __raw_writeq(cfg, s->sbm_maccfg);
1563
1564         /*
1565          * Initialize DMA channels (rings should be ok now)
1566          */
1567
1568         sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1569         sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1570
1571         /*
1572          * Configure the speed, duplex, and flow control
1573          */
1574
1575         sbmac_set_speed(s,s->sbm_speed);
1576         sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1577
1578         /*
1579          * Fill the receive ring
1580          */
1581
1582         sbdma_fillring(&(s->sbm_rxdma));
1583
1584         /*
1585          * Turn on the rest of the bits in the enable register
1586          */
1587
1588         __raw_writeq(M_MAC_RXDMA_EN0 |
1589                        M_MAC_TXDMA_EN0 |
1590                        M_MAC_RX_ENABLE |
1591                        M_MAC_TX_ENABLE, s->sbm_macenable);
1592
1593
1594
1595
1596 #ifdef CONFIG_SBMAC_COALESCE
1597         /*
1598          * Accept any TX interrupt and EOP count/timer RX interrupts on ch 0
1599          */
1600         __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1601                        ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1602 #else
1603         /*
1604          * Accept any kind of interrupt on TX and RX DMA channel 0
1605          */
1606         __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1607                        (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1608 #endif
1609
1610         /*
1611          * Enable receiving unicasts and broadcasts
1612          */
1613
1614         __raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1615
1616         /*
1617          * we're running now.
1618          */
1619
1620         s->sbm_state = sbmac_state_on;
1621
1622         /*
1623          * Program multicast addresses
1624          */
1625
1626         sbmac_setmulti(s);
1627
1628         /*
1629          * If channel was in promiscuous mode before, turn that on
1630          */
1631
1632         if (s->sbm_devflags & IFF_PROMISC) {
1633                 sbmac_promiscuous_mode(s,1);
1634         }
1635
1636 }
1637
1638
1639 /**********************************************************************
1640  *  SBMAC_CHANNEL_STOP(s)
1641  *
1642  *  Stop packet processing on this MAC.
1643  *
1644  *  Input parameters:
1645  *         s - sbmac structure
1646  *
1647  *  Return value:
1648  *         nothing
1649  ********************************************************************* */
1650
1651 static void sbmac_channel_stop(struct sbmac_softc *s)
1652 {
1653         /* don't do this if already stopped */
1654
1655         if (s->sbm_state == sbmac_state_off)
1656                 return;
1657
1658         /* don't accept any packets, disable all interrupts */
1659
1660         __raw_writeq(0, s->sbm_rxfilter);
1661         __raw_writeq(0, s->sbm_imr);
1662
1663         /* Turn off ticker */
1664
1665         /* XXX */
1666
1667         /* turn off receiver and transmitter */
1668
1669         __raw_writeq(0, s->sbm_macenable);
1670
1671         /* We're stopped now. */
1672
1673         s->sbm_state = sbmac_state_off;
1674
1675         /*
1676          * Stop DMA channels (rings should be ok now)
1677          */
1678
1679         sbdma_channel_stop(&(s->sbm_rxdma));
1680         sbdma_channel_stop(&(s->sbm_txdma));
1681
1682         /* Empty the receive and transmit rings */
1683
1684         sbdma_emptyring(&(s->sbm_rxdma));
1685         sbdma_emptyring(&(s->sbm_txdma));
1686
1687 }
1688
1689 /**********************************************************************
1690  *  SBMAC_SET_CHANNEL_STATE(state)
1691  *
1692  *  Set the channel's state ON or OFF
1693  *
1694  *  Input parameters:
1695  *         state - new state
1696  *
1697  *  Return value:
1698  *         old state
1699  ********************************************************************* */
1700 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *sc,
1701                                              sbmac_state_t state)
1702 {
1703         sbmac_state_t oldstate = sc->sbm_state;
1704
1705         /*
1706          * If same as previous state, return
1707          */
1708
1709         if (state == oldstate) {
1710                 return oldstate;
1711         }
1712
1713         /*
1714          * If new state is ON, turn channel on
1715          */
1716
1717         if (state == sbmac_state_on) {
1718                 sbmac_channel_start(sc);
1719         }
1720         else {
1721                 sbmac_channel_stop(sc);
1722         }
1723
1724         /*
1725          * Return previous state
1726          */
1727
1728         return oldstate;
1729 }
1730
1731
1732 /**********************************************************************
1733  *  SBMAC_PROMISCUOUS_MODE(sc,onoff)
1734  *
1735  *  Turn on or off promiscuous mode
1736  *
1737  *  Input parameters:
1738  *         sc - softc
1739  *      onoff - 1 to turn on, 0 to turn off
1740  *
1741  *  Return value:
1742  *         nothing
1743  ********************************************************************* */
1744
1745 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1746 {
1747         uint64_t reg;
1748
1749         if (sc->sbm_state != sbmac_state_on)
1750                 return;
1751
1752         if (onoff) {
1753                 reg = __raw_readq(sc->sbm_rxfilter);
1754                 reg |= M_MAC_ALLPKT_EN;
1755                 __raw_writeq(reg, sc->sbm_rxfilter);
1756         }
1757         else {
1758                 reg = __raw_readq(sc->sbm_rxfilter);
1759                 reg &= ~M_MAC_ALLPKT_EN;
1760                 __raw_writeq(reg, sc->sbm_rxfilter);
1761         }
1762 }
1763
1764 /**********************************************************************
1765  *  SBMAC_SETIPHDR_OFFSET(sc,onoff)
1766  *
1767  *  Set the iphdr offset as 15 assuming ethernet encapsulation
1768  *
1769  *  Input parameters:
1770  *         sc - softc
1771  *
1772  *  Return value:
1773  *         nothing
1774  ********************************************************************* */
1775
1776 static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1777 {
1778         uint64_t reg;
1779
1780         /* Hard code the off set to 15 for now */
1781         reg = __raw_readq(sc->sbm_rxfilter);
1782         reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1783         __raw_writeq(reg, sc->sbm_rxfilter);
1784
1785         /* read system identification to determine revision */
1786         if (periph_rev >= 2) {
1787                 sc->rx_hw_checksum = ENABLE;
1788         } else {
1789                 sc->rx_hw_checksum = DISABLE;
1790         }
1791 }
1792
1793
1794 /**********************************************************************
1795  *  SBMAC_ADDR2REG(ptr)
1796  *
1797  *  Convert six bytes into the 64-bit register value that
1798  *  we typically write into the SBMAC's address/mcast registers
1799  *
1800  *  Input parameters:
1801  *         ptr - pointer to 6 bytes
1802  *
1803  *  Return value:
1804  *         register value
1805  ********************************************************************* */
1806
1807 static uint64_t sbmac_addr2reg(unsigned char *ptr)
1808 {
1809         uint64_t reg = 0;
1810
1811         ptr += 6;
1812
1813         reg |= (uint64_t) *(--ptr);
1814         reg <<= 8;
1815         reg |= (uint64_t) *(--ptr);
1816         reg <<= 8;
1817         reg |= (uint64_t) *(--ptr);
1818         reg <<= 8;
1819         reg |= (uint64_t) *(--ptr);
1820         reg <<= 8;
1821         reg |= (uint64_t) *(--ptr);
1822         reg <<= 8;
1823         reg |= (uint64_t) *(--ptr);
1824
1825         return reg;
1826 }
1827
1828
1829 /**********************************************************************
1830  *  SBMAC_SET_SPEED(s,speed)
1831  *
1832  *  Configure LAN speed for the specified MAC.
1833  *  Warning: must be called when MAC is off!
1834  *
1835  *  Input parameters:
1836  *         s - sbmac structure
1837  *         speed - speed to set MAC to (see sbmac_speed_t enum)
1838  *
1839  *  Return value:
1840  *         1 if successful
1841  *      0 indicates invalid parameters
1842  ********************************************************************* */
1843
1844 static int sbmac_set_speed(struct sbmac_softc *s,sbmac_speed_t speed)
1845 {
1846         uint64_t cfg;
1847         uint64_t framecfg;
1848
1849         /*
1850          * Save new current values
1851          */
1852
1853         s->sbm_speed = speed;
1854
1855         if (s->sbm_state == sbmac_state_on)
1856                 return 0;       /* save for next restart */
1857
1858         /*
1859          * Read current register values
1860          */
1861
1862         cfg = __raw_readq(s->sbm_maccfg);
1863         framecfg = __raw_readq(s->sbm_framecfg);
1864
1865         /*
1866          * Mask out the stuff we want to change
1867          */
1868
1869         cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1870         framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1871                       M_MAC_SLOT_SIZE);
1872
1873         /*
1874          * Now add in the new bits
1875          */
1876
1877         switch (speed) {
1878         case sbmac_speed_10:
1879                 framecfg |= V_MAC_IFG_RX_10 |
1880                         V_MAC_IFG_TX_10 |
1881                         K_MAC_IFG_THRSH_10 |
1882                         V_MAC_SLOT_SIZE_10;
1883                 cfg |= V_MAC_SPEED_SEL_10MBPS;
1884                 break;
1885
1886         case sbmac_speed_100:
1887                 framecfg |= V_MAC_IFG_RX_100 |
1888                         V_MAC_IFG_TX_100 |
1889                         V_MAC_IFG_THRSH_100 |
1890                         V_MAC_SLOT_SIZE_100;
1891                 cfg |= V_MAC_SPEED_SEL_100MBPS ;
1892                 break;
1893
1894         case sbmac_speed_1000:
1895                 framecfg |= V_MAC_IFG_RX_1000 |
1896                         V_MAC_IFG_TX_1000 |
1897                         V_MAC_IFG_THRSH_1000 |
1898                         V_MAC_SLOT_SIZE_1000;
1899                 cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1900                 break;
1901
1902         case sbmac_speed_auto:          /* XXX not implemented */
1903                 /* fall through */
1904         default:
1905                 return 0;
1906         }
1907
1908         /*
1909          * Send the bits back to the hardware
1910          */
1911
1912         __raw_writeq(framecfg, s->sbm_framecfg);
1913         __raw_writeq(cfg, s->sbm_maccfg);
1914
1915         return 1;
1916 }
1917
1918 /**********************************************************************
1919  *  SBMAC_SET_DUPLEX(s,duplex,fc)
1920  *
1921  *  Set Ethernet duplex and flow control options for this MAC
1922  *  Warning: must be called when MAC is off!
1923  *
1924  *  Input parameters:
1925  *         s - sbmac structure
1926  *         duplex - duplex setting (see sbmac_duplex_t)
1927  *         fc - flow control setting (see sbmac_fc_t)
1928  *
1929  *  Return value:
1930  *         1 if ok
1931  *         0 if an invalid parameter combination was specified
1932  ********************************************************************* */
1933
1934 static int sbmac_set_duplex(struct sbmac_softc *s,sbmac_duplex_t duplex,sbmac_fc_t fc)
1935 {
1936         uint64_t cfg;
1937
1938         /*
1939          * Save new current values
1940          */
1941
1942         s->sbm_duplex = duplex;
1943         s->sbm_fc = fc;
1944
1945         if (s->sbm_state == sbmac_state_on)
1946                 return 0;       /* save for next restart */
1947
1948         /*
1949          * Read current register values
1950          */
1951
1952         cfg = __raw_readq(s->sbm_maccfg);
1953
1954         /*
1955          * Mask off the stuff we're about to change
1956          */
1957
1958         cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1959
1960
1961         switch (duplex) {
1962         case sbmac_duplex_half:
1963                 switch (fc) {
1964                 case sbmac_fc_disabled:
1965                         cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1966                         break;
1967
1968                 case sbmac_fc_collision:
1969                         cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1970                         break;
1971
1972                 case sbmac_fc_carrier:
1973                         cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1974                         break;
1975
1976                 case sbmac_fc_auto:             /* XXX not implemented */
1977                         /* fall through */
1978                 case sbmac_fc_frame:            /* not valid in half duplex */
1979                 default:                        /* invalid selection */
1980                         return 0;
1981                 }
1982                 break;
1983
1984         case sbmac_duplex_full:
1985                 switch (fc) {
1986                 case sbmac_fc_disabled:
1987                         cfg |= V_MAC_FC_CMD_DISABLED;
1988                         break;
1989
1990                 case sbmac_fc_frame:
1991                         cfg |= V_MAC_FC_CMD_ENABLED;
1992                         break;
1993
1994                 case sbmac_fc_collision:        /* not valid in full duplex */
1995                 case sbmac_fc_carrier:          /* not valid in full duplex */
1996                 case sbmac_fc_auto:             /* XXX not implemented */
1997                         /* fall through */
1998                 default:
1999                         return 0;
2000                 }
2001                 break;
2002         case sbmac_duplex_auto:
2003                 /* XXX not implemented */
2004                 break;
2005         }
2006
2007         /*
2008          * Send the bits back to the hardware
2009          */
2010
2011         __raw_writeq(cfg, s->sbm_maccfg);
2012
2013         return 1;
2014 }
2015
2016
2017
2018
2019 /**********************************************************************
2020  *  SBMAC_INTR()
2021  *
2022  *  Interrupt handler for MAC interrupts
2023  *
2024  *  Input parameters:
2025  *         MAC structure
2026  *
2027  *  Return value:
2028  *         nothing
2029  ********************************************************************* */
2030 static irqreturn_t sbmac_intr(int irq,void *dev_instance,struct pt_regs *rgs)
2031 {
2032         struct net_device *dev = (struct net_device *) dev_instance;
2033         struct sbmac_softc *sc = netdev_priv(dev);
2034         uint64_t isr;
2035         int handled = 0;
2036
2037         for (;;) {
2038
2039                 /*
2040                  * Read the ISR (this clears the bits in the real
2041                  * register, except for counter addr)
2042                  */
2043
2044                 isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
2045
2046                 if (isr == 0)
2047                         break;
2048
2049                 handled = 1;
2050
2051                 /*
2052                  * Transmits on channel 0
2053                  */
2054
2055                 if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0)) {
2056                         sbdma_tx_process(sc,&(sc->sbm_txdma));
2057                 }
2058
2059                 /*
2060                  * Receives on channel 0
2061                  */
2062
2063                 /*
2064                  * It's important to test all the bits (or at least the
2065                  * EOP_SEEN bit) when deciding to do the RX process
2066                  * particularly when coalescing, to make sure we
2067                  * take care of the following:
2068                  *
2069                  * If you have some packets waiting (have been received
2070                  * but no interrupt) and get a TX interrupt before
2071                  * the RX timer or counter expires, reading the ISR
2072                  * above will clear the timer and counter, and you
2073                  * won't get another interrupt until a packet shows
2074                  * up to start the timer again.  Testing
2075                  * EOP_SEEN here takes care of this case.
2076                  * (EOP_SEEN is part of M_MAC_INT_CHANNEL << S_MAC_RX_CH0)
2077                  */
2078
2079
2080                 if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2081                         sbdma_rx_process(sc,&(sc->sbm_rxdma));
2082                 }
2083         }
2084         return IRQ_RETVAL(handled);
2085 }
2086
2087
2088 /**********************************************************************
2089  *  SBMAC_START_TX(skb,dev)
2090  *
2091  *  Start output on the specified interface.  Basically, we
2092  *  queue as many buffers as we can until the ring fills up, or
2093  *  we run off the end of the queue, whichever comes first.
2094  *
2095  *  Input parameters:
2096  *
2097  *
2098  *  Return value:
2099  *         nothing
2100  ********************************************************************* */
2101 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2102 {
2103         struct sbmac_softc *sc = netdev_priv(dev);
2104
2105         /* lock eth irq */
2106         spin_lock_irq (&sc->sbm_lock);
2107
2108         /*
2109          * Put the buffer on the transmit ring.  If we
2110          * don't have room, stop the queue.
2111          */
2112
2113         if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2114                 /* XXX save skb that we could not send */
2115                 netif_stop_queue(dev);
2116                 spin_unlock_irq(&sc->sbm_lock);
2117
2118                 return 1;
2119         }
2120
2121         dev->trans_start = jiffies;
2122
2123         spin_unlock_irq (&sc->sbm_lock);
2124
2125         return 0;
2126 }
2127
2128 /**********************************************************************
2129  *  SBMAC_SETMULTI(sc)
2130  *
2131  *  Reprogram the multicast table into the hardware, given
2132  *  the list of multicasts associated with the interface
2133  *  structure.
2134  *
2135  *  Input parameters:
2136  *         sc - softc
2137  *
2138  *  Return value:
2139  *         nothing
2140  ********************************************************************* */
2141
2142 static void sbmac_setmulti(struct sbmac_softc *sc)
2143 {
2144         uint64_t reg;
2145         volatile void __iomem *port;
2146         int idx;
2147         struct dev_mc_list *mclist;
2148         struct net_device *dev = sc->sbm_dev;
2149
2150         /*
2151          * Clear out entire multicast table.  We do this by nuking
2152          * the entire hash table and all the direct matches except
2153          * the first one, which is used for our station address
2154          */
2155
2156         for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2157                 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2158                 __raw_writeq(0, port);
2159         }
2160
2161         for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2162                 port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2163                 __raw_writeq(0, port);
2164         }
2165
2166         /*
2167          * Clear the filter to say we don't want any multicasts.
2168          */
2169
2170         reg = __raw_readq(sc->sbm_rxfilter);
2171         reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2172         __raw_writeq(reg, sc->sbm_rxfilter);
2173
2174         if (dev->flags & IFF_ALLMULTI) {
2175                 /*
2176                  * Enable ALL multicasts.  Do this by inverting the
2177                  * multicast enable bit.
2178                  */
2179                 reg = __raw_readq(sc->sbm_rxfilter);
2180                 reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2181                 __raw_writeq(reg, sc->sbm_rxfilter);
2182                 return;
2183         }
2184
2185
2186         /*
2187          * Progam new multicast entries.  For now, only use the
2188          * perfect filter.  In the future we'll need to use the
2189          * hash filter if the perfect filter overflows
2190          */
2191
2192         /* XXX only using perfect filter for now, need to use hash
2193          * XXX if the table overflows */
2194
2195         idx = 1;                /* skip station address */
2196         mclist = dev->mc_list;
2197         while (mclist && (idx < MAC_ADDR_COUNT)) {
2198                 reg = sbmac_addr2reg(mclist->dmi_addr);
2199                 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2200                 __raw_writeq(reg, port);
2201                 idx++;
2202                 mclist = mclist->next;
2203         }
2204
2205         /*
2206          * Enable the "accept multicast bits" if we programmed at least one
2207          * multicast.
2208          */
2209
2210         if (idx > 1) {
2211                 reg = __raw_readq(sc->sbm_rxfilter);
2212                 reg |= M_MAC_MCAST_EN;
2213                 __raw_writeq(reg, sc->sbm_rxfilter);
2214         }
2215 }
2216
2217
2218
2219 #if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR)
2220 /**********************************************************************
2221  *  SBMAC_PARSE_XDIGIT(str)
2222  *
2223  *  Parse a hex digit, returning its value
2224  *
2225  *  Input parameters:
2226  *         str - character
2227  *
2228  *  Return value:
2229  *         hex value, or -1 if invalid
2230  ********************************************************************* */
2231
2232 static int sbmac_parse_xdigit(char str)
2233 {
2234         int digit;
2235
2236         if ((str >= '0') && (str <= '9'))
2237                 digit = str - '0';
2238         else if ((str >= 'a') && (str <= 'f'))
2239                 digit = str - 'a' + 10;
2240         else if ((str >= 'A') && (str <= 'F'))
2241                 digit = str - 'A' + 10;
2242         else
2243                 return -1;
2244
2245         return digit;
2246 }
2247
2248 /**********************************************************************
2249  *  SBMAC_PARSE_HWADDR(str,hwaddr)
2250  *
2251  *  Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
2252  *  Ethernet address.
2253  *
2254  *  Input parameters:
2255  *         str - string
2256  *         hwaddr - pointer to hardware address
2257  *
2258  *  Return value:
2259  *         0 if ok, else -1
2260  ********************************************************************* */
2261
2262 static int sbmac_parse_hwaddr(char *str, unsigned char *hwaddr)
2263 {
2264         int digit1,digit2;
2265         int idx = 6;
2266
2267         while (*str && (idx > 0)) {
2268                 digit1 = sbmac_parse_xdigit(*str);
2269                 if (digit1 < 0)
2270                         return -1;
2271                 str++;
2272                 if (!*str)
2273                         return -1;
2274
2275                 if ((*str == ':') || (*str == '-')) {
2276                         digit2 = digit1;
2277                         digit1 = 0;
2278                 }
2279                 else {
2280                         digit2 = sbmac_parse_xdigit(*str);
2281                         if (digit2 < 0)
2282                                 return -1;
2283                         str++;
2284                 }
2285
2286                 *hwaddr++ = (digit1 << 4) | digit2;
2287                 idx--;
2288
2289                 if (*str == '-')
2290                         str++;
2291                 if (*str == ':')
2292                         str++;
2293         }
2294         return 0;
2295 }
2296 #endif
2297
2298 static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
2299 {
2300         if (new_mtu >  ENET_PACKET_SIZE)
2301                 return -EINVAL;
2302         _dev->mtu = new_mtu;
2303         printk(KERN_INFO "changing the mtu to %d\n", new_mtu);
2304         return 0;
2305 }
2306
2307 /**********************************************************************
2308  *  SBMAC_INIT(dev)
2309  *
2310  *  Attach routine - init hardware and hook ourselves into linux
2311  *
2312  *  Input parameters:
2313  *         dev - net_device structure
2314  *
2315  *  Return value:
2316  *         status
2317  ********************************************************************* */
2318
2319 static int sbmac_init(struct net_device *dev, int idx)
2320 {
2321         struct sbmac_softc *sc;
2322         unsigned char *eaddr;
2323         uint64_t ea_reg;
2324         int i;
2325         int err;
2326
2327         sc = netdev_priv(dev);
2328
2329         /* Determine controller base address */
2330
2331         sc->sbm_base = IOADDR(dev->base_addr);
2332         sc->sbm_dev = dev;
2333         sc->sbe_idx = idx;
2334
2335         eaddr = sc->sbm_hwaddr;
2336
2337         /*
2338          * Read the ethernet address.  The firwmare left this programmed
2339          * for us in the ethernet address register for each mac.
2340          */
2341
2342         ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2343         __raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2344         for (i = 0; i < 6; i++) {
2345                 eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2346                 ea_reg >>= 8;
2347         }
2348
2349         for (i = 0; i < 6; i++) {
2350                 dev->dev_addr[i] = eaddr[i];
2351         }
2352
2353
2354         /*
2355          * Init packet size
2356          */
2357
2358         sc->sbm_buffersize = ENET_PACKET_SIZE + SMP_CACHE_BYTES * 2 + ETHER_ALIGN;
2359
2360         /*
2361          * Initialize context (get pointers to registers and stuff), then
2362          * allocate the memory for the descriptor tables.
2363          */
2364
2365         sbmac_initctx(sc);
2366
2367         /*
2368          * Set up Linux device callins
2369          */
2370
2371         spin_lock_init(&(sc->sbm_lock));
2372
2373         dev->open               = sbmac_open;
2374         dev->hard_start_xmit    = sbmac_start_tx;
2375         dev->stop               = sbmac_close;
2376         dev->get_stats          = sbmac_get_stats;
2377         dev->set_multicast_list = sbmac_set_rx_mode;
2378         dev->do_ioctl           = sbmac_mii_ioctl;
2379         dev->tx_timeout         = sbmac_tx_timeout;
2380         dev->watchdog_timeo     = TX_TIMEOUT;
2381
2382         dev->change_mtu         = sb1250_change_mtu;
2383
2384         /* This is needed for PASS2 for Rx H/W checksum feature */
2385         sbmac_set_iphdr_offset(sc);
2386
2387         err = register_netdev(dev);
2388         if (err)
2389                 goto out_uninit;
2390
2391         if (sc->rx_hw_checksum == ENABLE) {
2392                 printk(KERN_INFO "%s: enabling TCP rcv checksum\n",
2393                         sc->sbm_dev->name);
2394         }
2395
2396         /*
2397          * Display Ethernet address (this is called during the config
2398          * process so we need to finish off the config message that
2399          * was being displayed)
2400          */
2401         printk(KERN_INFO
2402                "%s: SiByte Ethernet at 0x%08lX, address: %02X:%02X:%02X:%02X:%02X:%02X\n",
2403                dev->name, dev->base_addr,
2404                eaddr[0],eaddr[1],eaddr[2],eaddr[3],eaddr[4],eaddr[5]);
2405
2406
2407         return 0;
2408
2409 out_uninit:
2410         sbmac_uninitctx(sc);
2411
2412         return err;
2413 }
2414
2415
2416 static int sbmac_open(struct net_device *dev)
2417 {
2418         struct sbmac_softc *sc = netdev_priv(dev);
2419
2420         if (debug > 1) {
2421                 printk(KERN_DEBUG "%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2422         }
2423
2424         /*
2425          * map/route interrupt (clear status first, in case something
2426          * weird is pending; we haven't initialized the mac registers
2427          * yet)
2428          */
2429
2430         __raw_readq(sc->sbm_isr);
2431         if (request_irq(dev->irq, &sbmac_intr, SA_SHIRQ, dev->name, dev))
2432                 return -EBUSY;
2433
2434         /*
2435          * Configure default speed
2436          */
2437
2438         sbmac_mii_poll(sc,noisy_mii);
2439
2440         /*
2441          * Turn on the channel
2442          */
2443
2444         sbmac_set_channel_state(sc,sbmac_state_on);
2445
2446         /*
2447          * XXX Station address is in dev->dev_addr
2448          */
2449
2450         if (dev->if_port == 0)
2451                 dev->if_port = 0;
2452
2453         netif_start_queue(dev);
2454
2455         sbmac_set_rx_mode(dev);
2456
2457         /* Set the timer to check for link beat. */
2458         init_timer(&sc->sbm_timer);
2459         sc->sbm_timer.expires = jiffies + 2 * HZ/100;
2460         sc->sbm_timer.data = (unsigned long)dev;
2461         sc->sbm_timer.function = &sbmac_timer;
2462         add_timer(&sc->sbm_timer);
2463
2464         return 0;
2465 }
2466
2467
2468
2469 static int sbmac_mii_poll(struct sbmac_softc *s,int noisy)
2470 {
2471     int bmsr,bmcr,k1stsr,anlpar;
2472     int chg;
2473     char buffer[100];
2474     char *p = buffer;
2475
2476     /* Read the mode status and mode control registers. */
2477     bmsr = sbmac_mii_read(s,s->sbm_phys[0],MII_BMSR);
2478     bmcr = sbmac_mii_read(s,s->sbm_phys[0],MII_BMCR);
2479
2480     /* get the link partner status */
2481     anlpar = sbmac_mii_read(s,s->sbm_phys[0],MII_ANLPAR);
2482
2483     /* if supported, read the 1000baseT register */
2484     if (bmsr & BMSR_1000BT_XSR) {
2485         k1stsr = sbmac_mii_read(s,s->sbm_phys[0],MII_K1STSR);
2486         }
2487     else {
2488         k1stsr = 0;
2489         }
2490
2491     chg = 0;
2492
2493     if ((bmsr & BMSR_LINKSTAT) == 0) {
2494         /*
2495          * If link status is down, clear out old info so that when
2496          * it comes back up it will force us to reconfigure speed
2497          */
2498         s->sbm_phy_oldbmsr = 0;
2499         s->sbm_phy_oldanlpar = 0;
2500         s->sbm_phy_oldk1stsr = 0;
2501         return 0;
2502         }
2503
2504     if ((s->sbm_phy_oldbmsr != bmsr) ||
2505         (s->sbm_phy_oldanlpar != anlpar) ||
2506         (s->sbm_phy_oldk1stsr != k1stsr)) {
2507         if (debug > 1) {
2508             printk(KERN_DEBUG "%s: bmsr:%x/%x anlpar:%x/%x  k1stsr:%x/%x\n",
2509                s->sbm_dev->name,
2510                s->sbm_phy_oldbmsr,bmsr,
2511                s->sbm_phy_oldanlpar,anlpar,
2512                s->sbm_phy_oldk1stsr,k1stsr);
2513             }
2514         s->sbm_phy_oldbmsr = bmsr;
2515         s->sbm_phy_oldanlpar = anlpar;
2516         s->sbm_phy_oldk1stsr = k1stsr;
2517         chg = 1;
2518         }
2519
2520     if (chg == 0)
2521             return 0;
2522
2523     p += sprintf(p,"Link speed: ");
2524
2525     if (k1stsr & K1STSR_LP1KFD) {
2526         s->sbm_speed = sbmac_speed_1000;
2527         s->sbm_duplex = sbmac_duplex_full;
2528         s->sbm_fc = sbmac_fc_frame;
2529         p += sprintf(p,"1000BaseT FDX");
2530         }
2531     else if (k1stsr & K1STSR_LP1KHD) {
2532         s->sbm_speed = sbmac_speed_1000;
2533         s->sbm_duplex = sbmac_duplex_half;
2534         s->sbm_fc = sbmac_fc_disabled;
2535         p += sprintf(p,"1000BaseT HDX");
2536         }
2537     else if (anlpar & ANLPAR_TXFD) {
2538         s->sbm_speed = sbmac_speed_100;
2539         s->sbm_duplex = sbmac_duplex_full;
2540         s->sbm_fc = (anlpar & ANLPAR_PAUSE) ? sbmac_fc_frame : sbmac_fc_disabled;
2541         p += sprintf(p,"100BaseT FDX");
2542         }
2543     else if (anlpar & ANLPAR_TXHD) {
2544         s->sbm_speed = sbmac_speed_100;
2545         s->sbm_duplex = sbmac_duplex_half;
2546         s->sbm_fc = sbmac_fc_disabled;
2547         p += sprintf(p,"100BaseT HDX");
2548         }
2549     else if (anlpar & ANLPAR_10FD) {
2550         s->sbm_speed = sbmac_speed_10;
2551         s->sbm_duplex = sbmac_duplex_full;
2552         s->sbm_fc = sbmac_fc_frame;
2553         p += sprintf(p,"10BaseT FDX");
2554         }
2555     else if (anlpar & ANLPAR_10HD) {
2556         s->sbm_speed = sbmac_speed_10;
2557         s->sbm_duplex = sbmac_duplex_half;
2558         s->sbm_fc = sbmac_fc_collision;
2559         p += sprintf(p,"10BaseT HDX");
2560         }
2561     else {
2562         p += sprintf(p,"Unknown");
2563         }
2564
2565     if (noisy) {
2566             printk(KERN_INFO "%s: %s\n",s->sbm_dev->name,buffer);
2567             }
2568
2569     return 1;
2570 }
2571
2572
2573 static void sbmac_timer(unsigned long data)
2574 {
2575         struct net_device *dev = (struct net_device *)data;
2576         struct sbmac_softc *sc = netdev_priv(dev);
2577         int next_tick = HZ;
2578         int mii_status;
2579
2580         spin_lock_irq (&sc->sbm_lock);
2581
2582         /* make IFF_RUNNING follow the MII status bit "Link established" */
2583         mii_status = sbmac_mii_read(sc, sc->sbm_phys[0], MII_BMSR);
2584
2585         if ( (mii_status & BMSR_LINKSTAT) != (sc->sbm_phy_oldlinkstat) ) {
2586                 sc->sbm_phy_oldlinkstat = mii_status & BMSR_LINKSTAT;
2587                 if (mii_status & BMSR_LINKSTAT) {
2588                         netif_carrier_on(dev);
2589                 }
2590                 else {
2591                         netif_carrier_off(dev);
2592                 }
2593         }
2594
2595         /*
2596          * Poll the PHY to see what speed we should be running at
2597          */
2598
2599         if (sbmac_mii_poll(sc,noisy_mii)) {
2600                 if (sc->sbm_state != sbmac_state_off) {
2601                         /*
2602                          * something changed, restart the channel
2603                          */
2604                         if (debug > 1) {
2605                                 printk("%s: restarting channel because speed changed\n",
2606                                        sc->sbm_dev->name);
2607                         }
2608                         sbmac_channel_stop(sc);
2609                         sbmac_channel_start(sc);
2610                 }
2611         }
2612
2613         spin_unlock_irq (&sc->sbm_lock);
2614
2615         sc->sbm_timer.expires = jiffies + next_tick;
2616         add_timer(&sc->sbm_timer);
2617 }
2618
2619
2620 static void sbmac_tx_timeout (struct net_device *dev)
2621 {
2622         struct sbmac_softc *sc = netdev_priv(dev);
2623
2624         spin_lock_irq (&sc->sbm_lock);
2625
2626
2627         dev->trans_start = jiffies;
2628         sc->sbm_stats.tx_errors++;
2629
2630         spin_unlock_irq (&sc->sbm_lock);
2631
2632         printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2633 }
2634
2635
2636
2637
2638 static struct net_device_stats *sbmac_get_stats(struct net_device *dev)
2639 {
2640         struct sbmac_softc *sc = netdev_priv(dev);
2641         unsigned long flags;
2642
2643         spin_lock_irqsave(&sc->sbm_lock, flags);
2644
2645         /* XXX update other stats here */
2646
2647         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2648
2649         return &sc->sbm_stats;
2650 }
2651
2652
2653
2654 static void sbmac_set_rx_mode(struct net_device *dev)
2655 {
2656         unsigned long flags;
2657         int msg_flag = 0;
2658         struct sbmac_softc *sc = netdev_priv(dev);
2659
2660         spin_lock_irqsave(&sc->sbm_lock, flags);
2661         if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2662                 /*
2663                  * Promiscuous changed.
2664                  */
2665
2666                 if (dev->flags & IFF_PROMISC) {
2667                         /* Unconditionally log net taps. */
2668                         msg_flag = 1;
2669                         sbmac_promiscuous_mode(sc,1);
2670                 }
2671                 else {
2672                         msg_flag = 2;
2673                         sbmac_promiscuous_mode(sc,0);
2674                 }
2675         }
2676         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2677
2678         if (msg_flag) {
2679                 printk(KERN_NOTICE "%s: Promiscuous mode %sabled.\n",
2680                        dev->name,(msg_flag==1)?"en":"dis");
2681         }
2682
2683         /*
2684          * Program the multicasts.  Do this every time.
2685          */
2686
2687         sbmac_setmulti(sc);
2688
2689 }
2690
2691 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2692 {
2693         struct sbmac_softc *sc = netdev_priv(dev);
2694         u16 *data = (u16 *)&rq->ifr_ifru;
2695         unsigned long flags;
2696         int retval;
2697
2698         spin_lock_irqsave(&sc->sbm_lock, flags);
2699         retval = 0;
2700
2701         switch(cmd) {
2702         case SIOCDEVPRIVATE:            /* Get the address of the PHY in use. */
2703                 data[0] = sc->sbm_phys[0] & 0x1f;
2704                 /* Fall Through */
2705         case SIOCDEVPRIVATE+1:          /* Read the specified MII register. */
2706                 data[3] = sbmac_mii_read(sc, data[0] & 0x1f, data[1] & 0x1f);
2707                 break;
2708         case SIOCDEVPRIVATE+2:          /* Write the specified MII register */
2709                 if (!capable(CAP_NET_ADMIN)) {
2710                         retval = -EPERM;
2711                         break;
2712                 }
2713                 if (debug > 1) {
2714                     printk(KERN_DEBUG "%s: sbmac_mii_ioctl: write %02X %02X %02X\n",dev->name,
2715                        data[0],data[1],data[2]);
2716                     }
2717                 sbmac_mii_write(sc, data[0] & 0x1f, data[1] & 0x1f, data[2]);
2718                 break;
2719         default:
2720                 retval = -EOPNOTSUPP;
2721         }
2722
2723         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2724         return retval;
2725 }
2726
2727 static int sbmac_close(struct net_device *dev)
2728 {
2729         struct sbmac_softc *sc = netdev_priv(dev);
2730         unsigned long flags;
2731         int irq;
2732
2733         sbmac_set_channel_state(sc,sbmac_state_off);
2734
2735         del_timer_sync(&sc->sbm_timer);
2736
2737         spin_lock_irqsave(&sc->sbm_lock, flags);
2738
2739         netif_stop_queue(dev);
2740
2741         if (debug > 1) {
2742                 printk(KERN_DEBUG "%s: Shutting down ethercard\n",dev->name);
2743         }
2744
2745         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2746
2747         irq = dev->irq;
2748         synchronize_irq(irq);
2749         free_irq(irq, dev);
2750
2751         sbdma_emptyring(&(sc->sbm_txdma));
2752         sbdma_emptyring(&(sc->sbm_rxdma));
2753
2754         return 0;
2755 }
2756
2757
2758
2759 #if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR)
2760 static void
2761 sbmac_setup_hwaddr(int chan,char *addr)
2762 {
2763         uint8_t eaddr[6];
2764         uint64_t val;
2765         unsigned long port;
2766
2767         port = A_MAC_CHANNEL_BASE(chan);
2768         sbmac_parse_hwaddr(addr,eaddr);
2769         val = sbmac_addr2reg(eaddr);
2770         __raw_writeq(val, IOADDR(port+R_MAC_ETHERNET_ADDR));
2771         val = __raw_readq(IOADDR(port+R_MAC_ETHERNET_ADDR));
2772 }
2773 #endif
2774
2775 static struct net_device *dev_sbmac[MAX_UNITS];
2776
2777 static int __init
2778 sbmac_init_module(void)
2779 {
2780         int idx;
2781         struct net_device *dev;
2782         unsigned long port;
2783         int chip_max_units;
2784
2785         /*
2786          * For bringup when not using the firmware, we can pre-fill
2787          * the MAC addresses using the environment variables
2788          * specified in this file (or maybe from the config file?)
2789          */
2790 #ifdef SBMAC_ETH0_HWADDR
2791         sbmac_setup_hwaddr(0,SBMAC_ETH0_HWADDR);
2792 #endif
2793 #ifdef SBMAC_ETH1_HWADDR
2794         sbmac_setup_hwaddr(1,SBMAC_ETH1_HWADDR);
2795 #endif
2796 #ifdef SBMAC_ETH2_HWADDR
2797         sbmac_setup_hwaddr(2,SBMAC_ETH2_HWADDR);
2798 #endif
2799
2800         /*
2801          * Walk through the Ethernet controllers and find
2802          * those who have their MAC addresses set.
2803          */
2804         switch (soc_type) {
2805         case K_SYS_SOC_TYPE_BCM1250:
2806         case K_SYS_SOC_TYPE_BCM1250_ALT:
2807                 chip_max_units = 3;
2808                 break;
2809         case K_SYS_SOC_TYPE_BCM1120:
2810         case K_SYS_SOC_TYPE_BCM1125:
2811         case K_SYS_SOC_TYPE_BCM1125H:
2812         case K_SYS_SOC_TYPE_BCM1250_ALT2: /* Hybrid */
2813                 chip_max_units = 2;
2814                 break;
2815         default:
2816                 chip_max_units = 0;
2817                 break;
2818         }
2819         if (chip_max_units > MAX_UNITS)
2820                 chip_max_units = MAX_UNITS;
2821
2822         for (idx = 0; idx < chip_max_units; idx++) {
2823
2824                 /*
2825                  * This is the base address of the MAC.
2826                  */
2827
2828                 port = A_MAC_CHANNEL_BASE(idx);
2829
2830                 /*
2831                  * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2832                  * value for us by the firmware if we're going to use this MAC.
2833                  * If we find a zero, skip this MAC.
2834                  */
2835
2836                 sbmac_orig_hwaddr[idx] = __raw_readq(IOADDR(port+R_MAC_ETHERNET_ADDR));
2837                 if (sbmac_orig_hwaddr[idx] == 0) {
2838                         printk(KERN_DEBUG "sbmac: not configuring MAC at "
2839                                "%lx\n", port);
2840                     continue;
2841                 }
2842
2843                 /*
2844                  * Okay, cool.  Initialize this MAC.
2845                  */
2846
2847                 dev = alloc_etherdev(sizeof(struct sbmac_softc));
2848                 if (!dev)
2849                         return -ENOMEM; /* return ENOMEM */
2850
2851                 printk(KERN_DEBUG "sbmac: configuring MAC at %lx\n", port);
2852
2853                 dev->irq = K_INT_MAC_0 + idx;
2854                 dev->base_addr = port;
2855                 dev->mem_end = 0;
2856                 if (sbmac_init(dev, idx)) {
2857                         port = A_MAC_CHANNEL_BASE(idx);
2858                         __raw_writeq(sbmac_orig_hwaddr[idx], IOADDR(port+R_MAC_ETHERNET_ADDR));
2859                         free_netdev(dev);
2860                         continue;
2861                 }
2862                 dev_sbmac[idx] = dev;
2863         }
2864         return 0;
2865 }
2866
2867
2868 static void __exit
2869 sbmac_cleanup_module(void)
2870 {
2871         struct net_device *dev;
2872         int idx;
2873
2874         for (idx = 0; idx < MAX_UNITS; idx++) {
2875                 struct sbmac_softc *sc;
2876                 dev = dev_sbmac[idx];
2877                 if (!dev)
2878                         continue;
2879
2880                 sc = netdev_priv(dev);
2881                 unregister_netdev(dev);
2882                 sbmac_uninitctx(sc);
2883                 free_netdev(dev);
2884         }
2885 }
2886
2887 module_init(sbmac_init_module);
2888 module_exit(sbmac_cleanup_module);