1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Extent allocs and frees
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
40 #include "blockcheck.h"
42 #include "extent_map.h"
45 #include "localalloc.h"
53 #include "buffer_head_io.h"
57 * Operations for a specific extent tree type.
59 * To implement an on-disk btree (extent tree) type in ocfs2, add
60 * an ocfs2_extent_tree_operations structure and the matching
61 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it
62 * for the allocation portion of the extent tree.
64 struct ocfs2_extent_tree_operations {
66 * last_eb_blk is the block number of the right most leaf extent
67 * block. Most on-disk structures containing an extent tree store
68 * this value for fast access. The ->eo_set_last_eb_blk() and
69 * ->eo_get_last_eb_blk() operations access this value. They are
72 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
74 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
77 * The on-disk structure usually keeps track of how many total
78 * clusters are stored in this extent tree. This function updates
79 * that value. new_clusters is the delta, and must be
80 * added to the total. Required.
82 void (*eo_update_clusters)(struct inode *inode,
83 struct ocfs2_extent_tree *et,
87 * If ->eo_insert_check() exists, it is called before rec is
88 * inserted into the extent tree. It is optional.
90 int (*eo_insert_check)(struct inode *inode,
91 struct ocfs2_extent_tree *et,
92 struct ocfs2_extent_rec *rec);
93 int (*eo_sanity_check)(struct inode *inode, struct ocfs2_extent_tree *et);
96 * --------------------------------------------------------------
97 * The remaining are internal to ocfs2_extent_tree and don't have
102 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
105 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
108 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
109 * it exists. If it does not, et->et_max_leaf_clusters is set
110 * to 0 (unlimited). Optional.
112 void (*eo_fill_max_leaf_clusters)(struct inode *inode,
113 struct ocfs2_extent_tree *et);
118 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
121 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
122 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
124 static void ocfs2_dinode_update_clusters(struct inode *inode,
125 struct ocfs2_extent_tree *et,
127 static int ocfs2_dinode_insert_check(struct inode *inode,
128 struct ocfs2_extent_tree *et,
129 struct ocfs2_extent_rec *rec);
130 static int ocfs2_dinode_sanity_check(struct inode *inode,
131 struct ocfs2_extent_tree *et);
132 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
133 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
134 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk,
135 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk,
136 .eo_update_clusters = ocfs2_dinode_update_clusters,
137 .eo_insert_check = ocfs2_dinode_insert_check,
138 .eo_sanity_check = ocfs2_dinode_sanity_check,
139 .eo_fill_root_el = ocfs2_dinode_fill_root_el,
142 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
145 struct ocfs2_dinode *di = et->et_object;
147 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
148 di->i_last_eb_blk = cpu_to_le64(blkno);
151 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
153 struct ocfs2_dinode *di = et->et_object;
155 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
156 return le64_to_cpu(di->i_last_eb_blk);
159 static void ocfs2_dinode_update_clusters(struct inode *inode,
160 struct ocfs2_extent_tree *et,
163 struct ocfs2_dinode *di = et->et_object;
165 le32_add_cpu(&di->i_clusters, clusters);
166 spin_lock(&OCFS2_I(inode)->ip_lock);
167 OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
168 spin_unlock(&OCFS2_I(inode)->ip_lock);
171 static int ocfs2_dinode_insert_check(struct inode *inode,
172 struct ocfs2_extent_tree *et,
173 struct ocfs2_extent_rec *rec)
175 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
177 BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
178 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
179 (OCFS2_I(inode)->ip_clusters != rec->e_cpos),
180 "Device %s, asking for sparse allocation: inode %llu, "
181 "cpos %u, clusters %u\n",
183 (unsigned long long)OCFS2_I(inode)->ip_blkno,
185 OCFS2_I(inode)->ip_clusters);
190 static int ocfs2_dinode_sanity_check(struct inode *inode,
191 struct ocfs2_extent_tree *et)
193 struct ocfs2_dinode *di = et->et_object;
195 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
196 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
201 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
203 struct ocfs2_dinode *di = et->et_object;
205 et->et_root_el = &di->id2.i_list;
209 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
211 struct ocfs2_xattr_value_buf *vb = et->et_object;
213 et->et_root_el = &vb->vb_xv->xr_list;
216 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
219 struct ocfs2_xattr_value_buf *vb = et->et_object;
221 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
224 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
226 struct ocfs2_xattr_value_buf *vb = et->et_object;
228 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
231 static void ocfs2_xattr_value_update_clusters(struct inode *inode,
232 struct ocfs2_extent_tree *et,
235 struct ocfs2_xattr_value_buf *vb = et->et_object;
237 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
240 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
241 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk,
242 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk,
243 .eo_update_clusters = ocfs2_xattr_value_update_clusters,
244 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el,
247 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
249 struct ocfs2_xattr_block *xb = et->et_object;
251 et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
254 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode *inode,
255 struct ocfs2_extent_tree *et)
257 et->et_max_leaf_clusters =
258 ocfs2_clusters_for_bytes(inode->i_sb,
259 OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
262 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
265 struct ocfs2_xattr_block *xb = et->et_object;
266 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
268 xt->xt_last_eb_blk = cpu_to_le64(blkno);
271 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
273 struct ocfs2_xattr_block *xb = et->et_object;
274 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
276 return le64_to_cpu(xt->xt_last_eb_blk);
279 static void ocfs2_xattr_tree_update_clusters(struct inode *inode,
280 struct ocfs2_extent_tree *et,
283 struct ocfs2_xattr_block *xb = et->et_object;
285 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
288 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
289 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk,
290 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk,
291 .eo_update_clusters = ocfs2_xattr_tree_update_clusters,
292 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el,
293 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
296 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
298 struct buffer_head *bh,
299 ocfs2_journal_access_func access,
301 struct ocfs2_extent_tree_operations *ops)
305 et->et_root_journal_access = access;
307 obj = (void *)bh->b_data;
310 et->et_ops->eo_fill_root_el(et);
311 if (!et->et_ops->eo_fill_max_leaf_clusters)
312 et->et_max_leaf_clusters = 0;
314 et->et_ops->eo_fill_max_leaf_clusters(inode, et);
317 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
319 struct buffer_head *bh)
321 __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di,
322 NULL, &ocfs2_dinode_et_ops);
325 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
327 struct buffer_head *bh)
329 __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb,
330 NULL, &ocfs2_xattr_tree_et_ops);
333 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
335 struct ocfs2_xattr_value_buf *vb)
337 __ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb,
338 &ocfs2_xattr_value_et_ops);
341 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
344 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
347 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
349 return et->et_ops->eo_get_last_eb_blk(et);
352 static inline void ocfs2_et_update_clusters(struct inode *inode,
353 struct ocfs2_extent_tree *et,
356 et->et_ops->eo_update_clusters(inode, et, clusters);
359 static inline int ocfs2_et_root_journal_access(handle_t *handle,
361 struct ocfs2_extent_tree *et,
364 return et->et_root_journal_access(handle, inode, et->et_root_bh,
368 static inline int ocfs2_et_insert_check(struct inode *inode,
369 struct ocfs2_extent_tree *et,
370 struct ocfs2_extent_rec *rec)
374 if (et->et_ops->eo_insert_check)
375 ret = et->et_ops->eo_insert_check(inode, et, rec);
379 static inline int ocfs2_et_sanity_check(struct inode *inode,
380 struct ocfs2_extent_tree *et)
384 if (et->et_ops->eo_sanity_check)
385 ret = et->et_ops->eo_sanity_check(inode, et);
389 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
390 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
391 struct ocfs2_extent_block *eb);
394 * Structures which describe a path through a btree, and functions to
397 * The idea here is to be as generic as possible with the tree
400 struct ocfs2_path_item {
401 struct buffer_head *bh;
402 struct ocfs2_extent_list *el;
405 #define OCFS2_MAX_PATH_DEPTH 5
409 ocfs2_journal_access_func p_root_access;
410 struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH];
413 #define path_root_bh(_path) ((_path)->p_node[0].bh)
414 #define path_root_el(_path) ((_path)->p_node[0].el)
415 #define path_root_access(_path)((_path)->p_root_access)
416 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
417 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
418 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
421 * Reset the actual path elements so that we can re-use the structure
422 * to build another path. Generally, this involves freeing the buffer
425 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
427 int i, start = 0, depth = 0;
428 struct ocfs2_path_item *node;
433 for(i = start; i < path_num_items(path); i++) {
434 node = &path->p_node[i];
442 * Tree depth may change during truncate, or insert. If we're
443 * keeping the root extent list, then make sure that our path
444 * structure reflects the proper depth.
447 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
449 path_root_access(path) = NULL;
451 path->p_tree_depth = depth;
454 static void ocfs2_free_path(struct ocfs2_path *path)
457 ocfs2_reinit_path(path, 0);
463 * All the elements of src into dest. After this call, src could be freed
464 * without affecting dest.
466 * Both paths should have the same root. Any non-root elements of dest
469 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
473 BUG_ON(path_root_bh(dest) != path_root_bh(src));
474 BUG_ON(path_root_el(dest) != path_root_el(src));
475 BUG_ON(path_root_access(dest) != path_root_access(src));
477 ocfs2_reinit_path(dest, 1);
479 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
480 dest->p_node[i].bh = src->p_node[i].bh;
481 dest->p_node[i].el = src->p_node[i].el;
483 if (dest->p_node[i].bh)
484 get_bh(dest->p_node[i].bh);
489 * Make the *dest path the same as src and re-initialize src path to
492 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
496 BUG_ON(path_root_bh(dest) != path_root_bh(src));
497 BUG_ON(path_root_access(dest) != path_root_access(src));
499 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
500 brelse(dest->p_node[i].bh);
502 dest->p_node[i].bh = src->p_node[i].bh;
503 dest->p_node[i].el = src->p_node[i].el;
505 src->p_node[i].bh = NULL;
506 src->p_node[i].el = NULL;
511 * Insert an extent block at given index.
513 * This will not take an additional reference on eb_bh.
515 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
516 struct buffer_head *eb_bh)
518 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
521 * Right now, no root bh is an extent block, so this helps
522 * catch code errors with dinode trees. The assertion can be
523 * safely removed if we ever need to insert extent block
524 * structures at the root.
528 path->p_node[index].bh = eb_bh;
529 path->p_node[index].el = &eb->h_list;
532 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
533 struct ocfs2_extent_list *root_el,
534 ocfs2_journal_access_func access)
536 struct ocfs2_path *path;
538 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
540 path = kzalloc(sizeof(*path), GFP_NOFS);
542 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
544 path_root_bh(path) = root_bh;
545 path_root_el(path) = root_el;
546 path_root_access(path) = access;
552 static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
554 return ocfs2_new_path(path_root_bh(path), path_root_el(path),
555 path_root_access(path));
558 static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
560 return ocfs2_new_path(et->et_root_bh, et->et_root_el,
561 et->et_root_journal_access);
565 * Journal the buffer at depth idx. All idx>0 are extent_blocks,
566 * otherwise it's the root_access function.
568 * I don't like the way this function's name looks next to
569 * ocfs2_journal_access_path(), but I don't have a better one.
571 static int ocfs2_path_bh_journal_access(handle_t *handle,
573 struct ocfs2_path *path,
576 ocfs2_journal_access_func access = path_root_access(path);
579 access = ocfs2_journal_access;
582 access = ocfs2_journal_access_eb;
584 return access(handle, inode, path->p_node[idx].bh,
585 OCFS2_JOURNAL_ACCESS_WRITE);
589 * Convenience function to journal all components in a path.
591 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
592 struct ocfs2_path *path)
599 for(i = 0; i < path_num_items(path); i++) {
600 ret = ocfs2_path_bh_journal_access(handle, inode, path, i);
612 * Return the index of the extent record which contains cluster #v_cluster.
613 * -1 is returned if it was not found.
615 * Should work fine on interior and exterior nodes.
617 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
621 struct ocfs2_extent_rec *rec;
622 u32 rec_end, rec_start, clusters;
624 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
625 rec = &el->l_recs[i];
627 rec_start = le32_to_cpu(rec->e_cpos);
628 clusters = ocfs2_rec_clusters(el, rec);
630 rec_end = rec_start + clusters;
632 if (v_cluster >= rec_start && v_cluster < rec_end) {
641 enum ocfs2_contig_type {
650 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
651 * ocfs2_extent_contig only work properly against leaf nodes!
653 static int ocfs2_block_extent_contig(struct super_block *sb,
654 struct ocfs2_extent_rec *ext,
657 u64 blk_end = le64_to_cpu(ext->e_blkno);
659 blk_end += ocfs2_clusters_to_blocks(sb,
660 le16_to_cpu(ext->e_leaf_clusters));
662 return blkno == blk_end;
665 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
666 struct ocfs2_extent_rec *right)
670 left_range = le32_to_cpu(left->e_cpos) +
671 le16_to_cpu(left->e_leaf_clusters);
673 return (left_range == le32_to_cpu(right->e_cpos));
676 static enum ocfs2_contig_type
677 ocfs2_extent_contig(struct inode *inode,
678 struct ocfs2_extent_rec *ext,
679 struct ocfs2_extent_rec *insert_rec)
681 u64 blkno = le64_to_cpu(insert_rec->e_blkno);
684 * Refuse to coalesce extent records with different flag
685 * fields - we don't want to mix unwritten extents with user
688 if (ext->e_flags != insert_rec->e_flags)
691 if (ocfs2_extents_adjacent(ext, insert_rec) &&
692 ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
695 blkno = le64_to_cpu(ext->e_blkno);
696 if (ocfs2_extents_adjacent(insert_rec, ext) &&
697 ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
704 * NOTE: We can have pretty much any combination of contiguousness and
707 * The usefulness of APPEND_TAIL is more in that it lets us know that
708 * we'll have to update the path to that leaf.
710 enum ocfs2_append_type {
715 enum ocfs2_split_type {
721 struct ocfs2_insert_type {
722 enum ocfs2_split_type ins_split;
723 enum ocfs2_append_type ins_appending;
724 enum ocfs2_contig_type ins_contig;
725 int ins_contig_index;
729 struct ocfs2_merge_ctxt {
730 enum ocfs2_contig_type c_contig_type;
731 int c_has_empty_extent;
732 int c_split_covers_rec;
735 static int ocfs2_validate_extent_block(struct super_block *sb,
736 struct buffer_head *bh)
739 struct ocfs2_extent_block *eb =
740 (struct ocfs2_extent_block *)bh->b_data;
742 mlog(0, "Validating extent block %llu\n",
743 (unsigned long long)bh->b_blocknr);
745 BUG_ON(!buffer_uptodate(bh));
748 * If the ecc fails, we return the error but otherwise
749 * leave the filesystem running. We know any error is
750 * local to this block.
752 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
754 mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
755 (unsigned long long)bh->b_blocknr);
760 * Errors after here are fatal.
763 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
765 "Extent block #%llu has bad signature %.*s",
766 (unsigned long long)bh->b_blocknr, 7,
771 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
773 "Extent block #%llu has an invalid h_blkno "
775 (unsigned long long)bh->b_blocknr,
776 (unsigned long long)le64_to_cpu(eb->h_blkno));
780 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
782 "Extent block #%llu has an invalid "
783 "h_fs_generation of #%u",
784 (unsigned long long)bh->b_blocknr,
785 le32_to_cpu(eb->h_fs_generation));
792 int ocfs2_read_extent_block(struct inode *inode, u64 eb_blkno,
793 struct buffer_head **bh)
796 struct buffer_head *tmp = *bh;
798 rc = ocfs2_read_block(inode, eb_blkno, &tmp,
799 ocfs2_validate_extent_block);
801 /* If ocfs2_read_block() got us a new bh, pass it up. */
810 * How many free extents have we got before we need more meta data?
812 int ocfs2_num_free_extents(struct ocfs2_super *osb,
814 struct ocfs2_extent_tree *et)
817 struct ocfs2_extent_list *el = NULL;
818 struct ocfs2_extent_block *eb;
819 struct buffer_head *eb_bh = NULL;
825 last_eb_blk = ocfs2_et_get_last_eb_blk(et);
828 retval = ocfs2_read_extent_block(inode, last_eb_blk, &eb_bh);
833 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
837 BUG_ON(el->l_tree_depth != 0);
839 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
847 /* expects array to already be allocated
849 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
852 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
856 struct ocfs2_alloc_context *meta_ac,
857 struct buffer_head *bhs[])
859 int count, status, i;
860 u16 suballoc_bit_start;
863 struct ocfs2_extent_block *eb;
868 while (count < wanted) {
869 status = ocfs2_claim_metadata(osb,
881 for(i = count; i < (num_got + count); i++) {
882 bhs[i] = sb_getblk(osb->sb, first_blkno);
883 if (bhs[i] == NULL) {
888 ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
890 status = ocfs2_journal_access_eb(handle, inode, bhs[i],
891 OCFS2_JOURNAL_ACCESS_CREATE);
897 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
898 eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
899 /* Ok, setup the minimal stuff here. */
900 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
901 eb->h_blkno = cpu_to_le64(first_blkno);
902 eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
903 eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
904 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
906 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
908 suballoc_bit_start++;
911 /* We'll also be dirtied by the caller, so
912 * this isn't absolutely necessary. */
913 status = ocfs2_journal_dirty(handle, bhs[i]);
926 for(i = 0; i < wanted; i++) {
936 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
938 * Returns the sum of the rightmost extent rec logical offset and
941 * ocfs2_add_branch() uses this to determine what logical cluster
942 * value should be populated into the leftmost new branch records.
944 * ocfs2_shift_tree_depth() uses this to determine the # clusters
945 * value for the new topmost tree record.
947 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el)
951 i = le16_to_cpu(el->l_next_free_rec) - 1;
953 return le32_to_cpu(el->l_recs[i].e_cpos) +
954 ocfs2_rec_clusters(el, &el->l_recs[i]);
958 * Add an entire tree branch to our inode. eb_bh is the extent block
959 * to start at, if we don't want to start the branch at the dinode
962 * last_eb_bh is required as we have to update it's next_leaf pointer
963 * for the new last extent block.
965 * the new branch will be 'empty' in the sense that every block will
966 * contain a single record with cluster count == 0.
968 static int ocfs2_add_branch(struct ocfs2_super *osb,
971 struct ocfs2_extent_tree *et,
972 struct buffer_head *eb_bh,
973 struct buffer_head **last_eb_bh,
974 struct ocfs2_alloc_context *meta_ac)
976 int status, new_blocks, i;
977 u64 next_blkno, new_last_eb_blk;
978 struct buffer_head *bh;
979 struct buffer_head **new_eb_bhs = NULL;
980 struct ocfs2_extent_block *eb;
981 struct ocfs2_extent_list *eb_el;
982 struct ocfs2_extent_list *el;
987 BUG_ON(!last_eb_bh || !*last_eb_bh);
990 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
995 /* we never add a branch to a leaf. */
996 BUG_ON(!el->l_tree_depth);
998 new_blocks = le16_to_cpu(el->l_tree_depth);
1000 /* allocate the number of new eb blocks we need */
1001 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1009 status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
1010 meta_ac, new_eb_bhs);
1016 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1017 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1019 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1020 * linked with the rest of the tree.
1021 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1023 * when we leave the loop, new_last_eb_blk will point to the
1024 * newest leaf, and next_blkno will point to the topmost extent
1026 next_blkno = new_last_eb_blk = 0;
1027 for(i = 0; i < new_blocks; i++) {
1029 eb = (struct ocfs2_extent_block *) bh->b_data;
1030 /* ocfs2_create_new_meta_bhs() should create it right! */
1031 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1032 eb_el = &eb->h_list;
1034 status = ocfs2_journal_access_eb(handle, inode, bh,
1035 OCFS2_JOURNAL_ACCESS_CREATE);
1041 eb->h_next_leaf_blk = 0;
1042 eb_el->l_tree_depth = cpu_to_le16(i);
1043 eb_el->l_next_free_rec = cpu_to_le16(1);
1045 * This actually counts as an empty extent as
1048 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1049 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1051 * eb_el isn't always an interior node, but even leaf
1052 * nodes want a zero'd flags and reserved field so
1053 * this gets the whole 32 bits regardless of use.
1055 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1056 if (!eb_el->l_tree_depth)
1057 new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1059 status = ocfs2_journal_dirty(handle, bh);
1065 next_blkno = le64_to_cpu(eb->h_blkno);
1068 /* This is a bit hairy. We want to update up to three blocks
1069 * here without leaving any of them in an inconsistent state
1070 * in case of error. We don't have to worry about
1071 * journal_dirty erroring as it won't unless we've aborted the
1072 * handle (in which case we would never be here) so reserving
1073 * the write with journal_access is all we need to do. */
1074 status = ocfs2_journal_access_eb(handle, inode, *last_eb_bh,
1075 OCFS2_JOURNAL_ACCESS_WRITE);
1080 status = ocfs2_et_root_journal_access(handle, inode, et,
1081 OCFS2_JOURNAL_ACCESS_WRITE);
1087 status = ocfs2_journal_access_eb(handle, inode, eb_bh,
1088 OCFS2_JOURNAL_ACCESS_WRITE);
1095 /* Link the new branch into the rest of the tree (el will
1096 * either be on the root_bh, or the extent block passed in. */
1097 i = le16_to_cpu(el->l_next_free_rec);
1098 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1099 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1100 el->l_recs[i].e_int_clusters = 0;
1101 le16_add_cpu(&el->l_next_free_rec, 1);
1103 /* fe needs a new last extent block pointer, as does the
1104 * next_leaf on the previously last-extent-block. */
1105 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1107 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1108 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1110 status = ocfs2_journal_dirty(handle, *last_eb_bh);
1113 status = ocfs2_journal_dirty(handle, et->et_root_bh);
1117 status = ocfs2_journal_dirty(handle, eb_bh);
1123 * Some callers want to track the rightmost leaf so pass it
1126 brelse(*last_eb_bh);
1127 get_bh(new_eb_bhs[0]);
1128 *last_eb_bh = new_eb_bhs[0];
1133 for (i = 0; i < new_blocks; i++)
1134 brelse(new_eb_bhs[i]);
1143 * adds another level to the allocation tree.
1144 * returns back the new extent block so you can add a branch to it
1147 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
1149 struct inode *inode,
1150 struct ocfs2_extent_tree *et,
1151 struct ocfs2_alloc_context *meta_ac,
1152 struct buffer_head **ret_new_eb_bh)
1156 struct buffer_head *new_eb_bh = NULL;
1157 struct ocfs2_extent_block *eb;
1158 struct ocfs2_extent_list *root_el;
1159 struct ocfs2_extent_list *eb_el;
1163 status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
1170 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1171 /* ocfs2_create_new_meta_bhs() should create it right! */
1172 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1174 eb_el = &eb->h_list;
1175 root_el = et->et_root_el;
1177 status = ocfs2_journal_access_eb(handle, inode, new_eb_bh,
1178 OCFS2_JOURNAL_ACCESS_CREATE);
1184 /* copy the root extent list data into the new extent block */
1185 eb_el->l_tree_depth = root_el->l_tree_depth;
1186 eb_el->l_next_free_rec = root_el->l_next_free_rec;
1187 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1188 eb_el->l_recs[i] = root_el->l_recs[i];
1190 status = ocfs2_journal_dirty(handle, new_eb_bh);
1196 status = ocfs2_et_root_journal_access(handle, inode, et,
1197 OCFS2_JOURNAL_ACCESS_WRITE);
1203 new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1205 /* update root_bh now */
1206 le16_add_cpu(&root_el->l_tree_depth, 1);
1207 root_el->l_recs[0].e_cpos = 0;
1208 root_el->l_recs[0].e_blkno = eb->h_blkno;
1209 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1210 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1211 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1212 root_el->l_next_free_rec = cpu_to_le16(1);
1214 /* If this is our 1st tree depth shift, then last_eb_blk
1215 * becomes the allocated extent block */
1216 if (root_el->l_tree_depth == cpu_to_le16(1))
1217 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1219 status = ocfs2_journal_dirty(handle, et->et_root_bh);
1225 *ret_new_eb_bh = new_eb_bh;
1236 * Should only be called when there is no space left in any of the
1237 * leaf nodes. What we want to do is find the lowest tree depth
1238 * non-leaf extent block with room for new records. There are three
1239 * valid results of this search:
1241 * 1) a lowest extent block is found, then we pass it back in
1242 * *lowest_eb_bh and return '0'
1244 * 2) the search fails to find anything, but the root_el has room. We
1245 * pass NULL back in *lowest_eb_bh, but still return '0'
1247 * 3) the search fails to find anything AND the root_el is full, in
1248 * which case we return > 0
1250 * return status < 0 indicates an error.
1252 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
1253 struct inode *inode,
1254 struct ocfs2_extent_tree *et,
1255 struct buffer_head **target_bh)
1259 struct ocfs2_extent_block *eb;
1260 struct ocfs2_extent_list *el;
1261 struct buffer_head *bh = NULL;
1262 struct buffer_head *lowest_bh = NULL;
1268 el = et->et_root_el;
1270 while(le16_to_cpu(el->l_tree_depth) > 1) {
1271 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1272 ocfs2_error(inode->i_sb, "Dinode %llu has empty "
1273 "extent list (next_free_rec == 0)",
1274 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1278 i = le16_to_cpu(el->l_next_free_rec) - 1;
1279 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1281 ocfs2_error(inode->i_sb, "Dinode %llu has extent "
1282 "list where extent # %d has no physical "
1284 (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
1292 status = ocfs2_read_extent_block(inode, blkno, &bh);
1298 eb = (struct ocfs2_extent_block *) bh->b_data;
1301 if (le16_to_cpu(el->l_next_free_rec) <
1302 le16_to_cpu(el->l_count)) {
1309 /* If we didn't find one and the fe doesn't have any room,
1310 * then return '1' */
1311 el = et->et_root_el;
1312 if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1315 *target_bh = lowest_bh;
1324 * Grow a b-tree so that it has more records.
1326 * We might shift the tree depth in which case existing paths should
1327 * be considered invalid.
1329 * Tree depth after the grow is returned via *final_depth.
1331 * *last_eb_bh will be updated by ocfs2_add_branch().
1333 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
1334 struct ocfs2_extent_tree *et, int *final_depth,
1335 struct buffer_head **last_eb_bh,
1336 struct ocfs2_alloc_context *meta_ac)
1339 struct ocfs2_extent_list *el = et->et_root_el;
1340 int depth = le16_to_cpu(el->l_tree_depth);
1341 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1342 struct buffer_head *bh = NULL;
1344 BUG_ON(meta_ac == NULL);
1346 shift = ocfs2_find_branch_target(osb, inode, et, &bh);
1353 /* We traveled all the way to the bottom of the allocation tree
1354 * and didn't find room for any more extents - we need to add
1355 * another tree level */
1358 mlog(0, "need to shift tree depth (current = %d)\n", depth);
1360 /* ocfs2_shift_tree_depth will return us a buffer with
1361 * the new extent block (so we can pass that to
1362 * ocfs2_add_branch). */
1363 ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
1372 * Special case: we have room now if we shifted from
1373 * tree_depth 0, so no more work needs to be done.
1375 * We won't be calling add_branch, so pass
1376 * back *last_eb_bh as the new leaf. At depth
1377 * zero, it should always be null so there's
1378 * no reason to brelse.
1380 BUG_ON(*last_eb_bh);
1387 /* call ocfs2_add_branch to add the final part of the tree with
1389 mlog(0, "add branch. bh = %p\n", bh);
1390 ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
1399 *final_depth = depth;
1405 * This function will discard the rightmost extent record.
1407 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1409 int next_free = le16_to_cpu(el->l_next_free_rec);
1410 int count = le16_to_cpu(el->l_count);
1411 unsigned int num_bytes;
1414 /* This will cause us to go off the end of our extent list. */
1415 BUG_ON(next_free >= count);
1417 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1419 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1422 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1423 struct ocfs2_extent_rec *insert_rec)
1425 int i, insert_index, next_free, has_empty, num_bytes;
1426 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1427 struct ocfs2_extent_rec *rec;
1429 next_free = le16_to_cpu(el->l_next_free_rec);
1430 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1434 /* The tree code before us didn't allow enough room in the leaf. */
1435 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1438 * The easiest way to approach this is to just remove the
1439 * empty extent and temporarily decrement next_free.
1443 * If next_free was 1 (only an empty extent), this
1444 * loop won't execute, which is fine. We still want
1445 * the decrement above to happen.
1447 for(i = 0; i < (next_free - 1); i++)
1448 el->l_recs[i] = el->l_recs[i+1];
1454 * Figure out what the new record index should be.
1456 for(i = 0; i < next_free; i++) {
1457 rec = &el->l_recs[i];
1459 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1464 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1465 insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1467 BUG_ON(insert_index < 0);
1468 BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1469 BUG_ON(insert_index > next_free);
1472 * No need to memmove if we're just adding to the tail.
1474 if (insert_index != next_free) {
1475 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1477 num_bytes = next_free - insert_index;
1478 num_bytes *= sizeof(struct ocfs2_extent_rec);
1479 memmove(&el->l_recs[insert_index + 1],
1480 &el->l_recs[insert_index],
1485 * Either we had an empty extent, and need to re-increment or
1486 * there was no empty extent on a non full rightmost leaf node,
1487 * in which case we still need to increment.
1490 el->l_next_free_rec = cpu_to_le16(next_free);
1492 * Make sure none of the math above just messed up our tree.
1494 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1496 el->l_recs[insert_index] = *insert_rec;
1500 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1502 int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1504 BUG_ON(num_recs == 0);
1506 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1508 size = num_recs * sizeof(struct ocfs2_extent_rec);
1509 memmove(&el->l_recs[0], &el->l_recs[1], size);
1510 memset(&el->l_recs[num_recs], 0,
1511 sizeof(struct ocfs2_extent_rec));
1512 el->l_next_free_rec = cpu_to_le16(num_recs);
1517 * Create an empty extent record .
1519 * l_next_free_rec may be updated.
1521 * If an empty extent already exists do nothing.
1523 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1525 int next_free = le16_to_cpu(el->l_next_free_rec);
1527 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1532 if (ocfs2_is_empty_extent(&el->l_recs[0]))
1535 mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1536 "Asked to create an empty extent in a full list:\n"
1537 "count = %u, tree depth = %u",
1538 le16_to_cpu(el->l_count),
1539 le16_to_cpu(el->l_tree_depth));
1541 ocfs2_shift_records_right(el);
1544 le16_add_cpu(&el->l_next_free_rec, 1);
1545 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1549 * For a rotation which involves two leaf nodes, the "root node" is
1550 * the lowest level tree node which contains a path to both leafs. This
1551 * resulting set of information can be used to form a complete "subtree"
1553 * This function is passed two full paths from the dinode down to a
1554 * pair of adjacent leaves. It's task is to figure out which path
1555 * index contains the subtree root - this can be the root index itself
1556 * in a worst-case rotation.
1558 * The array index of the subtree root is passed back.
1560 static int ocfs2_find_subtree_root(struct inode *inode,
1561 struct ocfs2_path *left,
1562 struct ocfs2_path *right)
1567 * Check that the caller passed in two paths from the same tree.
1569 BUG_ON(path_root_bh(left) != path_root_bh(right));
1575 * The caller didn't pass two adjacent paths.
1577 mlog_bug_on_msg(i > left->p_tree_depth,
1578 "Inode %lu, left depth %u, right depth %u\n"
1579 "left leaf blk %llu, right leaf blk %llu\n",
1580 inode->i_ino, left->p_tree_depth,
1581 right->p_tree_depth,
1582 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1583 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1584 } while (left->p_node[i].bh->b_blocknr ==
1585 right->p_node[i].bh->b_blocknr);
1590 typedef void (path_insert_t)(void *, struct buffer_head *);
1593 * Traverse a btree path in search of cpos, starting at root_el.
1595 * This code can be called with a cpos larger than the tree, in which
1596 * case it will return the rightmost path.
1598 static int __ocfs2_find_path(struct inode *inode,
1599 struct ocfs2_extent_list *root_el, u32 cpos,
1600 path_insert_t *func, void *data)
1605 struct buffer_head *bh = NULL;
1606 struct ocfs2_extent_block *eb;
1607 struct ocfs2_extent_list *el;
1608 struct ocfs2_extent_rec *rec;
1609 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1612 while (el->l_tree_depth) {
1613 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1614 ocfs2_error(inode->i_sb,
1615 "Inode %llu has empty extent list at "
1617 (unsigned long long)oi->ip_blkno,
1618 le16_to_cpu(el->l_tree_depth));
1624 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1625 rec = &el->l_recs[i];
1628 * In the case that cpos is off the allocation
1629 * tree, this should just wind up returning the
1632 range = le32_to_cpu(rec->e_cpos) +
1633 ocfs2_rec_clusters(el, rec);
1634 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1638 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1640 ocfs2_error(inode->i_sb,
1641 "Inode %llu has bad blkno in extent list "
1642 "at depth %u (index %d)\n",
1643 (unsigned long long)oi->ip_blkno,
1644 le16_to_cpu(el->l_tree_depth), i);
1651 ret = ocfs2_read_extent_block(inode, blkno, &bh);
1657 eb = (struct ocfs2_extent_block *) bh->b_data;
1660 if (le16_to_cpu(el->l_next_free_rec) >
1661 le16_to_cpu(el->l_count)) {
1662 ocfs2_error(inode->i_sb,
1663 "Inode %llu has bad count in extent list "
1664 "at block %llu (next free=%u, count=%u)\n",
1665 (unsigned long long)oi->ip_blkno,
1666 (unsigned long long)bh->b_blocknr,
1667 le16_to_cpu(el->l_next_free_rec),
1668 le16_to_cpu(el->l_count));
1679 * Catch any trailing bh that the loop didn't handle.
1687 * Given an initialized path (that is, it has a valid root extent
1688 * list), this function will traverse the btree in search of the path
1689 * which would contain cpos.
1691 * The path traveled is recorded in the path structure.
1693 * Note that this will not do any comparisons on leaf node extent
1694 * records, so it will work fine in the case that we just added a tree
1697 struct find_path_data {
1699 struct ocfs2_path *path;
1701 static void find_path_ins(void *data, struct buffer_head *bh)
1703 struct find_path_data *fp = data;
1706 ocfs2_path_insert_eb(fp->path, fp->index, bh);
1709 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1712 struct find_path_data data;
1716 return __ocfs2_find_path(inode, path_root_el(path), cpos,
1717 find_path_ins, &data);
1720 static void find_leaf_ins(void *data, struct buffer_head *bh)
1722 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1723 struct ocfs2_extent_list *el = &eb->h_list;
1724 struct buffer_head **ret = data;
1726 /* We want to retain only the leaf block. */
1727 if (le16_to_cpu(el->l_tree_depth) == 0) {
1733 * Find the leaf block in the tree which would contain cpos. No
1734 * checking of the actual leaf is done.
1736 * Some paths want to call this instead of allocating a path structure
1737 * and calling ocfs2_find_path().
1739 * This function doesn't handle non btree extent lists.
1741 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1742 u32 cpos, struct buffer_head **leaf_bh)
1745 struct buffer_head *bh = NULL;
1747 ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1759 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1761 * Basically, we've moved stuff around at the bottom of the tree and
1762 * we need to fix up the extent records above the changes to reflect
1765 * left_rec: the record on the left.
1766 * left_child_el: is the child list pointed to by left_rec
1767 * right_rec: the record to the right of left_rec
1768 * right_child_el: is the child list pointed to by right_rec
1770 * By definition, this only works on interior nodes.
1772 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1773 struct ocfs2_extent_list *left_child_el,
1774 struct ocfs2_extent_rec *right_rec,
1775 struct ocfs2_extent_list *right_child_el)
1777 u32 left_clusters, right_end;
1780 * Interior nodes never have holes. Their cpos is the cpos of
1781 * the leftmost record in their child list. Their cluster
1782 * count covers the full theoretical range of their child list
1783 * - the range between their cpos and the cpos of the record
1784 * immediately to their right.
1786 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1787 if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1788 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1789 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1791 left_clusters -= le32_to_cpu(left_rec->e_cpos);
1792 left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1795 * Calculate the rightmost cluster count boundary before
1796 * moving cpos - we will need to adjust clusters after
1797 * updating e_cpos to keep the same highest cluster count.
1799 right_end = le32_to_cpu(right_rec->e_cpos);
1800 right_end += le32_to_cpu(right_rec->e_int_clusters);
1802 right_rec->e_cpos = left_rec->e_cpos;
1803 le32_add_cpu(&right_rec->e_cpos, left_clusters);
1805 right_end -= le32_to_cpu(right_rec->e_cpos);
1806 right_rec->e_int_clusters = cpu_to_le32(right_end);
1810 * Adjust the adjacent root node records involved in a
1811 * rotation. left_el_blkno is passed in as a key so that we can easily
1812 * find it's index in the root list.
1814 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1815 struct ocfs2_extent_list *left_el,
1816 struct ocfs2_extent_list *right_el,
1821 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1822 le16_to_cpu(left_el->l_tree_depth));
1824 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1825 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1830 * The path walking code should have never returned a root and
1831 * two paths which are not adjacent.
1833 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1835 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1836 &root_el->l_recs[i + 1], right_el);
1840 * We've changed a leaf block (in right_path) and need to reflect that
1841 * change back up the subtree.
1843 * This happens in multiple places:
1844 * - When we've moved an extent record from the left path leaf to the right
1845 * path leaf to make room for an empty extent in the left path leaf.
1846 * - When our insert into the right path leaf is at the leftmost edge
1847 * and requires an update of the path immediately to it's left. This
1848 * can occur at the end of some types of rotation and appending inserts.
1849 * - When we've adjusted the last extent record in the left path leaf and the
1850 * 1st extent record in the right path leaf during cross extent block merge.
1852 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1853 struct ocfs2_path *left_path,
1854 struct ocfs2_path *right_path,
1858 struct ocfs2_extent_list *el, *left_el, *right_el;
1859 struct ocfs2_extent_rec *left_rec, *right_rec;
1860 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1863 * Update the counts and position values within all the
1864 * interior nodes to reflect the leaf rotation we just did.
1866 * The root node is handled below the loop.
1868 * We begin the loop with right_el and left_el pointing to the
1869 * leaf lists and work our way up.
1871 * NOTE: within this loop, left_el and right_el always refer
1872 * to the *child* lists.
1874 left_el = path_leaf_el(left_path);
1875 right_el = path_leaf_el(right_path);
1876 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1877 mlog(0, "Adjust records at index %u\n", i);
1880 * One nice property of knowing that all of these
1881 * nodes are below the root is that we only deal with
1882 * the leftmost right node record and the rightmost
1885 el = left_path->p_node[i].el;
1886 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1887 left_rec = &el->l_recs[idx];
1889 el = right_path->p_node[i].el;
1890 right_rec = &el->l_recs[0];
1892 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1895 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1899 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1904 * Setup our list pointers now so that the current
1905 * parents become children in the next iteration.
1907 left_el = left_path->p_node[i].el;
1908 right_el = right_path->p_node[i].el;
1912 * At the root node, adjust the two adjacent records which
1913 * begin our path to the leaves.
1916 el = left_path->p_node[subtree_index].el;
1917 left_el = left_path->p_node[subtree_index + 1].el;
1918 right_el = right_path->p_node[subtree_index + 1].el;
1920 ocfs2_adjust_root_records(el, left_el, right_el,
1921 left_path->p_node[subtree_index + 1].bh->b_blocknr);
1923 root_bh = left_path->p_node[subtree_index].bh;
1925 ret = ocfs2_journal_dirty(handle, root_bh);
1930 static int ocfs2_rotate_subtree_right(struct inode *inode,
1932 struct ocfs2_path *left_path,
1933 struct ocfs2_path *right_path,
1937 struct buffer_head *right_leaf_bh;
1938 struct buffer_head *left_leaf_bh = NULL;
1939 struct buffer_head *root_bh;
1940 struct ocfs2_extent_list *right_el, *left_el;
1941 struct ocfs2_extent_rec move_rec;
1943 left_leaf_bh = path_leaf_bh(left_path);
1944 left_el = path_leaf_el(left_path);
1946 if (left_el->l_next_free_rec != left_el->l_count) {
1947 ocfs2_error(inode->i_sb,
1948 "Inode %llu has non-full interior leaf node %llu"
1950 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1951 (unsigned long long)left_leaf_bh->b_blocknr,
1952 le16_to_cpu(left_el->l_next_free_rec));
1957 * This extent block may already have an empty record, so we
1958 * return early if so.
1960 if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
1963 root_bh = left_path->p_node[subtree_index].bh;
1964 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
1966 ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
1973 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
1974 ret = ocfs2_path_bh_journal_access(handle, inode,
1981 ret = ocfs2_path_bh_journal_access(handle, inode,
1989 right_leaf_bh = path_leaf_bh(right_path);
1990 right_el = path_leaf_el(right_path);
1992 /* This is a code error, not a disk corruption. */
1993 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
1994 "because rightmost leaf block %llu is empty\n",
1995 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1996 (unsigned long long)right_leaf_bh->b_blocknr);
1998 ocfs2_create_empty_extent(right_el);
2000 ret = ocfs2_journal_dirty(handle, right_leaf_bh);
2006 /* Do the copy now. */
2007 i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2008 move_rec = left_el->l_recs[i];
2009 right_el->l_recs[0] = move_rec;
2012 * Clear out the record we just copied and shift everything
2013 * over, leaving an empty extent in the left leaf.
2015 * We temporarily subtract from next_free_rec so that the
2016 * shift will lose the tail record (which is now defunct).
2018 le16_add_cpu(&left_el->l_next_free_rec, -1);
2019 ocfs2_shift_records_right(left_el);
2020 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2021 le16_add_cpu(&left_el->l_next_free_rec, 1);
2023 ret = ocfs2_journal_dirty(handle, left_leaf_bh);
2029 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2037 * Given a full path, determine what cpos value would return us a path
2038 * containing the leaf immediately to the left of the current one.
2040 * Will return zero if the path passed in is already the leftmost path.
2042 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2043 struct ocfs2_path *path, u32 *cpos)
2047 struct ocfs2_extent_list *el;
2049 BUG_ON(path->p_tree_depth == 0);
2053 blkno = path_leaf_bh(path)->b_blocknr;
2055 /* Start at the tree node just above the leaf and work our way up. */
2056 i = path->p_tree_depth - 1;
2058 el = path->p_node[i].el;
2061 * Find the extent record just before the one in our
2064 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2065 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2069 * We've determined that the
2070 * path specified is already
2071 * the leftmost one - return a
2077 * The leftmost record points to our
2078 * leaf - we need to travel up the
2084 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2085 *cpos = *cpos + ocfs2_rec_clusters(el,
2086 &el->l_recs[j - 1]);
2093 * If we got here, we never found a valid node where
2094 * the tree indicated one should be.
2097 "Invalid extent tree at extent block %llu\n",
2098 (unsigned long long)blkno);
2103 blkno = path->p_node[i].bh->b_blocknr;
2112 * Extend the transaction by enough credits to complete the rotation,
2113 * and still leave at least the original number of credits allocated
2114 * to this transaction.
2116 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2118 struct ocfs2_path *path)
2120 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2122 if (handle->h_buffer_credits < credits)
2123 return ocfs2_extend_trans(handle, credits);
2129 * Trap the case where we're inserting into the theoretical range past
2130 * the _actual_ left leaf range. Otherwise, we'll rotate a record
2131 * whose cpos is less than ours into the right leaf.
2133 * It's only necessary to look at the rightmost record of the left
2134 * leaf because the logic that calls us should ensure that the
2135 * theoretical ranges in the path components above the leaves are
2138 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2141 struct ocfs2_extent_list *left_el;
2142 struct ocfs2_extent_rec *rec;
2145 left_el = path_leaf_el(left_path);
2146 next_free = le16_to_cpu(left_el->l_next_free_rec);
2147 rec = &left_el->l_recs[next_free - 1];
2149 if (insert_cpos > le32_to_cpu(rec->e_cpos))
2154 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2156 int next_free = le16_to_cpu(el->l_next_free_rec);
2158 struct ocfs2_extent_rec *rec;
2163 rec = &el->l_recs[0];
2164 if (ocfs2_is_empty_extent(rec)) {
2168 rec = &el->l_recs[1];
2171 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2172 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2178 * Rotate all the records in a btree right one record, starting at insert_cpos.
2180 * The path to the rightmost leaf should be passed in.
2182 * The array is assumed to be large enough to hold an entire path (tree depth).
2184 * Upon succesful return from this function:
2186 * - The 'right_path' array will contain a path to the leaf block
2187 * whose range contains e_cpos.
2188 * - That leaf block will have a single empty extent in list index 0.
2189 * - In the case that the rotation requires a post-insert update,
2190 * *ret_left_path will contain a valid path which can be passed to
2191 * ocfs2_insert_path().
2193 static int ocfs2_rotate_tree_right(struct inode *inode,
2195 enum ocfs2_split_type split,
2197 struct ocfs2_path *right_path,
2198 struct ocfs2_path **ret_left_path)
2200 int ret, start, orig_credits = handle->h_buffer_credits;
2202 struct ocfs2_path *left_path = NULL;
2204 *ret_left_path = NULL;
2206 left_path = ocfs2_new_path_from_path(right_path);
2213 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
2219 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2222 * What we want to do here is:
2224 * 1) Start with the rightmost path.
2226 * 2) Determine a path to the leaf block directly to the left
2229 * 3) Determine the 'subtree root' - the lowest level tree node
2230 * which contains a path to both leaves.
2232 * 4) Rotate the subtree.
2234 * 5) Find the next subtree by considering the left path to be
2235 * the new right path.
2237 * The check at the top of this while loop also accepts
2238 * insert_cpos == cpos because cpos is only a _theoretical_
2239 * value to get us the left path - insert_cpos might very well
2240 * be filling that hole.
2242 * Stop at a cpos of '0' because we either started at the
2243 * leftmost branch (i.e., a tree with one branch and a
2244 * rotation inside of it), or we've gone as far as we can in
2245 * rotating subtrees.
2247 while (cpos && insert_cpos <= cpos) {
2248 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2251 ret = ocfs2_find_path(inode, left_path, cpos);
2257 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2258 path_leaf_bh(right_path),
2259 "Inode %lu: error during insert of %u "
2260 "(left path cpos %u) results in two identical "
2261 "paths ending at %llu\n",
2262 inode->i_ino, insert_cpos, cpos,
2263 (unsigned long long)
2264 path_leaf_bh(left_path)->b_blocknr);
2266 if (split == SPLIT_NONE &&
2267 ocfs2_rotate_requires_path_adjustment(left_path,
2271 * We've rotated the tree as much as we
2272 * should. The rest is up to
2273 * ocfs2_insert_path() to complete, after the
2274 * record insertion. We indicate this
2275 * situation by returning the left path.
2277 * The reason we don't adjust the records here
2278 * before the record insert is that an error
2279 * later might break the rule where a parent
2280 * record e_cpos will reflect the actual
2281 * e_cpos of the 1st nonempty record of the
2284 *ret_left_path = left_path;
2288 start = ocfs2_find_subtree_root(inode, left_path, right_path);
2290 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2292 (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2293 right_path->p_tree_depth);
2295 ret = ocfs2_extend_rotate_transaction(handle, start,
2296 orig_credits, right_path);
2302 ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
2309 if (split != SPLIT_NONE &&
2310 ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2313 * A rotate moves the rightmost left leaf
2314 * record over to the leftmost right leaf
2315 * slot. If we're doing an extent split
2316 * instead of a real insert, then we have to
2317 * check that the extent to be split wasn't
2318 * just moved over. If it was, then we can
2319 * exit here, passing left_path back -
2320 * ocfs2_split_extent() is smart enough to
2321 * search both leaves.
2323 *ret_left_path = left_path;
2328 * There is no need to re-read the next right path
2329 * as we know that it'll be our current left
2330 * path. Optimize by copying values instead.
2332 ocfs2_mv_path(right_path, left_path);
2334 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
2343 ocfs2_free_path(left_path);
2349 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
2350 struct ocfs2_path *path)
2353 struct ocfs2_extent_rec *rec;
2354 struct ocfs2_extent_list *el;
2355 struct ocfs2_extent_block *eb;
2358 /* Path should always be rightmost. */
2359 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2360 BUG_ON(eb->h_next_leaf_blk != 0ULL);
2363 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2364 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2365 rec = &el->l_recs[idx];
2366 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2368 for (i = 0; i < path->p_tree_depth; i++) {
2369 el = path->p_node[i].el;
2370 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2371 rec = &el->l_recs[idx];
2373 rec->e_int_clusters = cpu_to_le32(range);
2374 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2376 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2380 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
2381 struct ocfs2_cached_dealloc_ctxt *dealloc,
2382 struct ocfs2_path *path, int unlink_start)
2385 struct ocfs2_extent_block *eb;
2386 struct ocfs2_extent_list *el;
2387 struct buffer_head *bh;
2389 for(i = unlink_start; i < path_num_items(path); i++) {
2390 bh = path->p_node[i].bh;
2392 eb = (struct ocfs2_extent_block *)bh->b_data;
2394 * Not all nodes might have had their final count
2395 * decremented by the caller - handle this here.
2398 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2400 "Inode %llu, attempted to remove extent block "
2401 "%llu with %u records\n",
2402 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2403 (unsigned long long)le64_to_cpu(eb->h_blkno),
2404 le16_to_cpu(el->l_next_free_rec));
2406 ocfs2_journal_dirty(handle, bh);
2407 ocfs2_remove_from_cache(inode, bh);
2411 el->l_next_free_rec = 0;
2412 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2414 ocfs2_journal_dirty(handle, bh);
2416 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2420 ocfs2_remove_from_cache(inode, bh);
2424 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2425 struct ocfs2_path *left_path,
2426 struct ocfs2_path *right_path,
2428 struct ocfs2_cached_dealloc_ctxt *dealloc)
2431 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2432 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2433 struct ocfs2_extent_list *el;
2434 struct ocfs2_extent_block *eb;
2436 el = path_leaf_el(left_path);
2438 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2440 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2441 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2444 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2446 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2447 le16_add_cpu(&root_el->l_next_free_rec, -1);
2449 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2450 eb->h_next_leaf_blk = 0;
2452 ocfs2_journal_dirty(handle, root_bh);
2453 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2455 ocfs2_unlink_path(inode, handle, dealloc, right_path,
2459 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2460 struct ocfs2_path *left_path,
2461 struct ocfs2_path *right_path,
2463 struct ocfs2_cached_dealloc_ctxt *dealloc,
2465 struct ocfs2_extent_tree *et)
2467 int ret, i, del_right_subtree = 0, right_has_empty = 0;
2468 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2469 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2470 struct ocfs2_extent_block *eb;
2474 right_leaf_el = path_leaf_el(right_path);
2475 left_leaf_el = path_leaf_el(left_path);
2476 root_bh = left_path->p_node[subtree_index].bh;
2477 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2479 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2482 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2483 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2485 * It's legal for us to proceed if the right leaf is
2486 * the rightmost one and it has an empty extent. There
2487 * are two cases to handle - whether the leaf will be
2488 * empty after removal or not. If the leaf isn't empty
2489 * then just remove the empty extent up front. The
2490 * next block will handle empty leaves by flagging
2493 * Non rightmost leaves will throw -EAGAIN and the
2494 * caller can manually move the subtree and retry.
2497 if (eb->h_next_leaf_blk != 0ULL)
2500 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2501 ret = ocfs2_journal_access_eb(handle, inode,
2502 path_leaf_bh(right_path),
2503 OCFS2_JOURNAL_ACCESS_WRITE);
2509 ocfs2_remove_empty_extent(right_leaf_el);
2511 right_has_empty = 1;
2514 if (eb->h_next_leaf_blk == 0ULL &&
2515 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2517 * We have to update i_last_eb_blk during the meta
2520 ret = ocfs2_et_root_journal_access(handle, inode, et,
2521 OCFS2_JOURNAL_ACCESS_WRITE);
2527 del_right_subtree = 1;
2531 * Getting here with an empty extent in the right path implies
2532 * that it's the rightmost path and will be deleted.
2534 BUG_ON(right_has_empty && !del_right_subtree);
2536 ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
2543 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2544 ret = ocfs2_path_bh_journal_access(handle, inode,
2551 ret = ocfs2_path_bh_journal_access(handle, inode,
2559 if (!right_has_empty) {
2561 * Only do this if we're moving a real
2562 * record. Otherwise, the action is delayed until
2563 * after removal of the right path in which case we
2564 * can do a simple shift to remove the empty extent.
2566 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2567 memset(&right_leaf_el->l_recs[0], 0,
2568 sizeof(struct ocfs2_extent_rec));
2570 if (eb->h_next_leaf_blk == 0ULL) {
2572 * Move recs over to get rid of empty extent, decrease
2573 * next_free. This is allowed to remove the last
2574 * extent in our leaf (setting l_next_free_rec to
2575 * zero) - the delete code below won't care.
2577 ocfs2_remove_empty_extent(right_leaf_el);
2580 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2583 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2587 if (del_right_subtree) {
2588 ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2589 subtree_index, dealloc);
2590 ocfs2_update_edge_lengths(inode, handle, left_path);
2592 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2593 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2596 * Removal of the extent in the left leaf was skipped
2597 * above so we could delete the right path
2600 if (right_has_empty)
2601 ocfs2_remove_empty_extent(left_leaf_el);
2603 ret = ocfs2_journal_dirty(handle, et_root_bh);
2609 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2617 * Given a full path, determine what cpos value would return us a path
2618 * containing the leaf immediately to the right of the current one.
2620 * Will return zero if the path passed in is already the rightmost path.
2622 * This looks similar, but is subtly different to
2623 * ocfs2_find_cpos_for_left_leaf().
2625 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2626 struct ocfs2_path *path, u32 *cpos)
2630 struct ocfs2_extent_list *el;
2634 if (path->p_tree_depth == 0)
2637 blkno = path_leaf_bh(path)->b_blocknr;
2639 /* Start at the tree node just above the leaf and work our way up. */
2640 i = path->p_tree_depth - 1;
2644 el = path->p_node[i].el;
2647 * Find the extent record just after the one in our
2650 next_free = le16_to_cpu(el->l_next_free_rec);
2651 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2652 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2653 if (j == (next_free - 1)) {
2656 * We've determined that the
2657 * path specified is already
2658 * the rightmost one - return a
2664 * The rightmost record points to our
2665 * leaf - we need to travel up the
2671 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2677 * If we got here, we never found a valid node where
2678 * the tree indicated one should be.
2681 "Invalid extent tree at extent block %llu\n",
2682 (unsigned long long)blkno);
2687 blkno = path->p_node[i].bh->b_blocknr;
2695 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2697 struct ocfs2_path *path)
2700 struct buffer_head *bh = path_leaf_bh(path);
2701 struct ocfs2_extent_list *el = path_leaf_el(path);
2703 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2706 ret = ocfs2_path_bh_journal_access(handle, inode, path,
2707 path_num_items(path) - 1);
2713 ocfs2_remove_empty_extent(el);
2715 ret = ocfs2_journal_dirty(handle, bh);
2723 static int __ocfs2_rotate_tree_left(struct inode *inode,
2724 handle_t *handle, int orig_credits,
2725 struct ocfs2_path *path,
2726 struct ocfs2_cached_dealloc_ctxt *dealloc,
2727 struct ocfs2_path **empty_extent_path,
2728 struct ocfs2_extent_tree *et)
2730 int ret, subtree_root, deleted;
2732 struct ocfs2_path *left_path = NULL;
2733 struct ocfs2_path *right_path = NULL;
2735 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2737 *empty_extent_path = NULL;
2739 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2746 left_path = ocfs2_new_path_from_path(path);
2753 ocfs2_cp_path(left_path, path);
2755 right_path = ocfs2_new_path_from_path(path);
2762 while (right_cpos) {
2763 ret = ocfs2_find_path(inode, right_path, right_cpos);
2769 subtree_root = ocfs2_find_subtree_root(inode, left_path,
2772 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2774 (unsigned long long)
2775 right_path->p_node[subtree_root].bh->b_blocknr,
2776 right_path->p_tree_depth);
2778 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2779 orig_credits, left_path);
2786 * Caller might still want to make changes to the
2787 * tree root, so re-add it to the journal here.
2789 ret = ocfs2_path_bh_journal_access(handle, inode,
2796 ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2797 right_path, subtree_root,
2798 dealloc, &deleted, et);
2799 if (ret == -EAGAIN) {
2801 * The rotation has to temporarily stop due to
2802 * the right subtree having an empty
2803 * extent. Pass it back to the caller for a
2806 *empty_extent_path = right_path;
2816 * The subtree rotate might have removed records on
2817 * the rightmost edge. If so, then rotation is
2823 ocfs2_mv_path(left_path, right_path);
2825 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2834 ocfs2_free_path(right_path);
2835 ocfs2_free_path(left_path);
2840 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2841 struct ocfs2_path *path,
2842 struct ocfs2_cached_dealloc_ctxt *dealloc,
2843 struct ocfs2_extent_tree *et)
2845 int ret, subtree_index;
2847 struct ocfs2_path *left_path = NULL;
2848 struct ocfs2_extent_block *eb;
2849 struct ocfs2_extent_list *el;
2852 ret = ocfs2_et_sanity_check(inode, et);
2856 * There's two ways we handle this depending on
2857 * whether path is the only existing one.
2859 ret = ocfs2_extend_rotate_transaction(handle, 0,
2860 handle->h_buffer_credits,
2867 ret = ocfs2_journal_access_path(inode, handle, path);
2873 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
2881 * We have a path to the left of this one - it needs
2884 left_path = ocfs2_new_path_from_path(path);
2891 ret = ocfs2_find_path(inode, left_path, cpos);
2897 ret = ocfs2_journal_access_path(inode, handle, left_path);
2903 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
2905 ocfs2_unlink_subtree(inode, handle, left_path, path,
2906 subtree_index, dealloc);
2907 ocfs2_update_edge_lengths(inode, handle, left_path);
2909 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2910 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2913 * 'path' is also the leftmost path which
2914 * means it must be the only one. This gets
2915 * handled differently because we want to
2916 * revert the inode back to having extents
2919 ocfs2_unlink_path(inode, handle, dealloc, path, 1);
2921 el = et->et_root_el;
2922 el->l_tree_depth = 0;
2923 el->l_next_free_rec = 0;
2924 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2926 ocfs2_et_set_last_eb_blk(et, 0);
2929 ocfs2_journal_dirty(handle, path_root_bh(path));
2932 ocfs2_free_path(left_path);
2937 * Left rotation of btree records.
2939 * In many ways, this is (unsurprisingly) the opposite of right
2940 * rotation. We start at some non-rightmost path containing an empty
2941 * extent in the leaf block. The code works its way to the rightmost
2942 * path by rotating records to the left in every subtree.
2944 * This is used by any code which reduces the number of extent records
2945 * in a leaf. After removal, an empty record should be placed in the
2946 * leftmost list position.
2948 * This won't handle a length update of the rightmost path records if
2949 * the rightmost tree leaf record is removed so the caller is
2950 * responsible for detecting and correcting that.
2952 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
2953 struct ocfs2_path *path,
2954 struct ocfs2_cached_dealloc_ctxt *dealloc,
2955 struct ocfs2_extent_tree *et)
2957 int ret, orig_credits = handle->h_buffer_credits;
2958 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
2959 struct ocfs2_extent_block *eb;
2960 struct ocfs2_extent_list *el;
2962 el = path_leaf_el(path);
2963 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2966 if (path->p_tree_depth == 0) {
2967 rightmost_no_delete:
2969 * Inline extents. This is trivially handled, so do
2972 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
2980 * Handle rightmost branch now. There's several cases:
2981 * 1) simple rotation leaving records in there. That's trivial.
2982 * 2) rotation requiring a branch delete - there's no more
2983 * records left. Two cases of this:
2984 * a) There are branches to the left.
2985 * b) This is also the leftmost (the only) branch.
2987 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
2988 * 2a) we need the left branch so that we can update it with the unlink
2989 * 2b) we need to bring the inode back to inline extents.
2992 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2994 if (eb->h_next_leaf_blk == 0) {
2996 * This gets a bit tricky if we're going to delete the
2997 * rightmost path. Get the other cases out of the way
3000 if (le16_to_cpu(el->l_next_free_rec) > 1)
3001 goto rightmost_no_delete;
3003 if (le16_to_cpu(el->l_next_free_rec) == 0) {
3005 ocfs2_error(inode->i_sb,
3006 "Inode %llu has empty extent block at %llu",
3007 (unsigned long long)OCFS2_I(inode)->ip_blkno,
3008 (unsigned long long)le64_to_cpu(eb->h_blkno));
3013 * XXX: The caller can not trust "path" any more after
3014 * this as it will have been deleted. What do we do?
3016 * In theory the rotate-for-merge code will never get
3017 * here because it'll always ask for a rotate in a
3021 ret = ocfs2_remove_rightmost_path(inode, handle, path,
3029 * Now we can loop, remembering the path we get from -EAGAIN
3030 * and restarting from there.
3033 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
3034 dealloc, &restart_path, et);
3035 if (ret && ret != -EAGAIN) {
3040 while (ret == -EAGAIN) {
3041 tmp_path = restart_path;
3042 restart_path = NULL;
3044 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
3047 if (ret && ret != -EAGAIN) {
3052 ocfs2_free_path(tmp_path);
3060 ocfs2_free_path(tmp_path);
3061 ocfs2_free_path(restart_path);
3065 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3068 struct ocfs2_extent_rec *rec = &el->l_recs[index];
3071 if (rec->e_leaf_clusters == 0) {
3073 * We consumed all of the merged-from record. An empty
3074 * extent cannot exist anywhere but the 1st array
3075 * position, so move things over if the merged-from
3076 * record doesn't occupy that position.
3078 * This creates a new empty extent so the caller
3079 * should be smart enough to have removed any existing
3083 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3084 size = index * sizeof(struct ocfs2_extent_rec);
3085 memmove(&el->l_recs[1], &el->l_recs[0], size);
3089 * Always memset - the caller doesn't check whether it
3090 * created an empty extent, so there could be junk in
3093 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3097 static int ocfs2_get_right_path(struct inode *inode,
3098 struct ocfs2_path *left_path,
3099 struct ocfs2_path **ret_right_path)
3103 struct ocfs2_path *right_path = NULL;
3104 struct ocfs2_extent_list *left_el;
3106 *ret_right_path = NULL;
3108 /* This function shouldn't be called for non-trees. */
3109 BUG_ON(left_path->p_tree_depth == 0);
3111 left_el = path_leaf_el(left_path);
3112 BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3114 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
3121 /* This function shouldn't be called for the rightmost leaf. */
3122 BUG_ON(right_cpos == 0);
3124 right_path = ocfs2_new_path_from_path(left_path);
3131 ret = ocfs2_find_path(inode, right_path, right_cpos);
3137 *ret_right_path = right_path;
3140 ocfs2_free_path(right_path);
3145 * Remove split_rec clusters from the record at index and merge them
3146 * onto the beginning of the record "next" to it.
3147 * For index < l_count - 1, the next means the extent rec at index + 1.
3148 * For index == l_count - 1, the "next" means the 1st extent rec of the
3149 * next extent block.
3151 static int ocfs2_merge_rec_right(struct inode *inode,
3152 struct ocfs2_path *left_path,
3154 struct ocfs2_extent_rec *split_rec,
3157 int ret, next_free, i;
3158 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3159 struct ocfs2_extent_rec *left_rec;
3160 struct ocfs2_extent_rec *right_rec;
3161 struct ocfs2_extent_list *right_el;
3162 struct ocfs2_path *right_path = NULL;
3163 int subtree_index = 0;
3164 struct ocfs2_extent_list *el = path_leaf_el(left_path);
3165 struct buffer_head *bh = path_leaf_bh(left_path);
3166 struct buffer_head *root_bh = NULL;
3168 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3169 left_rec = &el->l_recs[index];
3171 if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3172 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3173 /* we meet with a cross extent block merge. */
3174 ret = ocfs2_get_right_path(inode, left_path, &right_path);
3180 right_el = path_leaf_el(right_path);
3181 next_free = le16_to_cpu(right_el->l_next_free_rec);
3182 BUG_ON(next_free <= 0);
3183 right_rec = &right_el->l_recs[0];
3184 if (ocfs2_is_empty_extent(right_rec)) {
3185 BUG_ON(next_free <= 1);
3186 right_rec = &right_el->l_recs[1];
3189 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3190 le16_to_cpu(left_rec->e_leaf_clusters) !=
3191 le32_to_cpu(right_rec->e_cpos));
3193 subtree_index = ocfs2_find_subtree_root(inode,
3194 left_path, right_path);
3196 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3197 handle->h_buffer_credits,
3204 root_bh = left_path->p_node[subtree_index].bh;
3205 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3207 ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3214 for (i = subtree_index + 1;
3215 i < path_num_items(right_path); i++) {
3216 ret = ocfs2_path_bh_journal_access(handle, inode,
3223 ret = ocfs2_path_bh_journal_access(handle, inode,
3232 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3233 right_rec = &el->l_recs[index + 1];
3236 ret = ocfs2_path_bh_journal_access(handle, inode, left_path,
3237 path_num_items(left_path) - 1);
3243 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3245 le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3246 le64_add_cpu(&right_rec->e_blkno,
3247 -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3248 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3250 ocfs2_cleanup_merge(el, index);
3252 ret = ocfs2_journal_dirty(handle, bh);
3257 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3261 ocfs2_complete_edge_insert(inode, handle, left_path,
3262 right_path, subtree_index);
3266 ocfs2_free_path(right_path);
3270 static int ocfs2_get_left_path(struct inode *inode,
3271 struct ocfs2_path *right_path,
3272 struct ocfs2_path **ret_left_path)
3276 struct ocfs2_path *left_path = NULL;
3278 *ret_left_path = NULL;
3280 /* This function shouldn't be called for non-trees. */
3281 BUG_ON(right_path->p_tree_depth == 0);
3283 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3284 right_path, &left_cpos);
3290 /* This function shouldn't be called for the leftmost leaf. */
3291 BUG_ON(left_cpos == 0);
3293 left_path = ocfs2_new_path_from_path(right_path);
3300 ret = ocfs2_find_path(inode, left_path, left_cpos);
3306 *ret_left_path = left_path;
3309 ocfs2_free_path(left_path);
3314 * Remove split_rec clusters from the record at index and merge them
3315 * onto the tail of the record "before" it.
3316 * For index > 0, the "before" means the extent rec at index - 1.
3318 * For index == 0, the "before" means the last record of the previous
3319 * extent block. And there is also a situation that we may need to
3320 * remove the rightmost leaf extent block in the right_path and change
3321 * the right path to indicate the new rightmost path.
3323 static int ocfs2_merge_rec_left(struct inode *inode,
3324 struct ocfs2_path *right_path,
3326 struct ocfs2_extent_rec *split_rec,
3327 struct ocfs2_cached_dealloc_ctxt *dealloc,
3328 struct ocfs2_extent_tree *et,
3331 int ret, i, subtree_index = 0, has_empty_extent = 0;
3332 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3333 struct ocfs2_extent_rec *left_rec;
3334 struct ocfs2_extent_rec *right_rec;
3335 struct ocfs2_extent_list *el = path_leaf_el(right_path);
3336 struct buffer_head *bh = path_leaf_bh(right_path);
3337 struct buffer_head *root_bh = NULL;
3338 struct ocfs2_path *left_path = NULL;
3339 struct ocfs2_extent_list *left_el;
3343 right_rec = &el->l_recs[index];
3345 /* we meet with a cross extent block merge. */
3346 ret = ocfs2_get_left_path(inode, right_path, &left_path);
3352 left_el = path_leaf_el(left_path);
3353 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3354 le16_to_cpu(left_el->l_count));
3356 left_rec = &left_el->l_recs[
3357 le16_to_cpu(left_el->l_next_free_rec) - 1];
3358 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3359 le16_to_cpu(left_rec->e_leaf_clusters) !=
3360 le32_to_cpu(split_rec->e_cpos));
3362 subtree_index = ocfs2_find_subtree_root(inode,
3363 left_path, right_path);
3365 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3366 handle->h_buffer_credits,
3373 root_bh = left_path->p_node[subtree_index].bh;
3374 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3376 ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3383 for (i = subtree_index + 1;
3384 i < path_num_items(right_path); i++) {
3385 ret = ocfs2_path_bh_journal_access(handle, inode,
3392 ret = ocfs2_path_bh_journal_access(handle, inode,
3400 left_rec = &el->l_recs[index - 1];
3401 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3402 has_empty_extent = 1;
3405 ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3406 path_num_items(right_path) - 1);
3412 if (has_empty_extent && index == 1) {
3414 * The easy case - we can just plop the record right in.
3416 *left_rec = *split_rec;
3418 has_empty_extent = 0;
3420 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3422 le32_add_cpu(&right_rec->e_cpos, split_clusters);
3423 le64_add_cpu(&right_rec->e_blkno,
3424 ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3425 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3427 ocfs2_cleanup_merge(el, index);
3429 ret = ocfs2_journal_dirty(handle, bh);
3434 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3439 * In the situation that the right_rec is empty and the extent
3440 * block is empty also, ocfs2_complete_edge_insert can't handle
3441 * it and we need to delete the right extent block.
3443 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3444 le16_to_cpu(el->l_next_free_rec) == 1) {
3446 ret = ocfs2_remove_rightmost_path(inode, handle,
3454 /* Now the rightmost extent block has been deleted.
3455 * So we use the new rightmost path.
3457 ocfs2_mv_path(right_path, left_path);
3460 ocfs2_complete_edge_insert(inode, handle, left_path,
3461 right_path, subtree_index);
3465 ocfs2_free_path(left_path);
3469 static int ocfs2_try_to_merge_extent(struct inode *inode,
3471 struct ocfs2_path *path,
3473 struct ocfs2_extent_rec *split_rec,
3474 struct ocfs2_cached_dealloc_ctxt *dealloc,
3475 struct ocfs2_merge_ctxt *ctxt,
3476 struct ocfs2_extent_tree *et)
3480 struct ocfs2_extent_list *el = path_leaf_el(path);
3481 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3483 BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3485 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3487 * The merge code will need to create an empty
3488 * extent to take the place of the newly
3489 * emptied slot. Remove any pre-existing empty
3490 * extents - having more than one in a leaf is
3493 ret = ocfs2_rotate_tree_left(inode, handle, path,
3500 rec = &el->l_recs[split_index];
3503 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3505 * Left-right contig implies this.
3507 BUG_ON(!ctxt->c_split_covers_rec);
3510 * Since the leftright insert always covers the entire
3511 * extent, this call will delete the insert record
3512 * entirely, resulting in an empty extent record added to
3515 * Since the adding of an empty extent shifts
3516 * everything back to the right, there's no need to
3517 * update split_index here.
3519 * When the split_index is zero, we need to merge it to the
3520 * prevoius extent block. It is more efficient and easier
3521 * if we do merge_right first and merge_left later.
3523 ret = ocfs2_merge_rec_right(inode, path,
3532 * We can only get this from logic error above.
3534 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3536 /* The merge left us with an empty extent, remove it. */
3537 ret = ocfs2_rotate_tree_left(inode, handle, path,
3544 rec = &el->l_recs[split_index];
3547 * Note that we don't pass split_rec here on purpose -
3548 * we've merged it into the rec already.
3550 ret = ocfs2_merge_rec_left(inode, path,
3560 ret = ocfs2_rotate_tree_left(inode, handle, path,
3563 * Error from this last rotate is not critical, so
3564 * print but don't bubble it up.
3571 * Merge a record to the left or right.
3573 * 'contig_type' is relative to the existing record,
3574 * so for example, if we're "right contig", it's to
3575 * the record on the left (hence the left merge).
3577 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3578 ret = ocfs2_merge_rec_left(inode,
3588 ret = ocfs2_merge_rec_right(inode,
3598 if (ctxt->c_split_covers_rec) {
3600 * The merge may have left an empty extent in
3601 * our leaf. Try to rotate it away.
3603 ret = ocfs2_rotate_tree_left(inode, handle, path,
3615 static void ocfs2_subtract_from_rec(struct super_block *sb,
3616 enum ocfs2_split_type split,
3617 struct ocfs2_extent_rec *rec,
3618 struct ocfs2_extent_rec *split_rec)
3622 len_blocks = ocfs2_clusters_to_blocks(sb,
3623 le16_to_cpu(split_rec->e_leaf_clusters));
3625 if (split == SPLIT_LEFT) {
3627 * Region is on the left edge of the existing
3630 le32_add_cpu(&rec->e_cpos,
3631 le16_to_cpu(split_rec->e_leaf_clusters));
3632 le64_add_cpu(&rec->e_blkno, len_blocks);
3633 le16_add_cpu(&rec->e_leaf_clusters,
3634 -le16_to_cpu(split_rec->e_leaf_clusters));
3637 * Region is on the right edge of the existing
3640 le16_add_cpu(&rec->e_leaf_clusters,
3641 -le16_to_cpu(split_rec->e_leaf_clusters));
3646 * Do the final bits of extent record insertion at the target leaf
3647 * list. If this leaf is part of an allocation tree, it is assumed
3648 * that the tree above has been prepared.
3650 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3651 struct ocfs2_extent_list *el,
3652 struct ocfs2_insert_type *insert,
3653 struct inode *inode)
3655 int i = insert->ins_contig_index;
3657 struct ocfs2_extent_rec *rec;
3659 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3661 if (insert->ins_split != SPLIT_NONE) {
3662 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3664 rec = &el->l_recs[i];
3665 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3671 * Contiguous insert - either left or right.
3673 if (insert->ins_contig != CONTIG_NONE) {
3674 rec = &el->l_recs[i];
3675 if (insert->ins_contig == CONTIG_LEFT) {
3676 rec->e_blkno = insert_rec->e_blkno;
3677 rec->e_cpos = insert_rec->e_cpos;
3679 le16_add_cpu(&rec->e_leaf_clusters,
3680 le16_to_cpu(insert_rec->e_leaf_clusters));
3685 * Handle insert into an empty leaf.
3687 if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3688 ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3689 ocfs2_is_empty_extent(&el->l_recs[0]))) {
3690 el->l_recs[0] = *insert_rec;
3691 el->l_next_free_rec = cpu_to_le16(1);
3698 if (insert->ins_appending == APPEND_TAIL) {
3699 i = le16_to_cpu(el->l_next_free_rec) - 1;
3700 rec = &el->l_recs[i];
3701 range = le32_to_cpu(rec->e_cpos)
3702 + le16_to_cpu(rec->e_leaf_clusters);
3703 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3705 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3706 le16_to_cpu(el->l_count),
3707 "inode %lu, depth %u, count %u, next free %u, "
3708 "rec.cpos %u, rec.clusters %u, "
3709 "insert.cpos %u, insert.clusters %u\n",
3711 le16_to_cpu(el->l_tree_depth),
3712 le16_to_cpu(el->l_count),
3713 le16_to_cpu(el->l_next_free_rec),
3714 le32_to_cpu(el->l_recs[i].e_cpos),
3715 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3716 le32_to_cpu(insert_rec->e_cpos),
3717 le16_to_cpu(insert_rec->e_leaf_clusters));
3719 el->l_recs[i] = *insert_rec;
3720 le16_add_cpu(&el->l_next_free_rec, 1);
3726 * Ok, we have to rotate.
3728 * At this point, it is safe to assume that inserting into an
3729 * empty leaf and appending to a leaf have both been handled
3732 * This leaf needs to have space, either by the empty 1st
3733 * extent record, or by virtue of an l_next_rec < l_count.
3735 ocfs2_rotate_leaf(el, insert_rec);
3738 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3740 struct ocfs2_path *path,
3741 struct ocfs2_extent_rec *insert_rec)
3743 int ret, i, next_free;
3744 struct buffer_head *bh;
3745 struct ocfs2_extent_list *el;
3746 struct ocfs2_extent_rec *rec;
3749 * Update everything except the leaf block.
3751 for (i = 0; i < path->p_tree_depth; i++) {
3752 bh = path->p_node[i].bh;
3753 el = path->p_node[i].el;
3755 next_free = le16_to_cpu(el->l_next_free_rec);
3756 if (next_free == 0) {
3757 ocfs2_error(inode->i_sb,
3758 "Dinode %llu has a bad extent list",
3759 (unsigned long long)OCFS2_I(inode)->ip_blkno);
3764 rec = &el->l_recs[next_free - 1];
3766 rec->e_int_clusters = insert_rec->e_cpos;
3767 le32_add_cpu(&rec->e_int_clusters,
3768 le16_to_cpu(insert_rec->e_leaf_clusters));
3769 le32_add_cpu(&rec->e_int_clusters,
3770 -le32_to_cpu(rec->e_cpos));
3772 ret = ocfs2_journal_dirty(handle, bh);
3779 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3780 struct ocfs2_extent_rec *insert_rec,
3781 struct ocfs2_path *right_path,
3782 struct ocfs2_path **ret_left_path)
3785 struct ocfs2_extent_list *el;
3786 struct ocfs2_path *left_path = NULL;
3788 *ret_left_path = NULL;
3791 * This shouldn't happen for non-trees. The extent rec cluster
3792 * count manipulation below only works for interior nodes.
3794 BUG_ON(right_path->p_tree_depth == 0);
3797 * If our appending insert is at the leftmost edge of a leaf,
3798 * then we might need to update the rightmost records of the
3801 el = path_leaf_el(right_path);
3802 next_free = le16_to_cpu(el->l_next_free_rec);
3803 if (next_free == 0 ||
3804 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3807 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3814 mlog(0, "Append may need a left path update. cpos: %u, "
3815 "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3819 * No need to worry if the append is already in the
3823 left_path = ocfs2_new_path_from_path(right_path);
3830 ret = ocfs2_find_path(inode, left_path, left_cpos);
3837 * ocfs2_insert_path() will pass the left_path to the
3843 ret = ocfs2_journal_access_path(inode, handle, right_path);
3849 ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3851 *ret_left_path = left_path;
3855 ocfs2_free_path(left_path);
3860 static void ocfs2_split_record(struct inode *inode,
3861 struct ocfs2_path *left_path,
3862 struct ocfs2_path *right_path,
3863 struct ocfs2_extent_rec *split_rec,
3864 enum ocfs2_split_type split)
3867 u32 cpos = le32_to_cpu(split_rec->e_cpos);
3868 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
3869 struct ocfs2_extent_rec *rec, *tmprec;
3871 right_el = path_leaf_el(right_path);
3873 left_el = path_leaf_el(left_path);
3876 insert_el = right_el;
3877 index = ocfs2_search_extent_list(el, cpos);
3879 if (index == 0 && left_path) {
3880 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3883 * This typically means that the record
3884 * started in the left path but moved to the
3885 * right as a result of rotation. We either
3886 * move the existing record to the left, or we
3887 * do the later insert there.
3889 * In this case, the left path should always
3890 * exist as the rotate code will have passed
3891 * it back for a post-insert update.
3894 if (split == SPLIT_LEFT) {
3896 * It's a left split. Since we know
3897 * that the rotate code gave us an
3898 * empty extent in the left path, we
3899 * can just do the insert there.
3901 insert_el = left_el;
3904 * Right split - we have to move the
3905 * existing record over to the left
3906 * leaf. The insert will be into the
3907 * newly created empty extent in the
3910 tmprec = &right_el->l_recs[index];
3911 ocfs2_rotate_leaf(left_el, tmprec);
3914 memset(tmprec, 0, sizeof(*tmprec));
3915 index = ocfs2_search_extent_list(left_el, cpos);
3916 BUG_ON(index == -1);
3921 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
3923 * Left path is easy - we can just allow the insert to
3927 insert_el = left_el;
3928 index = ocfs2_search_extent_list(el, cpos);
3929 BUG_ON(index == -1);
3932 rec = &el->l_recs[index];
3933 ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
3934 ocfs2_rotate_leaf(insert_el, split_rec);
3938 * This function only does inserts on an allocation b-tree. For tree
3939 * depth = 0, ocfs2_insert_at_leaf() is called directly.
3941 * right_path is the path we want to do the actual insert
3942 * in. left_path should only be passed in if we need to update that
3943 * portion of the tree after an edge insert.
3945 static int ocfs2_insert_path(struct inode *inode,
3947 struct ocfs2_path *left_path,
3948 struct ocfs2_path *right_path,
3949 struct ocfs2_extent_rec *insert_rec,
3950 struct ocfs2_insert_type *insert)
3952 int ret, subtree_index;
3953 struct buffer_head *leaf_bh = path_leaf_bh(right_path);
3956 int credits = handle->h_buffer_credits;
3959 * There's a chance that left_path got passed back to
3960 * us without being accounted for in the
3961 * journal. Extend our transaction here to be sure we
3962 * can change those blocks.
3964 credits += left_path->p_tree_depth;
3966 ret = ocfs2_extend_trans(handle, credits);
3972 ret = ocfs2_journal_access_path(inode, handle, left_path);
3980 * Pass both paths to the journal. The majority of inserts
3981 * will be touching all components anyway.
3983 ret = ocfs2_journal_access_path(inode, handle, right_path);
3989 if (insert->ins_split != SPLIT_NONE) {
3991 * We could call ocfs2_insert_at_leaf() for some types
3992 * of splits, but it's easier to just let one separate
3993 * function sort it all out.
3995 ocfs2_split_record(inode, left_path, right_path,
3996 insert_rec, insert->ins_split);
3999 * Split might have modified either leaf and we don't
4000 * have a guarantee that the later edge insert will
4001 * dirty this for us.
4004 ret = ocfs2_journal_dirty(handle,
4005 path_leaf_bh(left_path));
4009 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
4012 ret = ocfs2_journal_dirty(handle, leaf_bh);
4018 * The rotate code has indicated that we need to fix
4019 * up portions of the tree after the insert.
4021 * XXX: Should we extend the transaction here?
4023 subtree_index = ocfs2_find_subtree_root(inode, left_path,
4025 ocfs2_complete_edge_insert(inode, handle, left_path,
4026 right_path, subtree_index);
4034 static int ocfs2_do_insert_extent(struct inode *inode,
4036 struct ocfs2_extent_tree *et,
4037 struct ocfs2_extent_rec *insert_rec,
4038 struct ocfs2_insert_type *type)
4040 int ret, rotate = 0;
4042 struct ocfs2_path *right_path = NULL;
4043 struct ocfs2_path *left_path = NULL;
4044 struct ocfs2_extent_list *el;
4046 el = et->et_root_el;
4048 ret = ocfs2_et_root_journal_access(handle, inode, et,
4049 OCFS2_JOURNAL_ACCESS_WRITE);
4055 if (le16_to_cpu(el->l_tree_depth) == 0) {
4056 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
4057 goto out_update_clusters;
4060 right_path = ocfs2_new_path_from_et(et);
4068 * Determine the path to start with. Rotations need the
4069 * rightmost path, everything else can go directly to the
4072 cpos = le32_to_cpu(insert_rec->e_cpos);
4073 if (type->ins_appending == APPEND_NONE &&
4074 type->ins_contig == CONTIG_NONE) {
4079 ret = ocfs2_find_path(inode, right_path, cpos);
4086 * Rotations and appends need special treatment - they modify
4087 * parts of the tree's above them.
4089 * Both might pass back a path immediate to the left of the
4090 * one being inserted to. This will be cause
4091 * ocfs2_insert_path() to modify the rightmost records of
4092 * left_path to account for an edge insert.
4094 * XXX: When modifying this code, keep in mind that an insert
4095 * can wind up skipping both of these two special cases...
4098 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
4099 le32_to_cpu(insert_rec->e_cpos),
4100 right_path, &left_path);
4107 * ocfs2_rotate_tree_right() might have extended the
4108 * transaction without re-journaling our tree root.
4110 ret = ocfs2_et_root_journal_access(handle, inode, et,
4111 OCFS2_JOURNAL_ACCESS_WRITE);
4116 } else if (type->ins_appending == APPEND_TAIL
4117 && type->ins_contig != CONTIG_LEFT) {
4118 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
4119 right_path, &left_path);
4126 ret = ocfs2_insert_path(inode, handle, left_path, right_path,
4133 out_update_clusters:
4134 if (type->ins_split == SPLIT_NONE)
4135 ocfs2_et_update_clusters(inode, et,
4136 le16_to_cpu(insert_rec->e_leaf_clusters));
4138 ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4143 ocfs2_free_path(left_path);
4144 ocfs2_free_path(right_path);
4149 static enum ocfs2_contig_type
4150 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
4151 struct ocfs2_extent_list *el, int index,
4152 struct ocfs2_extent_rec *split_rec)
4155 enum ocfs2_contig_type ret = CONTIG_NONE;
4156 u32 left_cpos, right_cpos;
4157 struct ocfs2_extent_rec *rec = NULL;
4158 struct ocfs2_extent_list *new_el;
4159 struct ocfs2_path *left_path = NULL, *right_path = NULL;
4160 struct buffer_head *bh;
4161 struct ocfs2_extent_block *eb;
4164 rec = &el->l_recs[index - 1];
4165 } else if (path->p_tree_depth > 0) {
4166 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4171 if (left_cpos != 0) {
4172 left_path = ocfs2_new_path_from_path(path);
4176 status = ocfs2_find_path(inode, left_path, left_cpos);
4180 new_el = path_leaf_el(left_path);
4182 if (le16_to_cpu(new_el->l_next_free_rec) !=
4183 le16_to_cpu(new_el->l_count)) {
4184 bh = path_leaf_bh(left_path);
4185 eb = (struct ocfs2_extent_block *)bh->b_data;
4186 ocfs2_error(inode->i_sb,
4187 "Extent block #%llu has an "
4188 "invalid l_next_free_rec of "
4189 "%d. It should have "
4190 "matched the l_count of %d",
4191 (unsigned long long)le64_to_cpu(eb->h_blkno),
4192 le16_to_cpu(new_el->l_next_free_rec),
4193 le16_to_cpu(new_el->l_count));
4197 rec = &new_el->l_recs[
4198 le16_to_cpu(new_el->l_next_free_rec) - 1];
4203 * We're careful to check for an empty extent record here -
4204 * the merge code will know what to do if it sees one.
4207 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4208 if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4211 ret = ocfs2_extent_contig(inode, rec, split_rec);
4216 if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4217 rec = &el->l_recs[index + 1];
4218 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4219 path->p_tree_depth > 0) {
4220 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4225 if (right_cpos == 0)
4228 right_path = ocfs2_new_path_from_path(path);
4232 status = ocfs2_find_path(inode, right_path, right_cpos);
4236 new_el = path_leaf_el(right_path);
4237 rec = &new_el->l_recs[0];
4238 if (ocfs2_is_empty_extent(rec)) {
4239 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4240 bh = path_leaf_bh(right_path);
4241 eb = (struct ocfs2_extent_block *)bh->b_data;
4242 ocfs2_error(inode->i_sb,
4243 "Extent block #%llu has an "
4244 "invalid l_next_free_rec of %d",
4245 (unsigned long long)le64_to_cpu(eb->h_blkno),
4246 le16_to_cpu(new_el->l_next_free_rec));
4250 rec = &new_el->l_recs[1];
4255 enum ocfs2_contig_type contig_type;
4257 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4259 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4260 ret = CONTIG_LEFTRIGHT;
4261 else if (ret == CONTIG_NONE)
4267 ocfs2_free_path(left_path);
4269 ocfs2_free_path(right_path);
4274 static void ocfs2_figure_contig_type(struct inode *inode,
4275 struct ocfs2_insert_type *insert,
4276 struct ocfs2_extent_list *el,
4277 struct ocfs2_extent_rec *insert_rec,
4278 struct ocfs2_extent_tree *et)
4281 enum ocfs2_contig_type contig_type = CONTIG_NONE;
4283 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4285 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4286 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4288 if (contig_type != CONTIG_NONE) {
4289 insert->ins_contig_index = i;
4293 insert->ins_contig = contig_type;
4295 if (insert->ins_contig != CONTIG_NONE) {
4296 struct ocfs2_extent_rec *rec =
4297 &el->l_recs[insert->ins_contig_index];
4298 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4299 le16_to_cpu(insert_rec->e_leaf_clusters);
4302 * Caller might want us to limit the size of extents, don't
4303 * calculate contiguousness if we might exceed that limit.
4305 if (et->et_max_leaf_clusters &&
4306 (len > et->et_max_leaf_clusters))
4307 insert->ins_contig = CONTIG_NONE;
4312 * This should only be called against the righmost leaf extent list.
4314 * ocfs2_figure_appending_type() will figure out whether we'll have to
4315 * insert at the tail of the rightmost leaf.
4317 * This should also work against the root extent list for tree's with 0
4318 * depth. If we consider the root extent list to be the rightmost leaf node
4319 * then the logic here makes sense.
4321 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4322 struct ocfs2_extent_list *el,
4323 struct ocfs2_extent_rec *insert_rec)
4326 u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4327 struct ocfs2_extent_rec *rec;
4329 insert->ins_appending = APPEND_NONE;
4331 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4333 if (!el->l_next_free_rec)
4334 goto set_tail_append;
4336 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4337 /* Were all records empty? */
4338 if (le16_to_cpu(el->l_next_free_rec) == 1)
4339 goto set_tail_append;
4342 i = le16_to_cpu(el->l_next_free_rec) - 1;
4343 rec = &el->l_recs[i];
4346 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4347 goto set_tail_append;
4352 insert->ins_appending = APPEND_TAIL;
4356 * Helper function called at the begining of an insert.
4358 * This computes a few things that are commonly used in the process of
4359 * inserting into the btree:
4360 * - Whether the new extent is contiguous with an existing one.
4361 * - The current tree depth.
4362 * - Whether the insert is an appending one.
4363 * - The total # of free records in the tree.
4365 * All of the information is stored on the ocfs2_insert_type
4368 static int ocfs2_figure_insert_type(struct inode *inode,
4369 struct ocfs2_extent_tree *et,
4370 struct buffer_head **last_eb_bh,
4371 struct ocfs2_extent_rec *insert_rec,
4373 struct ocfs2_insert_type *insert)
4376 struct ocfs2_extent_block *eb;
4377 struct ocfs2_extent_list *el;
4378 struct ocfs2_path *path = NULL;
4379 struct buffer_head *bh = NULL;
4381 insert->ins_split = SPLIT_NONE;
4383 el = et->et_root_el;
4384 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4386 if (el->l_tree_depth) {
4388 * If we have tree depth, we read in the
4389 * rightmost extent block ahead of time as
4390 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4391 * may want it later.
4393 ret = ocfs2_read_extent_block(inode,
4394 ocfs2_et_get_last_eb_blk(et),
4400 eb = (struct ocfs2_extent_block *) bh->b_data;
4405 * Unless we have a contiguous insert, we'll need to know if
4406 * there is room left in our allocation tree for another
4409 * XXX: This test is simplistic, we can search for empty
4410 * extent records too.
4412 *free_records = le16_to_cpu(el->l_count) -
4413 le16_to_cpu(el->l_next_free_rec);
4415 if (!insert->ins_tree_depth) {
4416 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4417 ocfs2_figure_appending_type(insert, el, insert_rec);
4421 path = ocfs2_new_path_from_et(et);
4429 * In the case that we're inserting past what the tree
4430 * currently accounts for, ocfs2_find_path() will return for
4431 * us the rightmost tree path. This is accounted for below in
4432 * the appending code.
4434 ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
4440 el = path_leaf_el(path);
4443 * Now that we have the path, there's two things we want to determine:
4444 * 1) Contiguousness (also set contig_index if this is so)
4446 * 2) Are we doing an append? We can trivially break this up
4447 * into two types of appends: simple record append, or a
4448 * rotate inside the tail leaf.
4450 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4453 * The insert code isn't quite ready to deal with all cases of
4454 * left contiguousness. Specifically, if it's an insert into
4455 * the 1st record in a leaf, it will require the adjustment of
4456 * cluster count on the last record of the path directly to it's
4457 * left. For now, just catch that case and fool the layers
4458 * above us. This works just fine for tree_depth == 0, which
4459 * is why we allow that above.
4461 if (insert->ins_contig == CONTIG_LEFT &&
4462 insert->ins_contig_index == 0)
4463 insert->ins_contig = CONTIG_NONE;
4466 * Ok, so we can simply compare against last_eb to figure out
4467 * whether the path doesn't exist. This will only happen in
4468 * the case that we're doing a tail append, so maybe we can
4469 * take advantage of that information somehow.
4471 if (ocfs2_et_get_last_eb_blk(et) ==
4472 path_leaf_bh(path)->b_blocknr) {
4474 * Ok, ocfs2_find_path() returned us the rightmost
4475 * tree path. This might be an appending insert. There are
4477 * 1) We're doing a true append at the tail:
4478 * -This might even be off the end of the leaf
4479 * 2) We're "appending" by rotating in the tail
4481 ocfs2_figure_appending_type(insert, el, insert_rec);
4485 ocfs2_free_path(path);
4495 * Insert an extent into an inode btree.
4497 * The caller needs to update fe->i_clusters
4499 int ocfs2_insert_extent(struct ocfs2_super *osb,
4501 struct inode *inode,
4502 struct ocfs2_extent_tree *et,
4507 struct ocfs2_alloc_context *meta_ac)
4510 int uninitialized_var(free_records);
4511 struct buffer_head *last_eb_bh = NULL;
4512 struct ocfs2_insert_type insert = {0, };
4513 struct ocfs2_extent_rec rec;
4515 mlog(0, "add %u clusters at position %u to inode %llu\n",
4516 new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4518 memset(&rec, 0, sizeof(rec));
4519 rec.e_cpos = cpu_to_le32(cpos);
4520 rec.e_blkno = cpu_to_le64(start_blk);
4521 rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4522 rec.e_flags = flags;
4523 status = ocfs2_et_insert_check(inode, et, &rec);
4529 status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4530 &free_records, &insert);
4536 mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4537 "Insert.contig_index: %d, Insert.free_records: %d, "
4538 "Insert.tree_depth: %d\n",
4539 insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4540 free_records, insert.ins_tree_depth);
4542 if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4543 status = ocfs2_grow_tree(inode, handle, et,
4544 &insert.ins_tree_depth, &last_eb_bh,
4552 /* Finally, we can add clusters. This might rotate the tree for us. */
4553 status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
4556 else if (et->et_ops == &ocfs2_dinode_et_ops)
4557 ocfs2_extent_map_insert_rec(inode, &rec);
4567 * Allcate and add clusters into the extent b-tree.
4568 * The new clusters(clusters_to_add) will be inserted at logical_offset.
4569 * The extent b-tree's root is specified by et, and
4570 * it is not limited to the file storage. Any extent tree can use this
4571 * function if it implements the proper ocfs2_extent_tree.
4573 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4574 struct inode *inode,
4575 u32 *logical_offset,
4576 u32 clusters_to_add,
4578 struct ocfs2_extent_tree *et,
4580 struct ocfs2_alloc_context *data_ac,
4581 struct ocfs2_alloc_context *meta_ac,
4582 enum ocfs2_alloc_restarted *reason_ret)
4586 enum ocfs2_alloc_restarted reason = RESTART_NONE;
4587 u32 bit_off, num_bits;
4591 BUG_ON(!clusters_to_add);
4594 flags = OCFS2_EXT_UNWRITTEN;
4596 free_extents = ocfs2_num_free_extents(osb, inode, et);
4597 if (free_extents < 0) {
4598 status = free_extents;
4603 /* there are two cases which could cause us to EAGAIN in the
4604 * we-need-more-metadata case:
4605 * 1) we haven't reserved *any*
4606 * 2) we are so fragmented, we've needed to add metadata too
4608 if (!free_extents && !meta_ac) {
4609 mlog(0, "we haven't reserved any metadata!\n");
4611 reason = RESTART_META;
4613 } else if ((!free_extents)
4614 && (ocfs2_alloc_context_bits_left(meta_ac)
4615 < ocfs2_extend_meta_needed(et->et_root_el))) {
4616 mlog(0, "filesystem is really fragmented...\n");
4618 reason = RESTART_META;
4622 status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4623 clusters_to_add, &bit_off, &num_bits);
4625 if (status != -ENOSPC)
4630 BUG_ON(num_bits > clusters_to_add);
4632 /* reserve our write early -- insert_extent may update the tree root */
4633 status = ocfs2_et_root_journal_access(handle, inode, et,
4634 OCFS2_JOURNAL_ACCESS_WRITE);
4640 block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4641 mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4642 num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4643 status = ocfs2_insert_extent(osb, handle, inode, et,
4644 *logical_offset, block,
4645 num_bits, flags, meta_ac);
4651 status = ocfs2_journal_dirty(handle, et->et_root_bh);
4657 clusters_to_add -= num_bits;
4658 *logical_offset += num_bits;
4660 if (clusters_to_add) {
4661 mlog(0, "need to alloc once more, wanted = %u\n",
4664 reason = RESTART_TRANS;
4670 *reason_ret = reason;
4674 static void ocfs2_make_right_split_rec(struct super_block *sb,
4675 struct ocfs2_extent_rec *split_rec,
4677 struct ocfs2_extent_rec *rec)
4679 u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4680 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4682 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4684 split_rec->e_cpos = cpu_to_le32(cpos);
4685 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4687 split_rec->e_blkno = rec->e_blkno;
4688 le64_add_cpu(&split_rec->e_blkno,
4689 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4691 split_rec->e_flags = rec->e_flags;
4694 static int ocfs2_split_and_insert(struct inode *inode,
4696 struct ocfs2_path *path,
4697 struct ocfs2_extent_tree *et,
4698 struct buffer_head **last_eb_bh,
4700 struct ocfs2_extent_rec *orig_split_rec,
4701 struct ocfs2_alloc_context *meta_ac)
4704 unsigned int insert_range, rec_range, do_leftright = 0;
4705 struct ocfs2_extent_rec tmprec;
4706 struct ocfs2_extent_list *rightmost_el;
4707 struct ocfs2_extent_rec rec;
4708 struct ocfs2_extent_rec split_rec = *orig_split_rec;
4709 struct ocfs2_insert_type insert;
4710 struct ocfs2_extent_block *eb;
4714 * Store a copy of the record on the stack - it might move
4715 * around as the tree is manipulated below.
4717 rec = path_leaf_el(path)->l_recs[split_index];
4719 rightmost_el = et->et_root_el;
4721 depth = le16_to_cpu(rightmost_el->l_tree_depth);
4723 BUG_ON(!(*last_eb_bh));
4724 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4725 rightmost_el = &eb->h_list;
4728 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4729 le16_to_cpu(rightmost_el->l_count)) {
4730 ret = ocfs2_grow_tree(inode, handle, et,
4731 &depth, last_eb_bh, meta_ac);
4738 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4739 insert.ins_appending = APPEND_NONE;
4740 insert.ins_contig = CONTIG_NONE;
4741 insert.ins_tree_depth = depth;
4743 insert_range = le32_to_cpu(split_rec.e_cpos) +
4744 le16_to_cpu(split_rec.e_leaf_clusters);
4745 rec_range = le32_to_cpu(rec.e_cpos) +
4746 le16_to_cpu(rec.e_leaf_clusters);
4748 if (split_rec.e_cpos == rec.e_cpos) {
4749 insert.ins_split = SPLIT_LEFT;
4750 } else if (insert_range == rec_range) {
4751 insert.ins_split = SPLIT_RIGHT;
4754 * Left/right split. We fake this as a right split
4755 * first and then make a second pass as a left split.
4757 insert.ins_split = SPLIT_RIGHT;
4759 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4764 BUG_ON(do_leftright);
4768 ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4774 if (do_leftright == 1) {
4776 struct ocfs2_extent_list *el;
4779 split_rec = *orig_split_rec;
4781 ocfs2_reinit_path(path, 1);
4783 cpos = le32_to_cpu(split_rec.e_cpos);
4784 ret = ocfs2_find_path(inode, path, cpos);
4790 el = path_leaf_el(path);
4791 split_index = ocfs2_search_extent_list(el, cpos);
4800 * Mark part or all of the extent record at split_index in the leaf
4801 * pointed to by path as written. This removes the unwritten
4804 * Care is taken to handle contiguousness so as to not grow the tree.
4806 * meta_ac is not strictly necessary - we only truly need it if growth
4807 * of the tree is required. All other cases will degrade into a less
4808 * optimal tree layout.
4810 * last_eb_bh should be the rightmost leaf block for any extent
4811 * btree. Since a split may grow the tree or a merge might shrink it,
4812 * the caller cannot trust the contents of that buffer after this call.
4814 * This code is optimized for readability - several passes might be
4815 * made over certain portions of the tree. All of those blocks will
4816 * have been brought into cache (and pinned via the journal), so the
4817 * extra overhead is not expressed in terms of disk reads.
4819 static int __ocfs2_mark_extent_written(struct inode *inode,
4820 struct ocfs2_extent_tree *et,
4822 struct ocfs2_path *path,
4824 struct ocfs2_extent_rec *split_rec,
4825 struct ocfs2_alloc_context *meta_ac,
4826 struct ocfs2_cached_dealloc_ctxt *dealloc)
4829 struct ocfs2_extent_list *el = path_leaf_el(path);
4830 struct buffer_head *last_eb_bh = NULL;
4831 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
4832 struct ocfs2_merge_ctxt ctxt;
4833 struct ocfs2_extent_list *rightmost_el;
4835 if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
4841 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
4842 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
4843 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
4849 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
4854 * The core merge / split code wants to know how much room is
4855 * left in this inodes allocation tree, so we pass the
4856 * rightmost extent list.
4858 if (path->p_tree_depth) {
4859 struct ocfs2_extent_block *eb;
4861 ret = ocfs2_read_extent_block(inode,
4862 ocfs2_et_get_last_eb_blk(et),
4869 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4870 rightmost_el = &eb->h_list;
4872 rightmost_el = path_root_el(path);
4874 if (rec->e_cpos == split_rec->e_cpos &&
4875 rec->e_leaf_clusters == split_rec->e_leaf_clusters)
4876 ctxt.c_split_covers_rec = 1;
4878 ctxt.c_split_covers_rec = 0;
4880 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
4882 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
4883 split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
4884 ctxt.c_split_covers_rec);
4886 if (ctxt.c_contig_type == CONTIG_NONE) {
4887 if (ctxt.c_split_covers_rec)
4888 el->l_recs[split_index] = *split_rec;
4890 ret = ocfs2_split_and_insert(inode, handle, path, et,
4891 &last_eb_bh, split_index,
4892 split_rec, meta_ac);
4896 ret = ocfs2_try_to_merge_extent(inode, handle, path,
4897 split_index, split_rec,
4898 dealloc, &ctxt, et);
4909 * Mark the already-existing extent at cpos as written for len clusters.
4911 * If the existing extent is larger than the request, initiate a
4912 * split. An attempt will be made at merging with adjacent extents.
4914 * The caller is responsible for passing down meta_ac if we'll need it.
4916 int ocfs2_mark_extent_written(struct inode *inode,
4917 struct ocfs2_extent_tree *et,
4918 handle_t *handle, u32 cpos, u32 len, u32 phys,
4919 struct ocfs2_alloc_context *meta_ac,
4920 struct ocfs2_cached_dealloc_ctxt *dealloc)
4923 u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
4924 struct ocfs2_extent_rec split_rec;
4925 struct ocfs2_path *left_path = NULL;
4926 struct ocfs2_extent_list *el;
4928 mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4929 inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
4931 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
4932 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
4933 "that are being written to, but the feature bit "
4934 "is not set in the super block.",
4935 (unsigned long long)OCFS2_I(inode)->ip_blkno);
4941 * XXX: This should be fixed up so that we just re-insert the
4942 * next extent records.
4944 * XXX: This is a hack on the extent tree, maybe it should be
4947 if (et->et_ops == &ocfs2_dinode_et_ops)
4948 ocfs2_extent_map_trunc(inode, 0);
4950 left_path = ocfs2_new_path_from_et(et);
4957 ret = ocfs2_find_path(inode, left_path, cpos);
4962 el = path_leaf_el(left_path);
4964 index = ocfs2_search_extent_list(el, cpos);
4965 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4966 ocfs2_error(inode->i_sb,
4967 "Inode %llu has an extent at cpos %u which can no "
4968 "longer be found.\n",
4969 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4974 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
4975 split_rec.e_cpos = cpu_to_le32(cpos);
4976 split_rec.e_leaf_clusters = cpu_to_le16(len);
4977 split_rec.e_blkno = cpu_to_le64(start_blkno);
4978 split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
4979 split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
4981 ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
4982 index, &split_rec, meta_ac,
4988 ocfs2_free_path(left_path);
4992 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
4993 handle_t *handle, struct ocfs2_path *path,
4994 int index, u32 new_range,
4995 struct ocfs2_alloc_context *meta_ac)
4997 int ret, depth, credits = handle->h_buffer_credits;
4998 struct buffer_head *last_eb_bh = NULL;
4999 struct ocfs2_extent_block *eb;
5000 struct ocfs2_extent_list *rightmost_el, *el;
5001 struct ocfs2_extent_rec split_rec;
5002 struct ocfs2_extent_rec *rec;
5003 struct ocfs2_insert_type insert;
5006 * Setup the record to split before we grow the tree.
5008 el = path_leaf_el(path);
5009 rec = &el->l_recs[index];
5010 ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
5012 depth = path->p_tree_depth;
5014 ret = ocfs2_read_extent_block(inode,
5015 ocfs2_et_get_last_eb_blk(et),
5022 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5023 rightmost_el = &eb->h_list;
5025 rightmost_el = path_leaf_el(path);
5027 credits += path->p_tree_depth +
5028 ocfs2_extend_meta_needed(et->et_root_el);
5029 ret = ocfs2_extend_trans(handle, credits);
5035 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5036 le16_to_cpu(rightmost_el->l_count)) {
5037 ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
5045 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5046 insert.ins_appending = APPEND_NONE;
5047 insert.ins_contig = CONTIG_NONE;
5048 insert.ins_split = SPLIT_RIGHT;
5049 insert.ins_tree_depth = depth;
5051 ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
5060 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
5061 struct ocfs2_path *path, int index,
5062 struct ocfs2_cached_dealloc_ctxt *dealloc,
5064 struct ocfs2_extent_tree *et)
5067 u32 left_cpos, rec_range, trunc_range;
5068 int wants_rotate = 0, is_rightmost_tree_rec = 0;
5069 struct super_block *sb = inode->i_sb;
5070 struct ocfs2_path *left_path = NULL;
5071 struct ocfs2_extent_list *el = path_leaf_el(path);
5072 struct ocfs2_extent_rec *rec;
5073 struct ocfs2_extent_block *eb;
5075 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5076 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5085 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5086 path->p_tree_depth) {
5088 * Check whether this is the rightmost tree record. If
5089 * we remove all of this record or part of its right
5090 * edge then an update of the record lengths above it
5093 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5094 if (eb->h_next_leaf_blk == 0)
5095 is_rightmost_tree_rec = 1;
5098 rec = &el->l_recs[index];
5099 if (index == 0 && path->p_tree_depth &&
5100 le32_to_cpu(rec->e_cpos) == cpos) {
5102 * Changing the leftmost offset (via partial or whole
5103 * record truncate) of an interior (or rightmost) path
5104 * means we have to update the subtree that is formed
5105 * by this leaf and the one to it's left.
5107 * There are two cases we can skip:
5108 * 1) Path is the leftmost one in our inode tree.
5109 * 2) The leaf is rightmost and will be empty after
5110 * we remove the extent record - the rotate code
5111 * knows how to update the newly formed edge.
5114 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5121 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5122 left_path = ocfs2_new_path_from_path(path);
5129 ret = ocfs2_find_path(inode, left_path, left_cpos);
5137 ret = ocfs2_extend_rotate_transaction(handle, 0,
5138 handle->h_buffer_credits,
5145 ret = ocfs2_journal_access_path(inode, handle, path);
5151 ret = ocfs2_journal_access_path(inode, handle, left_path);
5157 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5158 trunc_range = cpos + len;
5160 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5163 memset(rec, 0, sizeof(*rec));
5164 ocfs2_cleanup_merge(el, index);
5167 next_free = le16_to_cpu(el->l_next_free_rec);
5168 if (is_rightmost_tree_rec && next_free > 1) {
5170 * We skip the edge update if this path will
5171 * be deleted by the rotate code.
5173 rec = &el->l_recs[next_free - 1];
5174 ocfs2_adjust_rightmost_records(inode, handle, path,
5177 } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5178 /* Remove leftmost portion of the record. */
5179 le32_add_cpu(&rec->e_cpos, len);
5180 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5181 le16_add_cpu(&rec->e_leaf_clusters, -len);
5182 } else if (rec_range == trunc_range) {
5183 /* Remove rightmost portion of the record */
5184 le16_add_cpu(&rec->e_leaf_clusters, -len);
5185 if (is_rightmost_tree_rec)
5186 ocfs2_adjust_rightmost_records(inode, handle, path, rec);
5188 /* Caller should have trapped this. */
5189 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5190 "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5191 le32_to_cpu(rec->e_cpos),
5192 le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5199 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
5200 ocfs2_complete_edge_insert(inode, handle, left_path, path,
5204 ocfs2_journal_dirty(handle, path_leaf_bh(path));
5206 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5213 ocfs2_free_path(left_path);
5217 int ocfs2_remove_extent(struct inode *inode,
5218 struct ocfs2_extent_tree *et,
5219 u32 cpos, u32 len, handle_t *handle,
5220 struct ocfs2_alloc_context *meta_ac,
5221 struct ocfs2_cached_dealloc_ctxt *dealloc)
5224 u32 rec_range, trunc_range;
5225 struct ocfs2_extent_rec *rec;
5226 struct ocfs2_extent_list *el;
5227 struct ocfs2_path *path = NULL;
5229 ocfs2_extent_map_trunc(inode, 0);
5231 path = ocfs2_new_path_from_et(et);
5238 ret = ocfs2_find_path(inode, path, cpos);
5244 el = path_leaf_el(path);
5245 index = ocfs2_search_extent_list(el, cpos);
5246 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5247 ocfs2_error(inode->i_sb,
5248 "Inode %llu has an extent at cpos %u which can no "
5249 "longer be found.\n",
5250 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5256 * We have 3 cases of extent removal:
5257 * 1) Range covers the entire extent rec
5258 * 2) Range begins or ends on one edge of the extent rec
5259 * 3) Range is in the middle of the extent rec (no shared edges)
5261 * For case 1 we remove the extent rec and left rotate to
5264 * For case 2 we just shrink the existing extent rec, with a
5265 * tree update if the shrinking edge is also the edge of an
5268 * For case 3 we do a right split to turn the extent rec into
5269 * something case 2 can handle.
5271 rec = &el->l_recs[index];
5272 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5273 trunc_range = cpos + len;
5275 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5277 mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5278 "(cpos %u, len %u)\n",
5279 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5280 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5282 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5283 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5290 ret = ocfs2_split_tree(inode, et, handle, path, index,
5291 trunc_range, meta_ac);
5298 * The split could have manipulated the tree enough to
5299 * move the record location, so we have to look for it again.
5301 ocfs2_reinit_path(path, 1);
5303 ret = ocfs2_find_path(inode, path, cpos);
5309 el = path_leaf_el(path);
5310 index = ocfs2_search_extent_list(el, cpos);
5311 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5312 ocfs2_error(inode->i_sb,
5313 "Inode %llu: split at cpos %u lost record.",
5314 (unsigned long long)OCFS2_I(inode)->ip_blkno,
5321 * Double check our values here. If anything is fishy,
5322 * it's easier to catch it at the top level.
5324 rec = &el->l_recs[index];
5325 rec_range = le32_to_cpu(rec->e_cpos) +
5326 ocfs2_rec_clusters(el, rec);
5327 if (rec_range != trunc_range) {
5328 ocfs2_error(inode->i_sb,
5329 "Inode %llu: error after split at cpos %u"
5330 "trunc len %u, existing record is (%u,%u)",
5331 (unsigned long long)OCFS2_I(inode)->ip_blkno,
5332 cpos, len, le32_to_cpu(rec->e_cpos),
5333 ocfs2_rec_clusters(el, rec));
5338 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5347 ocfs2_free_path(path);
5351 int ocfs2_remove_btree_range(struct inode *inode,
5352 struct ocfs2_extent_tree *et,
5353 u32 cpos, u32 phys_cpos, u32 len,
5354 struct ocfs2_cached_dealloc_ctxt *dealloc)
5357 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5358 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5359 struct inode *tl_inode = osb->osb_tl_inode;
5361 struct ocfs2_alloc_context *meta_ac = NULL;
5363 ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac);
5369 mutex_lock(&tl_inode->i_mutex);
5371 if (ocfs2_truncate_log_needs_flush(osb)) {
5372 ret = __ocfs2_flush_truncate_log(osb);
5379 handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb));
5380 if (IS_ERR(handle)) {
5381 ret = PTR_ERR(handle);
5386 ret = ocfs2_et_root_journal_access(handle, inode, et,
5387 OCFS2_JOURNAL_ACCESS_WRITE);
5393 vfs_dq_free_space_nodirty(inode,
5394 ocfs2_clusters_to_bytes(inode->i_sb, len));
5396 ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac,
5403 ocfs2_et_update_clusters(inode, et, -len);
5405 ret = ocfs2_journal_dirty(handle, et->et_root_bh);
5411 ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
5416 ocfs2_commit_trans(osb, handle);
5418 mutex_unlock(&tl_inode->i_mutex);
5421 ocfs2_free_alloc_context(meta_ac);
5426 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5428 struct buffer_head *tl_bh = osb->osb_tl_bh;
5429 struct ocfs2_dinode *di;
5430 struct ocfs2_truncate_log *tl;
5432 di = (struct ocfs2_dinode *) tl_bh->b_data;
5433 tl = &di->id2.i_dealloc;
5435 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5436 "slot %d, invalid truncate log parameters: used = "
5437 "%u, count = %u\n", osb->slot_num,
5438 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5439 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5442 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5443 unsigned int new_start)
5445 unsigned int tail_index;
5446 unsigned int current_tail;
5448 /* No records, nothing to coalesce */
5449 if (!le16_to_cpu(tl->tl_used))
5452 tail_index = le16_to_cpu(tl->tl_used) - 1;
5453 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5454 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5456 return current_tail == new_start;
5459 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5462 unsigned int num_clusters)
5465 unsigned int start_cluster, tl_count;
5466 struct inode *tl_inode = osb->osb_tl_inode;
5467 struct buffer_head *tl_bh = osb->osb_tl_bh;
5468 struct ocfs2_dinode *di;
5469 struct ocfs2_truncate_log *tl;
5471 mlog_entry("start_blk = %llu, num_clusters = %u\n",
5472 (unsigned long long)start_blk, num_clusters);
5474 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5476 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5478 di = (struct ocfs2_dinode *) tl_bh->b_data;
5480 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5481 * by the underlying call to ocfs2_read_inode_block(), so any
5482 * corruption is a code bug */
5483 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5485 tl = &di->id2.i_dealloc;
5486 tl_count = le16_to_cpu(tl->tl_count);
5487 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5489 "Truncate record count on #%llu invalid "
5490 "wanted %u, actual %u\n",
5491 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5492 ocfs2_truncate_recs_per_inode(osb->sb),
5493 le16_to_cpu(tl->tl_count));
5495 /* Caller should have known to flush before calling us. */
5496 index = le16_to_cpu(tl->tl_used);
5497 if (index >= tl_count) {
5503 status = ocfs2_journal_access_di(handle, tl_inode, tl_bh,
5504 OCFS2_JOURNAL_ACCESS_WRITE);
5510 mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5511 "%llu (index = %d)\n", num_clusters, start_cluster,
5512 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5514 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5516 * Move index back to the record we are coalescing with.
5517 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5521 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5522 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5523 index, le32_to_cpu(tl->tl_recs[index].t_start),
5526 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5527 tl->tl_used = cpu_to_le16(index + 1);
5529 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5531 status = ocfs2_journal_dirty(handle, tl_bh);
5542 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5544 struct inode *data_alloc_inode,
5545 struct buffer_head *data_alloc_bh)
5549 unsigned int num_clusters;
5551 struct ocfs2_truncate_rec rec;
5552 struct ocfs2_dinode *di;
5553 struct ocfs2_truncate_log *tl;
5554 struct inode *tl_inode = osb->osb_tl_inode;
5555 struct buffer_head *tl_bh = osb->osb_tl_bh;
5559 di = (struct ocfs2_dinode *) tl_bh->b_data;
5560 tl = &di->id2.i_dealloc;
5561 i = le16_to_cpu(tl->tl_used) - 1;
5563 /* Caller has given us at least enough credits to
5564 * update the truncate log dinode */
5565 status = ocfs2_journal_access_di(handle, tl_inode, tl_bh,
5566 OCFS2_JOURNAL_ACCESS_WRITE);
5572 tl->tl_used = cpu_to_le16(i);
5574 status = ocfs2_journal_dirty(handle, tl_bh);
5580 /* TODO: Perhaps we can calculate the bulk of the
5581 * credits up front rather than extending like
5583 status = ocfs2_extend_trans(handle,
5584 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5590 rec = tl->tl_recs[i];
5591 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5592 le32_to_cpu(rec.t_start));
5593 num_clusters = le32_to_cpu(rec.t_clusters);
5595 /* if start_blk is not set, we ignore the record as
5598 mlog(0, "free record %d, start = %u, clusters = %u\n",
5599 i, le32_to_cpu(rec.t_start), num_clusters);
5601 status = ocfs2_free_clusters(handle, data_alloc_inode,
5602 data_alloc_bh, start_blk,
5617 /* Expects you to already be holding tl_inode->i_mutex */
5618 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5621 unsigned int num_to_flush;
5623 struct inode *tl_inode = osb->osb_tl_inode;
5624 struct inode *data_alloc_inode = NULL;
5625 struct buffer_head *tl_bh = osb->osb_tl_bh;
5626 struct buffer_head *data_alloc_bh = NULL;
5627 struct ocfs2_dinode *di;
5628 struct ocfs2_truncate_log *tl;
5632 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5634 di = (struct ocfs2_dinode *) tl_bh->b_data;
5636 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5637 * by the underlying call to ocfs2_read_inode_block(), so any
5638 * corruption is a code bug */
5639 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5641 tl = &di->id2.i_dealloc;
5642 num_to_flush = le16_to_cpu(tl->tl_used);
5643 mlog(0, "Flush %u records from truncate log #%llu\n",
5644 num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5645 if (!num_to_flush) {
5650 data_alloc_inode = ocfs2_get_system_file_inode(osb,
5651 GLOBAL_BITMAP_SYSTEM_INODE,
5652 OCFS2_INVALID_SLOT);
5653 if (!data_alloc_inode) {
5655 mlog(ML_ERROR, "Could not get bitmap inode!\n");
5659 mutex_lock(&data_alloc_inode->i_mutex);
5661 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5667 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5668 if (IS_ERR(handle)) {
5669 status = PTR_ERR(handle);
5674 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5679 ocfs2_commit_trans(osb, handle);
5682 brelse(data_alloc_bh);
5683 ocfs2_inode_unlock(data_alloc_inode, 1);
5686 mutex_unlock(&data_alloc_inode->i_mutex);
5687 iput(data_alloc_inode);
5694 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5697 struct inode *tl_inode = osb->osb_tl_inode;
5699 mutex_lock(&tl_inode->i_mutex);
5700 status = __ocfs2_flush_truncate_log(osb);
5701 mutex_unlock(&tl_inode->i_mutex);
5706 static void ocfs2_truncate_log_worker(struct work_struct *work)
5709 struct ocfs2_super *osb =
5710 container_of(work, struct ocfs2_super,
5711 osb_truncate_log_wq.work);
5715 status = ocfs2_flush_truncate_log(osb);
5719 ocfs2_init_inode_steal_slot(osb);
5724 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5725 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5728 if (osb->osb_tl_inode) {
5729 /* We want to push off log flushes while truncates are
5732 cancel_delayed_work(&osb->osb_truncate_log_wq);
5734 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5735 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5739 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5741 struct inode **tl_inode,
5742 struct buffer_head **tl_bh)
5745 struct inode *inode = NULL;
5746 struct buffer_head *bh = NULL;
5748 inode = ocfs2_get_system_file_inode(osb,
5749 TRUNCATE_LOG_SYSTEM_INODE,
5753 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5757 status = ocfs2_read_inode_block(inode, &bh);
5771 /* called during the 1st stage of node recovery. we stamp a clean
5772 * truncate log and pass back a copy for processing later. if the
5773 * truncate log does not require processing, a *tl_copy is set to
5775 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5777 struct ocfs2_dinode **tl_copy)
5780 struct inode *tl_inode = NULL;
5781 struct buffer_head *tl_bh = NULL;
5782 struct ocfs2_dinode *di;
5783 struct ocfs2_truncate_log *tl;
5787 mlog(0, "recover truncate log from slot %d\n", slot_num);
5789 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5795 di = (struct ocfs2_dinode *) tl_bh->b_data;
5797 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's
5798 * validated by the underlying call to ocfs2_read_inode_block(),
5799 * so any corruption is a code bug */
5800 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5802 tl = &di->id2.i_dealloc;
5803 if (le16_to_cpu(tl->tl_used)) {
5804 mlog(0, "We'll have %u logs to recover\n",
5805 le16_to_cpu(tl->tl_used));
5807 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5814 /* Assuming the write-out below goes well, this copy
5815 * will be passed back to recovery for processing. */
5816 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
5818 /* All we need to do to clear the truncate log is set
5822 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
5823 status = ocfs2_write_block(osb, tl_bh, tl_inode);
5835 if (status < 0 && (*tl_copy)) {
5844 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
5845 struct ocfs2_dinode *tl_copy)
5849 unsigned int clusters, num_recs, start_cluster;
5852 struct inode *tl_inode = osb->osb_tl_inode;
5853 struct ocfs2_truncate_log *tl;
5857 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
5858 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
5862 tl = &tl_copy->id2.i_dealloc;
5863 num_recs = le16_to_cpu(tl->tl_used);
5864 mlog(0, "cleanup %u records from %llu\n", num_recs,
5865 (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
5867 mutex_lock(&tl_inode->i_mutex);
5868 for(i = 0; i < num_recs; i++) {
5869 if (ocfs2_truncate_log_needs_flush(osb)) {
5870 status = __ocfs2_flush_truncate_log(osb);
5877 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5878 if (IS_ERR(handle)) {
5879 status = PTR_ERR(handle);
5884 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
5885 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
5886 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
5888 status = ocfs2_truncate_log_append(osb, handle,
5889 start_blk, clusters);
5890 ocfs2_commit_trans(osb, handle);
5898 mutex_unlock(&tl_inode->i_mutex);
5904 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
5907 struct inode *tl_inode = osb->osb_tl_inode;
5912 cancel_delayed_work(&osb->osb_truncate_log_wq);
5913 flush_workqueue(ocfs2_wq);
5915 status = ocfs2_flush_truncate_log(osb);
5919 brelse(osb->osb_tl_bh);
5920 iput(osb->osb_tl_inode);
5926 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
5929 struct inode *tl_inode = NULL;
5930 struct buffer_head *tl_bh = NULL;
5934 status = ocfs2_get_truncate_log_info(osb,
5941 /* ocfs2_truncate_log_shutdown keys on the existence of
5942 * osb->osb_tl_inode so we don't set any of the osb variables
5943 * until we're sure all is well. */
5944 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
5945 ocfs2_truncate_log_worker);
5946 osb->osb_tl_bh = tl_bh;
5947 osb->osb_tl_inode = tl_inode;
5954 * Delayed de-allocation of suballocator blocks.
5956 * Some sets of block de-allocations might involve multiple suballocator inodes.
5958 * The locking for this can get extremely complicated, especially when
5959 * the suballocator inodes to delete from aren't known until deep
5960 * within an unrelated codepath.
5962 * ocfs2_extent_block structures are a good example of this - an inode
5963 * btree could have been grown by any number of nodes each allocating
5964 * out of their own suballoc inode.
5966 * These structures allow the delay of block de-allocation until a
5967 * later time, when locking of multiple cluster inodes won't cause
5972 * Describe a single bit freed from a suballocator. For the block
5973 * suballocators, it represents one block. For the global cluster
5974 * allocator, it represents some clusters and free_bit indicates
5977 struct ocfs2_cached_block_free {
5978 struct ocfs2_cached_block_free *free_next;
5980 unsigned int free_bit;
5983 struct ocfs2_per_slot_free_list {
5984 struct ocfs2_per_slot_free_list *f_next_suballocator;
5987 struct ocfs2_cached_block_free *f_first;
5990 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
5993 struct ocfs2_cached_block_free *head)
5998 struct inode *inode;
5999 struct buffer_head *di_bh = NULL;
6000 struct ocfs2_cached_block_free *tmp;
6002 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6009 mutex_lock(&inode->i_mutex);
6011 ret = ocfs2_inode_lock(inode, &di_bh, 1);
6017 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6018 if (IS_ERR(handle)) {
6019 ret = PTR_ERR(handle);
6025 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6027 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6028 head->free_bit, (unsigned long long)head->free_blk);
6030 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6031 head->free_bit, bg_blkno, 1);
6037 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6044 head = head->free_next;
6049 ocfs2_commit_trans(osb, handle);
6052 ocfs2_inode_unlock(inode, 1);
6055 mutex_unlock(&inode->i_mutex);
6059 /* Premature exit may have left some dangling items. */
6061 head = head->free_next;
6068 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6069 u64 blkno, unsigned int bit)
6072 struct ocfs2_cached_block_free *item;
6074 item = kmalloc(sizeof(*item), GFP_NOFS);
6081 mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6082 bit, (unsigned long long)blkno);
6084 item->free_blk = blkno;
6085 item->free_bit = bit;
6086 item->free_next = ctxt->c_global_allocator;
6088 ctxt->c_global_allocator = item;
6092 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6093 struct ocfs2_cached_block_free *head)
6095 struct ocfs2_cached_block_free *tmp;
6096 struct inode *tl_inode = osb->osb_tl_inode;
6100 mutex_lock(&tl_inode->i_mutex);
6103 if (ocfs2_truncate_log_needs_flush(osb)) {
6104 ret = __ocfs2_flush_truncate_log(osb);
6111 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6112 if (IS_ERR(handle)) {
6113 ret = PTR_ERR(handle);
6118 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6121 ocfs2_commit_trans(osb, handle);
6123 head = head->free_next;
6132 mutex_unlock(&tl_inode->i_mutex);
6135 /* Premature exit may have left some dangling items. */
6137 head = head->free_next;
6144 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6145 struct ocfs2_cached_dealloc_ctxt *ctxt)
6148 struct ocfs2_per_slot_free_list *fl;
6153 while (ctxt->c_first_suballocator) {
6154 fl = ctxt->c_first_suballocator;
6157 mlog(0, "Free items: (type %u, slot %d)\n",
6158 fl->f_inode_type, fl->f_slot);
6159 ret2 = ocfs2_free_cached_blocks(osb,
6169 ctxt->c_first_suballocator = fl->f_next_suballocator;
6173 if (ctxt->c_global_allocator) {
6174 ret2 = ocfs2_free_cached_clusters(osb,
6175 ctxt->c_global_allocator);
6181 ctxt->c_global_allocator = NULL;
6187 static struct ocfs2_per_slot_free_list *
6188 ocfs2_find_per_slot_free_list(int type,
6190 struct ocfs2_cached_dealloc_ctxt *ctxt)
6192 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6195 if (fl->f_inode_type == type && fl->f_slot == slot)
6198 fl = fl->f_next_suballocator;
6201 fl = kmalloc(sizeof(*fl), GFP_NOFS);
6203 fl->f_inode_type = type;
6206 fl->f_next_suballocator = ctxt->c_first_suballocator;
6208 ctxt->c_first_suballocator = fl;
6213 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6214 int type, int slot, u64 blkno,
6218 struct ocfs2_per_slot_free_list *fl;
6219 struct ocfs2_cached_block_free *item;
6221 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6228 item = kmalloc(sizeof(*item), GFP_NOFS);
6235 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6236 type, slot, bit, (unsigned long long)blkno);
6238 item->free_blk = blkno;
6239 item->free_bit = bit;
6240 item->free_next = fl->f_first;
6249 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6250 struct ocfs2_extent_block *eb)
6252 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6253 le16_to_cpu(eb->h_suballoc_slot),
6254 le64_to_cpu(eb->h_blkno),
6255 le16_to_cpu(eb->h_suballoc_bit));
6258 /* This function will figure out whether the currently last extent
6259 * block will be deleted, and if it will, what the new last extent
6260 * block will be so we can update his h_next_leaf_blk field, as well
6261 * as the dinodes i_last_eb_blk */
6262 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6263 unsigned int clusters_to_del,
6264 struct ocfs2_path *path,
6265 struct buffer_head **new_last_eb)
6267 int next_free, ret = 0;
6269 struct ocfs2_extent_rec *rec;
6270 struct ocfs2_extent_block *eb;
6271 struct ocfs2_extent_list *el;
6272 struct buffer_head *bh = NULL;
6274 *new_last_eb = NULL;
6276 /* we have no tree, so of course, no last_eb. */
6277 if (!path->p_tree_depth)
6280 /* trunc to zero special case - this makes tree_depth = 0
6281 * regardless of what it is. */
6282 if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6285 el = path_leaf_el(path);
6286 BUG_ON(!el->l_next_free_rec);
6289 * Make sure that this extent list will actually be empty
6290 * after we clear away the data. We can shortcut out if
6291 * there's more than one non-empty extent in the
6292 * list. Otherwise, a check of the remaining extent is
6295 next_free = le16_to_cpu(el->l_next_free_rec);
6297 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6301 /* We may have a valid extent in index 1, check it. */
6303 rec = &el->l_recs[1];
6306 * Fall through - no more nonempty extents, so we want
6307 * to delete this leaf.
6313 rec = &el->l_recs[0];
6318 * Check it we'll only be trimming off the end of this
6321 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6325 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6331 ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
6337 eb = (struct ocfs2_extent_block *) bh->b_data;
6340 /* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block().
6341 * Any corruption is a code bug. */
6342 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
6345 get_bh(*new_last_eb);
6346 mlog(0, "returning block %llu, (cpos: %u)\n",
6347 (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6355 * Trim some clusters off the rightmost edge of a tree. Only called
6358 * The caller needs to:
6359 * - start journaling of each path component.
6360 * - compute and fully set up any new last ext block
6362 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6363 handle_t *handle, struct ocfs2_truncate_context *tc,
6364 u32 clusters_to_del, u64 *delete_start)
6366 int ret, i, index = path->p_tree_depth;
6369 struct buffer_head *bh;
6370 struct ocfs2_extent_list *el;
6371 struct ocfs2_extent_rec *rec;
6375 while (index >= 0) {
6376 bh = path->p_node[index].bh;
6377 el = path->p_node[index].el;
6379 mlog(0, "traveling tree (index = %d, block = %llu)\n",
6380 index, (unsigned long long)bh->b_blocknr);
6382 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6385 (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6386 ocfs2_error(inode->i_sb,
6387 "Inode %lu has invalid ext. block %llu",
6389 (unsigned long long)bh->b_blocknr);
6395 i = le16_to_cpu(el->l_next_free_rec) - 1;
6396 rec = &el->l_recs[i];
6398 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6399 "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6400 ocfs2_rec_clusters(el, rec),
6401 (unsigned long long)le64_to_cpu(rec->e_blkno),
6402 le16_to_cpu(el->l_next_free_rec));
6404 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6406 if (le16_to_cpu(el->l_tree_depth) == 0) {
6408 * If the leaf block contains a single empty
6409 * extent and no records, we can just remove
6412 if (i == 0 && ocfs2_is_empty_extent(rec)) {
6414 sizeof(struct ocfs2_extent_rec));
6415 el->l_next_free_rec = cpu_to_le16(0);
6421 * Remove any empty extents by shifting things
6422 * left. That should make life much easier on
6423 * the code below. This condition is rare
6424 * enough that we shouldn't see a performance
6427 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6428 le16_add_cpu(&el->l_next_free_rec, -1);
6431 i < le16_to_cpu(el->l_next_free_rec); i++)
6432 el->l_recs[i] = el->l_recs[i + 1];
6434 memset(&el->l_recs[i], 0,
6435 sizeof(struct ocfs2_extent_rec));
6438 * We've modified our extent list. The
6439 * simplest way to handle this change
6440 * is to being the search from the
6443 goto find_tail_record;
6446 le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6449 * We'll use "new_edge" on our way back up the
6450 * tree to know what our rightmost cpos is.
6452 new_edge = le16_to_cpu(rec->e_leaf_clusters);
6453 new_edge += le32_to_cpu(rec->e_cpos);
6456 * The caller will use this to delete data blocks.
6458 *delete_start = le64_to_cpu(rec->e_blkno)
6459 + ocfs2_clusters_to_blocks(inode->i_sb,
6460 le16_to_cpu(rec->e_leaf_clusters));
6463 * If it's now empty, remove this record.
6465 if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6467 sizeof(struct ocfs2_extent_rec));
6468 le16_add_cpu(&el->l_next_free_rec, -1);
6471 if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6473 sizeof(struct ocfs2_extent_rec));
6474 le16_add_cpu(&el->l_next_free_rec, -1);
6479 /* Can this actually happen? */
6480 if (le16_to_cpu(el->l_next_free_rec) == 0)
6484 * We never actually deleted any clusters
6485 * because our leaf was empty. There's no
6486 * reason to adjust the rightmost edge then.
6491 rec->e_int_clusters = cpu_to_le32(new_edge);
6492 le32_add_cpu(&rec->e_int_clusters,
6493 -le32_to_cpu(rec->e_cpos));
6496 * A deleted child record should have been
6499 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6503 ret = ocfs2_journal_dirty(handle, bh);
6509 mlog(0, "extent list container %llu, after: record %d: "
6510 "(%u, %u, %llu), next = %u.\n",
6511 (unsigned long long)bh->b_blocknr, i,
6512 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6513 (unsigned long long)le64_to_cpu(rec->e_blkno),
6514 le16_to_cpu(el->l_next_free_rec));
6517 * We must be careful to only attempt delete of an
6518 * extent block (and not the root inode block).
6520 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6521 struct ocfs2_extent_block *eb =
6522 (struct ocfs2_extent_block *)bh->b_data;
6525 * Save this for use when processing the
6528 deleted_eb = le64_to_cpu(eb->h_blkno);
6530 mlog(0, "deleting this extent block.\n");
6532 ocfs2_remove_from_cache(inode, bh);
6534 BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6535 BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6536 BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6538 ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6539 /* An error here is not fatal. */
6554 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6555 unsigned int clusters_to_del,
6556 struct inode *inode,
6557 struct buffer_head *fe_bh,
6559 struct ocfs2_truncate_context *tc,
6560 struct ocfs2_path *path)
6563 struct ocfs2_dinode *fe;
6564 struct ocfs2_extent_block *last_eb = NULL;
6565 struct ocfs2_extent_list *el;
6566 struct buffer_head *last_eb_bh = NULL;
6569 fe = (struct ocfs2_dinode *) fe_bh->b_data;
6571 status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6579 * Each component will be touched, so we might as well journal
6580 * here to avoid having to handle errors later.
6582 status = ocfs2_journal_access_path(inode, handle, path);
6589 status = ocfs2_journal_access_eb(handle, inode, last_eb_bh,
6590 OCFS2_JOURNAL_ACCESS_WRITE);
6596 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6599 el = &(fe->id2.i_list);
6602 * Lower levels depend on this never happening, but it's best
6603 * to check it up here before changing the tree.
6605 if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6606 ocfs2_error(inode->i_sb,
6607 "Inode %lu has an empty extent record, depth %u\n",
6608 inode->i_ino, le16_to_cpu(el->l_tree_depth));
6613 vfs_dq_free_space_nodirty(inode,
6614 ocfs2_clusters_to_bytes(osb->sb, clusters_to_del));
6615 spin_lock(&OCFS2_I(inode)->ip_lock);
6616 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6618 spin_unlock(&OCFS2_I(inode)->ip_lock);
6619 le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6620 inode->i_blocks = ocfs2_inode_sector_count(inode);
6622 status = ocfs2_trim_tree(inode, path, handle, tc,
6623 clusters_to_del, &delete_blk);
6629 if (le32_to_cpu(fe->i_clusters) == 0) {
6630 /* trunc to zero is a special case. */
6631 el->l_tree_depth = 0;
6632 fe->i_last_eb_blk = 0;
6634 fe->i_last_eb_blk = last_eb->h_blkno;
6636 status = ocfs2_journal_dirty(handle, fe_bh);
6643 /* If there will be a new last extent block, then by
6644 * definition, there cannot be any leaves to the right of
6646 last_eb->h_next_leaf_blk = 0;
6647 status = ocfs2_journal_dirty(handle, last_eb_bh);
6655 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6669 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6671 set_buffer_uptodate(bh);
6672 mark_buffer_dirty(bh);
6676 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6677 unsigned int from, unsigned int to,
6678 struct page *page, int zero, u64 *phys)
6680 int ret, partial = 0;
6682 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6687 zero_user_segment(page, from, to);
6690 * Need to set the buffers we zero'd into uptodate
6691 * here if they aren't - ocfs2_map_page_blocks()
6692 * might've skipped some
6694 ret = walk_page_buffers(handle, page_buffers(page),
6699 else if (ocfs2_should_order_data(inode)) {
6700 ret = ocfs2_jbd2_file_inode(handle, inode);
6706 SetPageUptodate(page);
6708 flush_dcache_page(page);
6711 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6712 loff_t end, struct page **pages,
6713 int numpages, u64 phys, handle_t *handle)
6717 unsigned int from, to = PAGE_CACHE_SIZE;
6718 struct super_block *sb = inode->i_sb;
6720 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6725 to = PAGE_CACHE_SIZE;
6726 for(i = 0; i < numpages; i++) {
6729 from = start & (PAGE_CACHE_SIZE - 1);
6730 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6731 to = end & (PAGE_CACHE_SIZE - 1);
6733 BUG_ON(from > PAGE_CACHE_SIZE);
6734 BUG_ON(to > PAGE_CACHE_SIZE);
6736 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6739 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6743 ocfs2_unlock_and_free_pages(pages, numpages);
6746 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6747 struct page **pages, int *num)
6749 int numpages, ret = 0;
6750 struct super_block *sb = inode->i_sb;
6751 struct address_space *mapping = inode->i_mapping;
6752 unsigned long index;
6753 loff_t last_page_bytes;
6755 BUG_ON(start > end);
6757 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6758 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6761 last_page_bytes = PAGE_ALIGN(end);
6762 index = start >> PAGE_CACHE_SHIFT;
6764 pages[numpages] = grab_cache_page(mapping, index);
6765 if (!pages[numpages]) {
6773 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6778 ocfs2_unlock_and_free_pages(pages, numpages);
6788 * Zero the area past i_size but still within an allocated
6789 * cluster. This avoids exposing nonzero data on subsequent file
6792 * We need to call this before i_size is updated on the inode because
6793 * otherwise block_write_full_page() will skip writeout of pages past
6794 * i_size. The new_i_size parameter is passed for this reason.
6796 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6797 u64 range_start, u64 range_end)
6799 int ret = 0, numpages;
6800 struct page **pages = NULL;
6802 unsigned int ext_flags;
6803 struct super_block *sb = inode->i_sb;
6806 * File systems which don't support sparse files zero on every
6809 if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6812 pages = kcalloc(ocfs2_pages_per_cluster(sb),
6813 sizeof(struct page *), GFP_NOFS);
6814 if (pages == NULL) {
6820 if (range_start == range_end)
6823 ret = ocfs2_extent_map_get_blocks(inode,
6824 range_start >> sb->s_blocksize_bits,
6825 &phys, NULL, &ext_flags);
6832 * Tail is a hole, or is marked unwritten. In either case, we
6833 * can count on read and write to return/push zero's.
6835 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6838 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6845 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6846 numpages, phys, handle);
6849 * Initiate writeout of the pages we zero'd here. We don't
6850 * wait on them - the truncate_inode_pages() call later will
6853 ret = do_sync_mapping_range(inode->i_mapping, range_start,
6854 range_end - 1, SYNC_FILE_RANGE_WRITE);
6865 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
6866 struct ocfs2_dinode *di)
6868 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6869 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
6871 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
6872 memset(&di->id2, 0, blocksize -
6873 offsetof(struct ocfs2_dinode, id2) -
6876 memset(&di->id2, 0, blocksize -
6877 offsetof(struct ocfs2_dinode, id2));
6880 void ocfs2_dinode_new_extent_list(struct inode *inode,
6881 struct ocfs2_dinode *di)
6883 ocfs2_zero_dinode_id2_with_xattr(inode, di);
6884 di->id2.i_list.l_tree_depth = 0;
6885 di->id2.i_list.l_next_free_rec = 0;
6886 di->id2.i_list.l_count = cpu_to_le16(
6887 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
6890 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6892 struct ocfs2_inode_info *oi = OCFS2_I(inode);
6893 struct ocfs2_inline_data *idata = &di->id2.i_data;
6895 spin_lock(&oi->ip_lock);
6896 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6897 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6898 spin_unlock(&oi->ip_lock);
6901 * We clear the entire i_data structure here so that all
6902 * fields can be properly initialized.
6904 ocfs2_zero_dinode_id2_with_xattr(inode, di);
6906 idata->id_count = cpu_to_le16(
6907 ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
6910 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6911 struct buffer_head *di_bh)
6913 int ret, i, has_data, num_pages = 0;
6915 u64 uninitialized_var(block);
6916 struct ocfs2_inode_info *oi = OCFS2_I(inode);
6917 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6918 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6919 struct ocfs2_alloc_context *data_ac = NULL;
6920 struct page **pages = NULL;
6921 loff_t end = osb->s_clustersize;
6922 struct ocfs2_extent_tree et;
6925 has_data = i_size_read(inode) ? 1 : 0;
6928 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6929 sizeof(struct page *), GFP_NOFS);
6930 if (pages == NULL) {
6936 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6943 handle = ocfs2_start_trans(osb,
6944 ocfs2_inline_to_extents_credits(osb->sb));
6945 if (IS_ERR(handle)) {
6946 ret = PTR_ERR(handle);
6951 ret = ocfs2_journal_access_di(handle, inode, di_bh,
6952 OCFS2_JOURNAL_ACCESS_WRITE);
6960 unsigned int page_end;
6963 if (vfs_dq_alloc_space_nodirty(inode,
6964 ocfs2_clusters_to_bytes(osb->sb, 1))) {
6970 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
6978 * Save two copies, one for insert, and one that can
6979 * be changed by ocfs2_map_and_dirty_page() below.
6981 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6984 * Non sparse file systems zero on extend, so no need
6987 if (!ocfs2_sparse_alloc(osb) &&
6988 PAGE_CACHE_SIZE < osb->s_clustersize)
6989 end = PAGE_CACHE_SIZE;
6991 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6998 * This should populate the 1st page for us and mark
7001 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7007 page_end = PAGE_CACHE_SIZE;
7008 if (PAGE_CACHE_SIZE > osb->s_clustersize)
7009 page_end = osb->s_clustersize;
7011 for (i = 0; i < num_pages; i++)
7012 ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7013 pages[i], i > 0, &phys);
7016 spin_lock(&oi->ip_lock);
7017 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7018 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7019 spin_unlock(&oi->ip_lock);
7021 ocfs2_dinode_new_extent_list(inode, di);
7023 ocfs2_journal_dirty(handle, di_bh);
7027 * An error at this point should be extremely rare. If
7028 * this proves to be false, we could always re-build
7029 * the in-inode data from our pages.
7031 ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
7032 ret = ocfs2_insert_extent(osb, handle, inode, &et,
7033 0, block, 1, 0, NULL);
7039 inode->i_blocks = ocfs2_inode_sector_count(inode);
7043 if (ret < 0 && did_quota)
7044 vfs_dq_free_space_nodirty(inode,
7045 ocfs2_clusters_to_bytes(osb->sb, 1));
7047 ocfs2_commit_trans(osb, handle);
7051 ocfs2_free_alloc_context(data_ac);
7055 ocfs2_unlock_and_free_pages(pages, num_pages);
7063 * It is expected, that by the time you call this function,
7064 * inode->i_size and fe->i_size have been adjusted.
7066 * WARNING: This will kfree the truncate context
7068 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7069 struct inode *inode,
7070 struct buffer_head *fe_bh,
7071 struct ocfs2_truncate_context *tc)
7073 int status, i, credits, tl_sem = 0;
7074 u32 clusters_to_del, new_highest_cpos, range;
7075 struct ocfs2_extent_list *el;
7076 handle_t *handle = NULL;
7077 struct inode *tl_inode = osb->osb_tl_inode;
7078 struct ocfs2_path *path = NULL;
7079 struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
7083 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7084 i_size_read(inode));
7086 path = ocfs2_new_path(fe_bh, &di->id2.i_list,
7087 ocfs2_journal_access_di);
7094 ocfs2_extent_map_trunc(inode, new_highest_cpos);
7098 * Check that we still have allocation to delete.
7100 if (OCFS2_I(inode)->ip_clusters == 0) {
7106 * Truncate always works against the rightmost tree branch.
7108 status = ocfs2_find_path(inode, path, UINT_MAX);
7114 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7115 OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7118 * By now, el will point to the extent list on the bottom most
7119 * portion of this tree. Only the tail record is considered in
7122 * We handle the following cases, in order:
7123 * - empty extent: delete the remaining branch
7124 * - remove the entire record
7125 * - remove a partial record
7126 * - no record needs to be removed (truncate has completed)
7128 el = path_leaf_el(path);
7129 if (le16_to_cpu(el->l_next_free_rec) == 0) {
7130 ocfs2_error(inode->i_sb,
7131 "Inode %llu has empty extent block at %llu\n",
7132 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7133 (unsigned long long)path_leaf_bh(path)->b_blocknr);
7138 i = le16_to_cpu(el->l_next_free_rec) - 1;
7139 range = le32_to_cpu(el->l_recs[i].e_cpos) +
7140 ocfs2_rec_clusters(el, &el->l_recs[i]);
7141 if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
7142 clusters_to_del = 0;
7143 } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
7144 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
7145 } else if (range > new_highest_cpos) {
7146 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
7147 le32_to_cpu(el->l_recs[i].e_cpos)) -
7154 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7155 clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
7157 mutex_lock(&tl_inode->i_mutex);
7159 /* ocfs2_truncate_log_needs_flush guarantees us at least one
7160 * record is free for use. If there isn't any, we flush to get
7161 * an empty truncate log. */
7162 if (ocfs2_truncate_log_needs_flush(osb)) {
7163 status = __ocfs2_flush_truncate_log(osb);
7170 credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
7171 (struct ocfs2_dinode *)fe_bh->b_data,
7173 handle = ocfs2_start_trans(osb, credits);
7174 if (IS_ERR(handle)) {
7175 status = PTR_ERR(handle);
7181 status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7188 mutex_unlock(&tl_inode->i_mutex);
7191 ocfs2_commit_trans(osb, handle);
7194 ocfs2_reinit_path(path, 1);
7197 * The check above will catch the case where we've truncated
7198 * away all allocation.
7204 ocfs2_schedule_truncate_log_flush(osb, 1);
7207 mutex_unlock(&tl_inode->i_mutex);
7210 ocfs2_commit_trans(osb, handle);
7212 ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7214 ocfs2_free_path(path);
7216 /* This will drop the ext_alloc cluster lock for us */
7217 ocfs2_free_truncate_context(tc);
7224 * Expects the inode to already be locked.
7226 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7227 struct inode *inode,
7228 struct buffer_head *fe_bh,
7229 struct ocfs2_truncate_context **tc)
7232 unsigned int new_i_clusters;
7233 struct ocfs2_dinode *fe;
7234 struct ocfs2_extent_block *eb;
7235 struct buffer_head *last_eb_bh = NULL;
7241 new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7242 i_size_read(inode));
7243 fe = (struct ocfs2_dinode *) fe_bh->b_data;
7245 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7246 "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7247 (unsigned long long)le64_to_cpu(fe->i_size));
7249 *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7255 ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7257 if (fe->id2.i_list.l_tree_depth) {
7258 status = ocfs2_read_extent_block(inode,
7259 le64_to_cpu(fe->i_last_eb_blk),
7265 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7268 (*tc)->tc_last_eb_bh = last_eb_bh;
7274 ocfs2_free_truncate_context(*tc);
7282 * 'start' is inclusive, 'end' is not.
7284 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7285 unsigned int start, unsigned int end, int trunc)
7288 unsigned int numbytes;
7290 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7291 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7292 struct ocfs2_inline_data *idata = &di->id2.i_data;
7294 if (end > i_size_read(inode))
7295 end = i_size_read(inode);
7297 BUG_ON(start >= end);
7299 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7300 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7301 !ocfs2_supports_inline_data(osb)) {
7302 ocfs2_error(inode->i_sb,
7303 "Inline data flags for inode %llu don't agree! "
7304 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7305 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7306 le16_to_cpu(di->i_dyn_features),
7307 OCFS2_I(inode)->ip_dyn_features,
7308 osb->s_feature_incompat);
7313 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7314 if (IS_ERR(handle)) {
7315 ret = PTR_ERR(handle);
7320 ret = ocfs2_journal_access_di(handle, inode, di_bh,
7321 OCFS2_JOURNAL_ACCESS_WRITE);
7327 numbytes = end - start;
7328 memset(idata->id_data + start, 0, numbytes);
7331 * No need to worry about the data page here - it's been
7332 * truncated already and inline data doesn't need it for
7333 * pushing zero's to disk, so we'll let readpage pick it up
7337 i_size_write(inode, start);
7338 di->i_size = cpu_to_le64(start);
7341 inode->i_blocks = ocfs2_inode_sector_count(inode);
7342 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7344 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7345 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7347 ocfs2_journal_dirty(handle, di_bh);
7350 ocfs2_commit_trans(osb, handle);
7356 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7359 * The caller is responsible for completing deallocation
7360 * before freeing the context.
7362 if (tc->tc_dealloc.c_first_suballocator != NULL)
7364 "Truncate completion has non-empty dealloc context\n");
7366 brelse(tc->tc_last_eb_bh);