Merge master.kernel.org:/pub/scm/linux/kernel/git/bart/ide-2.6
[linux-2.6] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   James P. Ketrenos <ipw2100-admin@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34 #include <linux/version.h>
35
36
37 #ifndef KBUILD_EXTMOD
38 #define VK "k"
39 #else
40 #define VK
41 #endif
42
43 #ifdef CONFIG_IPW2200_DEBUG
44 #define VD "d"
45 #else
46 #define VD
47 #endif
48
49 #ifdef CONFIG_IPW2200_MONITOR
50 #define VM "m"
51 #else
52 #define VM
53 #endif
54
55 #ifdef CONFIG_IPW2200_PROMISCUOUS
56 #define VP "p"
57 #else
58 #define VP
59 #endif
60
61 #ifdef CONFIG_IPW2200_RADIOTAP
62 #define VR "r"
63 #else
64 #define VR
65 #endif
66
67 #ifdef CONFIG_IPW2200_QOS
68 #define VQ "q"
69 #else
70 #define VQ
71 #endif
72
73 #define IPW2200_VERSION "1.2.0" VK VD VM VP VR VQ
74 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
75 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
76 #define DRV_VERSION     IPW2200_VERSION
77
78 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
79
80 MODULE_DESCRIPTION(DRV_DESCRIPTION);
81 MODULE_VERSION(DRV_VERSION);
82 MODULE_AUTHOR(DRV_COPYRIGHT);
83 MODULE_LICENSE("GPL");
84
85 static int cmdlog = 0;
86 static int debug = 0;
87 static int channel = 0;
88 static int mode = 0;
89
90 static u32 ipw_debug_level;
91 static int associate = 1;
92 static int auto_create = 1;
93 static int led = 0;
94 static int disable = 0;
95 static int bt_coexist = 0;
96 static int hwcrypto = 0;
97 static int roaming = 1;
98 static const char ipw_modes[] = {
99         'a', 'b', 'g', '?'
100 };
101 static int antenna = CFG_SYS_ANTENNA_BOTH;
102
103 #ifdef CONFIG_IPW2200_PROMISCUOUS
104 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
105 #endif
106
107
108 #ifdef CONFIG_IPW2200_QOS
109 static int qos_enable = 0;
110 static int qos_burst_enable = 0;
111 static int qos_no_ack_mask = 0;
112 static int burst_duration_CCK = 0;
113 static int burst_duration_OFDM = 0;
114
115 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
116         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
117          QOS_TX3_CW_MIN_OFDM},
118         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
119          QOS_TX3_CW_MAX_OFDM},
120         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
121         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
122         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
123          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
124 };
125
126 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
127         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
128          QOS_TX3_CW_MIN_CCK},
129         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
130          QOS_TX3_CW_MAX_CCK},
131         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
132         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
133         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
134          QOS_TX3_TXOP_LIMIT_CCK}
135 };
136
137 static struct ieee80211_qos_parameters def_parameters_OFDM = {
138         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
139          DEF_TX3_CW_MIN_OFDM},
140         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
141          DEF_TX3_CW_MAX_OFDM},
142         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
143         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
144         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
145          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
146 };
147
148 static struct ieee80211_qos_parameters def_parameters_CCK = {
149         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
150          DEF_TX3_CW_MIN_CCK},
151         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
152          DEF_TX3_CW_MAX_CCK},
153         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
154         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
155         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
156          DEF_TX3_TXOP_LIMIT_CCK}
157 };
158
159 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
160
161 static int from_priority_to_tx_queue[] = {
162         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
163         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
164 };
165
166 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
167
168 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
169                                        *qos_param);
170 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
171                                      *qos_param);
172 #endif                          /* CONFIG_IPW2200_QOS */
173
174 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
175 static void ipw_remove_current_network(struct ipw_priv *priv);
176 static void ipw_rx(struct ipw_priv *priv);
177 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
178                                 struct clx2_tx_queue *txq, int qindex);
179 static int ipw_queue_reset(struct ipw_priv *priv);
180
181 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
182                              int len, int sync);
183
184 static void ipw_tx_queue_free(struct ipw_priv *);
185
186 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
187 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
188 static void ipw_rx_queue_replenish(void *);
189 static int ipw_up(struct ipw_priv *);
190 static void ipw_bg_up(struct work_struct *work);
191 static void ipw_down(struct ipw_priv *);
192 static void ipw_bg_down(struct work_struct *work);
193 static int ipw_config(struct ipw_priv *);
194 static int init_supported_rates(struct ipw_priv *priv,
195                                 struct ipw_supported_rates *prates);
196 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
197 static void ipw_send_wep_keys(struct ipw_priv *, int);
198
199 static int snprint_line(char *buf, size_t count,
200                         const u8 * data, u32 len, u32 ofs)
201 {
202         int out, i, j, l;
203         char c;
204
205         out = snprintf(buf, count, "%08X", ofs);
206
207         for (l = 0, i = 0; i < 2; i++) {
208                 out += snprintf(buf + out, count - out, " ");
209                 for (j = 0; j < 8 && l < len; j++, l++)
210                         out += snprintf(buf + out, count - out, "%02X ",
211                                         data[(i * 8 + j)]);
212                 for (; j < 8; j++)
213                         out += snprintf(buf + out, count - out, "   ");
214         }
215
216         out += snprintf(buf + out, count - out, " ");
217         for (l = 0, i = 0; i < 2; i++) {
218                 out += snprintf(buf + out, count - out, " ");
219                 for (j = 0; j < 8 && l < len; j++, l++) {
220                         c = data[(i * 8 + j)];
221                         if (!isascii(c) || !isprint(c))
222                                 c = '.';
223
224                         out += snprintf(buf + out, count - out, "%c", c);
225                 }
226
227                 for (; j < 8; j++)
228                         out += snprintf(buf + out, count - out, " ");
229         }
230
231         return out;
232 }
233
234 static void printk_buf(int level, const u8 * data, u32 len)
235 {
236         char line[81];
237         u32 ofs = 0;
238         if (!(ipw_debug_level & level))
239                 return;
240
241         while (len) {
242                 snprint_line(line, sizeof(line), &data[ofs],
243                              min(len, 16U), ofs);
244                 printk(KERN_DEBUG "%s\n", line);
245                 ofs += 16;
246                 len -= min(len, 16U);
247         }
248 }
249
250 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
251 {
252         size_t out = size;
253         u32 ofs = 0;
254         int total = 0;
255
256         while (size && len) {
257                 out = snprint_line(output, size, &data[ofs],
258                                    min_t(size_t, len, 16U), ofs);
259
260                 ofs += 16;
261                 output += out;
262                 size -= out;
263                 len -= min_t(size_t, len, 16U);
264                 total += out;
265         }
266         return total;
267 }
268
269 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
270 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
271 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
272
273 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
274 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
275 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
276
277 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
278 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
279 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
280 {
281         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
282                      __LINE__, (u32) (b), (u32) (c));
283         _ipw_write_reg8(a, b, c);
284 }
285
286 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
287 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
288 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
289 {
290         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
291                      __LINE__, (u32) (b), (u32) (c));
292         _ipw_write_reg16(a, b, c);
293 }
294
295 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
296 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
297 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
298 {
299         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
300                      __LINE__, (u32) (b), (u32) (c));
301         _ipw_write_reg32(a, b, c);
302 }
303
304 /* 8-bit direct write (low 4K) */
305 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
306
307 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
308 #define ipw_write8(ipw, ofs, val) \
309  IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
310  _ipw_write8(ipw, ofs, val)
311
312 /* 16-bit direct write (low 4K) */
313 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
314
315 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
316 #define ipw_write16(ipw, ofs, val) \
317  IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
318  _ipw_write16(ipw, ofs, val)
319
320 /* 32-bit direct write (low 4K) */
321 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
322
323 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
324 #define ipw_write32(ipw, ofs, val) \
325  IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
326  _ipw_write32(ipw, ofs, val)
327
328 /* 8-bit direct read (low 4K) */
329 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
330
331 /* 8-bit direct read (low 4K), with debug wrapper */
332 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
333 {
334         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
335         return _ipw_read8(ipw, ofs);
336 }
337
338 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
340
341 /* 16-bit direct read (low 4K) */
342 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
343
344 /* 16-bit direct read (low 4K), with debug wrapper */
345 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
346 {
347         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
348         return _ipw_read16(ipw, ofs);
349 }
350
351 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
353
354 /* 32-bit direct read (low 4K) */
355 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
356
357 /* 32-bit direct read (low 4K), with debug wrapper */
358 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
359 {
360         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
361         return _ipw_read32(ipw, ofs);
362 }
363
364 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
366
367 /* multi-byte read (above 4K), with debug wrapper */
368 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
369 static inline void __ipw_read_indirect(const char *f, int l,
370                                        struct ipw_priv *a, u32 b, u8 * c, int d)
371 {
372         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
373                      d);
374         _ipw_read_indirect(a, b, c, d);
375 }
376
377 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
378 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
379
380 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
381 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
382                                 int num);
383 #define ipw_write_indirect(a, b, c, d) \
384         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
385         _ipw_write_indirect(a, b, c, d)
386
387 /* 32-bit indirect write (above 4K) */
388 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
389 {
390         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
391         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
392         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
393 }
394
395 /* 8-bit indirect write (above 4K) */
396 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
397 {
398         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
399         u32 dif_len = reg - aligned_addr;
400
401         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
402         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
403         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
404 }
405
406 /* 16-bit indirect write (above 4K) */
407 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
408 {
409         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
410         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
411
412         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
413         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
414         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
415 }
416
417 /* 8-bit indirect read (above 4K) */
418 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
419 {
420         u32 word;
421         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
422         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
423         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
424         return (word >> ((reg & 0x3) * 8)) & 0xff;
425 }
426
427 /* 32-bit indirect read (above 4K) */
428 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
429 {
430         u32 value;
431
432         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
433
434         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
435         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
436         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
437         return value;
438 }
439
440 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
441 /*    for area above 1st 4K of SRAM/reg space */
442 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
443                                int num)
444 {
445         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
446         u32 dif_len = addr - aligned_addr;
447         u32 i;
448
449         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
450
451         if (num <= 0) {
452                 return;
453         }
454
455         /* Read the first dword (or portion) byte by byte */
456         if (unlikely(dif_len)) {
457                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
458                 /* Start reading at aligned_addr + dif_len */
459                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
460                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
461                 aligned_addr += 4;
462         }
463
464         /* Read all of the middle dwords as dwords, with auto-increment */
465         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
466         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
467                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
468
469         /* Read the last dword (or portion) byte by byte */
470         if (unlikely(num)) {
471                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472                 for (i = 0; num > 0; i++, num--)
473                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
474         }
475 }
476
477 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
478 /*    for area above 1st 4K of SRAM/reg space */
479 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
480                                 int num)
481 {
482         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
483         u32 dif_len = addr - aligned_addr;
484         u32 i;
485
486         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
487
488         if (num <= 0) {
489                 return;
490         }
491
492         /* Write the first dword (or portion) byte by byte */
493         if (unlikely(dif_len)) {
494                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
495                 /* Start writing at aligned_addr + dif_len */
496                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
497                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
498                 aligned_addr += 4;
499         }
500
501         /* Write all of the middle dwords as dwords, with auto-increment */
502         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
503         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
504                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
505
506         /* Write the last dword (or portion) byte by byte */
507         if (unlikely(num)) {
508                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509                 for (i = 0; num > 0; i++, num--, buf++)
510                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
511         }
512 }
513
514 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
515 /*    for 1st 4K of SRAM/regs space */
516 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
517                              int num)
518 {
519         memcpy_toio((priv->hw_base + addr), buf, num);
520 }
521
522 /* Set bit(s) in low 4K of SRAM/regs */
523 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
524 {
525         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
526 }
527
528 /* Clear bit(s) in low 4K of SRAM/regs */
529 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
530 {
531         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
532 }
533
534 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
535 {
536         if (priv->status & STATUS_INT_ENABLED)
537                 return;
538         priv->status |= STATUS_INT_ENABLED;
539         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
540 }
541
542 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
543 {
544         if (!(priv->status & STATUS_INT_ENABLED))
545                 return;
546         priv->status &= ~STATUS_INT_ENABLED;
547         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
548 }
549
550 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
551 {
552         unsigned long flags;
553
554         spin_lock_irqsave(&priv->irq_lock, flags);
555         __ipw_enable_interrupts(priv);
556         spin_unlock_irqrestore(&priv->irq_lock, flags);
557 }
558
559 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
560 {
561         unsigned long flags;
562
563         spin_lock_irqsave(&priv->irq_lock, flags);
564         __ipw_disable_interrupts(priv);
565         spin_unlock_irqrestore(&priv->irq_lock, flags);
566 }
567
568 static char *ipw_error_desc(u32 val)
569 {
570         switch (val) {
571         case IPW_FW_ERROR_OK:
572                 return "ERROR_OK";
573         case IPW_FW_ERROR_FAIL:
574                 return "ERROR_FAIL";
575         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
576                 return "MEMORY_UNDERFLOW";
577         case IPW_FW_ERROR_MEMORY_OVERFLOW:
578                 return "MEMORY_OVERFLOW";
579         case IPW_FW_ERROR_BAD_PARAM:
580                 return "BAD_PARAM";
581         case IPW_FW_ERROR_BAD_CHECKSUM:
582                 return "BAD_CHECKSUM";
583         case IPW_FW_ERROR_NMI_INTERRUPT:
584                 return "NMI_INTERRUPT";
585         case IPW_FW_ERROR_BAD_DATABASE:
586                 return "BAD_DATABASE";
587         case IPW_FW_ERROR_ALLOC_FAIL:
588                 return "ALLOC_FAIL";
589         case IPW_FW_ERROR_DMA_UNDERRUN:
590                 return "DMA_UNDERRUN";
591         case IPW_FW_ERROR_DMA_STATUS:
592                 return "DMA_STATUS";
593         case IPW_FW_ERROR_DINO_ERROR:
594                 return "DINO_ERROR";
595         case IPW_FW_ERROR_EEPROM_ERROR:
596                 return "EEPROM_ERROR";
597         case IPW_FW_ERROR_SYSASSERT:
598                 return "SYSASSERT";
599         case IPW_FW_ERROR_FATAL_ERROR:
600                 return "FATAL_ERROR";
601         default:
602                 return "UNKNOWN_ERROR";
603         }
604 }
605
606 static void ipw_dump_error_log(struct ipw_priv *priv,
607                                struct ipw_fw_error *error)
608 {
609         u32 i;
610
611         if (!error) {
612                 IPW_ERROR("Error allocating and capturing error log.  "
613                           "Nothing to dump.\n");
614                 return;
615         }
616
617         IPW_ERROR("Start IPW Error Log Dump:\n");
618         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
619                   error->status, error->config);
620
621         for (i = 0; i < error->elem_len; i++)
622                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
623                           ipw_error_desc(error->elem[i].desc),
624                           error->elem[i].time,
625                           error->elem[i].blink1,
626                           error->elem[i].blink2,
627                           error->elem[i].link1,
628                           error->elem[i].link2, error->elem[i].data);
629         for (i = 0; i < error->log_len; i++)
630                 IPW_ERROR("%i\t0x%08x\t%i\n",
631                           error->log[i].time,
632                           error->log[i].data, error->log[i].event);
633 }
634
635 static inline int ipw_is_init(struct ipw_priv *priv)
636 {
637         return (priv->status & STATUS_INIT) ? 1 : 0;
638 }
639
640 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
641 {
642         u32 addr, field_info, field_len, field_count, total_len;
643
644         IPW_DEBUG_ORD("ordinal = %i\n", ord);
645
646         if (!priv || !val || !len) {
647                 IPW_DEBUG_ORD("Invalid argument\n");
648                 return -EINVAL;
649         }
650
651         /* verify device ordinal tables have been initialized */
652         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
653                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
654                 return -EINVAL;
655         }
656
657         switch (IPW_ORD_TABLE_ID_MASK & ord) {
658         case IPW_ORD_TABLE_0_MASK:
659                 /*
660                  * TABLE 0: Direct access to a table of 32 bit values
661                  *
662                  * This is a very simple table with the data directly
663                  * read from the table
664                  */
665
666                 /* remove the table id from the ordinal */
667                 ord &= IPW_ORD_TABLE_VALUE_MASK;
668
669                 /* boundary check */
670                 if (ord > priv->table0_len) {
671                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
672                                       "max (%i)\n", ord, priv->table0_len);
673                         return -EINVAL;
674                 }
675
676                 /* verify we have enough room to store the value */
677                 if (*len < sizeof(u32)) {
678                         IPW_DEBUG_ORD("ordinal buffer length too small, "
679                                       "need %zd\n", sizeof(u32));
680                         return -EINVAL;
681                 }
682
683                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
684                               ord, priv->table0_addr + (ord << 2));
685
686                 *len = sizeof(u32);
687                 ord <<= 2;
688                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
689                 break;
690
691         case IPW_ORD_TABLE_1_MASK:
692                 /*
693                  * TABLE 1: Indirect access to a table of 32 bit values
694                  *
695                  * This is a fairly large table of u32 values each
696                  * representing starting addr for the data (which is
697                  * also a u32)
698                  */
699
700                 /* remove the table id from the ordinal */
701                 ord &= IPW_ORD_TABLE_VALUE_MASK;
702
703                 /* boundary check */
704                 if (ord > priv->table1_len) {
705                         IPW_DEBUG_ORD("ordinal value too long\n");
706                         return -EINVAL;
707                 }
708
709                 /* verify we have enough room to store the value */
710                 if (*len < sizeof(u32)) {
711                         IPW_DEBUG_ORD("ordinal buffer length too small, "
712                                       "need %zd\n", sizeof(u32));
713                         return -EINVAL;
714                 }
715
716                 *((u32 *) val) =
717                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
718                 *len = sizeof(u32);
719                 break;
720
721         case IPW_ORD_TABLE_2_MASK:
722                 /*
723                  * TABLE 2: Indirect access to a table of variable sized values
724                  *
725                  * This table consist of six values, each containing
726                  *     - dword containing the starting offset of the data
727                  *     - dword containing the lengh in the first 16bits
728                  *       and the count in the second 16bits
729                  */
730
731                 /* remove the table id from the ordinal */
732                 ord &= IPW_ORD_TABLE_VALUE_MASK;
733
734                 /* boundary check */
735                 if (ord > priv->table2_len) {
736                         IPW_DEBUG_ORD("ordinal value too long\n");
737                         return -EINVAL;
738                 }
739
740                 /* get the address of statistic */
741                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
742
743                 /* get the second DW of statistics ;
744                  * two 16-bit words - first is length, second is count */
745                 field_info =
746                     ipw_read_reg32(priv,
747                                    priv->table2_addr + (ord << 3) +
748                                    sizeof(u32));
749
750                 /* get each entry length */
751                 field_len = *((u16 *) & field_info);
752
753                 /* get number of entries */
754                 field_count = *(((u16 *) & field_info) + 1);
755
756                 /* abort if not enought memory */
757                 total_len = field_len * field_count;
758                 if (total_len > *len) {
759                         *len = total_len;
760                         return -EINVAL;
761                 }
762
763                 *len = total_len;
764                 if (!total_len)
765                         return 0;
766
767                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
768                               "field_info = 0x%08x\n",
769                               addr, total_len, field_info);
770                 ipw_read_indirect(priv, addr, val, total_len);
771                 break;
772
773         default:
774                 IPW_DEBUG_ORD("Invalid ordinal!\n");
775                 return -EINVAL;
776
777         }
778
779         return 0;
780 }
781
782 static void ipw_init_ordinals(struct ipw_priv *priv)
783 {
784         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
785         priv->table0_len = ipw_read32(priv, priv->table0_addr);
786
787         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
788                       priv->table0_addr, priv->table0_len);
789
790         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
791         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
792
793         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
794                       priv->table1_addr, priv->table1_len);
795
796         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
797         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
798         priv->table2_len &= 0x0000ffff; /* use first two bytes */
799
800         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
801                       priv->table2_addr, priv->table2_len);
802
803 }
804
805 static u32 ipw_register_toggle(u32 reg)
806 {
807         reg &= ~IPW_START_STANDBY;
808         if (reg & IPW_GATE_ODMA)
809                 reg &= ~IPW_GATE_ODMA;
810         if (reg & IPW_GATE_IDMA)
811                 reg &= ~IPW_GATE_IDMA;
812         if (reg & IPW_GATE_ADMA)
813                 reg &= ~IPW_GATE_ADMA;
814         return reg;
815 }
816
817 /*
818  * LED behavior:
819  * - On radio ON, turn on any LEDs that require to be on during start
820  * - On initialization, start unassociated blink
821  * - On association, disable unassociated blink
822  * - On disassociation, start unassociated blink
823  * - On radio OFF, turn off any LEDs started during radio on
824  *
825  */
826 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
827 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
828 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
829
830 static void ipw_led_link_on(struct ipw_priv *priv)
831 {
832         unsigned long flags;
833         u32 led;
834
835         /* If configured to not use LEDs, or nic_type is 1,
836          * then we don't toggle a LINK led */
837         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
838                 return;
839
840         spin_lock_irqsave(&priv->lock, flags);
841
842         if (!(priv->status & STATUS_RF_KILL_MASK) &&
843             !(priv->status & STATUS_LED_LINK_ON)) {
844                 IPW_DEBUG_LED("Link LED On\n");
845                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
846                 led |= priv->led_association_on;
847
848                 led = ipw_register_toggle(led);
849
850                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
851                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
852
853                 priv->status |= STATUS_LED_LINK_ON;
854
855                 /* If we aren't associated, schedule turning the LED off */
856                 if (!(priv->status & STATUS_ASSOCIATED))
857                         queue_delayed_work(priv->workqueue,
858                                            &priv->led_link_off,
859                                            LD_TIME_LINK_ON);
860         }
861
862         spin_unlock_irqrestore(&priv->lock, flags);
863 }
864
865 static void ipw_bg_led_link_on(struct work_struct *work)
866 {
867         struct ipw_priv *priv =
868                 container_of(work, struct ipw_priv, led_link_on.work);
869         mutex_lock(&priv->mutex);
870         ipw_led_link_on(priv);
871         mutex_unlock(&priv->mutex);
872 }
873
874 static void ipw_led_link_off(struct ipw_priv *priv)
875 {
876         unsigned long flags;
877         u32 led;
878
879         /* If configured not to use LEDs, or nic type is 1,
880          * then we don't goggle the LINK led. */
881         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
882                 return;
883
884         spin_lock_irqsave(&priv->lock, flags);
885
886         if (priv->status & STATUS_LED_LINK_ON) {
887                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
888                 led &= priv->led_association_off;
889                 led = ipw_register_toggle(led);
890
891                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
892                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
893
894                 IPW_DEBUG_LED("Link LED Off\n");
895
896                 priv->status &= ~STATUS_LED_LINK_ON;
897
898                 /* If we aren't associated and the radio is on, schedule
899                  * turning the LED on (blink while unassociated) */
900                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
901                     !(priv->status & STATUS_ASSOCIATED))
902                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
903                                            LD_TIME_LINK_OFF);
904
905         }
906
907         spin_unlock_irqrestore(&priv->lock, flags);
908 }
909
910 static void ipw_bg_led_link_off(struct work_struct *work)
911 {
912         struct ipw_priv *priv =
913                 container_of(work, struct ipw_priv, led_link_off.work);
914         mutex_lock(&priv->mutex);
915         ipw_led_link_off(priv);
916         mutex_unlock(&priv->mutex);
917 }
918
919 static void __ipw_led_activity_on(struct ipw_priv *priv)
920 {
921         u32 led;
922
923         if (priv->config & CFG_NO_LED)
924                 return;
925
926         if (priv->status & STATUS_RF_KILL_MASK)
927                 return;
928
929         if (!(priv->status & STATUS_LED_ACT_ON)) {
930                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
931                 led |= priv->led_activity_on;
932
933                 led = ipw_register_toggle(led);
934
935                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
936                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
937
938                 IPW_DEBUG_LED("Activity LED On\n");
939
940                 priv->status |= STATUS_LED_ACT_ON;
941
942                 cancel_delayed_work(&priv->led_act_off);
943                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
944                                    LD_TIME_ACT_ON);
945         } else {
946                 /* Reschedule LED off for full time period */
947                 cancel_delayed_work(&priv->led_act_off);
948                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
949                                    LD_TIME_ACT_ON);
950         }
951 }
952
953 #if 0
954 void ipw_led_activity_on(struct ipw_priv *priv)
955 {
956         unsigned long flags;
957         spin_lock_irqsave(&priv->lock, flags);
958         __ipw_led_activity_on(priv);
959         spin_unlock_irqrestore(&priv->lock, flags);
960 }
961 #endif  /*  0  */
962
963 static void ipw_led_activity_off(struct ipw_priv *priv)
964 {
965         unsigned long flags;
966         u32 led;
967
968         if (priv->config & CFG_NO_LED)
969                 return;
970
971         spin_lock_irqsave(&priv->lock, flags);
972
973         if (priv->status & STATUS_LED_ACT_ON) {
974                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
975                 led &= priv->led_activity_off;
976
977                 led = ipw_register_toggle(led);
978
979                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
980                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
981
982                 IPW_DEBUG_LED("Activity LED Off\n");
983
984                 priv->status &= ~STATUS_LED_ACT_ON;
985         }
986
987         spin_unlock_irqrestore(&priv->lock, flags);
988 }
989
990 static void ipw_bg_led_activity_off(struct work_struct *work)
991 {
992         struct ipw_priv *priv =
993                 container_of(work, struct ipw_priv, led_act_off.work);
994         mutex_lock(&priv->mutex);
995         ipw_led_activity_off(priv);
996         mutex_unlock(&priv->mutex);
997 }
998
999 static void ipw_led_band_on(struct ipw_priv *priv)
1000 {
1001         unsigned long flags;
1002         u32 led;
1003
1004         /* Only nic type 1 supports mode LEDs */
1005         if (priv->config & CFG_NO_LED ||
1006             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1007                 return;
1008
1009         spin_lock_irqsave(&priv->lock, flags);
1010
1011         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1012         if (priv->assoc_network->mode == IEEE_A) {
1013                 led |= priv->led_ofdm_on;
1014                 led &= priv->led_association_off;
1015                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1016         } else if (priv->assoc_network->mode == IEEE_G) {
1017                 led |= priv->led_ofdm_on;
1018                 led |= priv->led_association_on;
1019                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1020         } else {
1021                 led &= priv->led_ofdm_off;
1022                 led |= priv->led_association_on;
1023                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1024         }
1025
1026         led = ipw_register_toggle(led);
1027
1028         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1029         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1030
1031         spin_unlock_irqrestore(&priv->lock, flags);
1032 }
1033
1034 static void ipw_led_band_off(struct ipw_priv *priv)
1035 {
1036         unsigned long flags;
1037         u32 led;
1038
1039         /* Only nic type 1 supports mode LEDs */
1040         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1041                 return;
1042
1043         spin_lock_irqsave(&priv->lock, flags);
1044
1045         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1046         led &= priv->led_ofdm_off;
1047         led &= priv->led_association_off;
1048
1049         led = ipw_register_toggle(led);
1050
1051         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1052         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1053
1054         spin_unlock_irqrestore(&priv->lock, flags);
1055 }
1056
1057 static void ipw_led_radio_on(struct ipw_priv *priv)
1058 {
1059         ipw_led_link_on(priv);
1060 }
1061
1062 static void ipw_led_radio_off(struct ipw_priv *priv)
1063 {
1064         ipw_led_activity_off(priv);
1065         ipw_led_link_off(priv);
1066 }
1067
1068 static void ipw_led_link_up(struct ipw_priv *priv)
1069 {
1070         /* Set the Link Led on for all nic types */
1071         ipw_led_link_on(priv);
1072 }
1073
1074 static void ipw_led_link_down(struct ipw_priv *priv)
1075 {
1076         ipw_led_activity_off(priv);
1077         ipw_led_link_off(priv);
1078
1079         if (priv->status & STATUS_RF_KILL_MASK)
1080                 ipw_led_radio_off(priv);
1081 }
1082
1083 static void ipw_led_init(struct ipw_priv *priv)
1084 {
1085         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1086
1087         /* Set the default PINs for the link and activity leds */
1088         priv->led_activity_on = IPW_ACTIVITY_LED;
1089         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1090
1091         priv->led_association_on = IPW_ASSOCIATED_LED;
1092         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1093
1094         /* Set the default PINs for the OFDM leds */
1095         priv->led_ofdm_on = IPW_OFDM_LED;
1096         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1097
1098         switch (priv->nic_type) {
1099         case EEPROM_NIC_TYPE_1:
1100                 /* In this NIC type, the LEDs are reversed.... */
1101                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1102                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1103                 priv->led_association_on = IPW_ACTIVITY_LED;
1104                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1105
1106                 if (!(priv->config & CFG_NO_LED))
1107                         ipw_led_band_on(priv);
1108
1109                 /* And we don't blink link LEDs for this nic, so
1110                  * just return here */
1111                 return;
1112
1113         case EEPROM_NIC_TYPE_3:
1114         case EEPROM_NIC_TYPE_2:
1115         case EEPROM_NIC_TYPE_4:
1116         case EEPROM_NIC_TYPE_0:
1117                 break;
1118
1119         default:
1120                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1121                                priv->nic_type);
1122                 priv->nic_type = EEPROM_NIC_TYPE_0;
1123                 break;
1124         }
1125
1126         if (!(priv->config & CFG_NO_LED)) {
1127                 if (priv->status & STATUS_ASSOCIATED)
1128                         ipw_led_link_on(priv);
1129                 else
1130                         ipw_led_link_off(priv);
1131         }
1132 }
1133
1134 static void ipw_led_shutdown(struct ipw_priv *priv)
1135 {
1136         ipw_led_activity_off(priv);
1137         ipw_led_link_off(priv);
1138         ipw_led_band_off(priv);
1139         cancel_delayed_work(&priv->led_link_on);
1140         cancel_delayed_work(&priv->led_link_off);
1141         cancel_delayed_work(&priv->led_act_off);
1142 }
1143
1144 /*
1145  * The following adds a new attribute to the sysfs representation
1146  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1147  * used for controling the debug level.
1148  *
1149  * See the level definitions in ipw for details.
1150  */
1151 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1152 {
1153         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1154 }
1155
1156 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1157                                  size_t count)
1158 {
1159         char *p = (char *)buf;
1160         u32 val;
1161
1162         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1163                 p++;
1164                 if (p[0] == 'x' || p[0] == 'X')
1165                         p++;
1166                 val = simple_strtoul(p, &p, 16);
1167         } else
1168                 val = simple_strtoul(p, &p, 10);
1169         if (p == buf)
1170                 printk(KERN_INFO DRV_NAME
1171                        ": %s is not in hex or decimal form.\n", buf);
1172         else
1173                 ipw_debug_level = val;
1174
1175         return strnlen(buf, count);
1176 }
1177
1178 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1179                    show_debug_level, store_debug_level);
1180
1181 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1182 {
1183         /* length = 1st dword in log */
1184         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1185 }
1186
1187 static void ipw_capture_event_log(struct ipw_priv *priv,
1188                                   u32 log_len, struct ipw_event *log)
1189 {
1190         u32 base;
1191
1192         if (log_len) {
1193                 base = ipw_read32(priv, IPW_EVENT_LOG);
1194                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1195                                   (u8 *) log, sizeof(*log) * log_len);
1196         }
1197 }
1198
1199 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1200 {
1201         struct ipw_fw_error *error;
1202         u32 log_len = ipw_get_event_log_len(priv);
1203         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1204         u32 elem_len = ipw_read_reg32(priv, base);
1205
1206         error = kmalloc(sizeof(*error) +
1207                         sizeof(*error->elem) * elem_len +
1208                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1209         if (!error) {
1210                 IPW_ERROR("Memory allocation for firmware error log "
1211                           "failed.\n");
1212                 return NULL;
1213         }
1214         error->jiffies = jiffies;
1215         error->status = priv->status;
1216         error->config = priv->config;
1217         error->elem_len = elem_len;
1218         error->log_len = log_len;
1219         error->elem = (struct ipw_error_elem *)error->payload;
1220         error->log = (struct ipw_event *)(error->elem + elem_len);
1221
1222         ipw_capture_event_log(priv, log_len, error->log);
1223
1224         if (elem_len)
1225                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1226                                   sizeof(*error->elem) * elem_len);
1227
1228         return error;
1229 }
1230
1231 static ssize_t show_event_log(struct device *d,
1232                               struct device_attribute *attr, char *buf)
1233 {
1234         struct ipw_priv *priv = dev_get_drvdata(d);
1235         u32 log_len = ipw_get_event_log_len(priv);
1236         struct ipw_event log[log_len];
1237         u32 len = 0, i;
1238
1239         ipw_capture_event_log(priv, log_len, log);
1240
1241         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1242         for (i = 0; i < log_len; i++)
1243                 len += snprintf(buf + len, PAGE_SIZE - len,
1244                                 "\n%08X%08X%08X",
1245                                 log[i].time, log[i].event, log[i].data);
1246         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1247         return len;
1248 }
1249
1250 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1251
1252 static ssize_t show_error(struct device *d,
1253                           struct device_attribute *attr, char *buf)
1254 {
1255         struct ipw_priv *priv = dev_get_drvdata(d);
1256         u32 len = 0, i;
1257         if (!priv->error)
1258                 return 0;
1259         len += snprintf(buf + len, PAGE_SIZE - len,
1260                         "%08lX%08X%08X%08X",
1261                         priv->error->jiffies,
1262                         priv->error->status,
1263                         priv->error->config, priv->error->elem_len);
1264         for (i = 0; i < priv->error->elem_len; i++)
1265                 len += snprintf(buf + len, PAGE_SIZE - len,
1266                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1267                                 priv->error->elem[i].time,
1268                                 priv->error->elem[i].desc,
1269                                 priv->error->elem[i].blink1,
1270                                 priv->error->elem[i].blink2,
1271                                 priv->error->elem[i].link1,
1272                                 priv->error->elem[i].link2,
1273                                 priv->error->elem[i].data);
1274
1275         len += snprintf(buf + len, PAGE_SIZE - len,
1276                         "\n%08X", priv->error->log_len);
1277         for (i = 0; i < priv->error->log_len; i++)
1278                 len += snprintf(buf + len, PAGE_SIZE - len,
1279                                 "\n%08X%08X%08X",
1280                                 priv->error->log[i].time,
1281                                 priv->error->log[i].event,
1282                                 priv->error->log[i].data);
1283         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1284         return len;
1285 }
1286
1287 static ssize_t clear_error(struct device *d,
1288                            struct device_attribute *attr,
1289                            const char *buf, size_t count)
1290 {
1291         struct ipw_priv *priv = dev_get_drvdata(d);
1292
1293         kfree(priv->error);
1294         priv->error = NULL;
1295         return count;
1296 }
1297
1298 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1299
1300 static ssize_t show_cmd_log(struct device *d,
1301                             struct device_attribute *attr, char *buf)
1302 {
1303         struct ipw_priv *priv = dev_get_drvdata(d);
1304         u32 len = 0, i;
1305         if (!priv->cmdlog)
1306                 return 0;
1307         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1308              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1309              i = (i + 1) % priv->cmdlog_len) {
1310                 len +=
1311                     snprintf(buf + len, PAGE_SIZE - len,
1312                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1313                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1314                              priv->cmdlog[i].cmd.len);
1315                 len +=
1316                     snprintk_buf(buf + len, PAGE_SIZE - len,
1317                                  (u8 *) priv->cmdlog[i].cmd.param,
1318                                  priv->cmdlog[i].cmd.len);
1319                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1320         }
1321         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1322         return len;
1323 }
1324
1325 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1326
1327 #ifdef CONFIG_IPW2200_PROMISCUOUS
1328 static void ipw_prom_free(struct ipw_priv *priv);
1329 static int ipw_prom_alloc(struct ipw_priv *priv);
1330 static ssize_t store_rtap_iface(struct device *d,
1331                          struct device_attribute *attr,
1332                          const char *buf, size_t count)
1333 {
1334         struct ipw_priv *priv = dev_get_drvdata(d);
1335         int rc = 0;
1336
1337         if (count < 1)
1338                 return -EINVAL;
1339
1340         switch (buf[0]) {
1341         case '0':
1342                 if (!rtap_iface)
1343                         return count;
1344
1345                 if (netif_running(priv->prom_net_dev)) {
1346                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1347                         return count;
1348                 }
1349
1350                 ipw_prom_free(priv);
1351                 rtap_iface = 0;
1352                 break;
1353
1354         case '1':
1355                 if (rtap_iface)
1356                         return count;
1357
1358                 rc = ipw_prom_alloc(priv);
1359                 if (!rc)
1360                         rtap_iface = 1;
1361                 break;
1362
1363         default:
1364                 return -EINVAL;
1365         }
1366
1367         if (rc) {
1368                 IPW_ERROR("Failed to register promiscuous network "
1369                           "device (error %d).\n", rc);
1370         }
1371
1372         return count;
1373 }
1374
1375 static ssize_t show_rtap_iface(struct device *d,
1376                         struct device_attribute *attr,
1377                         char *buf)
1378 {
1379         struct ipw_priv *priv = dev_get_drvdata(d);
1380         if (rtap_iface)
1381                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1382         else {
1383                 buf[0] = '-';
1384                 buf[1] = '1';
1385                 buf[2] = '\0';
1386                 return 3;
1387         }
1388 }
1389
1390 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1391                    store_rtap_iface);
1392
1393 static ssize_t store_rtap_filter(struct device *d,
1394                          struct device_attribute *attr,
1395                          const char *buf, size_t count)
1396 {
1397         struct ipw_priv *priv = dev_get_drvdata(d);
1398
1399         if (!priv->prom_priv) {
1400                 IPW_ERROR("Attempting to set filter without "
1401                           "rtap_iface enabled.\n");
1402                 return -EPERM;
1403         }
1404
1405         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1406
1407         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1408                        BIT_ARG16(priv->prom_priv->filter));
1409
1410         return count;
1411 }
1412
1413 static ssize_t show_rtap_filter(struct device *d,
1414                         struct device_attribute *attr,
1415                         char *buf)
1416 {
1417         struct ipw_priv *priv = dev_get_drvdata(d);
1418         return sprintf(buf, "0x%04X",
1419                        priv->prom_priv ? priv->prom_priv->filter : 0);
1420 }
1421
1422 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1423                    store_rtap_filter);
1424 #endif
1425
1426 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1427                              char *buf)
1428 {
1429         struct ipw_priv *priv = dev_get_drvdata(d);
1430         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1431 }
1432
1433 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1434                               const char *buf, size_t count)
1435 {
1436         struct ipw_priv *priv = dev_get_drvdata(d);
1437         struct net_device *dev = priv->net_dev;
1438         char buffer[] = "00000000";
1439         unsigned long len =
1440             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1441         unsigned long val;
1442         char *p = buffer;
1443
1444         IPW_DEBUG_INFO("enter\n");
1445
1446         strncpy(buffer, buf, len);
1447         buffer[len] = 0;
1448
1449         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1450                 p++;
1451                 if (p[0] == 'x' || p[0] == 'X')
1452                         p++;
1453                 val = simple_strtoul(p, &p, 16);
1454         } else
1455                 val = simple_strtoul(p, &p, 10);
1456         if (p == buffer) {
1457                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1458         } else {
1459                 priv->ieee->scan_age = val;
1460                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1461         }
1462
1463         IPW_DEBUG_INFO("exit\n");
1464         return len;
1465 }
1466
1467 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1468
1469 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1470                         char *buf)
1471 {
1472         struct ipw_priv *priv = dev_get_drvdata(d);
1473         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1474 }
1475
1476 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1477                          const char *buf, size_t count)
1478 {
1479         struct ipw_priv *priv = dev_get_drvdata(d);
1480
1481         IPW_DEBUG_INFO("enter\n");
1482
1483         if (count == 0)
1484                 return 0;
1485
1486         if (*buf == 0) {
1487                 IPW_DEBUG_LED("Disabling LED control.\n");
1488                 priv->config |= CFG_NO_LED;
1489                 ipw_led_shutdown(priv);
1490         } else {
1491                 IPW_DEBUG_LED("Enabling LED control.\n");
1492                 priv->config &= ~CFG_NO_LED;
1493                 ipw_led_init(priv);
1494         }
1495
1496         IPW_DEBUG_INFO("exit\n");
1497         return count;
1498 }
1499
1500 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1501
1502 static ssize_t show_status(struct device *d,
1503                            struct device_attribute *attr, char *buf)
1504 {
1505         struct ipw_priv *p = d->driver_data;
1506         return sprintf(buf, "0x%08x\n", (int)p->status);
1507 }
1508
1509 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1510
1511 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1512                         char *buf)
1513 {
1514         struct ipw_priv *p = d->driver_data;
1515         return sprintf(buf, "0x%08x\n", (int)p->config);
1516 }
1517
1518 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1519
1520 static ssize_t show_nic_type(struct device *d,
1521                              struct device_attribute *attr, char *buf)
1522 {
1523         struct ipw_priv *priv = d->driver_data;
1524         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1525 }
1526
1527 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1528
1529 static ssize_t show_ucode_version(struct device *d,
1530                                   struct device_attribute *attr, char *buf)
1531 {
1532         u32 len = sizeof(u32), tmp = 0;
1533         struct ipw_priv *p = d->driver_data;
1534
1535         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1536                 return 0;
1537
1538         return sprintf(buf, "0x%08x\n", tmp);
1539 }
1540
1541 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1542
1543 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1544                         char *buf)
1545 {
1546         u32 len = sizeof(u32), tmp = 0;
1547         struct ipw_priv *p = d->driver_data;
1548
1549         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1550                 return 0;
1551
1552         return sprintf(buf, "0x%08x\n", tmp);
1553 }
1554
1555 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1556
1557 /*
1558  * Add a device attribute to view/control the delay between eeprom
1559  * operations.
1560  */
1561 static ssize_t show_eeprom_delay(struct device *d,
1562                                  struct device_attribute *attr, char *buf)
1563 {
1564         int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1565         return sprintf(buf, "%i\n", n);
1566 }
1567 static ssize_t store_eeprom_delay(struct device *d,
1568                                   struct device_attribute *attr,
1569                                   const char *buf, size_t count)
1570 {
1571         struct ipw_priv *p = d->driver_data;
1572         sscanf(buf, "%i", &p->eeprom_delay);
1573         return strnlen(buf, count);
1574 }
1575
1576 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1577                    show_eeprom_delay, store_eeprom_delay);
1578
1579 static ssize_t show_command_event_reg(struct device *d,
1580                                       struct device_attribute *attr, char *buf)
1581 {
1582         u32 reg = 0;
1583         struct ipw_priv *p = d->driver_data;
1584
1585         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1586         return sprintf(buf, "0x%08x\n", reg);
1587 }
1588 static ssize_t store_command_event_reg(struct device *d,
1589                                        struct device_attribute *attr,
1590                                        const char *buf, size_t count)
1591 {
1592         u32 reg;
1593         struct ipw_priv *p = d->driver_data;
1594
1595         sscanf(buf, "%x", &reg);
1596         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1597         return strnlen(buf, count);
1598 }
1599
1600 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1601                    show_command_event_reg, store_command_event_reg);
1602
1603 static ssize_t show_mem_gpio_reg(struct device *d,
1604                                  struct device_attribute *attr, char *buf)
1605 {
1606         u32 reg = 0;
1607         struct ipw_priv *p = d->driver_data;
1608
1609         reg = ipw_read_reg32(p, 0x301100);
1610         return sprintf(buf, "0x%08x\n", reg);
1611 }
1612 static ssize_t store_mem_gpio_reg(struct device *d,
1613                                   struct device_attribute *attr,
1614                                   const char *buf, size_t count)
1615 {
1616         u32 reg;
1617         struct ipw_priv *p = d->driver_data;
1618
1619         sscanf(buf, "%x", &reg);
1620         ipw_write_reg32(p, 0x301100, reg);
1621         return strnlen(buf, count);
1622 }
1623
1624 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1625                    show_mem_gpio_reg, store_mem_gpio_reg);
1626
1627 static ssize_t show_indirect_dword(struct device *d,
1628                                    struct device_attribute *attr, char *buf)
1629 {
1630         u32 reg = 0;
1631         struct ipw_priv *priv = d->driver_data;
1632
1633         if (priv->status & STATUS_INDIRECT_DWORD)
1634                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1635         else
1636                 reg = 0;
1637
1638         return sprintf(buf, "0x%08x\n", reg);
1639 }
1640 static ssize_t store_indirect_dword(struct device *d,
1641                                     struct device_attribute *attr,
1642                                     const char *buf, size_t count)
1643 {
1644         struct ipw_priv *priv = d->driver_data;
1645
1646         sscanf(buf, "%x", &priv->indirect_dword);
1647         priv->status |= STATUS_INDIRECT_DWORD;
1648         return strnlen(buf, count);
1649 }
1650
1651 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1652                    show_indirect_dword, store_indirect_dword);
1653
1654 static ssize_t show_indirect_byte(struct device *d,
1655                                   struct device_attribute *attr, char *buf)
1656 {
1657         u8 reg = 0;
1658         struct ipw_priv *priv = d->driver_data;
1659
1660         if (priv->status & STATUS_INDIRECT_BYTE)
1661                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1662         else
1663                 reg = 0;
1664
1665         return sprintf(buf, "0x%02x\n", reg);
1666 }
1667 static ssize_t store_indirect_byte(struct device *d,
1668                                    struct device_attribute *attr,
1669                                    const char *buf, size_t count)
1670 {
1671         struct ipw_priv *priv = d->driver_data;
1672
1673         sscanf(buf, "%x", &priv->indirect_byte);
1674         priv->status |= STATUS_INDIRECT_BYTE;
1675         return strnlen(buf, count);
1676 }
1677
1678 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1679                    show_indirect_byte, store_indirect_byte);
1680
1681 static ssize_t show_direct_dword(struct device *d,
1682                                  struct device_attribute *attr, char *buf)
1683 {
1684         u32 reg = 0;
1685         struct ipw_priv *priv = d->driver_data;
1686
1687         if (priv->status & STATUS_DIRECT_DWORD)
1688                 reg = ipw_read32(priv, priv->direct_dword);
1689         else
1690                 reg = 0;
1691
1692         return sprintf(buf, "0x%08x\n", reg);
1693 }
1694 static ssize_t store_direct_dword(struct device *d,
1695                                   struct device_attribute *attr,
1696                                   const char *buf, size_t count)
1697 {
1698         struct ipw_priv *priv = d->driver_data;
1699
1700         sscanf(buf, "%x", &priv->direct_dword);
1701         priv->status |= STATUS_DIRECT_DWORD;
1702         return strnlen(buf, count);
1703 }
1704
1705 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1706                    show_direct_dword, store_direct_dword);
1707
1708 static int rf_kill_active(struct ipw_priv *priv)
1709 {
1710         if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1711                 priv->status |= STATUS_RF_KILL_HW;
1712         else
1713                 priv->status &= ~STATUS_RF_KILL_HW;
1714
1715         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1716 }
1717
1718 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1719                             char *buf)
1720 {
1721         /* 0 - RF kill not enabled
1722            1 - SW based RF kill active (sysfs)
1723            2 - HW based RF kill active
1724            3 - Both HW and SW baed RF kill active */
1725         struct ipw_priv *priv = d->driver_data;
1726         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1727             (rf_kill_active(priv) ? 0x2 : 0x0);
1728         return sprintf(buf, "%i\n", val);
1729 }
1730
1731 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1732 {
1733         if ((disable_radio ? 1 : 0) ==
1734             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1735                 return 0;
1736
1737         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1738                           disable_radio ? "OFF" : "ON");
1739
1740         if (disable_radio) {
1741                 priv->status |= STATUS_RF_KILL_SW;
1742
1743                 if (priv->workqueue)
1744                         cancel_delayed_work(&priv->request_scan);
1745                 queue_work(priv->workqueue, &priv->down);
1746         } else {
1747                 priv->status &= ~STATUS_RF_KILL_SW;
1748                 if (rf_kill_active(priv)) {
1749                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1750                                           "disabled by HW switch\n");
1751                         /* Make sure the RF_KILL check timer is running */
1752                         cancel_delayed_work(&priv->rf_kill);
1753                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1754                                            2 * HZ);
1755                 } else
1756                         queue_work(priv->workqueue, &priv->up);
1757         }
1758
1759         return 1;
1760 }
1761
1762 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1763                              const char *buf, size_t count)
1764 {
1765         struct ipw_priv *priv = d->driver_data;
1766
1767         ipw_radio_kill_sw(priv, buf[0] == '1');
1768
1769         return count;
1770 }
1771
1772 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1773
1774 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1775                                char *buf)
1776 {
1777         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1778         int pos = 0, len = 0;
1779         if (priv->config & CFG_SPEED_SCAN) {
1780                 while (priv->speed_scan[pos] != 0)
1781                         len += sprintf(&buf[len], "%d ",
1782                                        priv->speed_scan[pos++]);
1783                 return len + sprintf(&buf[len], "\n");
1784         }
1785
1786         return sprintf(buf, "0\n");
1787 }
1788
1789 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1790                                 const char *buf, size_t count)
1791 {
1792         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1793         int channel, pos = 0;
1794         const char *p = buf;
1795
1796         /* list of space separated channels to scan, optionally ending with 0 */
1797         while ((channel = simple_strtol(p, NULL, 0))) {
1798                 if (pos == MAX_SPEED_SCAN - 1) {
1799                         priv->speed_scan[pos] = 0;
1800                         break;
1801                 }
1802
1803                 if (ieee80211_is_valid_channel(priv->ieee, channel))
1804                         priv->speed_scan[pos++] = channel;
1805                 else
1806                         IPW_WARNING("Skipping invalid channel request: %d\n",
1807                                     channel);
1808                 p = strchr(p, ' ');
1809                 if (!p)
1810                         break;
1811                 while (*p == ' ' || *p == '\t')
1812                         p++;
1813         }
1814
1815         if (pos == 0)
1816                 priv->config &= ~CFG_SPEED_SCAN;
1817         else {
1818                 priv->speed_scan_pos = 0;
1819                 priv->config |= CFG_SPEED_SCAN;
1820         }
1821
1822         return count;
1823 }
1824
1825 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1826                    store_speed_scan);
1827
1828 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1829                               char *buf)
1830 {
1831         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1832         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1833 }
1834
1835 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1836                                const char *buf, size_t count)
1837 {
1838         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1839         if (buf[0] == '1')
1840                 priv->config |= CFG_NET_STATS;
1841         else
1842                 priv->config &= ~CFG_NET_STATS;
1843
1844         return count;
1845 }
1846
1847 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1848                    show_net_stats, store_net_stats);
1849
1850 static void notify_wx_assoc_event(struct ipw_priv *priv)
1851 {
1852         union iwreq_data wrqu;
1853         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1854         if (priv->status & STATUS_ASSOCIATED)
1855                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1856         else
1857                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1858         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1859 }
1860
1861 static void ipw_irq_tasklet(struct ipw_priv *priv)
1862 {
1863         u32 inta, inta_mask, handled = 0;
1864         unsigned long flags;
1865         int rc = 0;
1866
1867         spin_lock_irqsave(&priv->irq_lock, flags);
1868
1869         inta = ipw_read32(priv, IPW_INTA_RW);
1870         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1871         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1872
1873         /* Add any cached INTA values that need to be handled */
1874         inta |= priv->isr_inta;
1875
1876         spin_unlock_irqrestore(&priv->irq_lock, flags);
1877
1878         spin_lock_irqsave(&priv->lock, flags);
1879
1880         /* handle all the justifications for the interrupt */
1881         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1882                 ipw_rx(priv);
1883                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1884         }
1885
1886         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1887                 IPW_DEBUG_HC("Command completed.\n");
1888                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1889                 priv->status &= ~STATUS_HCMD_ACTIVE;
1890                 wake_up_interruptible(&priv->wait_command_queue);
1891                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1892         }
1893
1894         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1895                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1896                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1897                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1898         }
1899
1900         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1901                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1902                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1903                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1904         }
1905
1906         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1907                 IPW_DEBUG_TX("TX_QUEUE_3\n");
1908                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1909                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1910         }
1911
1912         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1913                 IPW_DEBUG_TX("TX_QUEUE_4\n");
1914                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1915                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1916         }
1917
1918         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1919                 IPW_WARNING("STATUS_CHANGE\n");
1920                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1921         }
1922
1923         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1924                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1925                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1926         }
1927
1928         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1929                 IPW_WARNING("HOST_CMD_DONE\n");
1930                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1931         }
1932
1933         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1934                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1935                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1936         }
1937
1938         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1939                 IPW_WARNING("PHY_OFF_DONE\n");
1940                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1941         }
1942
1943         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
1944                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1945                 priv->status |= STATUS_RF_KILL_HW;
1946                 wake_up_interruptible(&priv->wait_command_queue);
1947                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1948                 cancel_delayed_work(&priv->request_scan);
1949                 schedule_work(&priv->link_down);
1950                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
1951                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
1952         }
1953
1954         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
1955                 IPW_WARNING("Firmware error detected.  Restarting.\n");
1956                 if (priv->error) {
1957                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
1958                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
1959                                 struct ipw_fw_error *error =
1960                                     ipw_alloc_error_log(priv);
1961                                 ipw_dump_error_log(priv, error);
1962                                 kfree(error);
1963                         }
1964                 } else {
1965                         priv->error = ipw_alloc_error_log(priv);
1966                         if (priv->error)
1967                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
1968                         else
1969                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
1970                                              "log.\n");
1971                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
1972                                 ipw_dump_error_log(priv, priv->error);
1973                 }
1974
1975                 /* XXX: If hardware encryption is for WPA/WPA2,
1976                  * we have to notify the supplicant. */
1977                 if (priv->ieee->sec.encrypt) {
1978                         priv->status &= ~STATUS_ASSOCIATED;
1979                         notify_wx_assoc_event(priv);
1980                 }
1981
1982                 /* Keep the restart process from trying to send host
1983                  * commands by clearing the INIT status bit */
1984                 priv->status &= ~STATUS_INIT;
1985
1986                 /* Cancel currently queued command. */
1987                 priv->status &= ~STATUS_HCMD_ACTIVE;
1988                 wake_up_interruptible(&priv->wait_command_queue);
1989
1990                 queue_work(priv->workqueue, &priv->adapter_restart);
1991                 handled |= IPW_INTA_BIT_FATAL_ERROR;
1992         }
1993
1994         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
1995                 IPW_ERROR("Parity error\n");
1996                 handled |= IPW_INTA_BIT_PARITY_ERROR;
1997         }
1998
1999         if (handled != inta) {
2000                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2001         }
2002
2003         spin_unlock_irqrestore(&priv->lock, flags);
2004
2005         /* enable all interrupts */
2006         ipw_enable_interrupts(priv);
2007 }
2008
2009 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2010 static char *get_cmd_string(u8 cmd)
2011 {
2012         switch (cmd) {
2013                 IPW_CMD(HOST_COMPLETE);
2014                 IPW_CMD(POWER_DOWN);
2015                 IPW_CMD(SYSTEM_CONFIG);
2016                 IPW_CMD(MULTICAST_ADDRESS);
2017                 IPW_CMD(SSID);
2018                 IPW_CMD(ADAPTER_ADDRESS);
2019                 IPW_CMD(PORT_TYPE);
2020                 IPW_CMD(RTS_THRESHOLD);
2021                 IPW_CMD(FRAG_THRESHOLD);
2022                 IPW_CMD(POWER_MODE);
2023                 IPW_CMD(WEP_KEY);
2024                 IPW_CMD(TGI_TX_KEY);
2025                 IPW_CMD(SCAN_REQUEST);
2026                 IPW_CMD(SCAN_REQUEST_EXT);
2027                 IPW_CMD(ASSOCIATE);
2028                 IPW_CMD(SUPPORTED_RATES);
2029                 IPW_CMD(SCAN_ABORT);
2030                 IPW_CMD(TX_FLUSH);
2031                 IPW_CMD(QOS_PARAMETERS);
2032                 IPW_CMD(DINO_CONFIG);
2033                 IPW_CMD(RSN_CAPABILITIES);
2034                 IPW_CMD(RX_KEY);
2035                 IPW_CMD(CARD_DISABLE);
2036                 IPW_CMD(SEED_NUMBER);
2037                 IPW_CMD(TX_POWER);
2038                 IPW_CMD(COUNTRY_INFO);
2039                 IPW_CMD(AIRONET_INFO);
2040                 IPW_CMD(AP_TX_POWER);
2041                 IPW_CMD(CCKM_INFO);
2042                 IPW_CMD(CCX_VER_INFO);
2043                 IPW_CMD(SET_CALIBRATION);
2044                 IPW_CMD(SENSITIVITY_CALIB);
2045                 IPW_CMD(RETRY_LIMIT);
2046                 IPW_CMD(IPW_PRE_POWER_DOWN);
2047                 IPW_CMD(VAP_BEACON_TEMPLATE);
2048                 IPW_CMD(VAP_DTIM_PERIOD);
2049                 IPW_CMD(EXT_SUPPORTED_RATES);
2050                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2051                 IPW_CMD(VAP_QUIET_INTERVALS);
2052                 IPW_CMD(VAP_CHANNEL_SWITCH);
2053                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2054                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2055                 IPW_CMD(VAP_CF_PARAM_SET);
2056                 IPW_CMD(VAP_SET_BEACONING_STATE);
2057                 IPW_CMD(MEASUREMENT);
2058                 IPW_CMD(POWER_CAPABILITY);
2059                 IPW_CMD(SUPPORTED_CHANNELS);
2060                 IPW_CMD(TPC_REPORT);
2061                 IPW_CMD(WME_INFO);
2062                 IPW_CMD(PRODUCTION_COMMAND);
2063         default:
2064                 return "UNKNOWN";
2065         }
2066 }
2067
2068 #define HOST_COMPLETE_TIMEOUT HZ
2069
2070 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2071 {
2072         int rc = 0;
2073         unsigned long flags;
2074
2075         spin_lock_irqsave(&priv->lock, flags);
2076         if (priv->status & STATUS_HCMD_ACTIVE) {
2077                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2078                           get_cmd_string(cmd->cmd));
2079                 spin_unlock_irqrestore(&priv->lock, flags);
2080                 return -EAGAIN;
2081         }
2082
2083         priv->status |= STATUS_HCMD_ACTIVE;
2084
2085         if (priv->cmdlog) {
2086                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2087                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2088                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2089                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2090                        cmd->len);
2091                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2092         }
2093
2094         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2095                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2096                      priv->status);
2097
2098 #ifndef DEBUG_CMD_WEP_KEY
2099         if (cmd->cmd == IPW_CMD_WEP_KEY)
2100                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2101         else
2102 #endif
2103                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2104
2105         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2106         if (rc) {
2107                 priv->status &= ~STATUS_HCMD_ACTIVE;
2108                 IPW_ERROR("Failed to send %s: Reason %d\n",
2109                           get_cmd_string(cmd->cmd), rc);
2110                 spin_unlock_irqrestore(&priv->lock, flags);
2111                 goto exit;
2112         }
2113         spin_unlock_irqrestore(&priv->lock, flags);
2114
2115         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2116                                               !(priv->
2117                                                 status & STATUS_HCMD_ACTIVE),
2118                                               HOST_COMPLETE_TIMEOUT);
2119         if (rc == 0) {
2120                 spin_lock_irqsave(&priv->lock, flags);
2121                 if (priv->status & STATUS_HCMD_ACTIVE) {
2122                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2123                                   get_cmd_string(cmd->cmd));
2124                         priv->status &= ~STATUS_HCMD_ACTIVE;
2125                         spin_unlock_irqrestore(&priv->lock, flags);
2126                         rc = -EIO;
2127                         goto exit;
2128                 }
2129                 spin_unlock_irqrestore(&priv->lock, flags);
2130         } else
2131                 rc = 0;
2132
2133         if (priv->status & STATUS_RF_KILL_HW) {
2134                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2135                           get_cmd_string(cmd->cmd));
2136                 rc = -EIO;
2137                 goto exit;
2138         }
2139
2140       exit:
2141         if (priv->cmdlog) {
2142                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2143                 priv->cmdlog_pos %= priv->cmdlog_len;
2144         }
2145         return rc;
2146 }
2147
2148 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2149 {
2150         struct host_cmd cmd = {
2151                 .cmd = command,
2152         };
2153
2154         return __ipw_send_cmd(priv, &cmd);
2155 }
2156
2157 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2158                             void *data)
2159 {
2160         struct host_cmd cmd = {
2161                 .cmd = command,
2162                 .len = len,
2163                 .param = data,
2164         };
2165
2166         return __ipw_send_cmd(priv, &cmd);
2167 }
2168
2169 static int ipw_send_host_complete(struct ipw_priv *priv)
2170 {
2171         if (!priv) {
2172                 IPW_ERROR("Invalid args\n");
2173                 return -1;
2174         }
2175
2176         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2177 }
2178
2179 static int ipw_send_system_config(struct ipw_priv *priv)
2180 {
2181         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2182                                 sizeof(priv->sys_config),
2183                                 &priv->sys_config);
2184 }
2185
2186 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2187 {
2188         if (!priv || !ssid) {
2189                 IPW_ERROR("Invalid args\n");
2190                 return -1;
2191         }
2192
2193         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2194                                 ssid);
2195 }
2196
2197 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2198 {
2199         if (!priv || !mac) {
2200                 IPW_ERROR("Invalid args\n");
2201                 return -1;
2202         }
2203
2204         IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
2205                        priv->net_dev->name, MAC_ARG(mac));
2206
2207         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2208 }
2209
2210 /*
2211  * NOTE: This must be executed from our workqueue as it results in udelay
2212  * being called which may corrupt the keyboard if executed on default
2213  * workqueue
2214  */
2215 static void ipw_adapter_restart(void *adapter)
2216 {
2217         struct ipw_priv *priv = adapter;
2218
2219         if (priv->status & STATUS_RF_KILL_MASK)
2220                 return;
2221
2222         ipw_down(priv);
2223
2224         if (priv->assoc_network &&
2225             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2226                 ipw_remove_current_network(priv);
2227
2228         if (ipw_up(priv)) {
2229                 IPW_ERROR("Failed to up device\n");
2230                 return;
2231         }
2232 }
2233
2234 static void ipw_bg_adapter_restart(struct work_struct *work)
2235 {
2236         struct ipw_priv *priv =
2237                 container_of(work, struct ipw_priv, adapter_restart);
2238         mutex_lock(&priv->mutex);
2239         ipw_adapter_restart(priv);
2240         mutex_unlock(&priv->mutex);
2241 }
2242
2243 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2244
2245 static void ipw_scan_check(void *data)
2246 {
2247         struct ipw_priv *priv = data;
2248         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2249                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2250                                "adapter after (%dms).\n",
2251                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2252                 queue_work(priv->workqueue, &priv->adapter_restart);
2253         }
2254 }
2255
2256 static void ipw_bg_scan_check(struct work_struct *work)
2257 {
2258         struct ipw_priv *priv =
2259                 container_of(work, struct ipw_priv, scan_check.work);
2260         mutex_lock(&priv->mutex);
2261         ipw_scan_check(priv);
2262         mutex_unlock(&priv->mutex);
2263 }
2264
2265 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2266                                      struct ipw_scan_request_ext *request)
2267 {
2268         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2269                                 sizeof(*request), request);
2270 }
2271
2272 static int ipw_send_scan_abort(struct ipw_priv *priv)
2273 {
2274         if (!priv) {
2275                 IPW_ERROR("Invalid args\n");
2276                 return -1;
2277         }
2278
2279         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2280 }
2281
2282 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2283 {
2284         struct ipw_sensitivity_calib calib = {
2285                 .beacon_rssi_raw = cpu_to_le16(sens),
2286         };
2287
2288         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2289                                 &calib);
2290 }
2291
2292 static int ipw_send_associate(struct ipw_priv *priv,
2293                               struct ipw_associate *associate)
2294 {
2295         struct ipw_associate tmp_associate;
2296
2297         if (!priv || !associate) {
2298                 IPW_ERROR("Invalid args\n");
2299                 return -1;
2300         }
2301
2302         memcpy(&tmp_associate, associate, sizeof(*associate));
2303         tmp_associate.policy_support =
2304             cpu_to_le16(tmp_associate.policy_support);
2305         tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2306         tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2307         tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2308         tmp_associate.listen_interval =
2309             cpu_to_le16(tmp_associate.listen_interval);
2310         tmp_associate.beacon_interval =
2311             cpu_to_le16(tmp_associate.beacon_interval);
2312         tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2313
2314         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(tmp_associate),
2315                                 &tmp_associate);
2316 }
2317
2318 static int ipw_send_supported_rates(struct ipw_priv *priv,
2319                                     struct ipw_supported_rates *rates)
2320 {
2321         if (!priv || !rates) {
2322                 IPW_ERROR("Invalid args\n");
2323                 return -1;
2324         }
2325
2326         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2327                                 rates);
2328 }
2329
2330 static int ipw_set_random_seed(struct ipw_priv *priv)
2331 {
2332         u32 val;
2333
2334         if (!priv) {
2335                 IPW_ERROR("Invalid args\n");
2336                 return -1;
2337         }
2338
2339         get_random_bytes(&val, sizeof(val));
2340
2341         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2342 }
2343
2344 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2345 {
2346         if (!priv) {
2347                 IPW_ERROR("Invalid args\n");
2348                 return -1;
2349         }
2350
2351         phy_off = cpu_to_le32(phy_off);
2352         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(phy_off),
2353                                 &phy_off);
2354 }
2355
2356 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2357 {
2358         if (!priv || !power) {
2359                 IPW_ERROR("Invalid args\n");
2360                 return -1;
2361         }
2362
2363         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2364 }
2365
2366 static int ipw_set_tx_power(struct ipw_priv *priv)
2367 {
2368         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2369         struct ipw_tx_power tx_power;
2370         s8 max_power;
2371         int i;
2372
2373         memset(&tx_power, 0, sizeof(tx_power));
2374
2375         /* configure device for 'G' band */
2376         tx_power.ieee_mode = IPW_G_MODE;
2377         tx_power.num_channels = geo->bg_channels;
2378         for (i = 0; i < geo->bg_channels; i++) {
2379                 max_power = geo->bg[i].max_power;
2380                 tx_power.channels_tx_power[i].channel_number =
2381                     geo->bg[i].channel;
2382                 tx_power.channels_tx_power[i].tx_power = max_power ?
2383                     min(max_power, priv->tx_power) : priv->tx_power;
2384         }
2385         if (ipw_send_tx_power(priv, &tx_power))
2386                 return -EIO;
2387
2388         /* configure device to also handle 'B' band */
2389         tx_power.ieee_mode = IPW_B_MODE;
2390         if (ipw_send_tx_power(priv, &tx_power))
2391                 return -EIO;
2392
2393         /* configure device to also handle 'A' band */
2394         if (priv->ieee->abg_true) {
2395                 tx_power.ieee_mode = IPW_A_MODE;
2396                 tx_power.num_channels = geo->a_channels;
2397                 for (i = 0; i < tx_power.num_channels; i++) {
2398                         max_power = geo->a[i].max_power;
2399                         tx_power.channels_tx_power[i].channel_number =
2400                             geo->a[i].channel;
2401                         tx_power.channels_tx_power[i].tx_power = max_power ?
2402                             min(max_power, priv->tx_power) : priv->tx_power;
2403                 }
2404                 if (ipw_send_tx_power(priv, &tx_power))
2405                         return -EIO;
2406         }
2407         return 0;
2408 }
2409
2410 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2411 {
2412         struct ipw_rts_threshold rts_threshold = {
2413                 .rts_threshold = cpu_to_le16(rts),
2414         };
2415
2416         if (!priv) {
2417                 IPW_ERROR("Invalid args\n");
2418                 return -1;
2419         }
2420
2421         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2422                                 sizeof(rts_threshold), &rts_threshold);
2423 }
2424
2425 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2426 {
2427         struct ipw_frag_threshold frag_threshold = {
2428                 .frag_threshold = cpu_to_le16(frag),
2429         };
2430
2431         if (!priv) {
2432                 IPW_ERROR("Invalid args\n");
2433                 return -1;
2434         }
2435
2436         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2437                                 sizeof(frag_threshold), &frag_threshold);
2438 }
2439
2440 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2441 {
2442         u32 param;
2443
2444         if (!priv) {
2445                 IPW_ERROR("Invalid args\n");
2446                 return -1;
2447         }
2448
2449         /* If on battery, set to 3, if AC set to CAM, else user
2450          * level */
2451         switch (mode) {
2452         case IPW_POWER_BATTERY:
2453                 param = IPW_POWER_INDEX_3;
2454                 break;
2455         case IPW_POWER_AC:
2456                 param = IPW_POWER_MODE_CAM;
2457                 break;
2458         default:
2459                 param = mode;
2460                 break;
2461         }
2462
2463         param = cpu_to_le32(mode);
2464         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2465                                 &param);
2466 }
2467
2468 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2469 {
2470         struct ipw_retry_limit retry_limit = {
2471                 .short_retry_limit = slimit,
2472                 .long_retry_limit = llimit
2473         };
2474
2475         if (!priv) {
2476                 IPW_ERROR("Invalid args\n");
2477                 return -1;
2478         }
2479
2480         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2481                                 &retry_limit);
2482 }
2483
2484 /*
2485  * The IPW device contains a Microwire compatible EEPROM that stores
2486  * various data like the MAC address.  Usually the firmware has exclusive
2487  * access to the eeprom, but during device initialization (before the
2488  * device driver has sent the HostComplete command to the firmware) the
2489  * device driver has read access to the EEPROM by way of indirect addressing
2490  * through a couple of memory mapped registers.
2491  *
2492  * The following is a simplified implementation for pulling data out of the
2493  * the eeprom, along with some helper functions to find information in
2494  * the per device private data's copy of the eeprom.
2495  *
2496  * NOTE: To better understand how these functions work (i.e what is a chip
2497  *       select and why do have to keep driving the eeprom clock?), read
2498  *       just about any data sheet for a Microwire compatible EEPROM.
2499  */
2500
2501 /* write a 32 bit value into the indirect accessor register */
2502 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2503 {
2504         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2505
2506         /* the eeprom requires some time to complete the operation */
2507         udelay(p->eeprom_delay);
2508
2509         return;
2510 }
2511
2512 /* perform a chip select operation */
2513 static void eeprom_cs(struct ipw_priv *priv)
2514 {
2515         eeprom_write_reg(priv, 0);
2516         eeprom_write_reg(priv, EEPROM_BIT_CS);
2517         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2518         eeprom_write_reg(priv, EEPROM_BIT_CS);
2519 }
2520
2521 /* perform a chip select operation */
2522 static void eeprom_disable_cs(struct ipw_priv *priv)
2523 {
2524         eeprom_write_reg(priv, EEPROM_BIT_CS);
2525         eeprom_write_reg(priv, 0);
2526         eeprom_write_reg(priv, EEPROM_BIT_SK);
2527 }
2528
2529 /* push a single bit down to the eeprom */
2530 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2531 {
2532         int d = (bit ? EEPROM_BIT_DI : 0);
2533         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2534         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2535 }
2536
2537 /* push an opcode followed by an address down to the eeprom */
2538 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2539 {
2540         int i;
2541
2542         eeprom_cs(priv);
2543         eeprom_write_bit(priv, 1);
2544         eeprom_write_bit(priv, op & 2);
2545         eeprom_write_bit(priv, op & 1);
2546         for (i = 7; i >= 0; i--) {
2547                 eeprom_write_bit(priv, addr & (1 << i));
2548         }
2549 }
2550
2551 /* pull 16 bits off the eeprom, one bit at a time */
2552 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2553 {
2554         int i;
2555         u16 r = 0;
2556
2557         /* Send READ Opcode */
2558         eeprom_op(priv, EEPROM_CMD_READ, addr);
2559
2560         /* Send dummy bit */
2561         eeprom_write_reg(priv, EEPROM_BIT_CS);
2562
2563         /* Read the byte off the eeprom one bit at a time */
2564         for (i = 0; i < 16; i++) {
2565                 u32 data = 0;
2566                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2567                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2568                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2569                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2570         }
2571
2572         /* Send another dummy bit */
2573         eeprom_write_reg(priv, 0);
2574         eeprom_disable_cs(priv);
2575
2576         return r;
2577 }
2578
2579 /* helper function for pulling the mac address out of the private */
2580 /* data's copy of the eeprom data                                 */
2581 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2582 {
2583         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2584 }
2585
2586 /*
2587  * Either the device driver (i.e. the host) or the firmware can
2588  * load eeprom data into the designated region in SRAM.  If neither
2589  * happens then the FW will shutdown with a fatal error.
2590  *
2591  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2592  * bit needs region of shared SRAM needs to be non-zero.
2593  */
2594 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2595 {
2596         int i;
2597         u16 *eeprom = (u16 *) priv->eeprom;
2598
2599         IPW_DEBUG_TRACE(">>\n");
2600
2601         /* read entire contents of eeprom into private buffer */
2602         for (i = 0; i < 128; i++)
2603                 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2604
2605         /*
2606            If the data looks correct, then copy it to our private
2607            copy.  Otherwise let the firmware know to perform the operation
2608            on its own.
2609          */
2610         if (priv->eeprom[EEPROM_VERSION] != 0) {
2611                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2612
2613                 /* write the eeprom data to sram */
2614                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2615                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2616
2617                 /* Do not load eeprom data on fatal error or suspend */
2618                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2619         } else {
2620                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2621
2622                 /* Load eeprom data on fatal error or suspend */
2623                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2624         }
2625
2626         IPW_DEBUG_TRACE("<<\n");
2627 }
2628
2629 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2630 {
2631         count >>= 2;
2632         if (!count)
2633                 return;
2634         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2635         while (count--)
2636                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2637 }
2638
2639 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2640 {
2641         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2642                         CB_NUMBER_OF_ELEMENTS_SMALL *
2643                         sizeof(struct command_block));
2644 }
2645
2646 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2647 {                               /* start dma engine but no transfers yet */
2648
2649         IPW_DEBUG_FW(">> : \n");
2650
2651         /* Start the dma */
2652         ipw_fw_dma_reset_command_blocks(priv);
2653
2654         /* Write CB base address */
2655         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2656
2657         IPW_DEBUG_FW("<< : \n");
2658         return 0;
2659 }
2660
2661 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2662 {
2663         u32 control = 0;
2664
2665         IPW_DEBUG_FW(">> :\n");
2666
2667         /* set the Stop and Abort bit */
2668         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2669         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2670         priv->sram_desc.last_cb_index = 0;
2671
2672         IPW_DEBUG_FW("<< \n");
2673 }
2674
2675 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2676                                           struct command_block *cb)
2677 {
2678         u32 address =
2679             IPW_SHARED_SRAM_DMA_CONTROL +
2680             (sizeof(struct command_block) * index);
2681         IPW_DEBUG_FW(">> :\n");
2682
2683         ipw_write_indirect(priv, address, (u8 *) cb,
2684                            (int)sizeof(struct command_block));
2685
2686         IPW_DEBUG_FW("<< :\n");
2687         return 0;
2688
2689 }
2690
2691 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2692 {
2693         u32 control = 0;
2694         u32 index = 0;
2695
2696         IPW_DEBUG_FW(">> :\n");
2697
2698         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2699                 ipw_fw_dma_write_command_block(priv, index,
2700                                                &priv->sram_desc.cb_list[index]);
2701
2702         /* Enable the DMA in the CSR register */
2703         ipw_clear_bit(priv, IPW_RESET_REG,
2704                       IPW_RESET_REG_MASTER_DISABLED |
2705                       IPW_RESET_REG_STOP_MASTER);
2706
2707         /* Set the Start bit. */
2708         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2709         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2710
2711         IPW_DEBUG_FW("<< :\n");
2712         return 0;
2713 }
2714
2715 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2716 {
2717         u32 address;
2718         u32 register_value = 0;
2719         u32 cb_fields_address = 0;
2720
2721         IPW_DEBUG_FW(">> :\n");
2722         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2723         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2724
2725         /* Read the DMA Controlor register */
2726         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2727         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2728
2729         /* Print the CB values */
2730         cb_fields_address = address;
2731         register_value = ipw_read_reg32(priv, cb_fields_address);
2732         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2733
2734         cb_fields_address += sizeof(u32);
2735         register_value = ipw_read_reg32(priv, cb_fields_address);
2736         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2737
2738         cb_fields_address += sizeof(u32);
2739         register_value = ipw_read_reg32(priv, cb_fields_address);
2740         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2741                           register_value);
2742
2743         cb_fields_address += sizeof(u32);
2744         register_value = ipw_read_reg32(priv, cb_fields_address);
2745         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2746
2747         IPW_DEBUG_FW(">> :\n");
2748 }
2749
2750 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2751 {
2752         u32 current_cb_address = 0;
2753         u32 current_cb_index = 0;
2754
2755         IPW_DEBUG_FW("<< :\n");
2756         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2757
2758         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2759             sizeof(struct command_block);
2760
2761         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2762                           current_cb_index, current_cb_address);
2763
2764         IPW_DEBUG_FW(">> :\n");
2765         return current_cb_index;
2766
2767 }
2768
2769 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2770                                         u32 src_address,
2771                                         u32 dest_address,
2772                                         u32 length,
2773                                         int interrupt_enabled, int is_last)
2774 {
2775
2776         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2777             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2778             CB_DEST_SIZE_LONG;
2779         struct command_block *cb;
2780         u32 last_cb_element = 0;
2781
2782         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2783                           src_address, dest_address, length);
2784
2785         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2786                 return -1;
2787
2788         last_cb_element = priv->sram_desc.last_cb_index;
2789         cb = &priv->sram_desc.cb_list[last_cb_element];
2790         priv->sram_desc.last_cb_index++;
2791
2792         /* Calculate the new CB control word */
2793         if (interrupt_enabled)
2794                 control |= CB_INT_ENABLED;
2795
2796         if (is_last)
2797                 control |= CB_LAST_VALID;
2798
2799         control |= length;
2800
2801         /* Calculate the CB Element's checksum value */
2802         cb->status = control ^ src_address ^ dest_address;
2803
2804         /* Copy the Source and Destination addresses */
2805         cb->dest_addr = dest_address;
2806         cb->source_addr = src_address;
2807
2808         /* Copy the Control Word last */
2809         cb->control = control;
2810
2811         return 0;
2812 }
2813
2814 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2815                                  u32 src_phys, u32 dest_address, u32 length)
2816 {
2817         u32 bytes_left = length;
2818         u32 src_offset = 0;
2819         u32 dest_offset = 0;
2820         int status = 0;
2821         IPW_DEBUG_FW(">> \n");
2822         IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2823                           src_phys, dest_address, length);
2824         while (bytes_left > CB_MAX_LENGTH) {
2825                 status = ipw_fw_dma_add_command_block(priv,
2826                                                       src_phys + src_offset,
2827                                                       dest_address +
2828                                                       dest_offset,
2829                                                       CB_MAX_LENGTH, 0, 0);
2830                 if (status) {
2831                         IPW_DEBUG_FW_INFO(": Failed\n");
2832                         return -1;
2833                 } else
2834                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2835
2836                 src_offset += CB_MAX_LENGTH;
2837                 dest_offset += CB_MAX_LENGTH;
2838                 bytes_left -= CB_MAX_LENGTH;
2839         }
2840
2841         /* add the buffer tail */
2842         if (bytes_left > 0) {
2843                 status =
2844                     ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2845                                                  dest_address + dest_offset,
2846                                                  bytes_left, 0, 0);
2847                 if (status) {
2848                         IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2849                         return -1;
2850                 } else
2851                         IPW_DEBUG_FW_INFO
2852                             (": Adding new cb - the buffer tail\n");
2853         }
2854
2855         IPW_DEBUG_FW("<< \n");
2856         return 0;
2857 }
2858
2859 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2860 {
2861         u32 current_index = 0, previous_index;
2862         u32 watchdog = 0;
2863
2864         IPW_DEBUG_FW(">> : \n");
2865
2866         current_index = ipw_fw_dma_command_block_index(priv);
2867         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2868                           (int)priv->sram_desc.last_cb_index);
2869
2870         while (current_index < priv->sram_desc.last_cb_index) {
2871                 udelay(50);
2872                 previous_index = current_index;
2873                 current_index = ipw_fw_dma_command_block_index(priv);
2874
2875                 if (previous_index < current_index) {
2876                         watchdog = 0;
2877                         continue;
2878                 }
2879                 if (++watchdog > 400) {
2880                         IPW_DEBUG_FW_INFO("Timeout\n");
2881                         ipw_fw_dma_dump_command_block(priv);
2882                         ipw_fw_dma_abort(priv);
2883                         return -1;
2884                 }
2885         }
2886
2887         ipw_fw_dma_abort(priv);
2888
2889         /*Disable the DMA in the CSR register */
2890         ipw_set_bit(priv, IPW_RESET_REG,
2891                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2892
2893         IPW_DEBUG_FW("<< dmaWaitSync \n");
2894         return 0;
2895 }
2896
2897 static void ipw_remove_current_network(struct ipw_priv *priv)
2898 {
2899         struct list_head *element, *safe;
2900         struct ieee80211_network *network = NULL;
2901         unsigned long flags;
2902
2903         spin_lock_irqsave(&priv->ieee->lock, flags);
2904         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2905                 network = list_entry(element, struct ieee80211_network, list);
2906                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2907                         list_del(element);
2908                         list_add_tail(&network->list,
2909                                       &priv->ieee->network_free_list);
2910                 }
2911         }
2912         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2913 }
2914
2915 /**
2916  * Check that card is still alive.
2917  * Reads debug register from domain0.
2918  * If card is present, pre-defined value should
2919  * be found there.
2920  *
2921  * @param priv
2922  * @return 1 if card is present, 0 otherwise
2923  */
2924 static inline int ipw_alive(struct ipw_priv *priv)
2925 {
2926         return ipw_read32(priv, 0x90) == 0xd55555d5;
2927 }
2928
2929 /* timeout in msec, attempted in 10-msec quanta */
2930 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2931                                int timeout)
2932 {
2933         int i = 0;
2934
2935         do {
2936                 if ((ipw_read32(priv, addr) & mask) == mask)
2937                         return i;
2938                 mdelay(10);
2939                 i += 10;
2940         } while (i < timeout);
2941
2942         return -ETIME;
2943 }
2944
2945 /* These functions load the firmware and micro code for the operation of
2946  * the ipw hardware.  It assumes the buffer has all the bits for the
2947  * image and the caller is handling the memory allocation and clean up.
2948  */
2949
2950 static int ipw_stop_master(struct ipw_priv *priv)
2951 {
2952         int rc;
2953
2954         IPW_DEBUG_TRACE(">> \n");
2955         /* stop master. typical delay - 0 */
2956         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
2957
2958         /* timeout is in msec, polled in 10-msec quanta */
2959         rc = ipw_poll_bit(priv, IPW_RESET_REG,
2960                           IPW_RESET_REG_MASTER_DISABLED, 100);
2961         if (rc < 0) {
2962                 IPW_ERROR("wait for stop master failed after 100ms\n");
2963                 return -1;
2964         }
2965
2966         IPW_DEBUG_INFO("stop master %dms\n", rc);
2967
2968         return rc;
2969 }
2970
2971 static void ipw_arc_release(struct ipw_priv *priv)
2972 {
2973         IPW_DEBUG_TRACE(">> \n");
2974         mdelay(5);
2975
2976         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
2977
2978         /* no one knows timing, for safety add some delay */
2979         mdelay(5);
2980 }
2981
2982 struct fw_chunk {
2983         u32 address;
2984         u32 length;
2985 };
2986
2987 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
2988 {
2989         int rc = 0, i, addr;
2990         u8 cr = 0;
2991         u16 *image;
2992
2993         image = (u16 *) data;
2994
2995         IPW_DEBUG_TRACE(">> \n");
2996
2997         rc = ipw_stop_master(priv);
2998
2999         if (rc < 0)
3000                 return rc;
3001
3002         for (addr = IPW_SHARED_LOWER_BOUND;
3003              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3004                 ipw_write32(priv, addr, 0);
3005         }
3006
3007         /* no ucode (yet) */
3008         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3009         /* destroy DMA queues */
3010         /* reset sequence */
3011
3012         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3013         ipw_arc_release(priv);
3014         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3015         mdelay(1);
3016
3017         /* reset PHY */
3018         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3019         mdelay(1);
3020
3021         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3022         mdelay(1);
3023
3024         /* enable ucode store */
3025         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3026         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3027         mdelay(1);
3028
3029         /* write ucode */
3030         /**
3031          * @bug
3032          * Do NOT set indirect address register once and then
3033          * store data to indirect data register in the loop.
3034          * It seems very reasonable, but in this case DINO do not
3035          * accept ucode. It is essential to set address each time.
3036          */
3037         /* load new ipw uCode */
3038         for (i = 0; i < len / 2; i++)
3039                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3040                                 cpu_to_le16(image[i]));
3041
3042         /* enable DINO */
3043         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3044         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3045
3046         /* this is where the igx / win driver deveates from the VAP driver. */
3047
3048         /* wait for alive response */
3049         for (i = 0; i < 100; i++) {
3050                 /* poll for incoming data */
3051                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3052                 if (cr & DINO_RXFIFO_DATA)
3053                         break;
3054                 mdelay(1);
3055         }
3056
3057         if (cr & DINO_RXFIFO_DATA) {
3058                 /* alive_command_responce size is NOT multiple of 4 */
3059                 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3060
3061                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3062                         response_buffer[i] =
3063                             le32_to_cpu(ipw_read_reg32(priv,
3064                                                        IPW_BASEBAND_RX_FIFO_READ));
3065                 memcpy(&priv->dino_alive, response_buffer,
3066                        sizeof(priv->dino_alive));
3067                 if (priv->dino_alive.alive_command == 1
3068                     && priv->dino_alive.ucode_valid == 1) {
3069                         rc = 0;
3070                         IPW_DEBUG_INFO
3071                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3072                              "of %02d/%02d/%02d %02d:%02d\n",
3073                              priv->dino_alive.software_revision,
3074                              priv->dino_alive.software_revision,
3075                              priv->dino_alive.device_identifier,
3076                              priv->dino_alive.device_identifier,
3077                              priv->dino_alive.time_stamp[0],
3078                              priv->dino_alive.time_stamp[1],
3079                              priv->dino_alive.time_stamp[2],
3080                              priv->dino_alive.time_stamp[3],
3081                              priv->dino_alive.time_stamp[4]);
3082                 } else {
3083                         IPW_DEBUG_INFO("Microcode is not alive\n");
3084                         rc = -EINVAL;
3085                 }
3086         } else {
3087                 IPW_DEBUG_INFO("No alive response from DINO\n");
3088                 rc = -ETIME;
3089         }
3090
3091         /* disable DINO, otherwise for some reason
3092            firmware have problem getting alive resp. */
3093         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3094
3095         return rc;
3096 }
3097
3098 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3099 {
3100         int rc = -1;
3101         int offset = 0;
3102         struct fw_chunk *chunk;
3103         dma_addr_t shared_phys;
3104         u8 *shared_virt;
3105
3106         IPW_DEBUG_TRACE("<< : \n");
3107         shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3108
3109         if (!shared_virt)
3110                 return -ENOMEM;
3111
3112         memmove(shared_virt, data, len);
3113
3114         /* Start the Dma */
3115         rc = ipw_fw_dma_enable(priv);
3116
3117         if (priv->sram_desc.last_cb_index > 0) {
3118                 /* the DMA is already ready this would be a bug. */
3119                 BUG();
3120                 goto out;
3121         }
3122
3123         do {
3124                 chunk = (struct fw_chunk *)(data + offset);
3125                 offset += sizeof(struct fw_chunk);
3126                 /* build DMA packet and queue up for sending */
3127                 /* dma to chunk->address, the chunk->length bytes from data +
3128                  * offeset*/
3129                 /* Dma loading */
3130                 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3131                                            le32_to_cpu(chunk->address),
3132                                            le32_to_cpu(chunk->length));
3133                 if (rc) {
3134                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3135                         goto out;
3136                 }
3137
3138                 offset += le32_to_cpu(chunk->length);
3139         } while (offset < len);
3140
3141         /* Run the DMA and wait for the answer */
3142         rc = ipw_fw_dma_kick(priv);
3143         if (rc) {
3144                 IPW_ERROR("dmaKick Failed\n");
3145                 goto out;
3146         }
3147
3148         rc = ipw_fw_dma_wait(priv);
3149         if (rc) {
3150                 IPW_ERROR("dmaWaitSync Failed\n");
3151                 goto out;
3152         }
3153       out:
3154         pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3155         return rc;
3156 }
3157
3158 /* stop nic */
3159 static int ipw_stop_nic(struct ipw_priv *priv)
3160 {
3161         int rc = 0;
3162
3163         /* stop */
3164         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3165
3166         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3167                           IPW_RESET_REG_MASTER_DISABLED, 500);
3168         if (rc < 0) {
3169                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3170                 return rc;
3171         }
3172
3173         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3174
3175         return rc;
3176 }
3177
3178 static void ipw_start_nic(struct ipw_priv *priv)
3179 {
3180         IPW_DEBUG_TRACE(">>\n");
3181
3182         /* prvHwStartNic  release ARC */
3183         ipw_clear_bit(priv, IPW_RESET_REG,
3184                       IPW_RESET_REG_MASTER_DISABLED |
3185                       IPW_RESET_REG_STOP_MASTER |
3186                       CBD_RESET_REG_PRINCETON_RESET);
3187
3188         /* enable power management */
3189         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3190                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3191
3192         IPW_DEBUG_TRACE("<<\n");
3193 }
3194
3195 static int ipw_init_nic(struct ipw_priv *priv)
3196 {
3197         int rc;
3198
3199         IPW_DEBUG_TRACE(">>\n");
3200         /* reset */
3201         /*prvHwInitNic */
3202         /* set "initialization complete" bit to move adapter to D0 state */
3203         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3204
3205         /* low-level PLL activation */
3206         ipw_write32(priv, IPW_READ_INT_REGISTER,
3207                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3208
3209         /* wait for clock stabilization */
3210         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3211                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3212         if (rc < 0)
3213                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3214
3215         /* assert SW reset */
3216         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3217
3218         udelay(10);
3219
3220         /* set "initialization complete" bit to move adapter to D0 state */
3221         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3222
3223         IPW_DEBUG_TRACE(">>\n");
3224         return 0;
3225 }
3226
3227 /* Call this function from process context, it will sleep in request_firmware.
3228  * Probe is an ok place to call this from.
3229  */
3230 static int ipw_reset_nic(struct ipw_priv *priv)
3231 {
3232         int rc = 0;
3233         unsigned long flags;
3234
3235         IPW_DEBUG_TRACE(">>\n");
3236
3237         rc = ipw_init_nic(priv);
3238
3239         spin_lock_irqsave(&priv->lock, flags);
3240         /* Clear the 'host command active' bit... */
3241         priv->status &= ~STATUS_HCMD_ACTIVE;
3242         wake_up_interruptible(&priv->wait_command_queue);
3243         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3244         wake_up_interruptible(&priv->wait_state);
3245         spin_unlock_irqrestore(&priv->lock, flags);
3246
3247         IPW_DEBUG_TRACE("<<\n");
3248         return rc;
3249 }
3250
3251
3252 struct ipw_fw {
3253         __le32 ver;
3254         __le32 boot_size;
3255         __le32 ucode_size;
3256         __le32 fw_size;
3257         u8 data[0];
3258 };
3259
3260 static int ipw_get_fw(struct ipw_priv *priv,
3261                       const struct firmware **raw, const char *name)
3262 {
3263         struct ipw_fw *fw;
3264         int rc;
3265
3266         /* ask firmware_class module to get the boot firmware off disk */
3267         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3268         if (rc < 0) {
3269                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3270                 return rc;
3271         }
3272
3273         if ((*raw)->size < sizeof(*fw)) {
3274                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3275                 return -EINVAL;
3276         }
3277
3278         fw = (void *)(*raw)->data;
3279
3280         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3281             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3282                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3283                           name, (*raw)->size);
3284                 return -EINVAL;
3285         }
3286
3287         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3288                        name,
3289                        le32_to_cpu(fw->ver) >> 16,
3290                        le32_to_cpu(fw->ver) & 0xff,
3291                        (*raw)->size - sizeof(*fw));
3292         return 0;
3293 }
3294
3295 #define IPW_RX_BUF_SIZE (3000)
3296
3297 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3298                                       struct ipw_rx_queue *rxq)
3299 {
3300         unsigned long flags;
3301         int i;
3302
3303         spin_lock_irqsave(&rxq->lock, flags);
3304
3305         INIT_LIST_HEAD(&rxq->rx_free);
3306         INIT_LIST_HEAD(&rxq->rx_used);
3307
3308         /* Fill the rx_used queue with _all_ of the Rx buffers */
3309         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3310                 /* In the reset function, these buffers may have been allocated
3311                  * to an SKB, so we need to unmap and free potential storage */
3312                 if (rxq->pool[i].skb != NULL) {
3313                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3314                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3315                         dev_kfree_skb(rxq->pool[i].skb);
3316                         rxq->pool[i].skb = NULL;
3317                 }
3318                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3319         }
3320
3321         /* Set us so that we have processed and used all buffers, but have
3322          * not restocked the Rx queue with fresh buffers */
3323         rxq->read = rxq->write = 0;
3324         rxq->processed = RX_QUEUE_SIZE - 1;
3325         rxq->free_count = 0;
3326         spin_unlock_irqrestore(&rxq->lock, flags);
3327 }
3328
3329 #ifdef CONFIG_PM
3330 static int fw_loaded = 0;
3331 static const struct firmware *raw = NULL;
3332
3333 static void free_firmware(void)
3334 {
3335         if (fw_loaded) {
3336                 release_firmware(raw);
3337                 raw = NULL;
3338                 fw_loaded = 0;
3339         }
3340 }
3341 #else
3342 #define free_firmware() do {} while (0)
3343 #endif
3344
3345 static int ipw_load(struct ipw_priv *priv)
3346 {
3347 #ifndef CONFIG_PM
3348         const struct firmware *raw = NULL;
3349 #endif
3350         struct ipw_fw *fw;
3351         u8 *boot_img, *ucode_img, *fw_img;
3352         u8 *name = NULL;
3353         int rc = 0, retries = 3;
3354
3355         switch (priv->ieee->iw_mode) {
3356         case IW_MODE_ADHOC:
3357                 name = "ipw2200-ibss.fw";
3358                 break;
3359 #ifdef CONFIG_IPW2200_MONITOR
3360         case IW_MODE_MONITOR:
3361                 name = "ipw2200-sniffer.fw";
3362                 break;
3363 #endif
3364         case IW_MODE_INFRA:
3365                 name = "ipw2200-bss.fw";
3366                 break;
3367         }
3368
3369         if (!name) {
3370                 rc = -EINVAL;
3371                 goto error;
3372         }
3373
3374 #ifdef CONFIG_PM
3375         if (!fw_loaded) {
3376 #endif
3377                 rc = ipw_get_fw(priv, &raw, name);
3378                 if (rc < 0)
3379                         goto error;
3380 #ifdef CONFIG_PM
3381         }
3382 #endif
3383
3384         fw = (void *)raw->data;
3385         boot_img = &fw->data[0];
3386         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3387         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3388                            le32_to_cpu(fw->ucode_size)];
3389
3390         if (rc < 0)
3391                 goto error;
3392
3393         if (!priv->rxq)
3394                 priv->rxq = ipw_rx_queue_alloc(priv);
3395         else
3396                 ipw_rx_queue_reset(priv, priv->rxq);
3397         if (!priv->rxq) {
3398                 IPW_ERROR("Unable to initialize Rx queue\n");
3399                 goto error;
3400         }
3401
3402       retry:
3403         /* Ensure interrupts are disabled */
3404         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3405         priv->status &= ~STATUS_INT_ENABLED;
3406
3407         /* ack pending interrupts */
3408         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3409
3410         ipw_stop_nic(priv);
3411
3412         rc = ipw_reset_nic(priv);
3413         if (rc < 0) {
3414                 IPW_ERROR("Unable to reset NIC\n");
3415                 goto error;
3416         }
3417
3418         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3419                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3420
3421         /* DMA the initial boot firmware into the device */
3422         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3423         if (rc < 0) {
3424                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3425                 goto error;
3426         }
3427
3428         /* kick start the device */
3429         ipw_start_nic(priv);
3430
3431         /* wait for the device to finish its initial startup sequence */
3432         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3433                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3434         if (rc < 0) {
3435                 IPW_ERROR("device failed to boot initial fw image\n");
3436                 goto error;
3437         }
3438         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3439
3440         /* ack fw init done interrupt */
3441         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3442
3443         /* DMA the ucode into the device */
3444         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3445         if (rc < 0) {
3446                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3447                 goto error;
3448         }
3449
3450         /* stop nic */
3451         ipw_stop_nic(priv);
3452
3453         /* DMA bss firmware into the device */
3454         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3455         if (rc < 0) {
3456                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3457                 goto error;
3458         }
3459 #ifdef CONFIG_PM
3460         fw_loaded = 1;
3461 #endif
3462
3463         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3464
3465         rc = ipw_queue_reset(priv);
3466         if (rc < 0) {
3467                 IPW_ERROR("Unable to initialize queues\n");
3468                 goto error;
3469         }
3470
3471         /* Ensure interrupts are disabled */
3472         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3473         /* ack pending interrupts */
3474         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3475
3476         /* kick start the device */
3477         ipw_start_nic(priv);
3478
3479         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3480                 if (retries > 0) {
3481                         IPW_WARNING("Parity error.  Retrying init.\n");
3482                         retries--;
3483                         goto retry;
3484                 }
3485
3486                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3487                 rc = -EIO;
3488                 goto error;
3489         }
3490
3491         /* wait for the device */
3492         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3493                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3494         if (rc < 0) {
3495                 IPW_ERROR("device failed to start within 500ms\n");
3496                 goto error;
3497         }
3498         IPW_DEBUG_INFO("device response after %dms\n", rc);
3499
3500         /* ack fw init done interrupt */
3501         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3502
3503         /* read eeprom data and initialize the eeprom region of sram */
3504         priv->eeprom_delay = 1;
3505         ipw_eeprom_init_sram(priv);
3506
3507         /* enable interrupts */
3508         ipw_enable_interrupts(priv);
3509
3510         /* Ensure our queue has valid packets */
3511         ipw_rx_queue_replenish(priv);
3512
3513         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3514
3515         /* ack pending interrupts */
3516         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3517
3518 #ifndef CONFIG_PM
3519         release_firmware(raw);
3520 #endif
3521         return 0;
3522
3523       error:
3524         if (priv->rxq) {
3525                 ipw_rx_queue_free(priv, priv->rxq);
3526                 priv->rxq = NULL;
3527         }
3528         ipw_tx_queue_free(priv);
3529         if (raw)
3530                 release_firmware(raw);
3531 #ifdef CONFIG_PM
3532         fw_loaded = 0;
3533         raw = NULL;
3534 #endif
3535
3536         return rc;
3537 }
3538
3539 /**
3540  * DMA services
3541  *
3542  * Theory of operation
3543  *
3544  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3545  * 2 empty entries always kept in the buffer to protect from overflow.
3546  *
3547  * For Tx queue, there are low mark and high mark limits. If, after queuing
3548  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3549  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3550  * Tx queue resumed.
3551  *
3552  * The IPW operates with six queues, one receive queue in the device's
3553  * sram, one transmit queue for sending commands to the device firmware,
3554  * and four transmit queues for data.
3555  *
3556  * The four transmit queues allow for performing quality of service (qos)
3557  * transmissions as per the 802.11 protocol.  Currently Linux does not
3558  * provide a mechanism to the user for utilizing prioritized queues, so
3559  * we only utilize the first data transmit queue (queue1).
3560  */
3561
3562 /**
3563  * Driver allocates buffers of this size for Rx
3564  */
3565
3566 static inline int ipw_queue_space(const struct clx2_queue *q)
3567 {
3568         int s = q->last_used - q->first_empty;
3569         if (s <= 0)
3570                 s += q->n_bd;
3571         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3572         if (s < 0)
3573                 s = 0;
3574         return s;
3575 }
3576
3577 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3578 {
3579         return (++index == n_bd) ? 0 : index;
3580 }
3581
3582 /**
3583  * Initialize common DMA queue structure
3584  *
3585  * @param q                queue to init
3586  * @param count            Number of BD's to allocate. Should be power of 2
3587  * @param read_register    Address for 'read' register
3588  *                         (not offset within BAR, full address)
3589  * @param write_register   Address for 'write' register
3590  *                         (not offset within BAR, full address)
3591  * @param base_register    Address for 'base' register
3592  *                         (not offset within BAR, full address)
3593  * @param size             Address for 'size' register
3594  *                         (not offset within BAR, full address)
3595  */
3596 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3597                            int count, u32 read, u32 write, u32 base, u32 size)
3598 {
3599         q->n_bd = count;
3600
3601         q->low_mark = q->n_bd / 4;
3602         if (q->low_mark < 4)
3603                 q->low_mark = 4;
3604
3605         q->high_mark = q->n_bd / 8;
3606         if (q->high_mark < 2)
3607                 q->high_mark = 2;
3608
3609         q->first_empty = q->last_used = 0;
3610         q->reg_r = read;
3611         q->reg_w = write;
3612
3613         ipw_write32(priv, base, q->dma_addr);
3614         ipw_write32(priv, size, count);
3615         ipw_write32(priv, read, 0);
3616         ipw_write32(priv, write, 0);
3617
3618         _ipw_read32(priv, 0x90);
3619 }
3620
3621 static int ipw_queue_tx_init(struct ipw_priv *priv,
3622                              struct clx2_tx_queue *q,
3623                              int count, u32 read, u32 write, u32 base, u32 size)
3624 {
3625         struct pci_dev *dev = priv->pci_dev;
3626
3627         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3628         if (!q->txb) {
3629                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3630                 return -ENOMEM;
3631         }
3632
3633         q->bd =
3634             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3635         if (!q->bd) {
3636                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3637                           sizeof(q->bd[0]) * count);
3638                 kfree(q->txb);
3639                 q->txb = NULL;
3640                 return -ENOMEM;
3641         }
3642
3643         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3644         return 0;
3645 }
3646
3647 /**
3648  * Free one TFD, those at index [txq->q.last_used].
3649  * Do NOT advance any indexes
3650  *
3651  * @param dev
3652  * @param txq
3653  */
3654 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3655                                   struct clx2_tx_queue *txq)
3656 {
3657         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3658         struct pci_dev *dev = priv->pci_dev;
3659         int i;
3660
3661         /* classify bd */
3662         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3663                 /* nothing to cleanup after for host commands */
3664                 return;
3665
3666         /* sanity check */
3667         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3668                 IPW_ERROR("Too many chunks: %i\n",
3669                           le32_to_cpu(bd->u.data.num_chunks));
3670                 /** @todo issue fatal error, it is quite serious situation */
3671                 return;
3672         }
3673
3674         /* unmap chunks if any */
3675         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3676                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3677                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3678                                  PCI_DMA_TODEVICE);
3679                 if (txq->txb[txq->q.last_used]) {
3680                         ieee80211_txb_free(txq->txb[txq->q.last_used]);
3681                         txq->txb[txq->q.last_used] = NULL;
3682                 }
3683         }
3684 }
3685
3686 /**
3687  * Deallocate DMA queue.
3688  *
3689  * Empty queue by removing and destroying all BD's.
3690  * Free all buffers.
3691  *
3692  * @param dev
3693  * @param q
3694  */
3695 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3696 {
3697         struct clx2_queue *q = &txq->q;
3698         struct pci_dev *dev = priv->pci_dev;
3699
3700         if (q->n_bd == 0)
3701                 return;
3702
3703         /* first, empty all BD's */
3704         for (; q->first_empty != q->last_used;
3705              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3706                 ipw_queue_tx_free_tfd(priv, txq);
3707         }
3708
3709         /* free buffers belonging to queue itself */
3710         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3711                             q->dma_addr);
3712         kfree(txq->txb);
3713
3714         /* 0 fill whole structure */
3715         memset(txq, 0, sizeof(*txq));
3716 }
3717
3718 /**
3719  * Destroy all DMA queues and structures
3720  *
3721  * @param priv
3722  */
3723 static void ipw_tx_queue_free(struct ipw_priv *priv)
3724 {
3725         /* Tx CMD queue */
3726         ipw_queue_tx_free(priv, &priv->txq_cmd);
3727
3728         /* Tx queues */
3729         ipw_queue_tx_free(priv, &priv->txq[0]);
3730         ipw_queue_tx_free(priv, &priv->txq[1]);
3731         ipw_queue_tx_free(priv, &priv->txq[2]);
3732         ipw_queue_tx_free(priv, &priv->txq[3]);
3733 }
3734
3735 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3736 {
3737         /* First 3 bytes are manufacturer */
3738         bssid[0] = priv->mac_addr[0];
3739         bssid[1] = priv->mac_addr[1];
3740         bssid[2] = priv->mac_addr[2];
3741
3742         /* Last bytes are random */
3743         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3744
3745         bssid[0] &= 0xfe;       /* clear multicast bit */
3746         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3747 }
3748
3749 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3750 {
3751         struct ipw_station_entry entry;
3752         int i;
3753
3754         for (i = 0; i < priv->num_stations; i++) {
3755                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3756                         /* Another node is active in network */
3757                         priv->missed_adhoc_beacons = 0;
3758                         if (!(priv->config & CFG_STATIC_CHANNEL))
3759                                 /* when other nodes drop out, we drop out */
3760                                 priv->config &= ~CFG_ADHOC_PERSIST;
3761
3762                         return i;
3763                 }
3764         }
3765
3766         if (i == MAX_STATIONS)
3767                 return IPW_INVALID_STATION;
3768
3769         IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
3770
3771         entry.reserved = 0;
3772         entry.support_mode = 0;
3773         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3774         memcpy(priv->stations[i], bssid, ETH_ALEN);
3775         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3776                          &entry, sizeof(entry));
3777         priv->num_stations++;
3778
3779         return i;
3780 }
3781
3782 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3783 {
3784         int i;
3785
3786         for (i = 0; i < priv->num_stations; i++)
3787                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3788                         return i;
3789
3790         return IPW_INVALID_STATION;
3791 }
3792
3793 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3794 {
3795         int err;
3796
3797         if (priv->status & STATUS_ASSOCIATING) {
3798                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3799                 queue_work(priv->workqueue, &priv->disassociate);
3800                 return;
3801         }
3802
3803         if (!(priv->status & STATUS_ASSOCIATED)) {
3804                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3805                 return;
3806         }
3807
3808         IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
3809                         "on channel %d.\n",
3810                         MAC_ARG(priv->assoc_request.bssid),
3811                         priv->assoc_request.channel);
3812
3813         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3814         priv->status |= STATUS_DISASSOCIATING;
3815
3816         if (quiet)
3817                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3818         else
3819                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3820
3821         err = ipw_send_associate(priv, &priv->assoc_request);
3822         if (err) {
3823                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3824                              "failed.\n");
3825                 return;
3826         }
3827
3828 }
3829
3830 static int ipw_disassociate(void *data)
3831 {
3832         struct ipw_priv *priv = data;
3833         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3834                 return 0;
3835         ipw_send_disassociate(data, 0);
3836         return 1;
3837 }
3838
3839 static void ipw_bg_disassociate(struct work_struct *work)
3840 {
3841         struct ipw_priv *priv =
3842                 container_of(work, struct ipw_priv, disassociate);
3843         mutex_lock(&priv->mutex);
3844         ipw_disassociate(priv);
3845         mutex_unlock(&priv->mutex);
3846 }
3847
3848 static void ipw_system_config(struct work_struct *work)
3849 {
3850         struct ipw_priv *priv =
3851                 container_of(work, struct ipw_priv, system_config);
3852
3853 #ifdef CONFIG_IPW2200_PROMISCUOUS
3854         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3855                 priv->sys_config.accept_all_data_frames = 1;
3856                 priv->sys_config.accept_non_directed_frames = 1;
3857                 priv->sys_config.accept_all_mgmt_bcpr = 1;
3858                 priv->sys_config.accept_all_mgmt_frames = 1;
3859         }
3860 #endif
3861
3862         ipw_send_system_config(priv);
3863 }
3864
3865 struct ipw_status_code {
3866         u16 status;
3867         const char *reason;
3868 };
3869
3870 static const struct ipw_status_code ipw_status_codes[] = {
3871         {0x00, "Successful"},
3872         {0x01, "Unspecified failure"},
3873         {0x0A, "Cannot support all requested capabilities in the "
3874          "Capability information field"},
3875         {0x0B, "Reassociation denied due to inability to confirm that "
3876          "association exists"},
3877         {0x0C, "Association denied due to reason outside the scope of this "
3878          "standard"},
3879         {0x0D,
3880          "Responding station does not support the specified authentication "
3881          "algorithm"},
3882         {0x0E,
3883          "Received an Authentication frame with authentication sequence "
3884          "transaction sequence number out of expected sequence"},
3885         {0x0F, "Authentication rejected because of challenge failure"},
3886         {0x10, "Authentication rejected due to timeout waiting for next "
3887          "frame in sequence"},
3888         {0x11, "Association denied because AP is unable to handle additional "
3889          "associated stations"},
3890         {0x12,
3891          "Association denied due to requesting station not supporting all "
3892          "of the datarates in the BSSBasicServiceSet Parameter"},
3893         {0x13,
3894          "Association denied due to requesting station not supporting "
3895          "short preamble operation"},
3896         {0x14,
3897          "Association denied due to requesting station not supporting "
3898          "PBCC encoding"},
3899         {0x15,
3900          "Association denied due to requesting station not supporting "
3901          "channel agility"},
3902         {0x19,
3903          "Association denied due to requesting station not supporting "
3904          "short slot operation"},
3905         {0x1A,
3906          "Association denied due to requesting station not supporting "
3907          "DSSS-OFDM operation"},
3908         {0x28, "Invalid Information Element"},
3909         {0x29, "Group Cipher is not valid"},
3910         {0x2A, "Pairwise Cipher is not valid"},
3911         {0x2B, "AKMP is not valid"},
3912         {0x2C, "Unsupported RSN IE version"},
3913         {0x2D, "Invalid RSN IE Capabilities"},
3914         {0x2E, "Cipher suite is rejected per security policy"},
3915 };
3916
3917 static const char *ipw_get_status_code(u16 status)
3918 {
3919         int i;
3920         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3921                 if (ipw_status_codes[i].status == (status & 0xff))
3922                         return ipw_status_codes[i].reason;
3923         return "Unknown status value.";
3924 }
3925
3926 static void inline average_init(struct average *avg)
3927 {
3928         memset(avg, 0, sizeof(*avg));
3929 }
3930
3931 #define DEPTH_RSSI 8
3932 #define DEPTH_NOISE 16
3933 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3934 {
3935         return ((depth-1)*prev_avg +  val)/depth;
3936 }
3937
3938 static void average_add(struct average *avg, s16 val)
3939 {
3940         avg->sum -= avg->entries[avg->pos];
3941         avg->sum += val;
3942         avg->entries[avg->pos++] = val;
3943         if (unlikely(avg->pos == AVG_ENTRIES)) {
3944                 avg->init = 1;
3945                 avg->pos = 0;
3946         }
3947 }
3948
3949 static s16 average_value(struct average *avg)
3950 {
3951         if (!unlikely(avg->init)) {
3952                 if (avg->pos)
3953                         return avg->sum / avg->pos;
3954                 return 0;
3955         }
3956
3957         return avg->sum / AVG_ENTRIES;
3958 }
3959
3960 static void ipw_reset_stats(struct ipw_priv *priv)
3961 {
3962         u32 len = sizeof(u32);
3963
3964         priv->quality = 0;
3965
3966         average_init(&priv->average_missed_beacons);
3967         priv->exp_avg_rssi = -60;
3968         priv->exp_avg_noise = -85 + 0x100;
3969
3970         priv->last_rate = 0;
3971         priv->last_missed_beacons = 0;
3972         priv->last_rx_packets = 0;
3973         priv->last_tx_packets = 0;
3974         priv->last_tx_failures = 0;
3975
3976         /* Firmware managed, reset only when NIC is restarted, so we have to
3977          * normalize on the current value */
3978         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
3979                         &priv->last_rx_err, &len);
3980         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
3981                         &priv->last_tx_failures, &len);
3982
3983         /* Driver managed, reset with each association */
3984         priv->missed_adhoc_beacons = 0;
3985         priv->missed_beacons = 0;
3986         priv->tx_packets = 0;
3987         priv->rx_packets = 0;
3988
3989 }
3990
3991 static u32 ipw_get_max_rate(struct ipw_priv *priv)
3992 {
3993         u32 i = 0x80000000;
3994         u32 mask = priv->rates_mask;
3995         /* If currently associated in B mode, restrict the maximum
3996          * rate match to B rates */
3997         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
3998                 mask &= IEEE80211_CCK_RATES_MASK;
3999
4000         /* TODO: Verify that the rate is supported by the current rates
4001          * list. */
4002
4003         while (i && !(mask & i))
4004                 i >>= 1;
4005         switch (i) {
4006         case IEEE80211_CCK_RATE_1MB_MASK:
4007                 return 1000000;
4008         case IEEE80211_CCK_RATE_2MB_MASK:
4009                 return 2000000;
4010         case IEEE80211_CCK_RATE_5MB_MASK:
4011                 return 5500000;
4012         case IEEE80211_OFDM_RATE_6MB_MASK:
4013                 return 6000000;
4014         case IEEE80211_OFDM_RATE_9MB_MASK:
4015                 return 9000000;
4016         case IEEE80211_CCK_RATE_11MB_MASK:
4017                 return 11000000;
4018         case IEEE80211_OFDM_RATE_12MB_MASK:
4019                 return 12000000;
4020         case IEEE80211_OFDM_RATE_18MB_MASK:
4021                 return 18000000;
4022         case IEEE80211_OFDM_RATE_24MB_MASK:
4023                 return 24000000;
4024         case IEEE80211_OFDM_RATE_36MB_MASK:
4025                 return 36000000;
4026         case IEEE80211_OFDM_RATE_48MB_MASK:
4027                 return 48000000;
4028         case IEEE80211_OFDM_RATE_54MB_MASK:
4029                 return 54000000;
4030         }
4031
4032         if (priv->ieee->mode == IEEE_B)
4033                 return 11000000;
4034         else
4035                 return 54000000;
4036 }
4037
4038 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4039 {
4040         u32 rate, len = sizeof(rate);
4041         int err;
4042
4043         if (!(priv->status & STATUS_ASSOCIATED))
4044                 return 0;
4045
4046         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4047                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4048                                       &len);
4049                 if (err) {
4050                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4051                         return 0;
4052                 }
4053         } else
4054                 return ipw_get_max_rate(priv);
4055
4056         switch (rate) {
4057         case IPW_TX_RATE_1MB:
4058                 return 1000000;
4059         case IPW_TX_RATE_2MB:
4060                 return 2000000;
4061         case IPW_TX_RATE_5MB:
4062                 return 5500000;
4063         case IPW_TX_RATE_6MB:
4064                 return 6000000;
4065         case IPW_TX_RATE_9MB:
4066                 return 9000000;
4067         case IPW_TX_RATE_11MB:
4068                 return 11000000;
4069         case IPW_TX_RATE_12MB:
4070                 return 12000000;
4071         case IPW_TX_RATE_18MB:
4072                 return 18000000;
4073         case IPW_TX_RATE_24MB:
4074                 return 24000000;
4075         case IPW_TX_RATE_36MB:
4076                 return 36000000;
4077         case IPW_TX_RATE_48MB:
4078                 return 48000000;
4079         case IPW_TX_RATE_54MB:
4080                 return 54000000;
4081         }
4082
4083         return 0;
4084 }
4085
4086 #define IPW_STATS_INTERVAL (2 * HZ)
4087 static void ipw_gather_stats(struct ipw_priv *priv)
4088 {
4089         u32 rx_err, rx_err_delta, rx_packets_delta;
4090         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4091         u32 missed_beacons_percent, missed_beacons_delta;
4092         u32 quality = 0;
4093         u32 len = sizeof(u32);
4094         s16 rssi;
4095         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4096             rate_quality;
4097         u32 max_rate;
4098
4099         if (!(priv->status & STATUS_ASSOCIATED)) {
4100                 priv->quality = 0;
4101                 return;
4102         }
4103
4104         /* Update the statistics */
4105         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4106                         &priv->missed_beacons, &len);
4107         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4108         priv->last_missed_beacons = priv->missed_beacons;
4109         if (priv->assoc_request.beacon_interval) {
4110                 missed_beacons_percent = missed_beacons_delta *
4111                     (HZ * priv->assoc_request.beacon_interval) /
4112                     (IPW_STATS_INTERVAL * 10);
4113         } else {
4114                 missed_beacons_percent = 0;
4115         }
4116         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4117
4118         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4119         rx_err_delta = rx_err - priv->last_rx_err;
4120         priv->last_rx_err = rx_err;
4121
4122         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4123         tx_failures_delta = tx_failures - priv->last_tx_failures;
4124         priv->last_tx_failures = tx_failures;
4125
4126         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4127         priv->last_rx_packets = priv->rx_packets;
4128
4129         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4130         priv->last_tx_packets = priv->tx_packets;
4131
4132         /* Calculate quality based on the following:
4133          *
4134          * Missed beacon: 100% = 0, 0% = 70% missed
4135          * Rate: 60% = 1Mbs, 100% = Max
4136          * Rx and Tx errors represent a straight % of total Rx/Tx
4137          * RSSI: 100% = > -50,  0% = < -80
4138          * Rx errors: 100% = 0, 0% = 50% missed
4139          *
4140          * The lowest computed quality is used.
4141          *
4142          */
4143 #define BEACON_THRESHOLD 5
4144         beacon_quality = 100 - missed_beacons_percent;
4145         if (beacon_quality < BEACON_THRESHOLD)
4146                 beacon_quality = 0;
4147         else
4148                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4149                     (100 - BEACON_THRESHOLD);
4150         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4151                         beacon_quality, missed_beacons_percent);
4152
4153         priv->last_rate = ipw_get_current_rate(priv);
4154         max_rate = ipw_get_max_rate(priv);
4155         rate_quality = priv->last_rate * 40 / max_rate + 60;
4156         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4157                         rate_quality, priv->last_rate / 1000000);
4158
4159         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4160                 rx_quality = 100 - (rx_err_delta * 100) /
4161                     (rx_packets_delta + rx_err_delta);
4162         else
4163                 rx_quality = 100;
4164         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4165                         rx_quality, rx_err_delta, rx_packets_delta);
4166
4167         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4168                 tx_quality = 100 - (tx_failures_delta * 100) /
4169                     (tx_packets_delta + tx_failures_delta);
4170         else
4171                 tx_quality = 100;
4172         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4173                         tx_quality, tx_failures_delta, tx_packets_delta);
4174
4175         rssi = priv->exp_avg_rssi;
4176         signal_quality =
4177             (100 *
4178              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4179              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4180              (priv->ieee->perfect_rssi - rssi) *
4181              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4182               62 * (priv->ieee->perfect_rssi - rssi))) /
4183             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4184              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4185         if (signal_quality > 100)
4186                 signal_quality = 100;
4187         else if (signal_quality < 1)
4188                 signal_quality = 0;
4189
4190         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4191                         signal_quality, rssi);
4192
4193         quality = min(beacon_quality,
4194                       min(rate_quality,
4195                           min(tx_quality, min(rx_quality, signal_quality))));
4196         if (quality == beacon_quality)
4197                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4198                                 quality);
4199         if (quality == rate_quality)
4200                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4201                                 quality);
4202         if (quality == tx_quality)
4203                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4204                                 quality);
4205         if (quality == rx_quality)
4206                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4207                                 quality);
4208         if (quality == signal_quality)
4209                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4210                                 quality);
4211
4212         priv->quality = quality;
4213
4214         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4215                            IPW_STATS_INTERVAL);
4216 }
4217
4218 static void ipw_bg_gather_stats(struct work_struct *work)
4219 {
4220         struct ipw_priv *priv =
4221                 container_of(work, struct ipw_priv, gather_stats.work);
4222         mutex_lock(&priv->mutex);
4223         ipw_gather_stats(priv);
4224         mutex_unlock(&priv->mutex);
4225 }
4226
4227 /* Missed beacon behavior:
4228  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4229  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4230  * Above disassociate threshold, give up and stop scanning.
4231  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4232 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4233                                             int missed_count)
4234 {
4235         priv->notif_missed_beacons = missed_count;
4236
4237         if (missed_count > priv->disassociate_threshold &&
4238             priv->status & STATUS_ASSOCIATED) {
4239                 /* If associated and we've hit the missed
4240                  * beacon threshold, disassociate, turn
4241                  * off roaming, and abort any active scans */
4242                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4243                           IPW_DL_STATE | IPW_DL_ASSOC,
4244                           "Missed beacon: %d - disassociate\n", missed_count);
4245                 priv->status &= ~STATUS_ROAMING;
4246                 if (priv->status & STATUS_SCANNING) {
4247                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4248                                   IPW_DL_STATE,
4249                                   "Aborting scan with missed beacon.\n");
4250                         queue_work(priv->workqueue, &priv->abort_scan);
4251                 }
4252
4253                 queue_work(priv->workqueue, &priv->disassociate);
4254                 return;
4255         }
4256
4257         if (priv->status & STATUS_ROAMING) {
4258                 /* If we are currently roaming, then just
4259                  * print a debug statement... */
4260                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4261                           "Missed beacon: %d - roam in progress\n",
4262                           missed_count);
4263                 return;
4264         }
4265
4266         if (roaming &&
4267             (missed_count > priv->roaming_threshold &&
4268              missed_count <= priv->disassociate_threshold)) {
4269                 /* If we are not already roaming, set the ROAM
4270                  * bit in the status and kick off a scan.
4271                  * This can happen several times before we reach
4272                  * disassociate_threshold. */
4273                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4274                           "Missed beacon: %d - initiate "
4275                           "roaming\n", missed_count);
4276                 if (!(priv->status & STATUS_ROAMING)) {
4277                         priv->status |= STATUS_ROAMING;
4278                         if (!(priv->status & STATUS_SCANNING))
4279                                 queue_delayed_work(priv->workqueue,
4280                                                    &priv->request_scan, 0);
4281                 }
4282                 return;
4283         }
4284
4285         if (priv->status & STATUS_SCANNING) {
4286                 /* Stop scan to keep fw from getting
4287                  * stuck (only if we aren't roaming --
4288                  * otherwise we'll never scan more than 2 or 3
4289                  * channels..) */
4290                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4291                           "Aborting scan with missed beacon.\n");
4292                 queue_work(priv->workqueue, &priv->abort_scan);
4293         }
4294
4295         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4296 }
4297
4298 /**
4299  * Handle host notification packet.
4300  * Called from interrupt routine
4301  */
4302 static void ipw_rx_notification(struct ipw_priv *priv,
4303                                        struct ipw_rx_notification *notif)
4304 {
4305         notif->size = le16_to_cpu(notif->size);
4306
4307         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4308
4309         switch (notif->subtype) {
4310         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4311                         struct notif_association *assoc = &notif->u.assoc;
4312
4313                         switch (assoc->state) {
4314                         case CMAS_ASSOCIATED:{
4315                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4316                                                   IPW_DL_ASSOC,
4317                                                   "associated: '%s' " MAC_FMT
4318                                                   " \n",
4319                                                   escape_essid(priv->essid,
4320                                                                priv->essid_len),
4321                                                   MAC_ARG(priv->bssid));
4322
4323                                         switch (priv->ieee->iw_mode) {
4324                                         case IW_MODE_INFRA:
4325                                                 memcpy(priv->ieee->bssid,
4326                                                        priv->bssid, ETH_ALEN);
4327                                                 break;
4328
4329                                         case IW_MODE_ADHOC:
4330                                                 memcpy(priv->ieee->bssid,
4331                                                        priv->bssid, ETH_ALEN);
4332
4333                                                 /* clear out the station table */
4334                                                 priv->num_stations = 0;
4335
4336                                                 IPW_DEBUG_ASSOC
4337                                                     ("queueing adhoc check\n");
4338                                                 queue_delayed_work(priv->
4339                                                                    workqueue,
4340                                                                    &priv->
4341                                                                    adhoc_check,
4342                                                                    priv->
4343                                                                    assoc_request.
4344                                                                    beacon_interval);
4345                                                 break;
4346                                         }
4347
4348                                         priv->status &= ~STATUS_ASSOCIATING;
4349                                         priv->status |= STATUS_ASSOCIATED;
4350                                         queue_work(priv->workqueue,
4351                                                    &priv->system_config);
4352
4353 #ifdef CONFIG_IPW2200_QOS
4354 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4355                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4356                                         if ((priv->status & STATUS_AUTH) &&
4357                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4358                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4359                                                 if ((sizeof
4360                                                      (struct
4361                                                       ieee80211_assoc_response)
4362                                                      <= notif->size)
4363                                                     && (notif->size <= 2314)) {
4364                                                         struct
4365                                                         ieee80211_rx_stats
4366                                                             stats = {
4367                                                                 .len =
4368                                                                     notif->
4369                                                                     size - 1,
4370                                                         };
4371
4372                                                         IPW_DEBUG_QOS
4373                                                             ("QoS Associate "
4374                                                              "size %d\n",
4375                                                              notif->size);
4376                                                         ieee80211_rx_mgt(priv->
4377                                                                          ieee,
4378                                                                          (struct
4379                                                                           ieee80211_hdr_4addr
4380                                                                           *)
4381                                                                          &notif->u.raw, &stats);
4382                                                 }
4383                                         }
4384 #endif
4385
4386                                         schedule_work(&priv->link_up);
4387
4388                                         break;
4389                                 }
4390
4391                         case CMAS_AUTHENTICATED:{
4392                                         if (priv->
4393                                             status & (STATUS_ASSOCIATED |
4394                                                       STATUS_AUTH)) {
4395                                                 struct notif_authenticate *auth
4396                                                     = &notif->u.auth;
4397                                                 IPW_DEBUG(IPW_DL_NOTIF |
4398                                                           IPW_DL_STATE |
4399                                                           IPW_DL_ASSOC,
4400                                                           "deauthenticated: '%s' "
4401                                                           MAC_FMT
4402                                                           ": (0x%04X) - %s \n",
4403                                                           escape_essid(priv->
4404                                                                        essid,
4405                                                                        priv->
4406                                                                        essid_len),
4407                                                           MAC_ARG(priv->bssid),
4408                                                           ntohs(auth->status),
4409                                                           ipw_get_status_code
4410                                                           (ntohs
4411                                                            (auth->status)));
4412
4413                                                 priv->status &=
4414                                                     ~(STATUS_ASSOCIATING |
4415                                                       STATUS_AUTH |
4416                                                       STATUS_ASSOCIATED);
4417
4418                                                 schedule_work(&priv->link_down);
4419                                                 break;
4420                                         }
4421
4422                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4423                                                   IPW_DL_ASSOC,
4424                                                   "authenticated: '%s' " MAC_FMT
4425                                                   "\n",
4426                                                   escape_essid(priv->essid,
4427                                                                priv->essid_len),
4428                                                   MAC_ARG(priv->bssid));
4429                                         break;
4430                                 }
4431
4432                         case CMAS_INIT:{
4433                                         if (priv->status & STATUS_AUTH) {
4434                                                 struct
4435                                                     ieee80211_assoc_response
4436                                                 *resp;
4437                                                 resp =
4438                                                     (struct
4439                                                      ieee80211_assoc_response
4440                                                      *)&notif->u.raw;
4441                                                 IPW_DEBUG(IPW_DL_NOTIF |
4442                                                           IPW_DL_STATE |
4443                                                           IPW_DL_ASSOC,
4444                                                           "association failed (0x%04X): %s\n",
4445                                                           ntohs(resp->status),
4446                                                           ipw_get_status_code
4447                                                           (ntohs
4448                                                            (resp->status)));
4449                                         }
4450
4451                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4452                                                   IPW_DL_ASSOC,
4453                                                   "disassociated: '%s' " MAC_FMT
4454                                                   " \n",
4455                                                   escape_essid(priv->essid,
4456                                                                priv->essid_len),
4457                                                   MAC_ARG(priv->bssid));
4458
4459                                         priv->status &=
4460                                             ~(STATUS_DISASSOCIATING |
4461                                               STATUS_ASSOCIATING |
4462                                               STATUS_ASSOCIATED | STATUS_AUTH);
4463                                         if (priv->assoc_network
4464                                             && (priv->assoc_network->
4465                                                 capability &
4466                                                 WLAN_CAPABILITY_IBSS))
4467                                                 ipw_remove_current_network
4468                                                     (priv);
4469
4470                                         schedule_work(&priv->link_down);
4471
4472                                         break;
4473                                 }
4474
4475                         case CMAS_RX_ASSOC_RESP:
4476                                 break;
4477
4478                         default:
4479                                 IPW_ERROR("assoc: unknown (%d)\n",
4480                                           assoc->state);
4481                                 break;
4482                         }
4483
4484                         break;
4485                 }
4486
4487         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4488                         struct notif_authenticate *auth = &notif->u.auth;
4489                         switch (auth->state) {
4490                         case CMAS_AUTHENTICATED:
4491                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4492                                           "authenticated: '%s' " MAC_FMT " \n",
4493                                           escape_essid(priv->essid,
4494                                                        priv->essid_len),
4495                                           MAC_ARG(priv->bssid));
4496                                 priv->status |= STATUS_AUTH;
4497                                 break;
4498
4499                         case CMAS_INIT:
4500                                 if (priv->status & STATUS_AUTH) {
4501                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4502                                                   IPW_DL_ASSOC,
4503                                                   "authentication failed (0x%04X): %s\n",
4504                                                   ntohs(auth->status),
4505                                                   ipw_get_status_code(ntohs
4506                                                                       (auth->
4507                                                                        status)));
4508                                 }
4509                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4510                                           IPW_DL_ASSOC,
4511                                           "deauthenticated: '%s' " MAC_FMT "\n",
4512                                           escape_essid(priv->essid,
4513                                                        priv->essid_len),
4514                                           MAC_ARG(priv->bssid));
4515
4516                                 priv->status &= ~(STATUS_ASSOCIATING |
4517                                                   STATUS_AUTH |
4518                                                   STATUS_ASSOCIATED);
4519
4520                                 schedule_work(&priv->link_down);
4521                                 break;
4522
4523                         case CMAS_TX_AUTH_SEQ_1:
4524                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4525                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4526                                 break;
4527                         case CMAS_RX_AUTH_SEQ_2:
4528                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4529                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4530                                 break;
4531                         case CMAS_AUTH_SEQ_1_PASS:
4532                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4533                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4534                                 break;
4535                         case CMAS_AUTH_SEQ_1_FAIL:
4536                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4537                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4538                                 break;
4539                         case CMAS_TX_AUTH_SEQ_3:
4540                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4541                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4542                                 break;
4543                         case CMAS_RX_AUTH_SEQ_4:
4544                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4545                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4546                                 break;
4547                         case CMAS_AUTH_SEQ_2_PASS:
4548                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4549                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4550                                 break;
4551                         case CMAS_AUTH_SEQ_2_FAIL:
4552                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4553                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4554                                 break;
4555                         case CMAS_TX_ASSOC:
4556                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4557                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4558                                 break;
4559                         case CMAS_RX_ASSOC_RESP:
4560                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4561                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4562
4563                                 break;
4564                         case CMAS_ASSOCIATED:
4565                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4566                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4567                                 break;
4568                         default:
4569                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4570                                                 auth->state);
4571                                 break;
4572                         }
4573                         break;
4574                 }
4575
4576         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4577                         struct notif_channel_result *x =
4578                             &notif->u.channel_result;
4579
4580                         if (notif->size == sizeof(*x)) {
4581                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4582                                                x->channel_num);
4583                         } else {
4584                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4585                                                "(should be %zd)\n",
4586                                                notif->size, sizeof(*x));
4587                         }
4588                         break;
4589                 }
4590
4591         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4592                         struct notif_scan_complete *x = &notif->u.scan_complete;
4593                         if (notif->size == sizeof(*x)) {
4594                                 IPW_DEBUG_SCAN
4595                                     ("Scan completed: type %d, %d channels, "
4596                                      "%d status\n", x->scan_type,
4597                                      x->num_channels, x->status);
4598                         } else {
4599                                 IPW_ERROR("Scan completed of wrong size %d "
4600                                           "(should be %zd)\n",
4601                                           notif->size, sizeof(*x));
4602                         }
4603
4604                         priv->status &=
4605                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4606
4607                         wake_up_interruptible(&priv->wait_state);
4608                         cancel_delayed_work(&priv->scan_check);
4609
4610                         if (priv->status & STATUS_EXIT_PENDING)
4611                                 break;
4612
4613                         priv->ieee->scans++;
4614
4615 #ifdef CONFIG_IPW2200_MONITOR
4616                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4617                                 priv->status |= STATUS_SCAN_FORCED;
4618                                 queue_delayed_work(priv->workqueue,
4619                                                    &priv->request_scan, 0);
4620                                 break;
4621                         }
4622                         priv->status &= ~STATUS_SCAN_FORCED;
4623 #endif                          /* CONFIG_IPW2200_MONITOR */
4624
4625                         if (!(priv->status & (STATUS_ASSOCIATED |
4626                                               STATUS_ASSOCIATING |
4627                                               STATUS_ROAMING |
4628                                               STATUS_DISASSOCIATING)))
4629                                 queue_work(priv->workqueue, &priv->associate);
4630                         else if (priv->status & STATUS_ROAMING) {
4631                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4632                                         /* If a scan completed and we are in roam mode, then
4633                                          * the scan that completed was the one requested as a
4634                                          * result of entering roam... so, schedule the
4635                                          * roam work */
4636                                         queue_work(priv->workqueue,
4637                                                    &priv->roam);
4638                                 else
4639                                         /* Don't schedule if we aborted the scan */
4640                                         priv->status &= ~STATUS_ROAMING;
4641                         } else if (priv->status & STATUS_SCAN_PENDING)
4642                                 queue_delayed_work(priv->workqueue,
4643                                                    &priv->request_scan, 0);
4644                         else if (priv->config & CFG_BACKGROUND_SCAN
4645                                  && priv->status & STATUS_ASSOCIATED)
4646                                 queue_delayed_work(priv->workqueue,
4647                                                    &priv->request_scan, HZ);
4648
4649                         /* Send an empty event to user space.
4650                          * We don't send the received data on the event because
4651                          * it would require us to do complex transcoding, and
4652                          * we want to minimise the work done in the irq handler
4653                          * Use a request to extract the data.
4654                          * Also, we generate this even for any scan, regardless
4655                          * on how the scan was initiated. User space can just
4656                          * sync on periodic scan to get fresh data...
4657                          * Jean II */
4658                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) {
4659                                 union iwreq_data wrqu;
4660
4661                                 wrqu.data.length = 0;
4662                                 wrqu.data.flags = 0;
4663                                 wireless_send_event(priv->net_dev, SIOCGIWSCAN,
4664                                                     &wrqu, NULL);
4665                         }
4666                         break;
4667                 }
4668
4669         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4670                         struct notif_frag_length *x = &notif->u.frag_len;
4671
4672                         if (notif->size == sizeof(*x))
4673                                 IPW_ERROR("Frag length: %d\n",
4674                                           le16_to_cpu(x->frag_length));
4675                         else
4676                                 IPW_ERROR("Frag length of wrong size %d "
4677                                           "(should be %zd)\n",
4678                                           notif->size, sizeof(*x));
4679                         break;
4680                 }
4681
4682         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4683                         struct notif_link_deterioration *x =
4684                             &notif->u.link_deterioration;
4685
4686                         if (notif->size == sizeof(*x)) {
4687                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4688                                         "link deterioration: type %d, cnt %d\n",
4689                                         x->silence_notification_type,
4690                                         x->silence_count);
4691                                 memcpy(&priv->last_link_deterioration, x,
4692                                        sizeof(*x));
4693                         } else {
4694                                 IPW_ERROR("Link Deterioration of wrong size %d "
4695                                           "(should be %zd)\n",
4696                                           notif->size, sizeof(*x));
4697                         }
4698                         break;
4699                 }
4700
4701         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4702                         IPW_ERROR("Dino config\n");
4703                         if (priv->hcmd
4704                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4705                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4706
4707                         break;
4708                 }
4709
4710         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4711                         struct notif_beacon_state *x = &notif->u.beacon_state;
4712                         if (notif->size != sizeof(*x)) {
4713                                 IPW_ERROR
4714                                     ("Beacon state of wrong size %d (should "
4715                                      "be %zd)\n", notif->size, sizeof(*x));
4716                                 break;
4717                         }
4718
4719                         if (le32_to_cpu(x->state) ==
4720                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4721                                 ipw_handle_missed_beacon(priv,
4722                                                          le32_to_cpu(x->
4723                                                                      number));
4724
4725                         break;
4726                 }
4727
4728         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4729                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4730                         if (notif->size == sizeof(*x)) {
4731                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4732                                           "0x%02x station %d\n",
4733                                           x->key_state, x->security_type,
4734                                           x->station_index);
4735                                 break;
4736                         }
4737
4738                         IPW_ERROR
4739                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4740                              notif->size, sizeof(*x));
4741                         break;
4742                 }
4743
4744         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4745                         struct notif_calibration *x = &notif->u.calibration;
4746
4747                         if (notif->size == sizeof(*x)) {
4748                                 memcpy(&priv->calib, x, sizeof(*x));
4749                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4750                                 break;
4751                         }
4752
4753                         IPW_ERROR
4754                             ("Calibration of wrong size %d (should be %zd)\n",
4755                              notif->size, sizeof(*x));
4756                         break;
4757                 }
4758
4759         case HOST_NOTIFICATION_NOISE_STATS:{
4760                         if (notif->size == sizeof(u32)) {
4761                                 priv->exp_avg_noise =
4762                                     exponential_average(priv->exp_avg_noise,
4763                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4764                                     DEPTH_NOISE);
4765                                 break;
4766                         }
4767
4768                         IPW_ERROR
4769                             ("Noise stat is wrong size %d (should be %zd)\n",
4770                              notif->size, sizeof(u32));
4771                         break;
4772                 }
4773
4774         default:
4775                 IPW_DEBUG_NOTIF("Unknown notification: "
4776                                 "subtype=%d,flags=0x%2x,size=%d\n",
4777                                 notif->subtype, notif->flags, notif->size);
4778         }
4779 }
4780
4781 /**
4782  * Destroys all DMA structures and initialise them again
4783  *
4784  * @param priv
4785  * @return error code
4786  */
4787 static int ipw_queue_reset(struct ipw_priv *priv)
4788 {
4789         int rc = 0;
4790         /** @todo customize queue sizes */
4791         int nTx = 64, nTxCmd = 8;
4792         ipw_tx_queue_free(priv);
4793         /* Tx CMD queue */
4794         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4795                                IPW_TX_CMD_QUEUE_READ_INDEX,
4796                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4797                                IPW_TX_CMD_QUEUE_BD_BASE,
4798                                IPW_TX_CMD_QUEUE_BD_SIZE);
4799         if (rc) {
4800                 IPW_ERROR("Tx Cmd queue init failed\n");
4801                 goto error;
4802         }
4803         /* Tx queue(s) */
4804         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4805                                IPW_TX_QUEUE_0_READ_INDEX,
4806                                IPW_TX_QUEUE_0_WRITE_INDEX,
4807                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4808         if (rc) {
4809                 IPW_ERROR("Tx 0 queue init failed\n");
4810                 goto error;
4811         }
4812         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4813                                IPW_TX_QUEUE_1_READ_INDEX,
4814                                IPW_TX_QUEUE_1_WRITE_INDEX,
4815                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4816         if (rc) {
4817                 IPW_ERROR("Tx 1 queue init failed\n");
4818                 goto error;
4819         }
4820         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4821                                IPW_TX_QUEUE_2_READ_INDEX,
4822                                IPW_TX_QUEUE_2_WRITE_INDEX,
4823                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4824         if (rc) {
4825                 IPW_ERROR("Tx 2 queue init failed\n");
4826                 goto error;
4827         }
4828         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4829                                IPW_TX_QUEUE_3_READ_INDEX,
4830                                IPW_TX_QUEUE_3_WRITE_INDEX,
4831                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4832         if (rc) {
4833                 IPW_ERROR("Tx 3 queue init failed\n");
4834                 goto error;
4835         }
4836         /* statistics */
4837         priv->rx_bufs_min = 0;
4838         priv->rx_pend_max = 0;
4839         return rc;
4840
4841       error:
4842         ipw_tx_queue_free(priv);
4843         return rc;
4844 }
4845
4846 /**
4847  * Reclaim Tx queue entries no more used by NIC.
4848  *
4849  * When FW adwances 'R' index, all entries between old and
4850  * new 'R' index need to be reclaimed. As result, some free space
4851  * forms. If there is enough free space (> low mark), wake Tx queue.
4852  *
4853  * @note Need to protect against garbage in 'R' index
4854  * @param priv
4855  * @param txq
4856  * @param qindex
4857  * @return Number of used entries remains in the queue
4858  */
4859 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4860                                 struct clx2_tx_queue *txq, int qindex)
4861 {
4862         u32 hw_tail;
4863         int used;
4864         struct clx2_queue *q = &txq->q;
4865
4866         hw_tail = ipw_read32(priv, q->reg_r);
4867         if (hw_tail >= q->n_bd) {
4868                 IPW_ERROR
4869                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4870                      hw_tail, q->n_bd);
4871                 goto done;
4872         }
4873         for (; q->last_used != hw_tail;
4874              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4875                 ipw_queue_tx_free_tfd(priv, txq);
4876                 priv->tx_packets++;
4877         }
4878       done:
4879         if ((ipw_queue_space(q) > q->low_mark) &&
4880             (qindex >= 0) &&
4881             (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4882                 netif_wake_queue(priv->net_dev);
4883         used = q->first_empty - q->last_used;
4884         if (used < 0)
4885                 used += q->n_bd;
4886
4887         return used;
4888 }
4889
4890 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4891                              int len, int sync)
4892 {
4893         struct clx2_tx_queue *txq = &priv->txq_cmd;
4894         struct clx2_queue *q = &txq->q;
4895         struct tfd_frame *tfd;
4896
4897         if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4898                 IPW_ERROR("No space for Tx\n");
4899                 return -EBUSY;
4900         }
4901
4902         tfd = &txq->bd[q->first_empty];
4903         txq->txb[q->first_empty] = NULL;
4904
4905         memset(tfd, 0, sizeof(*tfd));
4906         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4907         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4908         priv->hcmd_seq++;
4909         tfd->u.cmd.index = hcmd;
4910         tfd->u.cmd.length = len;
4911         memcpy(tfd->u.cmd.payload, buf, len);
4912         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
4913         ipw_write32(priv, q->reg_w, q->first_empty);
4914         _ipw_read32(priv, 0x90);
4915
4916         return 0;
4917 }
4918
4919 /*
4920  * Rx theory of operation
4921  *
4922  * The host allocates 32 DMA target addresses and passes the host address
4923  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
4924  * 0 to 31
4925  *
4926  * Rx Queue Indexes
4927  * The host/firmware share two index registers for managing the Rx buffers.
4928  *
4929  * The READ index maps to the first position that the firmware may be writing
4930  * to -- the driver can read up to (but not including) this position and get
4931  * good data.
4932  * The READ index is managed by the firmware once the card is enabled.
4933  *
4934  * The WRITE index maps to the last position the driver has read from -- the
4935  * position preceding WRITE is the last slot the firmware can place a packet.
4936  *
4937  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
4938  * WRITE = READ.
4939  *
4940  * During initialization the host sets up the READ queue position to the first
4941  * INDEX position, and WRITE to the last (READ - 1 wrapped)
4942  *
4943  * When the firmware places a packet in a buffer it will advance the READ index
4944  * and fire the RX interrupt.  The driver can then query the READ index and
4945  * process as many packets as possible, moving the WRITE index forward as it
4946  * resets the Rx queue buffers with new memory.
4947  *
4948  * The management in the driver is as follows:
4949  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
4950  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
4951  *   to replensish the ipw->rxq->rx_free.
4952  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
4953  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
4954  *   'processed' and 'read' driver indexes as well)
4955  * + A received packet is processed and handed to the kernel network stack,
4956  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
4957  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
4958  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
4959  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
4960  *   were enough free buffers and RX_STALLED is set it is cleared.
4961  *
4962  *
4963  * Driver sequence:
4964  *
4965  * ipw_rx_queue_alloc()       Allocates rx_free
4966  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
4967  *                            ipw_rx_queue_restock
4968  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
4969  *                            queue, updates firmware pointers, and updates
4970  *                            the WRITE index.  If insufficient rx_free buffers
4971  *                            are available, schedules ipw_rx_queue_replenish
4972  *
4973  * -- enable interrupts --
4974  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
4975  *                            READ INDEX, detaching the SKB from the pool.
4976  *                            Moves the packet buffer from queue to rx_used.
4977  *                            Calls ipw_rx_queue_restock to refill any empty
4978  *                            slots.
4979  * ...
4980  *
4981  */
4982
4983 /*
4984  * If there are slots in the RX queue that  need to be restocked,
4985  * and we have free pre-allocated buffers, fill the ranks as much
4986  * as we can pulling from rx_free.
4987  *
4988  * This moves the 'write' index forward to catch up with 'processed', and
4989  * also updates the memory address in the firmware to reference the new
4990  * target buffer.
4991  */
4992 static void ipw_rx_queue_restock(struct ipw_priv *priv)
4993 {
4994         struct ipw_rx_queue *rxq = priv->rxq;
4995         struct list_head *element;
4996         struct ipw_rx_mem_buffer *rxb;
4997         unsigned long flags;
4998         int write;
4999
5000         spin_lock_irqsave(&rxq->lock, flags);
5001         write = rxq->write;
5002         while ((rxq->write != rxq->processed) && (rxq->free_count)) {
5003                 element = rxq->rx_free.next;
5004                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5005                 list_del(element);
5006
5007                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5008                             rxb->dma_addr);
5009                 rxq->queue[rxq->write] = rxb;
5010                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5011                 rxq->free_count--;
5012         }
5013         spin_unlock_irqrestore(&rxq->lock, flags);
5014
5015         /* If the pre-allocated buffer pool is dropping low, schedule to
5016          * refill it */
5017         if (rxq->free_count <= RX_LOW_WATERMARK)
5018                 queue_work(priv->workqueue, &priv->rx_replenish);
5019
5020         /* If we've added more space for the firmware to place data, tell it */
5021         if (write != rxq->write)
5022                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5023 }
5024
5025 /*
5026  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5027  * Also restock the Rx queue via ipw_rx_queue_restock.
5028  *
5029  * This is called as a scheduled work item (except for during intialization)
5030  */
5031 static void ipw_rx_queue_replenish(void *data)
5032 {
5033         struct ipw_priv *priv = data;
5034         struct ipw_rx_queue *rxq = priv->rxq;
5035         struct list_head *element;
5036         struct ipw_rx_mem_buffer *rxb;
5037         unsigned long flags;
5038
5039         spin_lock_irqsave(&rxq->lock, flags);
5040         while (!list_empty(&rxq->rx_used)) {
5041                 element = rxq->rx_used.next;
5042                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5043                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5044                 if (!rxb->skb) {
5045                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5046                                priv->net_dev->name);
5047                         /* We don't reschedule replenish work here -- we will
5048                          * call the restock method and if it still needs
5049                          * more buffers it will schedule replenish */
5050                         break;
5051                 }
5052                 list_del(element);
5053
5054                 rxb->dma_addr =
5055                     pci_map_single(priv->pci_dev, rxb->skb->data,
5056                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5057
5058                 list_add_tail(&rxb->list, &rxq->rx_free);
5059                 rxq->free_count++;
5060         }
5061         spin_unlock_irqrestore(&rxq->lock, flags);
5062
5063         ipw_rx_queue_restock(priv);
5064 }
5065
5066 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5067 {
5068         struct ipw_priv *priv =
5069                 container_of(work, struct ipw_priv, rx_replenish);
5070         mutex_lock(&priv->mutex);
5071         ipw_rx_queue_replenish(priv);
5072         mutex_unlock(&priv->mutex);
5073 }
5074
5075 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5076  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5077  * This free routine walks the list of POOL entries and if SKB is set to
5078  * non NULL it is unmapped and freed
5079  */
5080 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5081 {
5082         int i;
5083
5084         if (!rxq)
5085                 return;
5086
5087         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5088                 if (rxq->pool[i].skb != NULL) {
5089                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5090                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5091                         dev_kfree_skb(rxq->pool[i].skb);
5092                 }
5093         }
5094
5095         kfree(rxq);
5096 }
5097
5098 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5099 {
5100         struct ipw_rx_queue *rxq;
5101         int i;
5102
5103         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5104         if (unlikely(!rxq)) {
5105                 IPW_ERROR("memory allocation failed\n");
5106                 return NULL;
5107         }
5108         spin_lock_init(&rxq->lock);
5109         INIT_LIST_HEAD(&rxq->rx_free);
5110         INIT_LIST_HEAD(&rxq->rx_used);
5111
5112         /* Fill the rx_used queue with _all_ of the Rx buffers */
5113         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5114                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5115
5116         /* Set us so that we have processed and used all buffers, but have
5117          * not restocked the Rx queue with fresh buffers */
5118         rxq->read = rxq->write = 0;
5119         rxq->processed = RX_QUEUE_SIZE - 1;
5120         rxq->free_count = 0;
5121
5122         return rxq;
5123 }
5124
5125 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5126 {
5127         rate &= ~IEEE80211_BASIC_RATE_MASK;
5128         if (ieee_mode == IEEE_A) {
5129                 switch (rate) {
5130                 case IEEE80211_OFDM_RATE_6MB:
5131                         return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5132                             1 : 0;
5133                 case IEEE80211_OFDM_RATE_9MB:
5134                         return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5135                             1 : 0;
5136                 case IEEE80211_OFDM_RATE_12MB:
5137                         return priv->
5138                             rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5139                 case IEEE80211_OFDM_RATE_18MB:
5140                         return priv->
5141                             rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5142                 case IEEE80211_OFDM_RATE_24MB:
5143                         return priv->
5144                             rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5145                 case IEEE80211_OFDM_RATE_36MB:
5146                         return priv->
5147                             rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5148                 case IEEE80211_OFDM_RATE_48MB:
5149                         return priv->
5150                             rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5151                 case IEEE80211_OFDM_RATE_54MB:
5152                         return priv->
5153                             rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5154                 default:
5155                         return 0;
5156                 }
5157         }
5158
5159         /* B and G mixed */
5160         switch (rate) {
5161         case IEEE80211_CCK_RATE_1MB:
5162                 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5163         case IEEE80211_CCK_RATE_2MB:
5164                 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5165         case IEEE80211_CCK_RATE_5MB:
5166                 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5167         case IEEE80211_CCK_RATE_11MB:
5168                 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5169         }
5170
5171         /* If we are limited to B modulations, bail at this point */
5172         if (ieee_mode == IEEE_B)
5173                 return 0;
5174
5175         /* G */
5176         switch (rate) {
5177         case IEEE80211_OFDM_RATE_6MB:
5178                 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5179         case IEEE80211_OFDM_RATE_9MB:
5180                 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5181         case IEEE80211_OFDM_RATE_12MB:
5182                 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5183         case IEEE80211_OFDM_RATE_18MB:
5184                 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5185         case IEEE80211_OFDM_RATE_24MB:
5186                 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5187         case IEEE80211_OFDM_RATE_36MB:
5188                 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5189         case IEEE80211_OFDM_RATE_48MB:
5190                 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5191         case IEEE80211_OFDM_RATE_54MB:
5192                 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5193         }
5194
5195         return 0;
5196 }
5197
5198 static int ipw_compatible_rates(struct ipw_priv *priv,
5199                                 const struct ieee80211_network *network,
5200                                 struct ipw_supported_rates *rates)
5201 {
5202         int num_rates, i;
5203
5204         memset(rates, 0, sizeof(*rates));
5205         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5206         rates->num_rates = 0;
5207         for (i = 0; i < num_rates; i++) {
5208                 if (!ipw_is_rate_in_mask(priv, network->mode,
5209                                          network->rates[i])) {
5210
5211                         if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5212                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5213                                                "rate %02X\n",
5214                                                network->rates[i]);
5215                                 rates->supported_rates[rates->num_rates++] =
5216                                     network->rates[i];
5217                                 continue;
5218                         }
5219
5220                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5221                                        network->rates[i], priv->rates_mask);
5222                         continue;
5223                 }
5224
5225                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5226         }
5227
5228         num_rates = min(network->rates_ex_len,
5229                         (u8) (IPW_MAX_RATES - num_rates));
5230         for (i = 0; i < num_rates; i++) {
5231                 if (!ipw_is_rate_in_mask(priv, network->mode,
5232                                          network->rates_ex[i])) {
5233                         if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5234                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5235                                                "rate %02X\n",
5236                                                network->rates_ex[i]);
5237                                 rates->supported_rates[rates->num_rates++] =
5238                                     network->rates[i];
5239                                 continue;
5240                         }
5241
5242                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5243                                        network->rates_ex[i], priv->rates_mask);
5244                         continue;
5245                 }
5246
5247                 rates->supported_rates[rates->num_rates++] =
5248                     network->rates_ex[i];
5249         }
5250
5251         return 1;
5252 }
5253
5254 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5255                                   const struct ipw_supported_rates *src)
5256 {
5257         u8 i;
5258         for (i = 0; i < src->num_rates; i++)
5259                 dest->supported_rates[i] = src->supported_rates[i];
5260         dest->num_rates = src->num_rates;
5261 }
5262
5263 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5264  * mask should ever be used -- right now all callers to add the scan rates are
5265  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5266 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5267                                    u8 modulation, u32 rate_mask)
5268 {
5269         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5270             IEEE80211_BASIC_RATE_MASK : 0;
5271
5272         if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5273                 rates->supported_rates[rates->num_rates++] =
5274                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5275
5276         if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5277                 rates->supported_rates[rates->num_rates++] =
5278                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5279
5280         if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5281                 rates->supported_rates[rates->num_rates++] = basic_mask |
5282                     IEEE80211_CCK_RATE_5MB;
5283
5284         if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5285                 rates->supported_rates[rates->num_rates++] = basic_mask |
5286                     IEEE80211_CCK_RATE_11MB;
5287 }
5288
5289 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5290                                     u8 modulation, u32 rate_mask)
5291 {
5292         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5293             IEEE80211_BASIC_RATE_MASK : 0;
5294
5295         if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5296                 rates->supported_rates[rates->num_rates++] = basic_mask |
5297                     IEEE80211_OFDM_RATE_6MB;
5298
5299         if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5300                 rates->supported_rates[rates->num_rates++] =
5301                     IEEE80211_OFDM_RATE_9MB;
5302
5303         if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5304                 rates->supported_rates[rates->num_rates++] = basic_mask |
5305                     IEEE80211_OFDM_RATE_12MB;
5306
5307         if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5308                 rates->supported_rates[rates->num_rates++] =
5309                     IEEE80211_OFDM_RATE_18MB;
5310
5311         if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5312                 rates->supported_rates[rates->num_rates++] = basic_mask |
5313                     IEEE80211_OFDM_RATE_24MB;
5314
5315         if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5316                 rates->supported_rates[rates->num_rates++] =
5317                     IEEE80211_OFDM_RATE_36MB;
5318
5319         if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5320                 rates->supported_rates[rates->num_rates++] =
5321                     IEEE80211_OFDM_RATE_48MB;
5322
5323         if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5324                 rates->supported_rates[rates->num_rates++] =
5325                     IEEE80211_OFDM_RATE_54MB;
5326 }
5327
5328 struct ipw_network_match {
5329         struct ieee80211_network *network;
5330         struct ipw_supported_rates rates;
5331 };
5332
5333 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5334                                   struct ipw_network_match *match,
5335                                   struct ieee80211_network *network,
5336                                   int roaming)
5337 {
5338         struct ipw_supported_rates rates;
5339
5340         /* Verify that this network's capability is compatible with the
5341          * current mode (AdHoc or Infrastructure) */
5342         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5343              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5344                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded due to "
5345                                 "capability mismatch.\n",
5346                                 escape_essid(network->ssid, network->ssid_len),
5347                                 MAC_ARG(network->bssid));
5348                 return 0;
5349         }
5350
5351         /* If we do not have an ESSID for this AP, we can not associate with
5352          * it */
5353         if (network->flags & NETWORK_EMPTY_ESSID) {
5354                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5355                                 "because of hidden ESSID.\n",
5356                                 escape_essid(network->ssid, network->ssid_len),
5357                                 MAC_ARG(network->bssid));
5358                 return 0;
5359         }
5360
5361         if (unlikely(roaming)) {
5362                 /* If we are roaming, then ensure check if this is a valid
5363                  * network to try and roam to */
5364                 if ((network->ssid_len != match->network->ssid_len) ||
5365                     memcmp(network->ssid, match->network->ssid,
5366                            network->ssid_len)) {
5367                         IPW_DEBUG_MERGE("Netowrk '%s (" MAC_FMT ")' excluded "
5368                                         "because of non-network ESSID.\n",
5369                                         escape_essid(network->ssid,
5370                                                      network->ssid_len),
5371                                         MAC_ARG(network->bssid));
5372                         return 0;
5373                 }
5374         } else {
5375                 /* If an ESSID has been configured then compare the broadcast
5376                  * ESSID to ours */
5377                 if ((priv->config & CFG_STATIC_ESSID) &&
5378                     ((network->ssid_len != priv->essid_len) ||
5379                      memcmp(network->ssid, priv->essid,
5380                             min(network->ssid_len, priv->essid_len)))) {
5381                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5382
5383                         strncpy(escaped,
5384                                 escape_essid(network->ssid, network->ssid_len),
5385                                 sizeof(escaped));
5386                         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5387                                         "because of ESSID mismatch: '%s'.\n",
5388                                         escaped, MAC_ARG(network->bssid),
5389                                         escape_essid(priv->essid,
5390                                                      priv->essid_len));
5391                         return 0;
5392                 }
5393         }
5394
5395         /* If the old network rate is better than this one, don't bother
5396          * testing everything else. */
5397
5398         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5399                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5400                                 "current network.\n",
5401                                 escape_essid(match->network->ssid,
5402                                              match->network->ssid_len));
5403                 return 0;
5404         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5405                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5406                                 "current network.\n",
5407                                 escape_essid(match->network->ssid,
5408                                              match->network->ssid_len));
5409                 return 0;
5410         }
5411
5412         /* Now go through and see if the requested network is valid... */
5413         if (priv->ieee->scan_age != 0 &&
5414             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5415                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5416                                 "because of age: %ums.\n",
5417                                 escape_essid(network->ssid, network->ssid_len),
5418                                 MAC_ARG(network->bssid),
5419                                 jiffies_to_msecs(jiffies -
5420                                                  network->last_scanned));
5421                 return 0;
5422         }
5423
5424         if ((priv->config & CFG_STATIC_CHANNEL) &&
5425             (network->channel != priv->channel)) {
5426                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5427                                 "because of channel mismatch: %d != %d.\n",
5428                                 escape_essid(network->ssid, network->ssid_len),
5429                                 MAC_ARG(network->bssid),
5430                                 network->channel, priv->channel);
5431                 return 0;
5432         }
5433
5434         /* Verify privacy compatability */
5435         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5436             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5437                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5438                                 "because of privacy mismatch: %s != %s.\n",
5439                                 escape_essid(network->ssid, network->ssid_len),
5440                                 MAC_ARG(network->bssid),
5441                                 priv->
5442                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5443                                 network->
5444                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5445                                 "off");
5446                 return 0;
5447         }
5448
5449         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5450                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5451                                 "because of the same BSSID match: " MAC_FMT
5452                                 ".\n", escape_essid(network->ssid,
5453                                                     network->ssid_len),
5454                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5455                 return 0;
5456         }
5457
5458         /* Filter out any incompatible freq / mode combinations */
5459         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5460                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5461                                 "because of invalid frequency/mode "
5462                                 "combination.\n",
5463                                 escape_essid(network->ssid, network->ssid_len),
5464                                 MAC_ARG(network->bssid));
5465                 return 0;
5466         }
5467
5468         /* Ensure that the rates supported by the driver are compatible with
5469          * this AP, including verification of basic rates (mandatory) */
5470         if (!ipw_compatible_rates(priv, network, &rates)) {
5471                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5472                                 "because configured rate mask excludes "
5473                                 "AP mandatory rate.\n",
5474                                 escape_essid(network->ssid, network->ssid_len),
5475                                 MAC_ARG(network->bssid));
5476                 return 0;
5477         }
5478
5479         if (rates.num_rates == 0) {
5480                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5481                                 "because of no compatible rates.\n",
5482                                 escape_essid(network->ssid, network->ssid_len),
5483                                 MAC_ARG(network->bssid));
5484                 return 0;
5485         }
5486
5487         /* TODO: Perform any further minimal comparititive tests.  We do not
5488          * want to put too much policy logic here; intelligent scan selection
5489          * should occur within a generic IEEE 802.11 user space tool.  */
5490
5491         /* Set up 'new' AP to this network */
5492         ipw_copy_rates(&match->rates, &rates);
5493         match->network = network;
5494         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' is a viable match.\n",
5495                         escape_essid(network->ssid, network->ssid_len),
5496                         MAC_ARG(network->bssid));
5497
5498         return 1;
5499 }
5500
5501 static void ipw_merge_adhoc_network(struct work_struct *work)
5502 {
5503         struct ipw_priv *priv =
5504                 container_of(work, struct ipw_priv, merge_networks);
5505         struct ieee80211_network *network = NULL;
5506         struct ipw_network_match match = {
5507                 .network = priv->assoc_network
5508         };
5509
5510         if ((priv->status & STATUS_ASSOCIATED) &&
5511             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5512                 /* First pass through ROAM process -- look for a better
5513                  * network */
5514                 unsigned long flags;
5515
5516                 spin_lock_irqsave(&priv->ieee->lock, flags);
5517                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5518                         if (network != priv->assoc_network)
5519                                 ipw_find_adhoc_network(priv, &match, network,
5520                                                        1);
5521                 }
5522                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5523
5524                 if (match.network == priv->assoc_network) {
5525                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5526                                         "merge to.\n");
5527                         return;
5528                 }
5529
5530                 mutex_lock(&priv->mutex);
5531                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5532                         IPW_DEBUG_MERGE("remove network %s\n",
5533                                         escape_essid(priv->essid,
5534                                                      priv->essid_len));
5535                         ipw_remove_current_network(priv);
5536                 }
5537
5538                 ipw_disassociate(priv);
5539                 priv->assoc_network = match.network;
5540                 mutex_unlock(&priv->mutex);
5541                 return;
5542         }
5543 }
5544
5545 static int ipw_best_network(struct ipw_priv *priv,
5546                             struct ipw_network_match *match,
5547                             struct ieee80211_network *network, int roaming)
5548 {
5549         struct ipw_supported_rates rates;
5550
5551         /* Verify that this network's capability is compatible with the
5552          * current mode (AdHoc or Infrastructure) */
5553         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5554              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5555             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5556              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5557                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
5558                                 "capability mismatch.\n",
5559                                 escape_essid(network->ssid, network->ssid_len),
5560                                 MAC_ARG(network->bssid));
5561                 return 0;
5562         }
5563
5564         /* If we do not have an ESSID for this AP, we can not associate with
5565          * it */
5566         if (network->flags & NETWORK_EMPTY_ESSID) {
5567                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5568                                 "because of hidden ESSID.\n",
5569                                 escape_essid(network->ssid, network->ssid_len),
5570                                 MAC_ARG(network->bssid));
5571                 return 0;
5572         }
5573
5574         if (unlikely(roaming)) {
5575                 /* If we are roaming, then ensure check if this is a valid
5576                  * network to try and roam to */
5577                 if ((network->ssid_len != match->network->ssid_len) ||
5578                     memcmp(network->ssid, match->network->ssid,
5579                            network->ssid_len)) {
5580                         IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
5581                                         "because of non-network ESSID.\n",
5582                                         escape_essid(network->ssid,
5583                                                      network->ssid_len),
5584                                         MAC_ARG(network->bssid));
5585                         return 0;
5586                 }
5587         } else {
5588                 /* If an ESSID has been configured then compare the broadcast
5589                  * ESSID to ours */
5590                 if ((priv->config & CFG_STATIC_ESSID) &&
5591                     ((network->ssid_len != priv->essid_len) ||
5592                      memcmp(network->ssid, priv->essid,
5593                             min(network->ssid_len, priv->essid_len)))) {
5594                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5595                         strncpy(escaped,
5596                                 escape_essid(network->ssid, network->ssid_len),
5597                                 sizeof(escaped));
5598                         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5599                                         "because of ESSID mismatch: '%s'.\n",
5600                                         escaped, MAC_ARG(network->bssid),
5601                                         escape_essid(priv->essid,
5602                                                      priv->essid_len));
5603                         return 0;
5604                 }
5605         }
5606
5607         /* If the old network rate is better than this one, don't bother
5608          * testing everything else. */
5609         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5610                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5611                 strncpy(escaped,
5612                         escape_essid(network->ssid, network->ssid_len),
5613                         sizeof(escaped));
5614                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
5615                                 "'%s (" MAC_FMT ")' has a stronger signal.\n",
5616                                 escaped, MAC_ARG(network->bssid),
5617                                 escape_essid(match->network->ssid,
5618                                              match->network->ssid_len),
5619                                 MAC_ARG(match->network->bssid));
5620                 return 0;
5621         }
5622
5623         /* If this network has already had an association attempt within the
5624          * last 3 seconds, do not try and associate again... */
5625         if (network->last_associate &&
5626             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5627                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5628                                 "because of storming (%ums since last "
5629                                 "assoc attempt).\n",
5630                                 escape_essid(network->ssid, network->ssid_len),
5631                                 MAC_ARG(network->bssid),
5632                                 jiffies_to_msecs(jiffies -
5633                                                  network->last_associate));
5634                 return 0;
5635         }
5636
5637         /* Now go through and see if the requested network is valid... */
5638         if (priv->ieee->scan_age != 0 &&
5639             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5640                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5641                                 "because of age: %ums.\n",
5642                                 escape_essid(network->ssid, network->ssid_len),
5643                                 MAC_ARG(network->bssid),
5644                                 jiffies_to_msecs(jiffies -
5645                                                  network->last_scanned));
5646                 return 0;
5647         }
5648
5649         if ((priv->config & CFG_STATIC_CHANNEL) &&
5650             (network->channel != priv->channel)) {
5651                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5652                                 "because of channel mismatch: %d != %d.\n",
5653                                 escape_essid(network->ssid, network->ssid_len),
5654                                 MAC_ARG(network->bssid),
5655                                 network->channel, priv->channel);
5656                 return 0;
5657         }
5658
5659         /* Verify privacy compatability */
5660         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5661             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5662                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5663                                 "because of privacy mismatch: %s != %s.\n",
5664                                 escape_essid(network->ssid, network->ssid_len),
5665                                 MAC_ARG(network->bssid),
5666                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5667                                 "off",
5668                                 network->capability &
5669                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5670                 return 0;
5671         }
5672
5673         if ((priv->config & CFG_STATIC_BSSID) &&
5674             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5675                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5676                                 "because of BSSID mismatch: " MAC_FMT ".\n",
5677                                 escape_essid(network->ssid, network->ssid_len),
5678                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5679                 return 0;
5680         }
5681
5682         /* Filter out any incompatible freq / mode combinations */
5683         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5684                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5685                                 "because of invalid frequency/mode "
5686                                 "combination.\n",
5687                                 escape_essid(network->ssid, network->ssid_len),
5688                                 MAC_ARG(network->bssid));
5689                 return 0;
5690         }
5691
5692         /* Filter out invalid channel in current GEO */
5693         if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5694                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5695                                 "because of invalid channel in current GEO\n",
5696                                 escape_essid(network->ssid, network->ssid_len),
5697                                 MAC_ARG(network->bssid));
5698                 return 0;
5699         }
5700
5701         /* Ensure that the rates supported by the driver are compatible with
5702          * this AP, including verification of basic rates (mandatory) */
5703         if (!ipw_compatible_rates(priv, network, &rates)) {
5704                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5705                                 "because configured rate mask excludes "
5706                                 "AP mandatory rate.\n",
5707                                 escape_essid(network->ssid, network->ssid_len),
5708                                 MAC_ARG(network->bssid));
5709                 return 0;
5710         }
5711
5712         if (rates.num_rates == 0) {
5713                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5714                                 "because of no compatible rates.\n",
5715                                 escape_essid(network->ssid, network->ssid_len),
5716                                 MAC_ARG(network->bssid));
5717                 return 0;
5718         }
5719
5720         /* TODO: Perform any further minimal comparititive tests.  We do not
5721          * want to put too much policy logic here; intelligent scan selection
5722          * should occur within a generic IEEE 802.11 user space tool.  */
5723
5724         /* Set up 'new' AP to this network */
5725         ipw_copy_rates(&match->rates, &rates);
5726         match->network = network;
5727
5728         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
5729                         escape_essid(network->ssid, network->ssid_len),
5730                         MAC_ARG(network->bssid));
5731
5732         return 1;
5733 }
5734
5735 static void ipw_adhoc_create(struct ipw_priv *priv,
5736                              struct ieee80211_network *network)
5737 {
5738         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5739         int i;
5740
5741         /*
5742          * For the purposes of scanning, we can set our wireless mode
5743          * to trigger scans across combinations of bands, but when it
5744          * comes to creating a new ad-hoc network, we have tell the FW
5745          * exactly which band to use.
5746          *
5747          * We also have the possibility of an invalid channel for the
5748          * chossen band.  Attempting to create a new ad-hoc network
5749          * with an invalid channel for wireless mode will trigger a
5750          * FW fatal error.
5751          *
5752          */
5753         switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5754         case IEEE80211_52GHZ_BAND:
5755                 network->mode = IEEE_A;
5756                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5757                 BUG_ON(i == -1);
5758                 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5759                         IPW_WARNING("Overriding invalid channel\n");
5760                         priv->channel = geo->a[0].channel;
5761                 }
5762                 break;
5763
5764         case IEEE80211_24GHZ_BAND:
5765                 if (priv->ieee->mode & IEEE_G)
5766                         network->mode = IEEE_G;
5767                 else
5768                         network->mode = IEEE_B;
5769                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5770                 BUG_ON(i == -1);
5771                 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5772                         IPW_WARNING("Overriding invalid channel\n");
5773                         priv->channel = geo->bg[0].channel;
5774                 }
5775                 break;
5776
5777         default:
5778                 IPW_WARNING("Overriding invalid channel\n");
5779                 if (priv->ieee->mode & IEEE_A) {
5780                         network->mode = IEEE_A;
5781                         priv->channel = geo->a[0].channel;
5782                 } else if (priv->ieee->mode & IEEE_G) {
5783                         network->mode = IEEE_G;
5784                         priv->channel = geo->bg[0].channel;
5785                 } else {
5786                         network->mode = IEEE_B;
5787                         priv->channel = geo->bg[0].channel;
5788                 }
5789                 break;
5790         }
5791
5792         network->channel = priv->channel;
5793         priv->config |= CFG_ADHOC_PERSIST;
5794         ipw_create_bssid(priv, network->bssid);
5795         network->ssid_len = priv->essid_len;
5796         memcpy(network->ssid, priv->essid, priv->essid_len);
5797         memset(&network->stats, 0, sizeof(network->stats));
5798         network->capability = WLAN_CAPABILITY_IBSS;
5799         if (!(priv->config & CFG_PREAMBLE_LONG))
5800                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5801         if (priv->capability & CAP_PRIVACY_ON)
5802                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5803         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5804         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5805         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5806         memcpy(network->rates_ex,
5807                &priv->rates.supported_rates[network->rates_len],
5808                network->rates_ex_len);
5809         network->last_scanned = 0;
5810         network->flags = 0;
5811         network->last_associate = 0;
5812         network->time_stamp[0] = 0;
5813         network->time_stamp[1] = 0;
5814         network->beacon_interval = 100; /* Default */
5815         network->listen_interval = 10;  /* Default */
5816         network->atim_window = 0;       /* Default */
5817         network->wpa_ie_len = 0;
5818         network->rsn_ie_len = 0;
5819 }
5820
5821 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5822 {
5823         struct ipw_tgi_tx_key key;
5824
5825         if (!(priv->ieee->sec.flags & (1 << index)))
5826                 return;
5827
5828         key.key_id = index;
5829         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5830         key.security_type = type;
5831         key.station_index = 0;  /* always 0 for BSS */
5832         key.flags = 0;
5833         /* 0 for new key; previous value of counter (after fatal error) */
5834         key.tx_counter[0] = cpu_to_le32(0);
5835         key.tx_counter[1] = cpu_to_le32(0);
5836
5837         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5838 }
5839
5840 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5841 {
5842         struct ipw_wep_key key;
5843         int i;
5844
5845         key.cmd_id = DINO_CMD_WEP_KEY;
5846         key.seq_num = 0;
5847
5848         /* Note: AES keys cannot be set for multiple times.
5849          * Only set it at the first time. */
5850         for (i = 0; i < 4; i++) {
5851                 key.key_index = i | type;
5852                 if (!(priv->ieee->sec.flags & (1 << i))) {
5853                         key.key_size = 0;
5854                         continue;
5855                 }
5856
5857                 key.key_size = priv->ieee->sec.key_sizes[i];
5858                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5859
5860                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5861         }
5862 }
5863
5864 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5865 {
5866         if (priv->ieee->host_encrypt)
5867                 return;
5868
5869         switch (level) {
5870         case SEC_LEVEL_3:
5871                 priv->sys_config.disable_unicast_decryption = 0;
5872                 priv->ieee->host_decrypt = 0;
5873                 break;
5874         case SEC_LEVEL_2:
5875                 priv->sys_config.disable_unicast_decryption = 1;
5876                 priv->ieee->host_decrypt = 1;
5877                 break;
5878         case SEC_LEVEL_1:
5879                 priv->sys_config.disable_unicast_decryption = 0;
5880                 priv->ieee->host_decrypt = 0;
5881                 break;
5882         case SEC_LEVEL_0:
5883                 priv->sys_config.disable_unicast_decryption = 1;
5884                 break;
5885         default:
5886                 break;
5887         }
5888 }
5889
5890 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5891 {
5892         if (priv->ieee->host_encrypt)
5893                 return;
5894
5895         switch (level) {
5896         case SEC_LEVEL_3:
5897                 priv->sys_config.disable_multicast_decryption = 0;
5898                 break;
5899         case SEC_LEVEL_2:
5900                 priv->sys_config.disable_multicast_decryption = 1;
5901                 break;
5902         case SEC_LEVEL_1:
5903                 priv->sys_config.disable_multicast_decryption = 0;
5904                 break;
5905         case SEC_LEVEL_0:
5906                 priv->sys_config.disable_multicast_decryption = 1;
5907                 break;
5908         default:
5909                 break;
5910         }
5911 }
5912
5913 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5914 {
5915         switch (priv->ieee->sec.level) {
5916         case SEC_LEVEL_3:
5917                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5918                         ipw_send_tgi_tx_key(priv,
5919                                             DCT_FLAG_EXT_SECURITY_CCM,
5920                                             priv->ieee->sec.active_key);
5921
5922                 if (!priv->ieee->host_mc_decrypt)
5923                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5924                 break;
5925         case SEC_LEVEL_2:
5926                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5927                         ipw_send_tgi_tx_key(priv,
5928                                             DCT_FLAG_EXT_SECURITY_TKIP,
5929                                             priv->ieee->sec.active_key);
5930                 break;
5931         case SEC_LEVEL_1:
5932                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
5933                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
5934                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
5935                 break;
5936         case SEC_LEVEL_0:
5937         default:
5938                 break;
5939         }
5940 }
5941
5942 static void ipw_adhoc_check(void *data)
5943 {
5944         struct ipw_priv *priv = data;
5945
5946         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
5947             !(priv->config & CFG_ADHOC_PERSIST)) {
5948                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
5949                           IPW_DL_STATE | IPW_DL_ASSOC,
5950                           "Missed beacon: %d - disassociate\n",
5951                           priv->missed_adhoc_beacons);
5952                 ipw_remove_current_network(priv);
5953                 ipw_disassociate(priv);
5954                 return;
5955         }
5956
5957         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
5958                            priv->assoc_request.beacon_interval);
5959 }
5960
5961 static void ipw_bg_adhoc_check(struct work_struct *work)
5962 {
5963         struct ipw_priv *priv =
5964                 container_of(work, struct ipw_priv, adhoc_check.work);
5965         mutex_lock(&priv->mutex);
5966         ipw_adhoc_check(priv);
5967         mutex_unlock(&priv->mutex);
5968 }
5969
5970 static void ipw_debug_config(struct ipw_priv *priv)
5971 {
5972         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
5973                        "[CFG 0x%08X]\n", priv->config);
5974         if (priv->config & CFG_STATIC_CHANNEL)
5975                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
5976         else
5977                 IPW_DEBUG_INFO("Channel unlocked.\n");
5978         if (priv->config & CFG_STATIC_ESSID)
5979                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
5980                                escape_essid(priv->essid, priv->essid_len));
5981         else
5982                 IPW_DEBUG_INFO("ESSID unlocked.\n");
5983         if (priv->config & CFG_STATIC_BSSID)
5984                 IPW_DEBUG_INFO("BSSID locked to " MAC_FMT "\n",
5985                                MAC_ARG(priv->bssid));
5986         else
5987                 IPW_DEBUG_INFO("BSSID unlocked.\n");
5988         if (priv->capability & CAP_PRIVACY_ON)
5989                 IPW_DEBUG_INFO("PRIVACY on\n");
5990         else
5991                 IPW_DEBUG_INFO("PRIVACY off\n");
5992         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
5993 }
5994
5995 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
5996 {
5997         /* TODO: Verify that this works... */
5998         struct ipw_fixed_rate fr = {
5999                 .tx_rates = priv->rates_mask
6000         };
6001         u32 reg;
6002         u16 mask = 0;
6003
6004         /* Identify 'current FW band' and match it with the fixed
6005          * Tx rates */
6006
6007         switch (priv->ieee->freq_band) {
6008         case IEEE80211_52GHZ_BAND:      /* A only */
6009                 /* IEEE_A */
6010                 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6011                         /* Invalid fixed rate mask */
6012                         IPW_DEBUG_WX
6013                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6014                         fr.tx_rates = 0;
6015                         break;
6016                 }
6017
6018                 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6019                 break;
6020
6021         default:                /* 2.4Ghz or Mixed */
6022                 /* IEEE_B */
6023                 if (mode == IEEE_B) {
6024                         if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6025                                 /* Invalid fixed rate mask */
6026                                 IPW_DEBUG_WX
6027                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6028                                 fr.tx_rates = 0;
6029                         }
6030                         break;
6031                 }
6032
6033                 /* IEEE_G */
6034                 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6035                                     IEEE80211_OFDM_RATES_MASK)) {
6036                         /* Invalid fixed rate mask */
6037                         IPW_DEBUG_WX
6038                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6039                         fr.tx_rates = 0;
6040                         break;
6041                 }
6042
6043                 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6044                         mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6045                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6046                 }
6047
6048                 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6049                         mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6050                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6051                 }
6052
6053                 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6054                         mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6055                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6056                 }
6057
6058                 fr.tx_rates |= mask;
6059                 break;
6060         }
6061
6062         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6063         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6064 }
6065
6066 static void ipw_abort_scan(struct ipw_priv *priv)
6067 {
6068         int err;
6069
6070         if (priv->status & STATUS_SCAN_ABORTING) {
6071                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6072                 return;
6073         }
6074         priv->status |= STATUS_SCAN_ABORTING;
6075
6076         err = ipw_send_scan_abort(priv);
6077         if (err)
6078                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6079 }
6080
6081 static void ipw_add_scan_channels(struct ipw_priv *priv,
6082                                   struct ipw_scan_request_ext *scan,
6083                                   int scan_type)
6084 {
6085         int channel_index = 0;
6086         const struct ieee80211_geo *geo;
6087         int i;
6088
6089         geo = ieee80211_get_geo(priv->ieee);
6090
6091         if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6092                 int start = channel_index;
6093                 for (i = 0; i < geo->a_channels; i++) {
6094                         if ((priv->status & STATUS_ASSOCIATED) &&
6095                             geo->a[i].channel == priv->channel)
6096                                 continue;
6097                         channel_index++;
6098                         scan->channels_list[channel_index] = geo->a[i].channel;
6099                         ipw_set_scan_type(scan, channel_index,
6100                                           geo->a[i].
6101                                           flags & IEEE80211_CH_PASSIVE_ONLY ?
6102                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6103                                           scan_type);
6104                 }
6105
6106                 if (start != channel_index) {
6107                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6108                             (channel_index - start);
6109                         channel_index++;
6110                 }
6111         }
6112
6113         if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6114                 int start = channel_index;
6115                 if (priv->config & CFG_SPEED_SCAN) {
6116                         int index;
6117                         u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6118                                 /* nop out the list */
6119                                 [0] = 0
6120                         };
6121
6122                         u8 channel;
6123                         while (channel_index < IPW_SCAN_CHANNELS) {
6124                                 channel =
6125                                     priv->speed_scan[priv->speed_scan_pos];
6126                                 if (channel == 0) {
6127                                         priv->speed_scan_pos = 0;
6128                                         channel = priv->speed_scan[0];
6129                                 }
6130                                 if ((priv->status & STATUS_ASSOCIATED) &&
6131                                     channel == priv->channel) {
6132                                         priv->speed_scan_pos++;
6133                                         continue;
6134                                 }
6135
6136                                 /* If this channel has already been
6137                                  * added in scan, break from loop
6138                                  * and this will be the first channel
6139                                  * in the next scan.
6140                                  */
6141                                 if (channels[channel - 1] != 0)
6142                                         break;
6143
6144                                 channels[channel - 1] = 1;
6145                                 priv->speed_scan_pos++;
6146                                 channel_index++;
6147                                 scan->channels_list[channel_index] = channel;
6148                                 index =
6149                                     ieee80211_channel_to_index(priv->ieee, channel);
6150                                 ipw_set_scan_type(scan, channel_index,
6151                                                   geo->bg[index].
6152                                                   flags &
6153                                                   IEEE80211_CH_PASSIVE_ONLY ?
6154                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6155                                                   : scan_type);
6156                         }
6157                 } else {
6158                         for (i = 0; i < geo->bg_channels; i++) {
6159                                 if ((priv->status & STATUS_ASSOCIATED) &&
6160                                     geo->bg[i].channel == priv->channel)
6161                                         continue;
6162                                 channel_index++;
6163                                 scan->channels_list[channel_index] =
6164                                     geo->bg[i].channel;
6165                                 ipw_set_scan_type(scan, channel_index,
6166                                                   geo->bg[i].
6167                                                   flags &
6168                                                   IEEE80211_CH_PASSIVE_ONLY ?
6169                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6170                                                   : scan_type);
6171                         }
6172                 }
6173
6174                 if (start != channel_index) {
6175                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6176                             (channel_index - start);
6177                 }
6178         }
6179 }
6180
6181 static int ipw_request_scan_helper(struct ipw_priv *priv, int type)
6182 {
6183         struct ipw_scan_request_ext scan;
6184         int err = 0, scan_type;
6185
6186         if (!(priv->status & STATUS_INIT) ||
6187             (priv->status & STATUS_EXIT_PENDING))
6188                 return 0;
6189
6190         mutex_lock(&priv->mutex);
6191
6192         if (priv->status & STATUS_SCANNING) {
6193                 IPW_DEBUG_HC("Concurrent scan requested.  Ignoring.\n");
6194                 priv->status |= STATUS_SCAN_PENDING;
6195                 goto done;
6196         }
6197
6198         if (!(priv->status & STATUS_SCAN_FORCED) &&
6199             priv->status & STATUS_SCAN_ABORTING) {
6200                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6201                 priv->status |= STATUS_SCAN_PENDING;
6202                 goto done;
6203         }
6204
6205         if (priv->status & STATUS_RF_KILL_MASK) {
6206                 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6207                 priv->status |= STATUS_SCAN_PENDING;
6208                 goto done;
6209         }
6210
6211         memset(&scan, 0, sizeof(scan));
6212         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6213
6214         if (type == IW_SCAN_TYPE_PASSIVE) {
6215                 IPW_DEBUG_WX("use passive scanning\n");
6216                 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6217                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6218                         cpu_to_le16(120);
6219                 ipw_add_scan_channels(priv, &scan, scan_type);
6220                 goto send_request;
6221         }
6222
6223         /* Use active scan by default. */
6224         if (priv->config & CFG_SPEED_SCAN)
6225                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6226                         cpu_to_le16(30);
6227         else
6228                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6229                         cpu_to_le16(20);
6230
6231         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6232                 cpu_to_le16(20);
6233
6234         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6235
6236 #ifdef CONFIG_IPW2200_MONITOR
6237         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6238                 u8 channel;
6239                 u8 band = 0;
6240
6241                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6242                 case IEEE80211_52GHZ_BAND:
6243                         band = (u8) (IPW_A_MODE << 6) | 1;
6244                         channel = priv->channel;
6245                         break;
6246
6247                 case IEEE80211_24GHZ_BAND:
6248                         band = (u8) (IPW_B_MODE << 6) | 1;
6249                         channel = priv->channel;
6250                         break;
6251
6252                 default:
6253                         band = (u8) (IPW_B_MODE << 6) | 1;
6254                         channel = 9;
6255                         break;
6256                 }
6257
6258                 scan.channels_list[0] = band;
6259                 scan.channels_list[1] = channel;
6260                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6261
6262                 /* NOTE:  The card will sit on this channel for this time
6263                  * period.  Scan aborts are timing sensitive and frequently
6264                  * result in firmware restarts.  As such, it is best to
6265                  * set a small dwell_time here and just keep re-issuing
6266                  * scans.  Otherwise fast channel hopping will not actually
6267                  * hop channels.
6268                  *
6269                  * TODO: Move SPEED SCAN support to all modes and bands */
6270                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6271                         cpu_to_le16(2000);
6272         } else {
6273 #endif                          /* CONFIG_IPW2200_MONITOR */
6274                 /* If we are roaming, then make this a directed scan for the
6275                  * current network.  Otherwise, ensure that every other scan
6276                  * is a fast channel hop scan */
6277                 if ((priv->status & STATUS_ROAMING)
6278                     || (!(priv->status & STATUS_ASSOCIATED)
6279                         && (priv->config & CFG_STATIC_ESSID)
6280                         && (le32_to_cpu(scan.full_scan_index) % 2))) {
6281                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6282                         if (err) {
6283                                 IPW_DEBUG_HC("Attempt to send SSID command "
6284                                              "failed.\n");
6285                                 goto done;
6286                         }
6287
6288                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6289                 } else
6290                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6291
6292                 ipw_add_scan_channels(priv, &scan, scan_type);
6293 #ifdef CONFIG_IPW2200_MONITOR
6294         }
6295 #endif
6296
6297 send_request:
6298         err = ipw_send_scan_request_ext(priv, &scan);
6299         if (err) {
6300                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6301                 goto done;
6302         }
6303
6304         priv->status |= STATUS_SCANNING;
6305         priv->status &= ~STATUS_SCAN_PENDING;
6306         queue_delayed_work(priv->workqueue, &priv->scan_check,
6307                            IPW_SCAN_CHECK_WATCHDOG);
6308 done:
6309         mutex_unlock(&priv->mutex);
6310         return err;
6311 }
6312
6313 static void ipw_request_passive_scan(struct work_struct *work)
6314 {
6315         struct ipw_priv *priv =
6316                 container_of(work, struct ipw_priv, request_passive_scan);
6317         ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE);
6318 }
6319
6320 static void ipw_request_scan(struct work_struct *work)
6321 {
6322         struct ipw_priv *priv =
6323                 container_of(work, struct ipw_priv, request_scan.work);
6324         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE);
6325 }
6326
6327 static void ipw_bg_abort_scan(struct work_struct *work)
6328 {
6329         struct ipw_priv *priv =
6330                 container_of(work, struct ipw_priv, abort_scan);
6331         mutex_lock(&priv->mutex);
6332         ipw_abort_scan(priv);
6333         mutex_unlock(&priv->mutex);
6334 }
6335
6336 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6337 {
6338         /* This is called when wpa_supplicant loads and closes the driver
6339          * interface. */
6340         priv->ieee->wpa_enabled = value;
6341         return 0;
6342 }
6343
6344 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6345 {
6346         struct ieee80211_device *ieee = priv->ieee;
6347         struct ieee80211_security sec = {
6348                 .flags = SEC_AUTH_MODE,
6349         };
6350         int ret = 0;
6351
6352         if (value & IW_AUTH_ALG_SHARED_KEY) {
6353                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6354                 ieee->open_wep = 0;
6355         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6356                 sec.auth_mode = WLAN_AUTH_OPEN;
6357                 ieee->open_wep = 1;
6358         } else if (value & IW_AUTH_ALG_LEAP) {
6359                 sec.auth_mode = WLAN_AUTH_LEAP;
6360                 ieee->open_wep = 1;
6361         } else
6362                 return -EINVAL;
6363
6364         if (ieee->set_security)
6365                 ieee->set_security(ieee->dev, &sec);
6366         else
6367                 ret = -EOPNOTSUPP;
6368
6369         return ret;
6370 }
6371
6372 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6373                                 int wpa_ie_len)
6374 {
6375         /* make sure WPA is enabled */
6376         ipw_wpa_enable(priv, 1);
6377 }
6378
6379 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6380                             char *capabilities, int length)
6381 {
6382         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6383
6384         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6385                                 capabilities);
6386 }
6387
6388 /*
6389  * WE-18 support
6390  */
6391
6392 /* SIOCSIWGENIE */
6393 static int ipw_wx_set_genie(struct net_device *dev,
6394                             struct iw_request_info *info,
6395                             union iwreq_data *wrqu, char *extra)
6396 {
6397         struct ipw_priv *priv = ieee80211_priv(dev);
6398         struct ieee80211_device *ieee = priv->ieee;
6399         u8 *buf;
6400         int err = 0;
6401
6402         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6403             (wrqu->data.length && extra == NULL))
6404                 return -EINVAL;
6405
6406         if (wrqu->data.length) {
6407                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6408                 if (buf == NULL) {
6409                         err = -ENOMEM;
6410                         goto out;
6411                 }
6412
6413                 memcpy(buf, extra, wrqu->data.length);
6414                 kfree(ieee->wpa_ie);
6415                 ieee->wpa_ie = buf;
6416                 ieee->wpa_ie_len = wrqu->data.length;
6417         } else {
6418                 kfree(ieee->wpa_ie);
6419                 ieee->wpa_ie = NULL;
6420                 ieee->wpa_ie_len = 0;
6421         }
6422
6423         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6424       out:
6425         return err;
6426 }
6427
6428 /* SIOCGIWGENIE */
6429 static int ipw_wx_get_genie(struct net_device *dev,
6430                             struct iw_request_info *info,
6431                             union iwreq_data *wrqu, char *extra)
6432 {
6433         struct ipw_priv *priv = ieee80211_priv(dev);
6434         struct ieee80211_device *ieee = priv->ieee;
6435         int err = 0;
6436
6437         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6438                 wrqu->data.length = 0;
6439                 goto out;
6440         }
6441
6442         if (wrqu->data.length < ieee->wpa_ie_len) {
6443                 err = -E2BIG;
6444                 goto out;
6445         }
6446
6447         wrqu->data.length = ieee->wpa_ie_len;
6448         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6449
6450       out:
6451         return err;
6452 }
6453
6454 static int wext_cipher2level(int cipher)
6455 {
6456         switch (cipher) {
6457         case IW_AUTH_CIPHER_NONE:
6458                 return SEC_LEVEL_0;
6459         case IW_AUTH_CIPHER_WEP40:
6460         case IW_AUTH_CIPHER_WEP104:
6461                 return SEC_LEVEL_1;
6462         case IW_AUTH_CIPHER_TKIP:
6463                 return SEC_LEVEL_2;
6464         case IW_AUTH_CIPHER_CCMP:
6465                 return SEC_LEVEL_3;
6466         default:
6467                 return -1;
6468         }
6469 }
6470
6471 /* SIOCSIWAUTH */
6472 static int ipw_wx_set_auth(struct net_device *dev,
6473                            struct iw_request_info *info,
6474                            union iwreq_data *wrqu, char *extra)
6475 {
6476         struct ipw_priv *priv = ieee80211_priv(dev);
6477         struct ieee80211_device *ieee = priv->ieee;
6478         struct iw_param *param = &wrqu->param;
6479         struct ieee80211_crypt_data *crypt;
6480         unsigned long flags;
6481         int ret = 0;
6482
6483         switch (param->flags & IW_AUTH_INDEX) {
6484         case IW_AUTH_WPA_VERSION:
6485                 break;
6486         case IW_AUTH_CIPHER_PAIRWISE:
6487                 ipw_set_hw_decrypt_unicast(priv,
6488                                            wext_cipher2level(param->value));
6489                 break;
6490         case IW_AUTH_CIPHER_GROUP:
6491                 ipw_set_hw_decrypt_multicast(priv,
6492                                              wext_cipher2level(param->value));
6493                 break;
6494         case IW_AUTH_KEY_MGMT:
6495                 /*
6496                  * ipw2200 does not use these parameters
6497                  */
6498                 break;
6499
6500         case IW_AUTH_TKIP_COUNTERMEASURES:
6501                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6502                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6503                         break;
6504
6505                 flags = crypt->ops->get_flags(crypt->priv);
6506
6507                 if (param->value)
6508                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6509                 else
6510                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6511
6512                 crypt->ops->set_flags(flags, crypt->priv);
6513
6514                 break;
6515
6516         case IW_AUTH_DROP_UNENCRYPTED:{
6517                         /* HACK:
6518                          *
6519                          * wpa_supplicant calls set_wpa_enabled when the driver
6520                          * is loaded and unloaded, regardless of if WPA is being
6521                          * used.  No other calls are made which can be used to
6522                          * determine if encryption will be used or not prior to
6523                          * association being expected.  If encryption is not being
6524                          * used, drop_unencrypted is set to false, else true -- we
6525                          * can use this to determine if the CAP_PRIVACY_ON bit should
6526                          * be set.
6527                          */
6528                         struct ieee80211_security sec = {
6529                                 .flags = SEC_ENABLED,
6530                                 .enabled = param->value,
6531                         };
6532                         priv->ieee->drop_unencrypted = param->value;
6533                         /* We only change SEC_LEVEL for open mode. Others
6534                          * are set by ipw_wpa_set_encryption.
6535                          */
6536                         if (!param->value) {
6537                                 sec.flags |= SEC_LEVEL;
6538                                 sec.level = SEC_LEVEL_0;
6539                         } else {
6540                                 sec.flags |= SEC_LEVEL;
6541                                 sec.level = SEC_LEVEL_1;
6542                         }
6543                         if (priv->ieee->set_security)
6544                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6545                         break;
6546                 }
6547
6548         case IW_AUTH_80211_AUTH_ALG:
6549                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6550                 break;
6551
6552         case IW_AUTH_WPA_ENABLED:
6553                 ret = ipw_wpa_enable(priv, param->value);
6554                 ipw_disassociate(priv);
6555                 break;
6556
6557         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6558                 ieee->ieee802_1x = param->value;
6559                 break;
6560
6561         case IW_AUTH_PRIVACY_INVOKED:
6562                 ieee->privacy_invoked = param->value;
6563                 break;
6564
6565         default:
6566                 return -EOPNOTSUPP;
6567         }
6568         return ret;
6569 }
6570
6571 /* SIOCGIWAUTH */
6572 static int ipw_wx_get_auth(struct net_device *dev,
6573                            struct iw_request_info *info,
6574                            union iwreq_data *wrqu, char *extra)
6575 {
6576         struct ipw_priv *priv = ieee80211_priv(dev);
6577         struct ieee80211_device *ieee = priv->ieee;
6578         struct ieee80211_crypt_data *crypt;
6579         struct iw_param *param = &wrqu->param;
6580         int ret = 0;
6581
6582         switch (param->flags & IW_AUTH_INDEX) {
6583         case IW_AUTH_WPA_VERSION:
6584         case IW_AUTH_CIPHER_PAIRWISE:
6585         case IW_AUTH_CIPHER_GROUP:
6586         case IW_AUTH_KEY_MGMT:
6587                 /*
6588                  * wpa_supplicant will control these internally
6589                  */
6590                 ret = -EOPNOTSUPP;
6591                 break;
6592
6593         case IW_AUTH_TKIP_COUNTERMEASURES:
6594                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6595                 if (!crypt || !crypt->ops->get_flags)
6596                         break;
6597
6598                 param->value = (crypt->ops->get_flags(crypt->priv) &
6599                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6600
6601                 break;
6602
6603         case IW_AUTH_DROP_UNENCRYPTED:
6604                 param->value = ieee->drop_unencrypted;
6605                 break;
6606
6607         case IW_AUTH_80211_AUTH_ALG:
6608                 param->value = ieee->sec.auth_mode;
6609                 break;
6610
6611         case IW_AUTH_WPA_ENABLED:
6612                 param->value = ieee->wpa_enabled;
6613                 break;
6614
6615         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6616                 param->value = ieee->ieee802_1x;
6617                 break;
6618
6619         case IW_AUTH_ROAMING_CONTROL:
6620         case IW_AUTH_PRIVACY_INVOKED:
6621                 param->value = ieee->privacy_invoked;
6622                 break;
6623
6624         default:
6625                 return -EOPNOTSUPP;
6626         }
6627         return 0;
6628 }
6629
6630 /* SIOCSIWENCODEEXT */
6631 static int ipw_wx_set_encodeext(struct net_device *dev,
6632                                 struct iw_request_info *info,
6633                                 union iwreq_data *wrqu, char *extra)
6634 {
6635         struct ipw_priv *priv = ieee80211_priv(dev);
6636         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6637
6638         if (hwcrypto) {
6639                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6640                         /* IPW HW can't build TKIP MIC,
6641                            host decryption still needed */
6642                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6643                                 priv->ieee->host_mc_decrypt = 1;
6644                         else {
6645                                 priv->ieee->host_encrypt = 0;
6646                                 priv->ieee->host_encrypt_msdu = 1;
6647                                 priv->ieee->host_decrypt = 1;
6648                         }
6649                 } else {
6650                         priv->ieee->host_encrypt = 0;
6651                         priv->ieee->host_encrypt_msdu = 0;
6652                         priv->ieee->host_decrypt = 0;
6653                         priv->ieee->host_mc_decrypt = 0;
6654                 }
6655         }
6656
6657         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6658 }
6659
6660 /* SIOCGIWENCODEEXT */
6661 static int ipw_wx_get_encodeext(struct net_device *dev,
6662                                 struct iw_request_info *info,
6663                                 union iwreq_data *wrqu, char *extra)
6664 {
6665         struct ipw_priv *priv = ieee80211_priv(dev);
6666         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6667 }
6668
6669 /* SIOCSIWMLME */
6670 static int ipw_wx_set_mlme(struct net_device *dev,
6671                            struct iw_request_info *info,
6672                            union iwreq_data *wrqu, char *extra)
6673 {
6674         struct ipw_priv *priv = ieee80211_priv(dev);
6675         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6676         u16 reason;
6677
6678         reason = cpu_to_le16(mlme->reason_code);
6679
6680         switch (mlme->cmd) {
6681         case IW_MLME_DEAUTH:
6682                 /* silently ignore */
6683                 break;
6684
6685         case IW_MLME_DISASSOC:
6686                 ipw_disassociate(priv);
6687                 break;
6688
6689         default:
6690                 return -EOPNOTSUPP;
6691         }
6692         return 0;
6693 }
6694
6695 #ifdef CONFIG_IPW2200_QOS
6696
6697 /* QoS */
6698 /*
6699 * get the modulation type of the current network or
6700 * the card current mode
6701 */
6702 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6703 {
6704         u8 mode = 0;
6705
6706         if (priv->status & STATUS_ASSOCIATED) {
6707                 unsigned long flags;
6708
6709                 spin_lock_irqsave(&priv->ieee->lock, flags);
6710                 mode = priv->assoc_network->mode;
6711                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6712         } else {
6713                 mode = priv->ieee->mode;
6714         }
6715         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6716         return mode;
6717 }
6718
6719 /*
6720 * Handle management frame beacon and probe response
6721 */
6722 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6723                                          int active_network,
6724                                          struct ieee80211_network *network)
6725 {
6726         u32 size = sizeof(struct ieee80211_qos_parameters);
6727
6728         if (network->capability & WLAN_CAPABILITY_IBSS)
6729                 network->qos_data.active = network->qos_data.supported;
6730
6731         if (network->flags & NETWORK_HAS_QOS_MASK) {
6732                 if (active_network &&
6733                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6734                         network->qos_data.active = network->qos_data.supported;
6735
6736                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6737                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6738                     (network->qos_data.old_param_count !=
6739                      network->qos_data.param_count)) {
6740                         network->qos_data.old_param_count =
6741                             network->qos_data.param_count;
6742                         schedule_work(&priv->qos_activate);
6743                         IPW_DEBUG_QOS("QoS parameters change call "
6744                                       "qos_activate\n");
6745                 }
6746         } else {
6747                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6748                         memcpy(&network->qos_data.parameters,
6749                                &def_parameters_CCK, size);
6750                 else
6751                         memcpy(&network->qos_data.parameters,
6752                                &def_parameters_OFDM, size);
6753
6754                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6755                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6756                         schedule_work(&priv->qos_activate);
6757                 }
6758
6759                 network->qos_data.active = 0;
6760                 network->qos_data.supported = 0;
6761         }
6762         if ((priv->status & STATUS_ASSOCIATED) &&
6763             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6764                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6765                         if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6766                             !(network->flags & NETWORK_EMPTY_ESSID))
6767                                 if ((network->ssid_len ==
6768                                      priv->assoc_network->ssid_len) &&
6769                                     !memcmp(network->ssid,
6770                                             priv->assoc_network->ssid,
6771                                             network->ssid_len)) {
6772                                         queue_work(priv->workqueue,
6773                                                    &priv->merge_networks);
6774                                 }
6775         }
6776
6777         return 0;
6778 }
6779
6780 /*
6781 * This function set up the firmware to support QoS. It sends
6782 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6783 */
6784 static int ipw_qos_activate(struct ipw_priv *priv,
6785                             struct ieee80211_qos_data *qos_network_data)
6786 {
6787         int err;
6788         struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6789         struct ieee80211_qos_parameters *active_one = NULL;
6790         u32 size = sizeof(struct ieee80211_qos_parameters);
6791         u32 burst_duration;
6792         int i;
6793         u8 type;
6794
6795         type = ipw_qos_current_mode(priv);
6796
6797         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6798         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6799         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6800         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6801
6802         if (qos_network_data == NULL) {
6803                 if (type == IEEE_B) {
6804                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6805                         active_one = &def_parameters_CCK;
6806                 } else
6807                         active_one = &def_parameters_OFDM;
6808
6809                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6810                 burst_duration = ipw_qos_get_burst_duration(priv);
6811                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6812                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6813                             (u16)burst_duration;
6814         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6815                 if (type == IEEE_B) {
6816                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6817                                       type);
6818                         if (priv->qos_data.qos_enable == 0)
6819                                 active_one = &def_parameters_CCK;
6820                         else
6821                                 active_one = priv->qos_data.def_qos_parm_CCK;
6822                 } else {
6823                         if (priv->qos_data.qos_enable == 0)
6824                                 active_one = &def_parameters_OFDM;
6825                         else
6826                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6827                 }
6828                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6829         } else {
6830                 unsigned long flags;
6831                 int active;
6832
6833                 spin_lock_irqsave(&priv->ieee->lock, flags);
6834                 active_one = &(qos_network_data->parameters);
6835                 qos_network_data->old_param_count =
6836                     qos_network_data->param_count;
6837                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6838                 active = qos_network_data->supported;
6839                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6840
6841                 if (active == 0) {
6842                         burst_duration = ipw_qos_get_burst_duration(priv);
6843                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6844                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6845                                     tx_op_limit[i] = (u16)burst_duration;
6846                 }
6847         }
6848
6849         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6850         for (i = 0; i < 3; i++) {
6851                 int j;
6852                 for (j = 0; j < QOS_QUEUE_NUM; j++) {
6853                         qos_parameters[i].cw_min[j] = cpu_to_le16(qos_parameters[i].cw_min[j]);
6854                         qos_parameters[i].cw_max[j] = cpu_to_le16(qos_parameters[i].cw_max[j]);
6855                         qos_parameters[i].tx_op_limit[j] = cpu_to_le16(qos_parameters[i].tx_op_limit[j]);
6856                 }
6857         }
6858
6859         err = ipw_send_qos_params_command(priv,
6860                                           (struct ieee80211_qos_parameters *)
6861                                           &(qos_parameters[0]));
6862         if (err)
6863                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6864
6865         return err;
6866 }
6867
6868 /*
6869 * send IPW_CMD_WME_INFO to the firmware
6870 */
6871 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6872 {
6873         int ret = 0;
6874         struct ieee80211_qos_information_element qos_info;
6875
6876         if (priv == NULL)
6877                 return -1;
6878
6879         qos_info.elementID = QOS_ELEMENT_ID;
6880         qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6881
6882         qos_info.version = QOS_VERSION_1;
6883         qos_info.ac_info = 0;
6884
6885         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6886         qos_info.qui_type = QOS_OUI_TYPE;
6887         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6888
6889         ret = ipw_send_qos_info_command(priv, &qos_info);
6890         if (ret != 0) {
6891                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6892         }
6893         return ret;
6894 }
6895
6896 /*
6897 * Set the QoS parameter with the association request structure
6898 */
6899 static int ipw_qos_association(struct ipw_priv *priv,
6900                                struct ieee80211_network *network)
6901 {
6902         int err = 0;
6903         struct ieee80211_qos_data *qos_data = NULL;
6904         struct ieee80211_qos_data ibss_data = {
6905                 .supported = 1,
6906                 .active = 1,
6907         };
6908
6909         switch (priv->ieee->iw_mode) {
6910         case IW_MODE_ADHOC:
6911                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
6912
6913                 qos_data = &ibss_data;
6914                 break;
6915
6916         case IW_MODE_INFRA:
6917                 qos_data = &network->qos_data;
6918                 break;
6919
6920         default:
6921                 BUG();
6922                 break;
6923         }
6924
6925         err = ipw_qos_activate(priv, qos_data);
6926         if (err) {
6927                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
6928                 return err;
6929         }
6930
6931         if (priv->qos_data.qos_enable && qos_data->supported) {
6932                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
6933                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
6934                 return ipw_qos_set_info_element(priv);
6935         }
6936
6937         return 0;
6938 }
6939
6940 /*
6941 * handling the beaconing responses. if we get different QoS setting
6942 * off the network from the associated setting, adjust the QoS
6943 * setting
6944 */
6945 static int ipw_qos_association_resp(struct ipw_priv *priv,
6946                                     struct ieee80211_network *network)
6947 {
6948         int ret = 0;
6949         unsigned long flags;
6950         u32 size = sizeof(struct ieee80211_qos_parameters);
6951         int set_qos_param = 0;
6952
6953         if ((priv == NULL) || (network == NULL) ||
6954             (priv->assoc_network == NULL))
6955                 return ret;
6956
6957         if (!(priv->status & STATUS_ASSOCIATED))
6958                 return ret;
6959
6960         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
6961                 return ret;
6962
6963         spin_lock_irqsave(&priv->ieee->lock, flags);
6964         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
6965                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
6966                        sizeof(struct ieee80211_qos_data));
6967                 priv->assoc_network->qos_data.active = 1;
6968                 if ((network->qos_data.old_param_count !=
6969                      network->qos_data.param_count)) {
6970                         set_qos_param = 1;
6971                         network->qos_data.old_param_count =
6972                             network->qos_data.param_count;
6973                 }
6974
6975         } else {
6976                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
6977                         memcpy(&priv->assoc_network->qos_data.parameters,
6978                                &def_parameters_CCK, size);
6979                 else
6980                         memcpy(&priv->assoc_network->qos_data.parameters,
6981                                &def_parameters_OFDM, size);
6982                 priv->assoc_network->qos_data.active = 0;
6983                 priv->assoc_network->qos_data.supported = 0;
6984                 set_qos_param = 1;
6985         }
6986
6987         spin_unlock_irqrestore(&priv->ieee->lock, flags);
6988
6989         if (set_qos_param == 1)
6990                 schedule_work(&priv->qos_activate);
6991
6992         return ret;
6993 }
6994
6995 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
6996 {
6997         u32 ret = 0;
6998
6999         if ((priv == NULL))
7000                 return 0;
7001
7002         if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7003                 ret = priv->qos_data.burst_duration_CCK;
7004         else
7005                 ret = priv->qos_data.burst_duration_OFDM;
7006
7007         return ret;
7008 }
7009
7010 /*
7011 * Initialize the setting of QoS global
7012 */
7013 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7014                          int burst_enable, u32 burst_duration_CCK,
7015                          u32 burst_duration_OFDM)
7016 {
7017         priv->qos_data.qos_enable = enable;
7018
7019         if (priv->qos_data.qos_enable) {
7020                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7021                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7022                 IPW_DEBUG_QOS("QoS is enabled\n");
7023         } else {
7024                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7025                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7026                 IPW_DEBUG_QOS("QoS is not enabled\n");
7027         }
7028
7029         priv->qos_data.burst_enable = burst_enable;
7030
7031         if (burst_enable) {
7032                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7033                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7034         } else {
7035                 priv->qos_data.burst_duration_CCK = 0;
7036                 priv->qos_data.burst_duration_OFDM = 0;
7037         }
7038 }
7039
7040 /*
7041 * map the packet priority to the right TX Queue
7042 */
7043 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7044 {
7045         if (priority > 7 || !priv->qos_data.qos_enable)
7046                 priority = 0;
7047
7048         return from_priority_to_tx_queue[priority] - 1;
7049 }
7050
7051 static int ipw_is_qos_active(struct net_device *dev,
7052                              struct sk_buff *skb)
7053 {
7054         struct ipw_priv *priv = ieee80211_priv(dev);
7055         struct ieee80211_qos_data *qos_data = NULL;
7056         int active, supported;
7057         u8 *daddr = skb->data + ETH_ALEN;
7058         int unicast = !is_multicast_ether_addr(daddr);
7059
7060         if (!(priv->status & STATUS_ASSOCIATED))
7061                 return 0;
7062
7063         qos_data = &priv->assoc_network->qos_data;
7064
7065         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7066                 if (unicast == 0)
7067                         qos_data->active = 0;
7068                 else
7069                         qos_data->active = qos_data->supported;
7070         }
7071         active = qos_data->active;
7072         supported = qos_data->supported;
7073         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7074                       "unicast %d\n",
7075                       priv->qos_data.qos_enable, active, supported, unicast);
7076         if (active && priv->qos_data.qos_enable)
7077                 return 1;
7078
7079         return 0;
7080
7081 }
7082 /*
7083 * add QoS parameter to the TX command
7084 */
7085 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7086                                         u16 priority,
7087                                         struct tfd_data *tfd)
7088 {
7089         int tx_queue_id = 0;
7090
7091
7092         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7093         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7094
7095         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7096                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7097                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7098         }
7099         return 0;
7100 }
7101
7102 /*
7103 * background support to run QoS activate functionality
7104 */
7105 static void ipw_bg_qos_activate(struct work_struct *work)
7106 {
7107         struct ipw_priv *priv =
7108                 container_of(work, struct ipw_priv, qos_activate);
7109
7110         if (priv == NULL)
7111                 return;
7112
7113         mutex_lock(&priv->mutex);
7114
7115         if (priv->status & STATUS_ASSOCIATED)
7116                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7117
7118         mutex_unlock(&priv->mutex);
7119 }
7120
7121 static int ipw_handle_probe_response(struct net_device *dev,
7122                                      struct ieee80211_probe_response *resp,
7123                                      struct ieee80211_network *network)
7124 {
7125         struct ipw_priv *priv = ieee80211_priv(dev);
7126         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7127                               (network == priv->assoc_network));
7128
7129         ipw_qos_handle_probe_response(priv, active_network, network);
7130
7131         return 0;
7132 }
7133
7134 static int ipw_handle_beacon(struct net_device *dev,
7135                              struct ieee80211_beacon *resp,
7136                              struct ieee80211_network *network)
7137 {
7138         struct ipw_priv *priv = ieee80211_priv(dev);
7139         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7140                               (network == priv->assoc_network));
7141
7142         ipw_qos_handle_probe_response(priv, active_network, network);
7143
7144         return 0;
7145 }
7146
7147 static int ipw_handle_assoc_response(struct net_device *dev,
7148                                      struct ieee80211_assoc_response *resp,
7149                                      struct ieee80211_network *network)
7150 {
7151         struct ipw_priv *priv = ieee80211_priv(dev);
7152         ipw_qos_association_resp(priv, network);
7153         return 0;
7154 }
7155
7156 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7157                                        *qos_param)
7158 {
7159         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7160                                 sizeof(*qos_param) * 3, qos_param);
7161 }
7162
7163 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7164                                      *qos_param)
7165 {
7166         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7167                                 qos_param);
7168 }
7169
7170 #endif                          /* CONFIG_IPW2200_QOS */
7171
7172 static int ipw_associate_network(struct ipw_priv *priv,
7173                                  struct ieee80211_network *network,
7174                                  struct ipw_supported_rates *rates, int roaming)
7175 {
7176         int err;
7177
7178         if (priv->config & CFG_FIXED_RATE)
7179                 ipw_set_fixed_rate(priv, network->mode);
7180
7181         if (!(priv->config & CFG_STATIC_ESSID)) {
7182                 priv->essid_len = min(network->ssid_len,
7183                                       (u8) IW_ESSID_MAX_SIZE);
7184                 memcpy(priv->essid, network->ssid, priv->essid_len);
7185         }
7186
7187         network->last_associate = jiffies;
7188
7189         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7190         priv->assoc_request.channel = network->channel;
7191         priv->assoc_request.auth_key = 0;
7192
7193         if ((priv->capability & CAP_PRIVACY_ON) &&
7194             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7195                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7196                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7197
7198                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7199                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7200
7201         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7202                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7203                 priv->assoc_request.auth_type = AUTH_LEAP;
7204         else
7205                 priv->assoc_request.auth_type = AUTH_OPEN;
7206
7207         if (priv->ieee->wpa_ie_len) {
7208                 priv->assoc_request.policy_support = 0x02;      /* RSN active */
7209                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7210                                  priv->ieee->wpa_ie_len);
7211         }
7212
7213         /*
7214          * It is valid for our ieee device to support multiple modes, but
7215          * when it comes to associating to a given network we have to choose
7216          * just one mode.
7217          */
7218         if (network->mode & priv->ieee->mode & IEEE_A)
7219                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7220         else if (network->mode & priv->ieee->mode & IEEE_G)
7221                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7222         else if (network->mode & priv->ieee->mode & IEEE_B)
7223                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7224
7225         priv->assoc_request.capability = network->capability;
7226         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7227             && !(priv->config & CFG_PREAMBLE_LONG)) {
7228                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7229         } else {
7230                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7231
7232                 /* Clear the short preamble if we won't be supporting it */
7233                 priv->assoc_request.capability &=
7234                     ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7235         }
7236
7237         /* Clear capability bits that aren't used in Ad Hoc */
7238         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7239                 priv->assoc_request.capability &=
7240                     ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7241
7242         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7243                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7244                         roaming ? "Rea" : "A",
7245                         escape_essid(priv->essid, priv->essid_len),
7246                         network->channel,
7247                         ipw_modes[priv->assoc_request.ieee_mode],
7248                         rates->num_rates,
7249                         (priv->assoc_request.preamble_length ==
7250                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7251                         network->capability &
7252                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7253                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7254                         priv->capability & CAP_PRIVACY_ON ?
7255                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7256                          "(open)") : "",
7257                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7258                         priv->capability & CAP_PRIVACY_ON ?
7259                         '1' + priv->ieee->sec.active_key : '.',
7260                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7261
7262         priv->assoc_request.beacon_interval = network->beacon_interval;
7263         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7264             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7265                 priv->assoc_request.assoc_type = HC_IBSS_START;
7266                 priv->assoc_request.assoc_tsf_msw = 0;
7267                 priv->assoc_request.assoc_tsf_lsw = 0;
7268         } else {
7269                 if (unlikely(roaming))
7270                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7271                 else
7272                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7273                 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7274                 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7275         }
7276
7277         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7278
7279         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7280                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7281                 priv->assoc_request.atim_window = network->atim_window;
7282         } else {
7283                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7284                 priv->assoc_request.atim_window = 0;
7285         }
7286
7287         priv->assoc_request.listen_interval = network->listen_interval;
7288
7289         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7290         if (err) {
7291                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7292                 return err;
7293         }
7294
7295         rates->ieee_mode = priv->assoc_request.ieee_mode;
7296         rates->purpose = IPW_RATE_CONNECT;
7297         ipw_send_supported_rates(priv, rates);
7298
7299         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7300                 priv->sys_config.dot11g_auto_detection = 1;
7301         else
7302                 priv->sys_config.dot11g_auto_detection = 0;
7303
7304         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7305                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7306         else
7307                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7308
7309         err = ipw_send_system_config(priv);
7310         if (err) {
7311                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7312                 return err;
7313         }
7314
7315         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7316         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7317         if (err) {
7318                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7319                 return err;
7320         }
7321
7322         /*
7323          * If preemption is enabled, it is possible for the association
7324          * to complete before we return from ipw_send_associate.  Therefore
7325          * we have to be sure and update our priviate data first.
7326          */
7327         priv->channel = network->channel;
7328         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7329         priv->status |= STATUS_ASSOCIATING;
7330         priv->status &= ~STATUS_SECURITY_UPDATED;
7331
7332         priv->assoc_network = network;
7333
7334 #ifdef CONFIG_IPW2200_QOS
7335         ipw_qos_association(priv, network);
7336 #endif
7337
7338         err = ipw_send_associate(priv, &priv->assoc_request);
7339         if (err) {
7340                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7341                 return err;
7342         }
7343
7344         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
7345                   escape_essid(priv->essid, priv->essid_len),
7346                   MAC_ARG(priv->bssid));
7347
7348         return 0;
7349 }
7350
7351 static void ipw_roam(void *data)
7352 {
7353         struct ipw_priv *priv = data;
7354         struct ieee80211_network *network = NULL;
7355         struct ipw_network_match match = {
7356                 .network = priv->assoc_network
7357         };
7358
7359         /* The roaming process is as follows:
7360          *
7361          * 1.  Missed beacon threshold triggers the roaming process by
7362          *     setting the status ROAM bit and requesting a scan.
7363          * 2.  When the scan completes, it schedules the ROAM work
7364          * 3.  The ROAM work looks at all of the known networks for one that
7365          *     is a better network than the currently associated.  If none
7366          *     found, the ROAM process is over (ROAM bit cleared)
7367          * 4.  If a better network is found, a disassociation request is
7368          *     sent.
7369          * 5.  When the disassociation completes, the roam work is again
7370          *     scheduled.  The second time through, the driver is no longer
7371          *     associated, and the newly selected network is sent an
7372          *     association request.
7373          * 6.  At this point ,the roaming process is complete and the ROAM
7374          *     status bit is cleared.
7375          */
7376
7377         /* If we are no longer associated, and the roaming bit is no longer
7378          * set, then we are not actively roaming, so just return */
7379         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7380                 return;
7381
7382         if (priv->status & STATUS_ASSOCIATED) {
7383                 /* First pass through ROAM process -- look for a better
7384                  * network */
7385                 unsigned long flags;
7386                 u8 rssi = priv->assoc_network->stats.rssi;
7387                 priv->assoc_network->stats.rssi = -128;
7388                 spin_lock_irqsave(&priv->ieee->lock, flags);
7389                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7390                         if (network != priv->assoc_network)
7391                                 ipw_best_network(priv, &match, network, 1);
7392                 }
7393                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7394                 priv->assoc_network->stats.rssi = rssi;
7395
7396                 if (match.network == priv->assoc_network) {
7397                         IPW_DEBUG_ASSOC("No better APs in this network to "
7398                                         "roam to.\n");
7399                         priv->status &= ~STATUS_ROAMING;
7400                         ipw_debug_config(priv);
7401                         return;
7402                 }
7403
7404                 ipw_send_disassociate(priv, 1);
7405                 priv->assoc_network = match.network;
7406
7407                 return;
7408         }
7409
7410         /* Second pass through ROAM process -- request association */
7411         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7412         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7413         priv->status &= ~STATUS_ROAMING;
7414 }
7415
7416 static void ipw_bg_roam(struct work_struct *work)
7417 {
7418         struct ipw_priv *priv =
7419                 container_of(work, struct ipw_priv, roam);
7420         mutex_lock(&priv->mutex);
7421         ipw_roam(priv);
7422         mutex_unlock(&priv->mutex);
7423 }
7424
7425 static int ipw_associate(void *data)
7426 {
7427         struct ipw_priv *priv = data;
7428
7429         struct ieee80211_network *network = NULL;
7430         struct ipw_network_match match = {
7431                 .network = NULL
7432         };
7433         struct ipw_supported_rates *rates;
7434         struct list_head *element;
7435         unsigned long flags;
7436
7437         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7438                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7439                 return 0;
7440         }
7441
7442         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7443                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7444                                 "progress)\n");
7445                 return 0;
7446         }
7447
7448         if (priv->status & STATUS_DISASSOCIATING) {
7449                 IPW_DEBUG_ASSOC("Not attempting association (in "
7450                                 "disassociating)\n ");
7451                 queue_work(priv->workqueue, &priv->associate);
7452                 return 0;
7453         }
7454
7455         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7456                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7457                                 "initialized)\n");
7458                 return 0;
7459         }
7460
7461         if (!(priv->config & CFG_ASSOCIATE) &&
7462             !(priv->config & (CFG_STATIC_ESSID |
7463                               CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7464                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7465                 return 0;
7466         }
7467
7468         /* Protect our use of the network_list */
7469         spin_lock_irqsave(&priv->ieee->lock, flags);
7470         list_for_each_entry(network, &priv->ieee->network_list, list)
7471             ipw_best_network(priv, &match, network, 0);
7472
7473         network = match.network;
7474         rates = &match.rates;
7475
7476         if (network == NULL &&
7477             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7478             priv->config & CFG_ADHOC_CREATE &&
7479             priv->config & CFG_STATIC_ESSID &&
7480             priv->config & CFG_STATIC_CHANNEL &&
7481             !list_empty(&priv->ieee->network_free_list)) {
7482                 element = priv->ieee->network_free_list.next;
7483                 network = list_entry(element, struct ieee80211_network, list);
7484                 ipw_adhoc_create(priv, network);
7485                 rates = &priv->rates;
7486                 list_del(element);
7487                 list_add_tail(&network->list, &priv->ieee->network_list);
7488         }
7489         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7490
7491         /* If we reached the end of the list, then we don't have any valid
7492          * matching APs */
7493         if (!network) {
7494                 ipw_debug_config(priv);
7495
7496                 if (!(priv->status & STATUS_SCANNING)) {
7497                         if (!(priv->config & CFG_SPEED_SCAN))
7498                                 queue_delayed_work(priv->workqueue,
7499                                                    &priv->request_scan,
7500                                                    SCAN_INTERVAL);
7501                         else
7502                                 queue_delayed_work(priv->workqueue,
7503                                                    &priv->request_scan, 0);
7504                 }
7505
7506                 return 0;
7507         }
7508
7509         ipw_associate_network(priv, network, rates, 0);
7510
7511         return 1;
7512 }
7513
7514 static void ipw_bg_associate(struct work_struct *work)
7515 {
7516         struct ipw_priv *priv =
7517                 container_of(work, struct ipw_priv, associate);
7518         mutex_lock(&priv->mutex);
7519         ipw_associate(priv);
7520         mutex_unlock(&priv->mutex);
7521 }
7522
7523 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7524                                       struct sk_buff *skb)
7525 {
7526         struct ieee80211_hdr *hdr;
7527         u16 fc;
7528
7529         hdr = (struct ieee80211_hdr *)skb->data;
7530         fc = le16_to_cpu(hdr->frame_ctl);
7531         if (!(fc & IEEE80211_FCTL_PROTECTED))
7532                 return;
7533
7534         fc &= ~IEEE80211_FCTL_PROTECTED;
7535         hdr->frame_ctl = cpu_to_le16(fc);
7536         switch (priv->ieee->sec.level) {
7537         case SEC_LEVEL_3:
7538                 /* Remove CCMP HDR */
7539                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7540                         skb->data + IEEE80211_3ADDR_LEN + 8,
7541                         skb->len - IEEE80211_3ADDR_LEN - 8);
7542                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7543                 break;
7544         case SEC_LEVEL_2:
7545                 break;
7546         case SEC_LEVEL_1:
7547                 /* Remove IV */
7548                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7549                         skb->data + IEEE80211_3ADDR_LEN + 4,
7550                         skb->len - IEEE80211_3ADDR_LEN - 4);
7551                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7552                 break;
7553         case SEC_LEVEL_0:
7554                 break;
7555         default:
7556                 printk(KERN_ERR "Unknow security level %d\n",
7557                        priv->ieee->sec.level);
7558                 break;
7559         }
7560 }
7561
7562 static void ipw_handle_data_packet(struct ipw_priv *priv,
7563                                    struct ipw_rx_mem_buffer *rxb,
7564                                    struct ieee80211_rx_stats *stats)
7565 {
7566         struct ieee80211_hdr_4addr *hdr;
7567         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7568
7569         /* We received data from the HW, so stop the watchdog */
7570         priv->net_dev->trans_start = jiffies;
7571
7572         /* We only process data packets if the
7573          * interface is open */
7574         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7575                      skb_tailroom(rxb->skb))) {
7576                 priv->ieee->stats.rx_errors++;
7577                 priv->wstats.discard.misc++;
7578                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7579                 return;
7580         } else if (unlikely(!netif_running(priv->net_dev))) {
7581                 priv->ieee->stats.rx_dropped++;
7582                 priv->wstats.discard.misc++;
7583                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7584                 return;
7585         }
7586
7587         /* Advance skb->data to the start of the actual payload */
7588         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7589
7590         /* Set the size of the skb to the size of the frame */
7591         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7592
7593         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7594
7595         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7596         hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7597         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7598             (is_multicast_ether_addr(hdr->addr1) ?
7599              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7600                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7601
7602         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7603                 priv->ieee->stats.rx_errors++;
7604         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7605                 rxb->skb = NULL;
7606                 __ipw_led_activity_on(priv);
7607         }
7608 }
7609
7610 #ifdef CONFIG_IPW2200_RADIOTAP
7611 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7612                                            struct ipw_rx_mem_buffer *rxb,
7613                                            struct ieee80211_rx_stats *stats)
7614 {
7615         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7616         struct ipw_rx_frame *frame = &pkt->u.frame;
7617
7618         /* initial pull of some data */
7619         u16 received_channel = frame->received_channel;
7620         u8 antennaAndPhy = frame->antennaAndPhy;
7621         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7622         u16 pktrate = frame->rate;
7623
7624         /* Magic struct that slots into the radiotap header -- no reason
7625          * to build this manually element by element, we can write it much
7626          * more efficiently than we can parse it. ORDER MATTERS HERE */
7627         struct ipw_rt_hdr *ipw_rt;
7628
7629         short len = le16_to_cpu(pkt->u.frame.length);
7630
7631         /* We received data from the HW, so stop the watchdog */
7632         priv->net_dev->trans_start = jiffies;
7633
7634         /* We only process data packets if the
7635          * interface is open */
7636         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7637                      skb_tailroom(rxb->skb))) {
7638                 priv->ieee->stats.rx_errors++;
7639                 priv->wstats.discard.misc++;
7640                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7641                 return;
7642         } else if (unlikely(!netif_running(priv->net_dev))) {
7643                 priv->ieee->stats.rx_dropped++;
7644                 priv->wstats.discard.misc++;
7645                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7646                 return;
7647         }
7648
7649         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7650          * that now */
7651         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7652                 /* FIXME: Should alloc bigger skb instead */
7653                 priv->ieee->stats.rx_dropped++;
7654                 priv->wstats.discard.misc++;
7655                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7656                 return;
7657         }
7658
7659         /* copy the frame itself */
7660         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7661                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7662
7663         /* Zero the radiotap static buffer  ...  We only need to zero the bytes NOT
7664          * part of our real header, saves a little time.
7665          *
7666          * No longer necessary since we fill in all our data.  Purge before merging
7667          * patch officially.
7668          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7669          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7670          */
7671
7672         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7673
7674         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7675         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7676         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr);      /* total header+data */
7677
7678         /* Big bitfield of all the fields we provide in radiotap */
7679         ipw_rt->rt_hdr.it_present =
7680             ((1 << IEEE80211_RADIOTAP_TSFT) |
7681              (1 << IEEE80211_RADIOTAP_FLAGS) |
7682              (1 << IEEE80211_RADIOTAP_RATE) |
7683              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7684              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7685              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7686              (1 << IEEE80211_RADIOTAP_ANTENNA));
7687
7688         /* Zero the flags, we'll add to them as we go */
7689         ipw_rt->rt_flags = 0;
7690         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7691                                frame->parent_tsf[2] << 16 |
7692                                frame->parent_tsf[1] << 8  |
7693                                frame->parent_tsf[0]);
7694
7695         /* Convert signal to DBM */
7696         ipw_rt->rt_dbmsignal = antsignal;
7697         ipw_rt->rt_dbmnoise = frame->noise;
7698
7699         /* Convert the channel data and set the flags */
7700         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7701         if (received_channel > 14) {    /* 802.11a */
7702                 ipw_rt->rt_chbitmask =
7703                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7704         } else if (antennaAndPhy & 32) {        /* 802.11b */
7705                 ipw_rt->rt_chbitmask =
7706                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7707         } else {                /* 802.11g */
7708                 ipw_rt->rt_chbitmask =
7709                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7710         }
7711
7712         /* set the rate in multiples of 500k/s */
7713         switch (pktrate) {
7714         case IPW_TX_RATE_1MB:
7715                 ipw_rt->rt_rate = 2;
7716                 break;
7717         case IPW_TX_RATE_2MB:
7718                 ipw_rt->rt_rate = 4;
7719                 break;
7720         case IPW_TX_RATE_5MB:
7721                 ipw_rt->rt_rate = 10;
7722                 break;
7723         case IPW_TX_RATE_6MB:
7724                 ipw_rt->rt_rate = 12;
7725                 break;
7726         case IPW_TX_RATE_9MB:
7727                 ipw_rt->rt_rate = 18;
7728                 break;
7729         case IPW_TX_RATE_11MB:
7730                 ipw_rt->rt_rate = 22;
7731                 break;
7732         case IPW_TX_RATE_12MB:
7733                 ipw_rt->rt_rate = 24;
7734                 break;
7735         case IPW_TX_RATE_18MB:
7736                 ipw_rt->rt_rate = 36;
7737                 break;
7738         case IPW_TX_RATE_24MB:
7739                 ipw_rt->rt_rate = 48;
7740                 break;
7741         case IPW_TX_RATE_36MB:
7742                 ipw_rt->rt_rate = 72;
7743                 break;
7744         case IPW_TX_RATE_48MB:
7745                 ipw_rt->rt_rate = 96;
7746                 break;
7747         case IPW_TX_RATE_54MB:
7748                 ipw_rt->rt_rate = 108;
7749                 break;
7750         default:
7751                 ipw_rt->rt_rate = 0;
7752                 break;
7753         }
7754
7755         /* antenna number */
7756         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7757
7758         /* set the preamble flag if we have it */
7759         if ((antennaAndPhy & 64))
7760                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7761
7762         /* Set the size of the skb to the size of the frame */
7763         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7764
7765         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7766
7767         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7768                 priv->ieee->stats.rx_errors++;
7769         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7770                 rxb->skb = NULL;
7771                 /* no LED during capture */
7772         }
7773 }
7774 #endif
7775
7776 #ifdef CONFIG_IPW2200_PROMISCUOUS
7777 #define ieee80211_is_probe_response(fc) \
7778    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7779     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7780
7781 #define ieee80211_is_management(fc) \
7782    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7783
7784 #define ieee80211_is_control(fc) \
7785    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7786
7787 #define ieee80211_is_data(fc) \
7788    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7789
7790 #define ieee80211_is_assoc_request(fc) \
7791    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7792
7793 #define ieee80211_is_reassoc_request(fc) \
7794    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7795
7796 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7797                                       struct ipw_rx_mem_buffer *rxb,
7798                                       struct ieee80211_rx_stats *stats)
7799 {
7800         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7801         struct ipw_rx_frame *frame = &pkt->u.frame;
7802         struct ipw_rt_hdr *ipw_rt;
7803
7804         /* First cache any information we need before we overwrite
7805          * the information provided in the skb from the hardware */
7806         struct ieee80211_hdr *hdr;
7807         u16 channel = frame->received_channel;
7808         u8 phy_flags = frame->antennaAndPhy;
7809         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7810         s8 noise = frame->noise;
7811         u8 rate = frame->rate;
7812         short len = le16_to_cpu(pkt->u.frame.length);
7813         struct sk_buff *skb;
7814         int hdr_only = 0;
7815         u16 filter = priv->prom_priv->filter;
7816
7817         /* If the filter is set to not include Rx frames then return */
7818         if (filter & IPW_PROM_NO_RX)
7819                 return;
7820
7821         /* We received data from the HW, so stop the watchdog */
7822         priv->prom_net_dev->trans_start = jiffies;
7823
7824         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7825                 priv->prom_priv->ieee->stats.rx_errors++;
7826                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7827                 return;
7828         }
7829
7830         /* We only process data packets if the interface is open */
7831         if (unlikely(!netif_running(priv->prom_net_dev))) {
7832                 priv->prom_priv->ieee->stats.rx_dropped++;
7833                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7834                 return;
7835         }
7836
7837         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7838          * that now */
7839         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7840                 /* FIXME: Should alloc bigger skb instead */
7841                 priv->prom_priv->ieee->stats.rx_dropped++;
7842                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7843                 return;
7844         }
7845
7846         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7847         if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
7848                 if (filter & IPW_PROM_NO_MGMT)
7849                         return;
7850                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7851                         hdr_only = 1;
7852         } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
7853                 if (filter & IPW_PROM_NO_CTL)
7854                         return;
7855                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7856                         hdr_only = 1;
7857         } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
7858                 if (filter & IPW_PROM_NO_DATA)
7859                         return;
7860                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7861                         hdr_only = 1;
7862         }
7863
7864         /* Copy the SKB since this is for the promiscuous side */
7865         skb = skb_copy(rxb->skb, GFP_ATOMIC);
7866         if (skb == NULL) {
7867                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7868                 return;
7869         }
7870
7871         /* copy the frame data to write after where the radiotap header goes */
7872         ipw_rt = (void *)skb->data;
7873
7874         if (hdr_only)
7875                 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
7876
7877         memcpy(ipw_rt->payload, hdr, len);
7878
7879         /* Zero the radiotap static buffer  ...  We only need to zero the bytes
7880          * NOT part of our real header, saves a little time.
7881          *
7882          * No longer necessary since we fill in all our data.  Purge before
7883          * merging patch officially.
7884          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7885          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7886          */
7887
7888         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7889         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7890         ipw_rt->rt_hdr.it_len = sizeof(*ipw_rt);        /* total header+data */
7891
7892         /* Set the size of the skb to the size of the frame */
7893         skb_put(skb, ipw_rt->rt_hdr.it_len + len);
7894
7895         /* Big bitfield of all the fields we provide in radiotap */
7896         ipw_rt->rt_hdr.it_present =
7897             ((1 << IEEE80211_RADIOTAP_TSFT) |
7898              (1 << IEEE80211_RADIOTAP_FLAGS) |
7899              (1 << IEEE80211_RADIOTAP_RATE) |
7900              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7901              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7902              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7903              (1 << IEEE80211_RADIOTAP_ANTENNA));
7904
7905         /* Zero the flags, we'll add to them as we go */
7906         ipw_rt->rt_flags = 0;
7907         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7908                                frame->parent_tsf[2] << 16 |
7909                                frame->parent_tsf[1] << 8  |
7910                                frame->parent_tsf[0]);
7911
7912         /* Convert to DBM */
7913         ipw_rt->rt_dbmsignal = signal;
7914         ipw_rt->rt_dbmnoise = noise;
7915
7916         /* Convert the channel data and set the flags */
7917         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
7918         if (channel > 14) {     /* 802.11a */
7919                 ipw_rt->rt_chbitmask =
7920                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7921         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
7922                 ipw_rt->rt_chbitmask =
7923                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7924         } else {                /* 802.11g */
7925                 ipw_rt->rt_chbitmask =
7926                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7927         }
7928
7929         /* set the rate in multiples of 500k/s */
7930         switch (rate) {
7931         case IPW_TX_RATE_1MB:
7932                 ipw_rt->rt_rate = 2;
7933                 break;
7934         case IPW_TX_RATE_2MB:
7935                 ipw_rt->rt_rate = 4;
7936                 break;
7937         case IPW_TX_RATE_5MB:
7938                 ipw_rt->rt_rate = 10;
7939                 break;
7940         case IPW_TX_RATE_6MB:
7941                 ipw_rt->rt_rate = 12;
7942                 break;
7943         case IPW_TX_RATE_9MB:
7944                 ipw_rt->rt_rate = 18;
7945                 break;
7946         case IPW_TX_RATE_11MB:
7947                 ipw_rt->rt_rate = 22;
7948                 break;
7949         case IPW_TX_RATE_12MB:
7950                 ipw_rt->rt_rate = 24;
7951                 break;
7952         case IPW_TX_RATE_18MB:
7953                 ipw_rt->rt_rate = 36;
7954                 break;
7955         case IPW_TX_RATE_24MB:
7956                 ipw_rt->rt_rate = 48;
7957                 break;
7958         case IPW_TX_RATE_36MB:
7959                 ipw_rt->rt_rate = 72;
7960                 break;
7961         case IPW_TX_RATE_48MB:
7962                 ipw_rt->rt_rate = 96;
7963                 break;
7964         case IPW_TX_RATE_54MB:
7965                 ipw_rt->rt_rate = 108;
7966                 break;
7967         default:
7968                 ipw_rt->rt_rate = 0;
7969                 break;
7970         }
7971
7972         /* antenna number */
7973         ipw_rt->rt_antenna = (phy_flags & 3);
7974
7975         /* set the preamble flag if we have it */
7976         if (phy_flags & (1 << 6))
7977                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7978
7979         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
7980
7981         if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
7982                 priv->prom_priv->ieee->stats.rx_errors++;
7983                 dev_kfree_skb_any(skb);
7984         }
7985 }
7986 #endif
7987
7988 static int is_network_packet(struct ipw_priv *priv,
7989                                     struct ieee80211_hdr_4addr *header)
7990 {
7991         /* Filter incoming packets to determine if they are targetted toward
7992          * this network, discarding packets coming from ourselves */
7993         switch (priv->ieee->iw_mode) {
7994         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
7995                 /* packets from our adapter are dropped (echo) */
7996                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
7997                         return 0;
7998
7999                 /* {broad,multi}cast packets to our BSSID go through */
8000                 if (is_multicast_ether_addr(header->addr1))
8001                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8002
8003                 /* packets to our adapter go through */
8004                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8005                                ETH_ALEN);
8006
8007         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8008                 /* packets from our adapter are dropped (echo) */
8009                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8010                         return 0;
8011
8012                 /* {broad,multi}cast packets to our BSS go through */
8013                 if (is_multicast_ether_addr(header->addr1))
8014                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8015
8016                 /* packets to our adapter go through */
8017                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8018                                ETH_ALEN);
8019         }
8020
8021         return 1;
8022 }
8023
8024 #define IPW_PACKET_RETRY_TIME HZ
8025
8026 static  int is_duplicate_packet(struct ipw_priv *priv,
8027                                       struct ieee80211_hdr_4addr *header)
8028 {
8029         u16 sc = le16_to_cpu(header->seq_ctl);
8030         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8031         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8032         u16 *last_seq, *last_frag;
8033         unsigned long *last_time;
8034
8035         switch (priv->ieee->iw_mode) {
8036         case IW_MODE_ADHOC:
8037                 {
8038                         struct list_head *p;
8039                         struct ipw_ibss_seq *entry = NULL;
8040                         u8 *mac = header->addr2;
8041                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8042
8043                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
8044                                 entry =
8045                                     list_entry(p, struct ipw_ibss_seq, list);
8046                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
8047                                         break;
8048                         }
8049                         if (p == &priv->ibss_mac_hash[index]) {
8050                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8051                                 if (!entry) {
8052                                         IPW_ERROR
8053                                             ("Cannot malloc new mac entry\n");
8054                                         return 0;
8055                                 }
8056                                 memcpy(entry->mac, mac, ETH_ALEN);
8057                                 entry->seq_num = seq;
8058                                 entry->frag_num = frag;
8059                                 entry->packet_time = jiffies;
8060                                 list_add(&entry->list,
8061                                          &priv->ibss_mac_hash[index]);
8062                                 return 0;
8063                         }
8064                         last_seq = &entry->seq_num;
8065                         last_frag = &entry->frag_num;
8066                         last_time = &entry->packet_time;
8067                         break;
8068                 }
8069         case IW_MODE_INFRA:
8070                 last_seq = &priv->last_seq_num;
8071                 last_frag = &priv->last_frag_num;
8072                 last_time = &priv->last_packet_time;
8073                 break;
8074         default:
8075                 return 0;
8076         }
8077         if ((*last_seq == seq) &&
8078             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8079                 if (*last_frag == frag)
8080                         goto drop;
8081                 if (*last_frag + 1 != frag)
8082                         /* out-of-order fragment */
8083                         goto drop;
8084         } else
8085                 *last_seq = seq;
8086
8087         *last_frag = frag;
8088         *last_time = jiffies;
8089         return 0;
8090
8091       drop:
8092         /* Comment this line now since we observed the card receives
8093          * duplicate packets but the FCTL_RETRY bit is not set in the
8094          * IBSS mode with fragmentation enabled.
8095          BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8096         return 1;
8097 }
8098
8099 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8100                                    struct ipw_rx_mem_buffer *rxb,
8101                                    struct ieee80211_rx_stats *stats)
8102 {
8103         struct sk_buff *skb = rxb->skb;
8104         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8105         struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8106             (skb->data + IPW_RX_FRAME_SIZE);
8107
8108         ieee80211_rx_mgt(priv->ieee, header, stats);
8109
8110         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8111             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8112               IEEE80211_STYPE_PROBE_RESP) ||
8113              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8114               IEEE80211_STYPE_BEACON))) {
8115                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8116                         ipw_add_station(priv, header->addr2);
8117         }
8118
8119         if (priv->config & CFG_NET_STATS) {
8120                 IPW_DEBUG_HC("sending stat packet\n");
8121
8122                 /* Set the size of the skb to the size of the full
8123                  * ipw header and 802.11 frame */
8124                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8125                         IPW_RX_FRAME_SIZE);
8126
8127                 /* Advance past the ipw packet header to the 802.11 frame */
8128                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8129
8130                 /* Push the ieee80211_rx_stats before the 802.11 frame */
8131                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8132
8133                 skb->dev = priv->ieee->dev;
8134
8135                 /* Point raw at the ieee80211_stats */
8136                 skb->mac.raw = skb->data;
8137
8138                 skb->pkt_type = PACKET_OTHERHOST;
8139                 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8140                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8141                 netif_rx(skb);
8142                 rxb->skb = NULL;
8143         }
8144 }
8145
8146 /*
8147  * Main entry function for recieving a packet with 80211 headers.  This
8148  * should be called when ever the FW has notified us that there is a new
8149  * skb in the recieve queue.
8150  */
8151 static void ipw_rx(struct ipw_priv *priv)
8152 {
8153         struct ipw_rx_mem_buffer *rxb;
8154         struct ipw_rx_packet *pkt;
8155         struct ieee80211_hdr_4addr *header;
8156         u32 r, w, i;
8157         u8 network_packet;
8158
8159         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8160         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8161         i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
8162
8163         while (i != r) {
8164                 rxb = priv->rxq->queue[i];
8165                 if (unlikely(rxb == NULL)) {
8166                         printk(KERN_CRIT "Queue not allocated!\n");
8167                         break;
8168                 }
8169                 priv->rxq->queue[i] = NULL;
8170
8171                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8172                                             IPW_RX_BUF_SIZE,
8173                                             PCI_DMA_FROMDEVICE);
8174
8175                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8176                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8177                              pkt->header.message_type,
8178                              pkt->header.rx_seq_num, pkt->header.control_bits);
8179
8180                 switch (pkt->header.message_type) {
8181                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8182                                 struct ieee80211_rx_stats stats = {
8183                                         .rssi = pkt->u.frame.rssi_dbm -
8184                                             IPW_RSSI_TO_DBM,
8185                                         .signal =
8186                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
8187                                             IPW_RSSI_TO_DBM + 0x100,
8188                                         .noise =
8189                                             le16_to_cpu(pkt->u.frame.noise),
8190                                         .rate = pkt->u.frame.rate,
8191                                         .mac_time = jiffies,
8192                                         .received_channel =
8193                                             pkt->u.frame.received_channel,
8194                                         .freq =
8195                                             (pkt->u.frame.
8196                                              control & (1 << 0)) ?
8197                                             IEEE80211_24GHZ_BAND :
8198                                             IEEE80211_52GHZ_BAND,
8199                                         .len = le16_to_cpu(pkt->u.frame.length),
8200                                 };
8201
8202                                 if (stats.rssi != 0)
8203                                         stats.mask |= IEEE80211_STATMASK_RSSI;
8204                                 if (stats.signal != 0)
8205                                         stats.mask |= IEEE80211_STATMASK_SIGNAL;
8206                                 if (stats.noise != 0)
8207                                         stats.mask |= IEEE80211_STATMASK_NOISE;
8208                                 if (stats.rate != 0)
8209                                         stats.mask |= IEEE80211_STATMASK_RATE;
8210
8211                                 priv->rx_packets++;
8212
8213 #ifdef CONFIG_IPW2200_PROMISCUOUS
8214         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8215                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8216 #endif
8217
8218 #ifdef CONFIG_IPW2200_MONITOR
8219                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8220 #ifdef CONFIG_IPW2200_RADIOTAP
8221
8222                 ipw_handle_data_packet_monitor(priv,
8223                                                rxb,
8224                                                &stats);
8225 #else
8226                 ipw_handle_data_packet(priv, rxb,
8227                                        &stats);
8228 #endif
8229                                         break;
8230                                 }
8231 #endif
8232
8233                                 header =
8234                                     (struct ieee80211_hdr_4addr *)(rxb->skb->
8235                                                                    data +
8236                                                                    IPW_RX_FRAME_SIZE);
8237                                 /* TODO: Check Ad-Hoc dest/source and make sure
8238                                  * that we are actually parsing these packets
8239                                  * correctly -- we should probably use the
8240                                  * frame control of the packet and disregard
8241                                  * the current iw_mode */
8242
8243                                 network_packet =
8244                                     is_network_packet(priv, header);
8245                                 if (network_packet && priv->assoc_network) {
8246                                         priv->assoc_network->stats.rssi =
8247                                             stats.rssi;
8248                                         priv->exp_avg_rssi =
8249                                             exponential_average(priv->exp_avg_rssi,
8250                                             stats.rssi, DEPTH_RSSI);
8251                                 }
8252
8253                                 IPW_DEBUG_RX("Frame: len=%u\n",
8254                                              le16_to_cpu(pkt->u.frame.length));
8255
8256                                 if (le16_to_cpu(pkt->u.frame.length) <
8257                                     ieee80211_get_hdrlen(le16_to_cpu(
8258                                                     header->frame_ctl))) {
8259                                         IPW_DEBUG_DROP
8260                                             ("Received packet is too small. "
8261                                              "Dropping.\n");
8262                                         priv->ieee->stats.rx_errors++;
8263                                         priv->wstats.discard.misc++;
8264                                         break;
8265                                 }
8266
8267                                 switch (WLAN_FC_GET_TYPE
8268                                         (le16_to_cpu(header->frame_ctl))) {
8269
8270                                 case IEEE80211_FTYPE_MGMT:
8271                                         ipw_handle_mgmt_packet(priv, rxb,
8272                                                                &stats);
8273                                         break;
8274
8275                                 case IEEE80211_FTYPE_CTL:
8276                                         break;
8277
8278                                 case IEEE80211_FTYPE_DATA:
8279                                         if (unlikely(!network_packet ||
8280                                                      is_duplicate_packet(priv,
8281                                                                          header)))
8282                                         {
8283                                                 IPW_DEBUG_DROP("Dropping: "
8284                                                                MAC_FMT ", "
8285                                                                MAC_FMT ", "
8286                                                                MAC_FMT "\n",
8287                                                                MAC_ARG(header->
8288                                                                        addr1),
8289                                                                MAC_ARG(header->
8290                                                                        addr2),
8291                                                                MAC_ARG(header->
8292                                                                        addr3));
8293                                                 break;
8294                                         }
8295
8296                                         ipw_handle_data_packet(priv, rxb,
8297                                                                &stats);
8298
8299                                         break;
8300                                 }
8301                                 break;
8302                         }
8303
8304                 case RX_HOST_NOTIFICATION_TYPE:{
8305                                 IPW_DEBUG_RX
8306                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8307                                      pkt->u.notification.subtype,
8308                                      pkt->u.notification.flags,
8309                                      le16_to_cpu(pkt->u.notification.size));
8310                                 ipw_rx_notification(priv, &pkt->u.notification);
8311                                 break;
8312                         }
8313
8314                 default:
8315                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8316                                      pkt->header.message_type);
8317                         break;
8318                 }
8319
8320                 /* For now we just don't re-use anything.  We can tweak this
8321                  * later to try and re-use notification packets and SKBs that
8322                  * fail to Rx correctly */
8323                 if (rxb->skb != NULL) {
8324                         dev_kfree_skb_any(rxb->skb);
8325                         rxb->skb = NULL;
8326                 }
8327
8328                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8329                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8330                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8331
8332                 i = (i + 1) % RX_QUEUE_SIZE;
8333         }
8334
8335         /* Backtrack one entry */
8336         priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
8337
8338         ipw_rx_queue_restock(priv);
8339 }
8340
8341 #define DEFAULT_RTS_THRESHOLD     2304U
8342 #define MIN_RTS_THRESHOLD         1U
8343 #define MAX_RTS_THRESHOLD         2304U
8344 #define DEFAULT_BEACON_INTERVAL   100U
8345 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8346 #define DEFAULT_LONG_RETRY_LIMIT  4U
8347
8348 /**
8349  * ipw_sw_reset
8350  * @option: options to control different reset behaviour
8351  *          0 = reset everything except the 'disable' module_param
8352  *          1 = reset everything and print out driver info (for probe only)
8353  *          2 = reset everything
8354  */
8355 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8356 {
8357         int band, modulation;
8358         int old_mode = priv->ieee->iw_mode;
8359
8360         /* Initialize module parameter values here */
8361         priv->config = 0;
8362
8363         /* We default to disabling the LED code as right now it causes
8364          * too many systems to lock up... */
8365         if (!led)
8366                 priv->config |= CFG_NO_LED;
8367
8368         if (associate)
8369                 priv->config |= CFG_ASSOCIATE;
8370         else
8371                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8372
8373         if (auto_create)
8374                 priv->config |= CFG_ADHOC_CREATE;
8375         else
8376                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8377
8378         priv->config &= ~CFG_STATIC_ESSID;
8379         priv->essid_len = 0;
8380         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8381
8382         if (disable && option) {
8383                 priv->status |= STATUS_RF_KILL_SW;
8384                 IPW_DEBUG_INFO("Radio disabled.\n");
8385         }
8386
8387         if (channel != 0) {
8388                 priv->config |= CFG_STATIC_CHANNEL;
8389                 priv->channel = channel;
8390                 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8391                 /* TODO: Validate that provided channel is in range */
8392         }
8393 #ifdef CONFIG_IPW2200_QOS
8394         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8395                      burst_duration_CCK, burst_duration_OFDM);
8396 #endif                          /* CONFIG_IPW2200_QOS */
8397
8398         switch (mode) {
8399         case 1:
8400                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8401                 priv->net_dev->type = ARPHRD_ETHER;
8402
8403                 break;
8404 #ifdef CONFIG_IPW2200_MONITOR
8405         case 2:
8406                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8407 #ifdef CONFIG_IPW2200_RADIOTAP
8408                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8409 #else
8410                 priv->net_dev->type = ARPHRD_IEEE80211;
8411 #endif
8412                 break;
8413 #endif
8414         default:
8415         case 0:
8416                 priv->net_dev->type = ARPHRD_ETHER;
8417                 priv->ieee->iw_mode = IW_MODE_INFRA;
8418                 break;
8419         }
8420
8421         if (hwcrypto) {
8422                 priv->ieee->host_encrypt = 0;
8423                 priv->ieee->host_encrypt_msdu = 0;
8424                 priv->ieee->host_decrypt = 0;
8425                 priv->ieee->host_mc_decrypt = 0;
8426         }
8427         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8428
8429         /* IPW2200/2915 is abled to do hardware fragmentation. */
8430         priv->ieee->host_open_frag = 0;
8431
8432         if ((priv->pci_dev->device == 0x4223) ||
8433             (priv->pci_dev->device == 0x4224)) {
8434                 if (option == 1)
8435                         printk(KERN_INFO DRV_NAME
8436                                ": Detected Intel PRO/Wireless 2915ABG Network "
8437                                "Connection\n");
8438                 priv->ieee->abg_true = 1;
8439                 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8440                 modulation = IEEE80211_OFDM_MODULATION |
8441                     IEEE80211_CCK_MODULATION;
8442                 priv->adapter = IPW_2915ABG;
8443                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8444         } else {
8445                 if (option == 1)
8446                         printk(KERN_INFO DRV_NAME
8447                                ": Detected Intel PRO/Wireless 2200BG Network "
8448                                "Connection\n");
8449
8450                 priv->ieee->abg_true = 0;
8451                 band = IEEE80211_24GHZ_BAND;
8452                 modulation = IEEE80211_OFDM_MODULATION |
8453                     IEEE80211_CCK_MODULATION;
8454                 priv->adapter = IPW_2200BG;
8455                 priv->ieee->mode = IEEE_G | IEEE_B;
8456         }
8457
8458         priv->ieee->freq_band = band;
8459         priv->ieee->modulation = modulation;
8460
8461         priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8462
8463         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8464         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8465
8466         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8467         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8468         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8469
8470         /* If power management is turned on, default to AC mode */
8471         priv->power_mode = IPW_POWER_AC;
8472         priv->tx_power = IPW_TX_POWER_DEFAULT;
8473
8474         return old_mode == priv->ieee->iw_mode;
8475 }
8476
8477 /*
8478  * This file defines the Wireless Extension handlers.  It does not
8479  * define any methods of hardware manipulation and relies on the
8480  * functions defined in ipw_main to provide the HW interaction.
8481  *
8482  * The exception to this is the use of the ipw_get_ordinal()
8483  * function used to poll the hardware vs. making unecessary calls.
8484  *
8485  */
8486
8487 static int ipw_wx_get_name(struct net_device *dev,
8488                            struct iw_request_info *info,
8489                            union iwreq_data *wrqu, char *extra)
8490 {
8491         struct ipw_priv *priv = ieee80211_priv(dev);
8492         mutex_lock(&priv->mutex);
8493         if (priv->status & STATUS_RF_KILL_MASK)
8494                 strcpy(wrqu->name, "radio off");
8495         else if (!(priv->status & STATUS_ASSOCIATED))
8496                 strcpy(wrqu->name, "unassociated");
8497         else
8498                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8499                          ipw_modes[priv->assoc_request.ieee_mode]);
8500         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8501         mutex_unlock(&priv->mutex);
8502         return 0;
8503 }
8504
8505 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8506 {
8507         if (channel == 0) {
8508                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8509                 priv->config &= ~CFG_STATIC_CHANNEL;
8510                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8511                                 "parameters.\n");
8512                 ipw_associate(priv);
8513                 return 0;
8514         }
8515
8516         priv->config |= CFG_STATIC_CHANNEL;
8517
8518         if (priv->channel == channel) {
8519                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8520                                channel);
8521                 return 0;
8522         }
8523
8524         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8525         priv->channel = channel;
8526
8527 #ifdef CONFIG_IPW2200_MONITOR
8528         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8529                 int i;
8530                 if (priv->status & STATUS_SCANNING) {
8531                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8532                                        "channel change.\n");
8533                         ipw_abort_scan(priv);
8534                 }
8535
8536                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8537                         udelay(10);
8538
8539                 if (priv->status & STATUS_SCANNING)
8540                         IPW_DEBUG_SCAN("Still scanning...\n");
8541                 else
8542                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8543                                        1000 - i);
8544
8545                 return 0;
8546         }
8547 #endif                          /* CONFIG_IPW2200_MONITOR */
8548
8549         /* Network configuration changed -- force [re]association */
8550         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8551         if (!ipw_disassociate(priv))
8552                 ipw_associate(priv);
8553
8554         return 0;
8555 }
8556
8557 static int ipw_wx_set_freq(struct net_device *dev,
8558                            struct iw_request_info *info,
8559                            union iwreq_data *wrqu, char *extra)
8560 {
8561         struct ipw_priv *priv = ieee80211_priv(dev);
8562         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8563         struct iw_freq *fwrq = &wrqu->freq;
8564         int ret = 0, i;
8565         u8 channel, flags;
8566         int band;
8567
8568         if (fwrq->m == 0) {
8569                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8570                 mutex_lock(&priv->mutex);
8571                 ret = ipw_set_channel(priv, 0);
8572                 mutex_unlock(&priv->mutex);
8573                 return ret;
8574         }
8575         /* if setting by freq convert to channel */
8576         if (fwrq->e == 1) {
8577                 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8578                 if (channel == 0)
8579                         return -EINVAL;
8580         } else
8581                 channel = fwrq->m;
8582
8583         if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8584                 return -EINVAL;
8585
8586         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8587                 i = ieee80211_channel_to_index(priv->ieee, channel);
8588                 if (i == -1)
8589                         return -EINVAL;
8590
8591                 flags = (band == IEEE80211_24GHZ_BAND) ?
8592                     geo->bg[i].flags : geo->a[i].flags;
8593                 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8594                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8595                         return -EINVAL;
8596                 }
8597         }
8598
8599         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8600         mutex_lock(&priv->mutex);
8601         ret = ipw_set_channel(priv, channel);
8602         mutex_unlock(&priv->mutex);
8603         return ret;
8604 }
8605
8606 static int ipw_wx_get_freq(struct net_device *dev,
8607                            struct iw_request_info *info,
8608                            union iwreq_data *wrqu, char *extra)
8609 {
8610         struct ipw_priv *priv = ieee80211_priv(dev);
8611
8612         wrqu->freq.e = 0;
8613
8614         /* If we are associated, trying to associate, or have a statically
8615          * configured CHANNEL then return that; otherwise return ANY */
8616         mutex_lock(&priv->mutex);
8617         if (priv->config & CFG_STATIC_CHANNEL ||
8618             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8619                 int i;
8620
8621                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8622                 BUG_ON(i == -1);
8623                 wrqu->freq.e = 1;
8624
8625                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8626                 case IEEE80211_52GHZ_BAND:
8627                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8628                         break;
8629
8630                 case IEEE80211_24GHZ_BAND:
8631                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8632                         break;
8633
8634                 default:
8635                         BUG();
8636                 }
8637         } else
8638                 wrqu->freq.m = 0;
8639
8640         mutex_unlock(&priv->mutex);
8641         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8642         return 0;
8643 }
8644
8645 static int ipw_wx_set_mode(struct net_device *dev,
8646                            struct iw_request_info *info,
8647                            union iwreq_data *wrqu, char *extra)
8648 {
8649         struct ipw_priv *priv = ieee80211_priv(dev);
8650         int err = 0;
8651
8652         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8653
8654         switch (wrqu->mode) {
8655 #ifdef CONFIG_IPW2200_MONITOR
8656         case IW_MODE_MONITOR:
8657 #endif
8658         case IW_MODE_ADHOC:
8659         case IW_MODE_INFRA:
8660                 break;
8661         case IW_MODE_AUTO:
8662                 wrqu->mode = IW_MODE_INFRA;
8663                 break;
8664         default:
8665                 return -EINVAL;
8666         }
8667         if (wrqu->mode == priv->ieee->iw_mode)
8668                 return 0;
8669
8670         mutex_lock(&priv->mutex);
8671
8672         ipw_sw_reset(priv, 0);
8673
8674 #ifdef CONFIG_IPW2200_MONITOR
8675         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8676                 priv->net_dev->type = ARPHRD_ETHER;
8677
8678         if (wrqu->mode == IW_MODE_MONITOR)
8679 #ifdef CONFIG_IPW2200_RADIOTAP
8680                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8681 #else
8682                 priv->net_dev->type = ARPHRD_IEEE80211;
8683 #endif
8684 #endif                          /* CONFIG_IPW2200_MONITOR */
8685
8686         /* Free the existing firmware and reset the fw_loaded
8687          * flag so ipw_load() will bring in the new firmawre */
8688         free_firmware();
8689
8690         priv->ieee->iw_mode = wrqu->mode;
8691
8692         queue_work(priv->workqueue, &priv->adapter_restart);
8693         mutex_unlock(&priv->mutex);
8694         return err;
8695 }
8696
8697 static int ipw_wx_get_mode(struct net_device *dev,
8698                            struct iw_request_info *info,
8699                            union iwreq_data *wrqu, char *extra)
8700 {
8701         struct ipw_priv *priv = ieee80211_priv(dev);
8702         mutex_lock(&priv->mutex);
8703         wrqu->mode = priv->ieee->iw_mode;
8704         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8705         mutex_unlock(&priv->mutex);
8706         return 0;
8707 }
8708
8709 /* Values are in microsecond */
8710 static const s32 timeout_duration[] = {
8711         350000,
8712         250000,
8713         75000,
8714         37000,
8715         25000,
8716 };
8717
8718 static const s32 period_duration[] = {
8719         400000,
8720         700000,
8721         1000000,
8722         1000000,
8723         1000000
8724 };
8725
8726 static int ipw_wx_get_range(struct net_device *dev,
8727                             struct iw_request_info *info,
8728                             union iwreq_data *wrqu, char *extra)
8729 {
8730         struct ipw_priv *priv = ieee80211_priv(dev);
8731         struct iw_range *range = (struct iw_range *)extra;
8732         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8733         int i = 0, j;
8734
8735         wrqu->data.length = sizeof(*range);
8736         memset(range, 0, sizeof(*range));
8737
8738         /* 54Mbs == ~27 Mb/s real (802.11g) */
8739         range->throughput = 27 * 1000 * 1000;
8740
8741         range->max_qual.qual = 100;
8742         /* TODO: Find real max RSSI and stick here */
8743         range->max_qual.level = 0;
8744         range->max_qual.noise = 0;
8745         range->max_qual.updated = 7;    /* Updated all three */
8746
8747         range->avg_qual.qual = 70;
8748         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8749         range->avg_qual.level = 0;      /* FIXME to real average level */
8750         range->avg_qual.noise = 0;
8751         range->avg_qual.updated = 7;    /* Updated all three */
8752         mutex_lock(&priv->mutex);
8753         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8754
8755         for (i = 0; i < range->num_bitrates; i++)
8756                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8757                     500000;
8758
8759         range->max_rts = DEFAULT_RTS_THRESHOLD;
8760         range->min_frag = MIN_FRAG_THRESHOLD;
8761         range->max_frag = MAX_FRAG_THRESHOLD;
8762
8763         range->encoding_size[0] = 5;
8764         range->encoding_size[1] = 13;
8765         range->num_encoding_sizes = 2;
8766         range->max_encoding_tokens = WEP_KEYS;
8767
8768         /* Set the Wireless Extension versions */
8769         range->we_version_compiled = WIRELESS_EXT;
8770         range->we_version_source = 18;
8771
8772         i = 0;
8773         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8774                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8775                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8776                             (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8777                                 continue;
8778
8779                         range->freq[i].i = geo->bg[j].channel;
8780                         range->freq[i].m = geo->bg[j].freq * 100000;
8781                         range->freq[i].e = 1;
8782                         i++;
8783                 }
8784         }
8785
8786         if (priv->ieee->mode & IEEE_A) {
8787                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8788                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8789                             (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8790                                 continue;
8791
8792                         range->freq[i].i = geo->a[j].channel;
8793                         range->freq[i].m = geo->a[j].freq * 100000;
8794                         range->freq[i].e = 1;
8795                         i++;
8796                 }
8797         }
8798
8799         range->num_channels = i;
8800         range->num_frequency = i;
8801
8802         mutex_unlock(&priv->mutex);
8803
8804         /* Event capability (kernel + driver) */
8805         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8806                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8807                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8808                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8809         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8810
8811         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8812                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8813
8814         IPW_DEBUG_WX("GET Range\n");
8815         return 0;
8816 }
8817
8818 static int ipw_wx_set_wap(struct net_device *dev,
8819                           struct iw_request_info *info,
8820                           union iwreq_data *wrqu, char *extra)
8821 {
8822         struct ipw_priv *priv = ieee80211_priv(dev);
8823
8824         static const unsigned char any[] = {
8825                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8826         };
8827         static const unsigned char off[] = {
8828                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8829         };
8830
8831         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8832                 return -EINVAL;
8833         mutex_lock(&priv->mutex);
8834         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8835             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8836                 /* we disable mandatory BSSID association */
8837                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8838                 priv->config &= ~CFG_STATIC_BSSID;
8839                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8840                                 "parameters.\n");
8841                 ipw_associate(priv);
8842                 mutex_unlock(&priv->mutex);
8843                 return 0;
8844         }
8845
8846         priv->config |= CFG_STATIC_BSSID;
8847         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8848                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8849                 mutex_unlock(&priv->mutex);
8850                 return 0;
8851         }
8852
8853         IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
8854                      MAC_ARG(wrqu->ap_addr.sa_data));
8855
8856         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8857
8858         /* Network configuration changed -- force [re]association */
8859         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8860         if (!ipw_disassociate(priv))
8861                 ipw_associate(priv);
8862
8863         mutex_unlock(&priv->mutex);
8864         return 0;
8865 }
8866
8867 static int ipw_wx_get_wap(struct net_device *dev,
8868                           struct iw_request_info *info,
8869                           union iwreq_data *wrqu, char *extra)
8870 {
8871         struct ipw_priv *priv = ieee80211_priv(dev);
8872         /* If we are associated, trying to associate, or have a statically
8873          * configured BSSID then return that; otherwise return ANY */
8874         mutex_lock(&priv->mutex);
8875         if (priv->config & CFG_STATIC_BSSID ||
8876             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8877                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8878                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8879         } else
8880                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8881
8882         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
8883                      MAC_ARG(wrqu->ap_addr.sa_data));
8884         mutex_unlock(&priv->mutex);
8885         return 0;
8886 }
8887
8888 static int ipw_wx_set_essid(struct net_device *dev,
8889                             struct iw_request_info *info,
8890                             union iwreq_data *wrqu, char *extra)
8891 {
8892         struct ipw_priv *priv = ieee80211_priv(dev);
8893         int length;
8894
8895         mutex_lock(&priv->mutex);
8896
8897         if (!wrqu->essid.flags)
8898         {
8899                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8900                 ipw_disassociate(priv);
8901                 priv->config &= ~CFG_STATIC_ESSID;
8902                 ipw_associate(priv);
8903                 mutex_unlock(&priv->mutex);
8904                 return 0;
8905         }
8906
8907         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
8908
8909         priv->config |= CFG_STATIC_ESSID;
8910
8911         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
8912             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
8913                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8914                 mutex_unlock(&priv->mutex);
8915                 return 0;
8916         }
8917
8918         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(extra, length),
8919                      length);
8920
8921         priv->essid_len = length;
8922         memcpy(priv->essid, extra, priv->essid_len);
8923
8924         /* Network configuration changed -- force [re]association */
8925         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
8926         if (!ipw_disassociate(priv))
8927                 ipw_associate(priv);
8928
8929         mutex_unlock(&priv->mutex);
8930         return 0;
8931 }
8932
8933 static int ipw_wx_get_essid(struct net_device *dev,
8934                             struct iw_request_info *info,
8935                             union iwreq_data *wrqu, char *extra)
8936 {
8937         struct ipw_priv *priv = ieee80211_priv(dev);
8938
8939         /* If we are associated, trying to associate, or have a statically
8940          * configured ESSID then return that; otherwise return ANY */
8941         mutex_lock(&priv->mutex);
8942         if (priv->config & CFG_STATIC_ESSID ||
8943             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8944                 IPW_DEBUG_WX("Getting essid: '%s'\n",
8945                              escape_essid(priv->essid, priv->essid_len));
8946                 memcpy(extra, priv->essid, priv->essid_len);
8947                 wrqu->essid.length = priv->essid_len;
8948                 wrqu->essid.flags = 1;  /* active */
8949         } else {
8950                 IPW_DEBUG_WX("Getting essid: ANY\n");
8951                 wrqu->essid.length = 0;
8952                 wrqu->essid.flags = 0;  /* active */
8953         }
8954         mutex_unlock(&priv->mutex);
8955         return 0;
8956 }
8957
8958 static int ipw_wx_set_nick(struct net_device *dev,
8959                            struct iw_request_info *info,
8960                            union iwreq_data *wrqu, char *extra)
8961 {
8962         struct ipw_priv *priv = ieee80211_priv(dev);
8963
8964         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
8965         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
8966                 return -E2BIG;
8967         mutex_lock(&priv->mutex);
8968         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
8969         memset(priv->nick, 0, sizeof(priv->nick));
8970         memcpy(priv->nick, extra, wrqu->data.length);
8971         IPW_DEBUG_TRACE("<<\n");
8972         mutex_unlock(&priv->mutex);
8973         return 0;
8974
8975 }
8976
8977 static int ipw_wx_get_nick(struct net_device *dev,
8978                            struct iw_request_info *info,
8979                            union iwreq_data *wrqu, char *extra)
8980 {
8981         struct ipw_priv *priv = ieee80211_priv(dev);
8982         IPW_DEBUG_WX("Getting nick\n");
8983         mutex_lock(&priv->mutex);
8984         wrqu->data.length = strlen(priv->nick);
8985         memcpy(extra, priv->nick, wrqu->data.length);
8986         wrqu->data.flags = 1;   /* active */
8987         mutex_unlock(&priv->mutex);
8988         return 0;
8989 }
8990
8991 static int ipw_wx_set_sens(struct net_device *dev,
8992                             struct iw_request_info *info,
8993                             union iwreq_data *wrqu, char *extra)
8994 {
8995         struct ipw_priv *priv = ieee80211_priv(dev);
8996         int err = 0;
8997
8998         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
8999         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9000         mutex_lock(&priv->mutex);
9001
9002         if (wrqu->sens.fixed == 0)
9003         {
9004                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9005                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9006                 goto out;
9007         }
9008         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9009             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9010                 err = -EINVAL;
9011                 goto out;
9012         }
9013
9014         priv->roaming_threshold = wrqu->sens.value;
9015         priv->disassociate_threshold = 3*wrqu->sens.value;
9016       out:
9017         mutex_unlock(&priv->mutex);
9018         return err;
9019 }
9020
9021 static int ipw_wx_get_sens(struct net_device *dev,
9022                             struct iw_request_info *info,
9023                             union iwreq_data *wrqu, char *extra)
9024 {
9025         struct ipw_priv *priv = ieee80211_priv(dev);
9026         mutex_lock(&priv->mutex);
9027         wrqu->sens.fixed = 1;
9028         wrqu->sens.value = priv->roaming_threshold;
9029         mutex_unlock(&priv->mutex);
9030
9031         IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9032                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9033
9034         return 0;
9035 }
9036
9037 static int ipw_wx_set_rate(struct net_device *dev,
9038                            struct iw_request_info *info,
9039                            union iwreq_data *wrqu, char *extra)
9040 {
9041         /* TODO: We should use semaphores or locks for access to priv */
9042         struct ipw_priv *priv = ieee80211_priv(dev);
9043         u32 target_rate = wrqu->bitrate.value;
9044         u32 fixed, mask;
9045
9046         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9047         /* value = X, fixed = 1 means only rate X */
9048         /* value = X, fixed = 0 means all rates lower equal X */
9049
9050         if (target_rate == -1) {
9051                 fixed = 0;
9052                 mask = IEEE80211_DEFAULT_RATES_MASK;
9053                 /* Now we should reassociate */
9054                 goto apply;
9055         }
9056
9057         mask = 0;
9058         fixed = wrqu->bitrate.fixed;
9059
9060         if (target_rate == 1000000 || !fixed)
9061                 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9062         if (target_rate == 1000000)
9063                 goto apply;
9064
9065         if (target_rate == 2000000 || !fixed)
9066                 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9067         if (target_rate == 2000000)
9068                 goto apply;
9069
9070         if (target_rate == 5500000 || !fixed)
9071                 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9072         if (target_rate == 5500000)
9073                 goto apply;
9074
9075         if (target_rate == 6000000 || !fixed)
9076                 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9077         if (target_rate == 6000000)
9078                 goto apply;
9079
9080         if (target_rate == 9000000 || !fixed)
9081                 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9082         if (target_rate == 9000000)
9083                 goto apply;
9084
9085         if (target_rate == 11000000 || !fixed)
9086                 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9087         if (target_rate == 11000000)
9088                 goto apply;
9089
9090         if (target_rate == 12000000 || !fixed)
9091                 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9092         if (target_rate == 12000000)
9093                 goto apply;
9094
9095         if (target_rate == 18000000 || !fixed)
9096                 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9097         if (target_rate == 18000000)
9098                 goto apply;
9099
9100         if (target_rate == 24000000 || !fixed)
9101                 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9102         if (target_rate == 24000000)
9103                 goto apply;
9104
9105         if (target_rate == 36000000 || !fixed)
9106                 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9107         if (target_rate == 36000000)
9108                 goto apply;
9109
9110         if (target_rate == 48000000 || !fixed)
9111                 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9112         if (target_rate == 48000000)
9113                 goto apply;
9114
9115         if (target_rate == 54000000 || !fixed)
9116                 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9117         if (target_rate == 54000000)
9118                 goto apply;
9119
9120         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9121         return -EINVAL;
9122
9123       apply:
9124         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9125                      mask, fixed ? "fixed" : "sub-rates");
9126         mutex_lock(&priv->mutex);
9127         if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9128                 priv->config &= ~CFG_FIXED_RATE;
9129                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9130         } else
9131                 priv->config |= CFG_FIXED_RATE;
9132
9133         if (priv->rates_mask == mask) {
9134                 IPW_DEBUG_WX("Mask set to current mask.\n");
9135                 mutex_unlock(&priv->mutex);
9136                 return 0;
9137         }
9138
9139         priv->rates_mask = mask;
9140
9141         /* Network configuration changed -- force [re]association */
9142         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9143         if (!ipw_disassociate(priv))
9144                 ipw_associate(priv);
9145
9146         mutex_unlock(&priv->mutex);
9147         return 0;
9148 }
9149
9150 static int ipw_wx_get_rate(struct net_device *dev,
9151                            struct iw_request_info *info,
9152                            union iwreq_data *wrqu, char *extra)
9153 {
9154         struct ipw_priv *priv = ieee80211_priv(dev);
9155         mutex_lock(&priv->mutex);
9156         wrqu->bitrate.value = priv->last_rate;
9157         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9158         mutex_unlock(&priv->mutex);
9159         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9160         return 0;
9161 }
9162
9163 static int ipw_wx_set_rts(struct net_device *dev,
9164                           struct iw_request_info *info,
9165                           union iwreq_data *wrqu, char *extra)
9166 {
9167         struct ipw_priv *priv = ieee80211_priv(dev);
9168         mutex_lock(&priv->mutex);
9169         if (wrqu->rts.disabled || !wrqu->rts.fixed)
9170                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9171         else {
9172                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9173                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9174                         mutex_unlock(&priv->mutex);
9175                         return -EINVAL;
9176                 }
9177                 priv->rts_threshold = wrqu->rts.value;
9178         }
9179
9180         ipw_send_rts_threshold(priv, priv->rts_threshold);
9181         mutex_unlock(&priv->mutex);
9182         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9183         return 0;
9184 }
9185
9186 static int ipw_wx_get_rts(struct net_device *dev,
9187                           struct iw_request_info *info,
9188                           union iwreq_data *wrqu, char *extra)
9189 {
9190         struct ipw_priv *priv = ieee80211_priv(dev);
9191         mutex_lock(&priv->mutex);
9192         wrqu->rts.value = priv->rts_threshold;
9193         wrqu->rts.fixed = 0;    /* no auto select */
9194         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9195         mutex_unlock(&priv->mutex);
9196         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9197         return 0;
9198 }
9199
9200 static int ipw_wx_set_txpow(struct net_device *dev,
9201                             struct iw_request_info *info,
9202                             union iwreq_data *wrqu, char *extra)
9203 {
9204         struct ipw_priv *priv = ieee80211_priv(dev);
9205         int err = 0;
9206
9207         mutex_lock(&priv->mutex);
9208         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9209                 err = -EINPROGRESS;
9210                 goto out;
9211         }
9212
9213         if (!wrqu->power.fixed)
9214                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9215
9216         if (wrqu->power.flags != IW_TXPOW_DBM) {
9217                 err = -EINVAL;
9218                 goto out;
9219         }
9220
9221         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9222             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9223                 err = -EINVAL;
9224                 goto out;
9225         }
9226
9227         priv->tx_power = wrqu->power.value;
9228         err = ipw_set_tx_power(priv);
9229       out:
9230         mutex_unlock(&priv->mutex);
9231         return err;
9232 }
9233
9234 static int ipw_wx_get_txpow(struct net_device *dev,
9235                             struct iw_request_info *info,
9236                             union iwreq_data *wrqu, char *extra)
9237 {
9238         struct ipw_priv *priv = ieee80211_priv(dev);
9239         mutex_lock(&priv->mutex);
9240         wrqu->power.value = priv->tx_power;
9241         wrqu->power.fixed = 1;
9242         wrqu->power.flags = IW_TXPOW_DBM;
9243         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9244         mutex_unlock(&priv->mutex);
9245
9246         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9247                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9248
9249         return 0;
9250 }
9251
9252 static int ipw_wx_set_frag(struct net_device *dev,
9253                            struct iw_request_info *info,
9254                            union iwreq_data *wrqu, char *extra)
9255 {
9256         struct ipw_priv *priv = ieee80211_priv(dev);
9257         mutex_lock(&priv->mutex);
9258         if (wrqu->frag.disabled || !wrqu->frag.fixed)
9259                 priv->ieee->fts = DEFAULT_FTS;
9260         else {
9261                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9262                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9263                         mutex_unlock(&priv->mutex);
9264                         return -EINVAL;
9265                 }
9266
9267                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9268         }
9269
9270         ipw_send_frag_threshold(priv, wrqu->frag.value);
9271         mutex_unlock(&priv->mutex);
9272         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9273         return 0;
9274 }
9275
9276 static int ipw_wx_get_frag(struct net_device *dev,
9277                            struct iw_request_info *info,
9278                            union iwreq_data *wrqu, char *extra)
9279 {
9280         struct ipw_priv *priv = ieee80211_priv(dev);
9281         mutex_lock(&priv->mutex);
9282         wrqu->frag.value = priv->ieee->fts;
9283         wrqu->frag.fixed = 0;   /* no auto select */
9284         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9285         mutex_unlock(&priv->mutex);
9286         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9287
9288         return 0;
9289 }
9290
9291 static int ipw_wx_set_retry(struct net_device *dev,
9292                             struct iw_request_info *info,
9293                             union iwreq_data *wrqu, char *extra)
9294 {
9295         struct ipw_priv *priv = ieee80211_priv(dev);
9296
9297         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9298                 return -EINVAL;
9299
9300         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9301                 return 0;
9302
9303         if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9304                 return -EINVAL;
9305
9306         mutex_lock(&priv->mutex);
9307         if (wrqu->retry.flags & IW_RETRY_SHORT)
9308                 priv->short_retry_limit = (u8) wrqu->retry.value;
9309         else if (wrqu->retry.flags & IW_RETRY_LONG)
9310                 priv->long_retry_limit = (u8) wrqu->retry.value;
9311         else {
9312                 priv->short_retry_limit = (u8) wrqu->retry.value;
9313                 priv->long_retry_limit = (u8) wrqu->retry.value;
9314         }
9315
9316         ipw_send_retry_limit(priv, priv->short_retry_limit,
9317                              priv->long_retry_limit);
9318         mutex_unlock(&priv->mutex);
9319         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9320                      priv->short_retry_limit, priv->long_retry_limit);
9321         return 0;
9322 }
9323
9324 static int ipw_wx_get_retry(struct net_device *dev,
9325                             struct iw_request_info *info,
9326                             union iwreq_data *wrqu, char *extra)
9327 {
9328         struct ipw_priv *priv = ieee80211_priv(dev);
9329
9330         mutex_lock(&priv->mutex);
9331         wrqu->retry.disabled = 0;
9332
9333         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9334                 mutex_unlock(&priv->mutex);
9335                 return -EINVAL;
9336         }
9337
9338         if (wrqu->retry.flags & IW_RETRY_LONG) {
9339                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9340                 wrqu->retry.value = priv->long_retry_limit;
9341         } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9342                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9343                 wrqu->retry.value = priv->short_retry_limit;
9344         } else {
9345                 wrqu->retry.flags = IW_RETRY_LIMIT;
9346                 wrqu->retry.value = priv->short_retry_limit;
9347         }
9348         mutex_unlock(&priv->mutex);
9349
9350         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9351
9352         return 0;
9353 }
9354
9355 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
9356                                    int essid_len)
9357 {
9358         struct ipw_scan_request_ext scan;
9359         int err = 0, scan_type;
9360
9361         if (!(priv->status & STATUS_INIT) ||
9362             (priv->status & STATUS_EXIT_PENDING))
9363                 return 0;
9364
9365         mutex_lock(&priv->mutex);
9366
9367         if (priv->status & STATUS_RF_KILL_MASK) {
9368                 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
9369                 priv->status |= STATUS_SCAN_PENDING;
9370                 goto done;
9371         }
9372
9373         IPW_DEBUG_HC("starting request direct scan!\n");
9374
9375         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
9376                 /* We should not sleep here; otherwise we will block most
9377                  * of the system (for instance, we hold rtnl_lock when we
9378                  * get here).
9379                  */
9380                 err = -EAGAIN;
9381                 goto done;
9382         }
9383         memset(&scan, 0, sizeof(scan));
9384
9385         if (priv->config & CFG_SPEED_SCAN)
9386                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9387                     cpu_to_le16(30);
9388         else
9389                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9390                     cpu_to_le16(20);
9391
9392         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
9393             cpu_to_le16(20);
9394         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
9395         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
9396
9397         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
9398
9399         err = ipw_send_ssid(priv, essid, essid_len);
9400         if (err) {
9401                 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
9402                 goto done;
9403         }
9404         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
9405
9406         ipw_add_scan_channels(priv, &scan, scan_type);
9407
9408         err = ipw_send_scan_request_ext(priv, &scan);
9409         if (err) {
9410                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
9411                 goto done;
9412         }
9413
9414         priv->status |= STATUS_SCANNING;
9415
9416       done:
9417         mutex_unlock(&priv->mutex);
9418         return err;
9419 }
9420
9421 static int ipw_wx_set_scan(struct net_device *dev,
9422                            struct iw_request_info *info,
9423                            union iwreq_data *wrqu, char *extra)
9424 {
9425         struct ipw_priv *priv = ieee80211_priv(dev);
9426         struct iw_scan_req *req = (struct iw_scan_req *)extra;
9427
9428         if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9429                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9430                         ipw_request_direct_scan(priv, req->essid,
9431                                                 req->essid_len);
9432                         return 0;
9433                 }
9434                 if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9435                         queue_work(priv->workqueue,
9436                                    &priv->request_passive_scan);
9437                         return 0;
9438                 }
9439         }
9440
9441         IPW_DEBUG_WX("Start scan\n");
9442
9443         queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
9444
9445         return 0;
9446 }
9447
9448 static int ipw_wx_get_scan(struct net_device *dev,
9449                            struct iw_request_info *info,
9450                            union iwreq_data *wrqu, char *extra)
9451 {
9452         struct ipw_priv *priv = ieee80211_priv(dev);
9453         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9454 }
9455
9456 static int ipw_wx_set_encode(struct net_device *dev,
9457                              struct iw_request_info *info,
9458                              union iwreq_data *wrqu, char *key)
9459 {
9460         struct ipw_priv *priv = ieee80211_priv(dev);
9461         int ret;
9462         u32 cap = priv->capability;
9463
9464         mutex_lock(&priv->mutex);
9465         ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9466
9467         /* In IBSS mode, we need to notify the firmware to update
9468          * the beacon info after we changed the capability. */
9469         if (cap != priv->capability &&
9470             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9471             priv->status & STATUS_ASSOCIATED)
9472                 ipw_disassociate(priv);
9473
9474         mutex_unlock(&priv->mutex);
9475         return ret;
9476 }
9477
9478 static int ipw_wx_get_encode(struct net_device *dev,
9479                              struct iw_request_info *info,
9480                              union iwreq_data *wrqu, char *key)
9481 {
9482         struct ipw_priv *priv = ieee80211_priv(dev);
9483         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9484 }
9485
9486 static int ipw_wx_set_power(struct net_device *dev,
9487                             struct iw_request_info *info,
9488                             union iwreq_data *wrqu, char *extra)
9489 {
9490         struct ipw_priv *priv = ieee80211_priv(dev);
9491         int err;
9492         mutex_lock(&priv->mutex);
9493         if (wrqu->power.disabled) {
9494                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9495                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9496                 if (err) {
9497                         IPW_DEBUG_WX("failed setting power mode.\n");
9498                         mutex_unlock(&priv->mutex);
9499                         return err;
9500                 }
9501                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9502                 mutex_unlock(&priv->mutex);
9503                 return 0;
9504         }
9505
9506         switch (wrqu->power.flags & IW_POWER_MODE) {
9507         case IW_POWER_ON:       /* If not specified */
9508         case IW_POWER_MODE:     /* If set all mask */
9509         case IW_POWER_ALL_R:    /* If explicitely state all */
9510                 break;
9511         default:                /* Otherwise we don't support it */
9512                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9513                              wrqu->power.flags);
9514                 mutex_unlock(&priv->mutex);
9515                 return -EOPNOTSUPP;
9516         }
9517
9518         /* If the user hasn't specified a power management mode yet, default
9519          * to BATTERY */
9520         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9521                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9522         else
9523                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9524         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9525         if (err) {
9526                 IPW_DEBUG_WX("failed setting power mode.\n");
9527                 mutex_unlock(&priv->mutex);
9528                 return err;
9529         }
9530
9531         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9532         mutex_unlock(&priv->mutex);
9533         return 0;
9534 }
9535
9536 static int ipw_wx_get_power(struct net_device *dev,
9537                             struct iw_request_info *info,
9538                             union iwreq_data *wrqu, char *extra)
9539 {
9540         struct ipw_priv *priv = ieee80211_priv(dev);
9541         mutex_lock(&priv->mutex);
9542         if (!(priv->power_mode & IPW_POWER_ENABLED))
9543                 wrqu->power.disabled = 1;
9544         else
9545                 wrqu->power.disabled = 0;
9546
9547         mutex_unlock(&priv->mutex);
9548         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9549
9550         return 0;
9551 }
9552
9553 static int ipw_wx_set_powermode(struct net_device *dev,
9554                                 struct iw_request_info *info,
9555                                 union iwreq_data *wrqu, char *extra)
9556 {
9557         struct ipw_priv *priv = ieee80211_priv(dev);
9558         int mode = *(int *)extra;
9559         int err;
9560         mutex_lock(&priv->mutex);
9561         if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
9562                 mode = IPW_POWER_AC;
9563                 priv->power_mode = mode;
9564         } else {
9565                 priv->power_mode = IPW_POWER_ENABLED | mode;
9566         }
9567
9568         if (priv->power_mode != mode) {
9569                 err = ipw_send_power_mode(priv, mode);
9570
9571                 if (err) {
9572                         IPW_DEBUG_WX("failed setting power mode.\n");
9573                         mutex_unlock(&priv->mutex);
9574                         return err;
9575                 }
9576         }
9577         mutex_unlock(&priv->mutex);
9578         return 0;
9579 }
9580
9581 #define MAX_WX_STRING 80
9582 static int ipw_wx_get_powermode(struct net_device *dev,
9583                                 struct iw_request_info *info,
9584                                 union iwreq_data *wrqu, char *extra)
9585 {
9586         struct ipw_priv *priv = ieee80211_priv(dev);
9587         int level = IPW_POWER_LEVEL(priv->power_mode);
9588         char *p = extra;
9589
9590         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9591
9592         switch (level) {
9593         case IPW_POWER_AC:
9594                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9595                 break;
9596         case IPW_POWER_BATTERY:
9597                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9598                 break;
9599         default:
9600                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9601                               "(Timeout %dms, Period %dms)",
9602                               timeout_duration[level - 1] / 1000,
9603                               period_duration[level - 1] / 1000);
9604         }
9605
9606         if (!(priv->power_mode & IPW_POWER_ENABLED))
9607                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9608
9609         wrqu->data.length = p - extra + 1;
9610
9611         return 0;
9612 }
9613
9614 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9615                                     struct iw_request_info *info,
9616                                     union iwreq_data *wrqu, char *extra)
9617 {
9618         struct ipw_priv *priv = ieee80211_priv(dev);
9619         int mode = *(int *)extra;
9620         u8 band = 0, modulation = 0;
9621
9622         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9623                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9624                 return -EINVAL;
9625         }
9626         mutex_lock(&priv->mutex);
9627         if (priv->adapter == IPW_2915ABG) {
9628                 priv->ieee->abg_true = 1;
9629                 if (mode & IEEE_A) {
9630                         band |= IEEE80211_52GHZ_BAND;
9631                         modulation |= IEEE80211_OFDM_MODULATION;
9632                 } else
9633                         priv->ieee->abg_true = 0;
9634         } else {
9635                 if (mode & IEEE_A) {
9636                         IPW_WARNING("Attempt to set 2200BG into "
9637                                     "802.11a mode\n");
9638                         mutex_unlock(&priv->mutex);
9639                         return -EINVAL;
9640                 }
9641
9642                 priv->ieee->abg_true = 0;
9643         }
9644
9645         if (mode & IEEE_B) {
9646                 band |= IEEE80211_24GHZ_BAND;
9647                 modulation |= IEEE80211_CCK_MODULATION;
9648         } else
9649                 priv->ieee->abg_true = 0;
9650
9651         if (mode & IEEE_G) {
9652                 band |= IEEE80211_24GHZ_BAND;
9653                 modulation |= IEEE80211_OFDM_MODULATION;
9654         } else
9655                 priv->ieee->abg_true = 0;
9656
9657         priv->ieee->mode = mode;
9658         priv->ieee->freq_band = band;
9659         priv->ieee->modulation = modulation;
9660         init_supported_rates(priv, &priv->rates);
9661
9662         /* Network configuration changed -- force [re]association */
9663         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9664         if (!ipw_disassociate(priv)) {
9665                 ipw_send_supported_rates(priv, &priv->rates);
9666                 ipw_associate(priv);
9667         }
9668
9669         /* Update the band LEDs */
9670         ipw_led_band_on(priv);
9671
9672         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9673                      mode & IEEE_A ? 'a' : '.',
9674                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9675         mutex_unlock(&priv->mutex);
9676         return 0;
9677 }
9678
9679 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9680                                     struct iw_request_info *info,
9681                                     union iwreq_data *wrqu, char *extra)
9682 {
9683         struct ipw_priv *priv = ieee80211_priv(dev);
9684         mutex_lock(&priv->mutex);
9685         switch (priv->ieee->mode) {
9686         case IEEE_A:
9687                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9688                 break;
9689         case IEEE_B:
9690                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9691                 break;
9692         case IEEE_A | IEEE_B:
9693                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9694                 break;
9695         case IEEE_G:
9696                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9697                 break;
9698         case IEEE_A | IEEE_G:
9699                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9700                 break;
9701         case IEEE_B | IEEE_G:
9702                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9703                 break;
9704         case IEEE_A | IEEE_B | IEEE_G:
9705                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9706                 break;
9707         default:
9708                 strncpy(extra, "unknown", MAX_WX_STRING);
9709                 break;
9710         }
9711
9712         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9713
9714         wrqu->data.length = strlen(extra) + 1;
9715         mutex_unlock(&priv->mutex);
9716
9717         return 0;
9718 }
9719
9720 static int ipw_wx_set_preamble(struct net_device *dev,
9721                                struct iw_request_info *info,
9722                                union iwreq_data *wrqu, char *extra)
9723 {
9724         struct ipw_priv *priv = ieee80211_priv(dev);
9725         int mode = *(int *)extra;
9726         mutex_lock(&priv->mutex);
9727         /* Switching from SHORT -> LONG requires a disassociation */
9728         if (mode == 1) {
9729                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9730                         priv->config |= CFG_PREAMBLE_LONG;
9731
9732                         /* Network configuration changed -- force [re]association */
9733                         IPW_DEBUG_ASSOC
9734                             ("[re]association triggered due to preamble change.\n");
9735                         if (!ipw_disassociate(priv))
9736                                 ipw_associate(priv);
9737                 }
9738                 goto done;
9739         }
9740
9741         if (mode == 0) {
9742                 priv->config &= ~CFG_PREAMBLE_LONG;
9743                 goto done;
9744         }
9745         mutex_unlock(&priv->mutex);
9746         return -EINVAL;
9747
9748       done:
9749         mutex_unlock(&priv->mutex);
9750         return 0;
9751 }
9752
9753 static int ipw_wx_get_preamble(struct net_device *dev,
9754                                struct iw_request_info *info,
9755                                union iwreq_data *wrqu, char *extra)
9756 {
9757         struct ipw_priv *priv = ieee80211_priv(dev);
9758         mutex_lock(&priv->mutex);
9759         if (priv->config & CFG_PREAMBLE_LONG)
9760                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9761         else
9762                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9763         mutex_unlock(&priv->mutex);
9764         return 0;
9765 }
9766
9767 #ifdef CONFIG_IPW2200_MONITOR
9768 static int ipw_wx_set_monitor(struct net_device *dev,
9769                               struct iw_request_info *info,
9770                               union iwreq_data *wrqu, char *extra)
9771 {
9772         struct ipw_priv *priv = ieee80211_priv(dev);
9773         int *parms = (int *)extra;
9774         int enable = (parms[0] > 0);
9775         mutex_lock(&priv->mutex);
9776         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9777         if (enable) {
9778                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9779 #ifdef CONFIG_IPW2200_RADIOTAP
9780                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9781 #else
9782                         priv->net_dev->type = ARPHRD_IEEE80211;
9783 #endif
9784                         queue_work(priv->workqueue, &priv->adapter_restart);
9785                 }
9786
9787                 ipw_set_channel(priv, parms[1]);
9788         } else {
9789                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9790                         mutex_unlock(&priv->mutex);
9791                         return 0;
9792                 }
9793                 priv->net_dev->type = ARPHRD_ETHER;
9794                 queue_work(priv->workqueue, &priv->adapter_restart);
9795         }
9796         mutex_unlock(&priv->mutex);
9797         return 0;
9798 }
9799
9800 #endif                          /* CONFIG_IPW2200_MONITOR */
9801
9802 static int ipw_wx_reset(struct net_device *dev,
9803                         struct iw_request_info *info,
9804                         union iwreq_data *wrqu, char *extra)
9805 {
9806         struct ipw_priv *priv = ieee80211_priv(dev);
9807         IPW_DEBUG_WX("RESET\n");
9808         queue_work(priv->workqueue, &priv->adapter_restart);
9809         return 0;
9810 }
9811
9812 static int ipw_wx_sw_reset(struct net_device *dev,
9813                            struct iw_request_info *info,
9814                            union iwreq_data *wrqu, char *extra)
9815 {
9816         struct ipw_priv *priv = ieee80211_priv(dev);
9817         union iwreq_data wrqu_sec = {
9818                 .encoding = {
9819                              .flags = IW_ENCODE_DISABLED,
9820                              },
9821         };
9822         int ret;
9823
9824         IPW_DEBUG_WX("SW_RESET\n");
9825
9826         mutex_lock(&priv->mutex);
9827
9828         ret = ipw_sw_reset(priv, 2);
9829         if (!ret) {
9830                 free_firmware();
9831                 ipw_adapter_restart(priv);
9832         }
9833
9834         /* The SW reset bit might have been toggled on by the 'disable'
9835          * module parameter, so take appropriate action */
9836         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9837
9838         mutex_unlock(&priv->mutex);
9839         ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9840         mutex_lock(&priv->mutex);
9841
9842         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9843                 /* Configuration likely changed -- force [re]association */
9844                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9845                                 "reset.\n");
9846                 if (!ipw_disassociate(priv))
9847                         ipw_associate(priv);
9848         }
9849
9850         mutex_unlock(&priv->mutex);
9851
9852         return 0;
9853 }
9854
9855 /* Rebase the WE IOCTLs to zero for the handler array */
9856 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9857 static iw_handler ipw_wx_handlers[] = {
9858         IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9859         IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9860         IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9861         IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9862         IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9863         IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9864         IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9865         IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9866         IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9867         IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9868         IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9869         IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9870         IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9871         IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9872         IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9873         IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9874         IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9875         IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9876         IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9877         IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9878         IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9879         IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9880         IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9881         IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9882         IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9883         IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9884         IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9885         IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9886         IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9887         IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9888         IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9889         IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9890         IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9891         IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9892         IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9893         IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9894         IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9895         IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9896         IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9897         IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9898         IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9899 };
9900
9901 enum {
9902         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9903         IPW_PRIV_GET_POWER,
9904         IPW_PRIV_SET_MODE,
9905         IPW_PRIV_GET_MODE,
9906         IPW_PRIV_SET_PREAMBLE,
9907         IPW_PRIV_GET_PREAMBLE,
9908         IPW_PRIV_RESET,
9909         IPW_PRIV_SW_RESET,
9910 #ifdef CONFIG_IPW2200_MONITOR
9911         IPW_PRIV_SET_MONITOR,
9912 #endif
9913 };
9914
9915 static struct iw_priv_args ipw_priv_args[] = {
9916         {
9917          .cmd = IPW_PRIV_SET_POWER,
9918          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9919          .name = "set_power"},
9920         {
9921          .cmd = IPW_PRIV_GET_POWER,
9922          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9923          .name = "get_power"},
9924         {
9925          .cmd = IPW_PRIV_SET_MODE,
9926          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9927          .name = "set_mode"},
9928         {
9929          .cmd = IPW_PRIV_GET_MODE,
9930          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9931          .name = "get_mode"},
9932         {
9933          .cmd = IPW_PRIV_SET_PREAMBLE,
9934          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9935          .name = "set_preamble"},
9936         {
9937          .cmd = IPW_PRIV_GET_PREAMBLE,
9938          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9939          .name = "get_preamble"},
9940         {
9941          IPW_PRIV_RESET,
9942          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9943         {
9944          IPW_PRIV_SW_RESET,
9945          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9946 #ifdef CONFIG_IPW2200_MONITOR
9947         {
9948          IPW_PRIV_SET_MONITOR,
9949          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9950 #endif                          /* CONFIG_IPW2200_MONITOR */
9951 };
9952
9953 static iw_handler ipw_priv_handler[] = {
9954         ipw_wx_set_powermode,
9955         ipw_wx_get_powermode,
9956         ipw_wx_set_wireless_mode,
9957         ipw_wx_get_wireless_mode,
9958         ipw_wx_set_preamble,
9959         ipw_wx_get_preamble,
9960         ipw_wx_reset,
9961         ipw_wx_sw_reset,
9962 #ifdef CONFIG_IPW2200_MONITOR
9963         ipw_wx_set_monitor,
9964 #endif
9965 };
9966
9967 static struct iw_handler_def ipw_wx_handler_def = {
9968         .standard = ipw_wx_handlers,
9969         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
9970         .num_private = ARRAY_SIZE(ipw_priv_handler),
9971         .num_private_args = ARRAY_SIZE(ipw_priv_args),
9972         .private = ipw_priv_handler,
9973         .private_args = ipw_priv_args,
9974         .get_wireless_stats = ipw_get_wireless_stats,
9975 };
9976
9977 /*
9978  * Get wireless statistics.
9979  * Called by /proc/net/wireless
9980  * Also called by SIOCGIWSTATS
9981  */
9982 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
9983 {
9984         struct ipw_priv *priv = ieee80211_priv(dev);
9985         struct iw_statistics *wstats;
9986
9987         wstats = &priv->wstats;
9988
9989         /* if hw is disabled, then ipw_get_ordinal() can't be called.
9990          * netdev->get_wireless_stats seems to be called before fw is
9991          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
9992          * and associated; if not associcated, the values are all meaningless
9993          * anyway, so set them all to NULL and INVALID */
9994         if (!(priv->status & STATUS_ASSOCIATED)) {
9995                 wstats->miss.beacon = 0;
9996                 wstats->discard.retries = 0;
9997                 wstats->qual.qual = 0;
9998                 wstats->qual.level = 0;
9999                 wstats->qual.noise = 0;
10000                 wstats->qual.updated = 7;
10001                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10002                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10003                 return wstats;
10004         }
10005
10006         wstats->qual.qual = priv->quality;
10007         wstats->qual.level = priv->exp_avg_rssi;
10008         wstats->qual.noise = priv->exp_avg_noise;
10009         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10010             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10011
10012         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10013         wstats->discard.retries = priv->last_tx_failures;
10014         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10015
10016 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10017         goto fail_get_ordinal;
10018         wstats->discard.retries += tx_retry; */
10019
10020         return wstats;
10021 }
10022
10023 /* net device stuff */
10024
10025 static  void init_sys_config(struct ipw_sys_config *sys_config)
10026 {
10027         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10028         sys_config->bt_coexistence = 0;
10029         sys_config->answer_broadcast_ssid_probe = 0;
10030         sys_config->accept_all_data_frames = 0;
10031         sys_config->accept_non_directed_frames = 1;
10032         sys_config->exclude_unicast_unencrypted = 0;
10033         sys_config->disable_unicast_decryption = 1;
10034         sys_config->exclude_multicast_unencrypted = 0;
10035         sys_config->disable_multicast_decryption = 1;
10036         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10037                 antenna = CFG_SYS_ANTENNA_BOTH;
10038         sys_config->antenna_diversity = antenna;
10039         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10040         sys_config->dot11g_auto_detection = 0;
10041         sys_config->enable_cts_to_self = 0;
10042         sys_config->bt_coexist_collision_thr = 0;
10043         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10044         sys_config->silence_threshold = 0x1e;
10045 }
10046
10047 static int ipw_net_open(struct net_device *dev)
10048 {
10049         struct ipw_priv *priv = ieee80211_priv(dev);
10050         IPW_DEBUG_INFO("dev->open\n");
10051         /* we should be verifying the device is ready to be opened */
10052         mutex_lock(&priv->mutex);
10053         if (!(priv->status & STATUS_RF_KILL_MASK) &&
10054             (priv->status & STATUS_ASSOCIATED))
10055                 netif_start_queue(dev);
10056         mutex_unlock(&priv->mutex);
10057         return 0;
10058 }
10059
10060 static int ipw_net_stop(struct net_device *dev)
10061 {
10062         IPW_DEBUG_INFO("dev->close\n");
10063         netif_stop_queue(dev);
10064         return 0;
10065 }
10066
10067 /*
10068 todo:
10069
10070 modify to send one tfd per fragment instead of using chunking.  otherwise
10071 we need to heavily modify the ieee80211_skb_to_txb.
10072 */
10073
10074 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10075                              int pri)
10076 {
10077         struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10078             txb->fragments[0]->data;
10079         int i = 0;
10080         struct tfd_frame *tfd;
10081 #ifdef CONFIG_IPW2200_QOS
10082         int tx_id = ipw_get_tx_queue_number(priv, pri);
10083         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10084 #else
10085         struct clx2_tx_queue *txq = &priv->txq[0];
10086 #endif
10087         struct clx2_queue *q = &txq->q;
10088         u8 id, hdr_len, unicast;
10089         u16 remaining_bytes;
10090         int fc;
10091
10092         hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10093         switch (priv->ieee->iw_mode) {
10094         case IW_MODE_ADHOC:
10095                 unicast = !is_multicast_ether_addr(hdr->addr1);
10096                 id = ipw_find_station(priv, hdr->addr1);
10097                 if (id == IPW_INVALID_STATION) {
10098                         id = ipw_add_station(priv, hdr->addr1);
10099                         if (id == IPW_INVALID_STATION) {
10100                                 IPW_WARNING("Attempt to send data to "
10101                                             "invalid cell: " MAC_FMT "\n",
10102                                             MAC_ARG(hdr->addr1));
10103                                 goto drop;
10104                         }
10105                 }
10106                 break;
10107
10108         case IW_MODE_INFRA:
10109         default:
10110                 unicast = !is_multicast_ether_addr(hdr->addr3);
10111                 id = 0;
10112                 break;
10113         }
10114
10115         tfd = &txq->bd[q->first_empty];
10116         txq->txb[q->first_empty] = txb;
10117         memset(tfd, 0, sizeof(*tfd));
10118         tfd->u.data.station_number = id;
10119
10120         tfd->control_flags.message_type = TX_FRAME_TYPE;
10121         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10122
10123         tfd->u.data.cmd_id = DINO_CMD_TX;
10124         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10125         remaining_bytes = txb->payload_size;
10126
10127         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10128                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10129         else
10130                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10131
10132         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10133                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10134
10135         fc = le16_to_cpu(hdr->frame_ctl);
10136         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10137
10138         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10139
10140         if (likely(unicast))
10141                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10142
10143         if (txb->encrypted && !priv->ieee->host_encrypt) {
10144                 switch (priv->ieee->sec.level) {
10145                 case SEC_LEVEL_3:
10146                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10147                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10148                         /* XXX: ACK flag must be set for CCMP even if it
10149                          * is a multicast/broadcast packet, because CCMP
10150                          * group communication encrypted by GTK is
10151                          * actually done by the AP. */
10152                         if (!unicast)
10153                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10154
10155                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10156                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10157                         tfd->u.data.key_index = 0;
10158                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10159                         break;
10160                 case SEC_LEVEL_2:
10161                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10162                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10163                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10164                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10165                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10166                         break;
10167                 case SEC_LEVEL_1:
10168                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10169                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10170                         tfd->u.data.key_index = priv->ieee->tx_keyidx;
10171                         if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10172                             40)
10173                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10174                         else
10175                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10176                         break;
10177                 case SEC_LEVEL_0:
10178                         break;
10179                 default:
10180                         printk(KERN_ERR "Unknow security level %d\n",
10181                                priv->ieee->sec.level);
10182                         break;
10183                 }
10184         } else
10185                 /* No hardware encryption */
10186                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10187
10188 #ifdef CONFIG_IPW2200_QOS
10189         if (fc & IEEE80211_STYPE_QOS_DATA)
10190                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10191 #endif                          /* CONFIG_IPW2200_QOS */
10192
10193         /* payload */
10194         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10195                                                  txb->nr_frags));
10196         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10197                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10198         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10199                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10200                                i, le32_to_cpu(tfd->u.data.num_chunks),
10201                                txb->fragments[i]->len - hdr_len);
10202                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10203                              i, tfd->u.data.num_chunks,
10204                              txb->fragments[i]->len - hdr_len);
10205                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10206                            txb->fragments[i]->len - hdr_len);
10207
10208                 tfd->u.data.chunk_ptr[i] =
10209                     cpu_to_le32(pci_map_single
10210                                 (priv->pci_dev,
10211                                  txb->fragments[i]->data + hdr_len,
10212                                  txb->fragments[i]->len - hdr_len,
10213                                  PCI_DMA_TODEVICE));
10214                 tfd->u.data.chunk_len[i] =
10215                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10216         }
10217
10218         if (i != txb->nr_frags) {
10219                 struct sk_buff *skb;
10220                 u16 remaining_bytes = 0;
10221                 int j;
10222
10223                 for (j = i; j < txb->nr_frags; j++)
10224                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10225
10226                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10227                        remaining_bytes);
10228                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10229                 if (skb != NULL) {
10230                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10231                         for (j = i; j < txb->nr_frags; j++) {
10232                                 int size = txb->fragments[j]->len - hdr_len;
10233
10234                                 printk(KERN_INFO "Adding frag %d %d...\n",
10235                                        j, size);
10236                                 memcpy(skb_put(skb, size),
10237                                        txb->fragments[j]->data + hdr_len, size);
10238                         }
10239                         dev_kfree_skb_any(txb->fragments[i]);
10240                         txb->fragments[i] = skb;
10241                         tfd->u.data.chunk_ptr[i] =
10242                             cpu_to_le32(pci_map_single
10243                                         (priv->pci_dev, skb->data,
10244                                          tfd->u.data.chunk_len[i],
10245                                          PCI_DMA_TODEVICE));
10246
10247                         tfd->u.data.num_chunks =
10248                             cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
10249                                         1);
10250                 }
10251         }
10252
10253         /* kick DMA */
10254         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10255         ipw_write32(priv, q->reg_w, q->first_empty);
10256
10257         if (ipw_queue_space(q) < q->high_mark)
10258                 netif_stop_queue(priv->net_dev);
10259
10260         return NETDEV_TX_OK;
10261
10262       drop:
10263         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10264         ieee80211_txb_free(txb);
10265         return NETDEV_TX_OK;
10266 }
10267
10268 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10269 {
10270         struct ipw_priv *priv = ieee80211_priv(dev);
10271 #ifdef CONFIG_IPW2200_QOS
10272         int tx_id = ipw_get_tx_queue_number(priv, pri);
10273         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10274 #else
10275         struct clx2_tx_queue *txq = &priv->txq[0];
10276 #endif                          /* CONFIG_IPW2200_QOS */
10277
10278         if (ipw_queue_space(&txq->q) < txq->q.high_mark)
10279                 return 1;
10280
10281         return 0;
10282 }
10283
10284 #ifdef CONFIG_IPW2200_PROMISCUOUS
10285 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10286                                       struct ieee80211_txb *txb)
10287 {
10288         struct ieee80211_rx_stats dummystats;
10289         struct ieee80211_hdr *hdr;
10290         u8 n;
10291         u16 filter = priv->prom_priv->filter;
10292         int hdr_only = 0;
10293
10294         if (filter & IPW_PROM_NO_TX)
10295                 return;
10296
10297         memset(&dummystats, 0, sizeof(dummystats));
10298
10299         /* Filtering of fragment chains is done agains the first fragment */
10300         hdr = (void *)txb->fragments[0]->data;
10301         if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
10302                 if (filter & IPW_PROM_NO_MGMT)
10303                         return;
10304                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10305                         hdr_only = 1;
10306         } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
10307                 if (filter & IPW_PROM_NO_CTL)
10308                         return;
10309                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10310                         hdr_only = 1;
10311         } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
10312                 if (filter & IPW_PROM_NO_DATA)
10313                         return;
10314                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10315                         hdr_only = 1;
10316         }
10317
10318         for(n=0; n<txb->nr_frags; ++n) {
10319                 struct sk_buff *src = txb->fragments[n];
10320                 struct sk_buff *dst;
10321                 struct ieee80211_radiotap_header *rt_hdr;
10322                 int len;
10323
10324                 if (hdr_only) {
10325                         hdr = (void *)src->data;
10326                         len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10327                 } else
10328                         len = src->len;
10329
10330                 dst = alloc_skb(
10331                         len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10332                 if (!dst) continue;
10333
10334                 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10335
10336                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10337                 rt_hdr->it_pad = 0;
10338                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10339                 rt_hdr->it_present |=  (1 << IEEE80211_RADIOTAP_CHANNEL);
10340
10341                 *(u16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10342                         ieee80211chan2mhz(priv->channel));
10343                 if (priv->channel > 14)         /* 802.11a */
10344                         *(u16*)skb_put(dst, sizeof(u16)) =
10345                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10346                                              IEEE80211_CHAN_5GHZ);
10347                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10348                         *(u16*)skb_put(dst, sizeof(u16)) =
10349                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10350                                              IEEE80211_CHAN_2GHZ);
10351                 else            /* 802.11g */
10352                         *(u16*)skb_put(dst, sizeof(u16)) =
10353                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10354                                  IEEE80211_CHAN_2GHZ);
10355
10356                 rt_hdr->it_len = dst->len;
10357
10358                 memcpy(skb_put(dst, len), src->data, len);
10359
10360                 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10361                         dev_kfree_skb_any(dst);
10362         }
10363 }
10364 #endif
10365
10366 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10367                                    struct net_device *dev, int pri)
10368 {
10369         struct ipw_priv *priv = ieee80211_priv(dev);
10370         unsigned long flags;
10371         int ret;
10372
10373         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10374         spin_lock_irqsave(&priv->lock, flags);
10375
10376         if (!(priv->status & STATUS_ASSOCIATED)) {
10377                 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
10378                 priv->ieee->stats.tx_carrier_errors++;
10379                 netif_stop_queue(dev);
10380                 goto fail_unlock;
10381         }
10382
10383 #ifdef CONFIG_IPW2200_PROMISCUOUS
10384         if (rtap_iface && netif_running(priv->prom_net_dev))
10385                 ipw_handle_promiscuous_tx(priv, txb);
10386 #endif
10387
10388         ret = ipw_tx_skb(priv, txb, pri);
10389         if (ret == NETDEV_TX_OK)
10390                 __ipw_led_activity_on(priv);
10391         spin_unlock_irqrestore(&priv->lock, flags);
10392
10393         return ret;
10394
10395       fail_unlock:
10396         spin_unlock_irqrestore(&priv->lock, flags);
10397         return 1;
10398 }
10399
10400 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10401 {
10402         struct ipw_priv *priv = ieee80211_priv(dev);
10403
10404         priv->ieee->stats.tx_packets = priv->tx_packets;
10405         priv->ieee->stats.rx_packets = priv->rx_packets;
10406         return &priv->ieee->stats;
10407 }
10408
10409 static void ipw_net_set_multicast_list(struct net_device *dev)
10410 {
10411
10412 }
10413
10414 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10415 {
10416         struct ipw_priv *priv = ieee80211_priv(dev);
10417         struct sockaddr *addr = p;
10418         if (!is_valid_ether_addr(addr->sa_data))
10419                 return -EADDRNOTAVAIL;
10420         mutex_lock(&priv->mutex);
10421         priv->config |= CFG_CUSTOM_MAC;
10422         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10423         printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
10424                priv->net_dev->name, MAC_ARG(priv->mac_addr));
10425         queue_work(priv->workqueue, &priv->adapter_restart);
10426         mutex_unlock(&priv->mutex);
10427         return 0;
10428 }
10429
10430 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10431                                     struct ethtool_drvinfo *info)
10432 {
10433         struct ipw_priv *p = ieee80211_priv(dev);
10434         char vers[64];
10435         char date[32];
10436         u32 len;
10437
10438         strcpy(info->driver, DRV_NAME);
10439         strcpy(info->version, DRV_VERSION);
10440
10441         len = sizeof(vers);
10442         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10443         len = sizeof(date);
10444         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10445
10446         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10447                  vers, date);
10448         strcpy(info->bus_info, pci_name(p->pci_dev));
10449         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10450 }
10451
10452 static u32 ipw_ethtool_get_link(struct net_device *dev)
10453 {
10454         struct ipw_priv *priv = ieee80211_priv(dev);
10455         return (priv->status & STATUS_ASSOCIATED) != 0;
10456 }
10457
10458 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10459 {
10460         return IPW_EEPROM_IMAGE_SIZE;
10461 }
10462
10463 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10464                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10465 {
10466         struct ipw_priv *p = ieee80211_priv(dev);
10467
10468         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10469                 return -EINVAL;
10470         mutex_lock(&p->mutex);
10471         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10472         mutex_unlock(&p->mutex);
10473         return 0;
10474 }
10475
10476 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10477                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10478 {
10479         struct ipw_priv *p = ieee80211_priv(dev);
10480         int i;
10481
10482         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10483                 return -EINVAL;
10484         mutex_lock(&p->mutex);
10485         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10486         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10487                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10488         mutex_unlock(&p->mutex);
10489         return 0;
10490 }
10491
10492 static const struct ethtool_ops ipw_ethtool_ops = {
10493         .get_link = ipw_ethtool_get_link,
10494         .get_drvinfo = ipw_ethtool_get_drvinfo,
10495         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10496         .get_eeprom = ipw_ethtool_get_eeprom,
10497         .set_eeprom = ipw_ethtool_set_eeprom,
10498 };
10499
10500 static irqreturn_t ipw_isr(int irq, void *data)
10501 {
10502         struct ipw_priv *priv = data;
10503         u32 inta, inta_mask;
10504
10505         if (!priv)
10506                 return IRQ_NONE;
10507
10508         spin_lock(&priv->irq_lock);
10509
10510         if (!(priv->status & STATUS_INT_ENABLED)) {
10511                 /* Shared IRQ */
10512                 goto none;
10513         }
10514
10515         inta = ipw_read32(priv, IPW_INTA_RW);
10516         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10517
10518         if (inta == 0xFFFFFFFF) {
10519                 /* Hardware disappeared */
10520                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10521                 goto none;
10522         }
10523
10524         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10525                 /* Shared interrupt */
10526                 goto none;
10527         }
10528
10529         /* tell the device to stop sending interrupts */
10530         __ipw_disable_interrupts(priv);
10531
10532         /* ack current interrupts */
10533         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10534         ipw_write32(priv, IPW_INTA_RW, inta);
10535
10536         /* Cache INTA value for our tasklet */
10537         priv->isr_inta = inta;
10538
10539         tasklet_schedule(&priv->irq_tasklet);
10540
10541         spin_unlock(&priv->irq_lock);
10542
10543         return IRQ_HANDLED;
10544       none:
10545         spin_unlock(&priv->irq_lock);
10546         return IRQ_NONE;
10547 }
10548
10549 static void ipw_rf_kill(void *adapter)
10550 {
10551         struct ipw_priv *priv = adapter;
10552         unsigned long flags;
10553
10554         spin_lock_irqsave(&priv->lock, flags);
10555
10556         if (rf_kill_active(priv)) {
10557                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10558                 if (priv->workqueue)
10559                         queue_delayed_work(priv->workqueue,
10560                                            &priv->rf_kill, 2 * HZ);
10561                 goto exit_unlock;
10562         }
10563
10564         /* RF Kill is now disabled, so bring the device back up */
10565
10566         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10567                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10568                                   "device\n");
10569
10570                 /* we can not do an adapter restart while inside an irq lock */
10571                 queue_work(priv->workqueue, &priv->adapter_restart);
10572         } else
10573                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10574                                   "enabled\n");
10575
10576       exit_unlock:
10577         spin_unlock_irqrestore(&priv->lock, flags);
10578 }
10579
10580 static void ipw_bg_rf_kill(struct work_struct *work)
10581 {
10582         struct ipw_priv *priv =
10583                 container_of(work, struct ipw_priv, rf_kill.work);
10584         mutex_lock(&priv->mutex);
10585         ipw_rf_kill(priv);
10586         mutex_unlock(&priv->mutex);
10587 }
10588
10589 static void ipw_link_up(struct ipw_priv *priv)
10590 {
10591         priv->last_seq_num = -1;
10592         priv->last_frag_num = -1;
10593         priv->last_packet_time = 0;
10594
10595         netif_carrier_on(priv->net_dev);
10596         if (netif_queue_stopped(priv->net_dev)) {
10597                 IPW_DEBUG_NOTIF("waking queue\n");
10598                 netif_wake_queue(priv->net_dev);
10599         } else {
10600                 IPW_DEBUG_NOTIF("starting queue\n");
10601                 netif_start_queue(priv->net_dev);
10602         }
10603
10604         cancel_delayed_work(&priv->request_scan);
10605         ipw_reset_stats(priv);
10606         /* Ensure the rate is updated immediately */
10607         priv->last_rate = ipw_get_current_rate(priv);
10608         ipw_gather_stats(priv);
10609         ipw_led_link_up(priv);
10610         notify_wx_assoc_event(priv);
10611
10612         if (priv->config & CFG_BACKGROUND_SCAN)
10613                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10614 }
10615
10616 static void ipw_bg_link_up(struct work_struct *work)
10617 {
10618         struct ipw_priv *priv =
10619                 container_of(work, struct ipw_priv, link_up);
10620         mutex_lock(&priv->mutex);
10621         ipw_link_up(priv);
10622         mutex_unlock(&priv->mutex);
10623 }
10624
10625 static void ipw_link_down(struct ipw_priv *priv)
10626 {
10627         ipw_led_link_down(priv);
10628         netif_carrier_off(priv->net_dev);
10629         netif_stop_queue(priv->net_dev);
10630         notify_wx_assoc_event(priv);
10631
10632         /* Cancel any queued work ... */
10633         cancel_delayed_work(&priv->request_scan);
10634         cancel_delayed_work(&priv->adhoc_check);
10635         cancel_delayed_work(&priv->gather_stats);
10636
10637         ipw_reset_stats(priv);
10638
10639         if (!(priv->status & STATUS_EXIT_PENDING)) {
10640                 /* Queue up another scan... */
10641                 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10642         }
10643 }
10644
10645 static void ipw_bg_link_down(struct work_struct *work)
10646 {
10647         struct ipw_priv *priv =
10648                 container_of(work, struct ipw_priv, link_down);
10649         mutex_lock(&priv->mutex);
10650         ipw_link_down(priv);
10651         mutex_unlock(&priv->mutex);
10652 }
10653
10654 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10655 {
10656         int ret = 0;
10657
10658         priv->workqueue = create_workqueue(DRV_NAME);
10659         init_waitqueue_head(&priv->wait_command_queue);
10660         init_waitqueue_head(&priv->wait_state);
10661
10662         INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10663         INIT_WORK(&priv->associate, ipw_bg_associate);
10664         INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10665         INIT_WORK(&priv->system_config, ipw_system_config);
10666         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10667         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10668         INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10669         INIT_WORK(&priv->up, ipw_bg_up);
10670         INIT_WORK(&priv->down, ipw_bg_down);
10671         INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10672         INIT_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10673         INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10674         INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10675         INIT_WORK(&priv->roam, ipw_bg_roam);
10676         INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10677         INIT_WORK(&priv->link_up, ipw_bg_link_up);
10678         INIT_WORK(&priv->link_down, ipw_bg_link_down);
10679         INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10680         INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10681         INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10682         INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10683
10684 #ifdef CONFIG_IPW2200_QOS
10685         INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10686 #endif                          /* CONFIG_IPW2200_QOS */
10687
10688         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10689                      ipw_irq_tasklet, (unsigned long)priv);
10690
10691         return ret;
10692 }
10693
10694 static void shim__set_security(struct net_device *dev,
10695                                struct ieee80211_security *sec)
10696 {
10697         struct ipw_priv *priv = ieee80211_priv(dev);
10698         int i;
10699         for (i = 0; i < 4; i++) {
10700                 if (sec->flags & (1 << i)) {
10701                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10702                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10703                         if (sec->key_sizes[i] == 0)
10704                                 priv->ieee->sec.flags &= ~(1 << i);
10705                         else {
10706                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10707                                        sec->key_sizes[i]);
10708                                 priv->ieee->sec.flags |= (1 << i);
10709                         }
10710                         priv->status |= STATUS_SECURITY_UPDATED;
10711                 } else if (sec->level != SEC_LEVEL_1)
10712                         priv->ieee->sec.flags &= ~(1 << i);
10713         }
10714
10715         if (sec->flags & SEC_ACTIVE_KEY) {
10716                 if (sec->active_key <= 3) {
10717                         priv->ieee->sec.active_key = sec->active_key;
10718                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10719                 } else
10720                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10721                 priv->status |= STATUS_SECURITY_UPDATED;
10722         } else
10723                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10724
10725         if ((sec->flags & SEC_AUTH_MODE) &&
10726             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10727                 priv->ieee->sec.auth_mode = sec->auth_mode;
10728                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10729                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10730                         priv->capability |= CAP_SHARED_KEY;
10731                 else
10732                         priv->capability &= ~CAP_SHARED_KEY;
10733                 priv->status |= STATUS_SECURITY_UPDATED;
10734         }
10735
10736         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10737                 priv->ieee->sec.flags |= SEC_ENABLED;
10738                 priv->ieee->sec.enabled = sec->enabled;
10739                 priv->status |= STATUS_SECURITY_UPDATED;
10740                 if (sec->enabled)
10741                         priv->capability |= CAP_PRIVACY_ON;
10742                 else
10743                         priv->capability &= ~CAP_PRIVACY_ON;
10744         }
10745
10746         if (sec->flags & SEC_ENCRYPT)
10747                 priv->ieee->sec.encrypt = sec->encrypt;
10748
10749         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10750                 priv->ieee->sec.level = sec->level;
10751                 priv->ieee->sec.flags |= SEC_LEVEL;
10752                 priv->status |= STATUS_SECURITY_UPDATED;
10753         }
10754
10755         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10756                 ipw_set_hwcrypto_keys(priv);
10757
10758         /* To match current functionality of ipw2100 (which works well w/
10759          * various supplicants, we don't force a disassociate if the
10760          * privacy capability changes ... */
10761 #if 0
10762         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10763             (((priv->assoc_request.capability &
10764                WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10765              (!(priv->assoc_request.capability &
10766                 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10767                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10768                                 "change.\n");
10769                 ipw_disassociate(priv);
10770         }
10771 #endif
10772 }
10773
10774 static int init_supported_rates(struct ipw_priv *priv,
10775                                 struct ipw_supported_rates *rates)
10776 {
10777         /* TODO: Mask out rates based on priv->rates_mask */
10778
10779         memset(rates, 0, sizeof(*rates));
10780         /* configure supported rates */
10781         switch (priv->ieee->freq_band) {
10782         case IEEE80211_52GHZ_BAND:
10783                 rates->ieee_mode = IPW_A_MODE;
10784                 rates->purpose = IPW_RATE_CAPABILITIES;
10785                 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10786                                         IEEE80211_OFDM_DEFAULT_RATES_MASK);
10787                 break;
10788
10789         default:                /* Mixed or 2.4Ghz */
10790                 rates->ieee_mode = IPW_G_MODE;
10791                 rates->purpose = IPW_RATE_CAPABILITIES;
10792                 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10793                                        IEEE80211_CCK_DEFAULT_RATES_MASK);
10794                 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10795                         ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10796                                                 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10797                 }
10798                 break;
10799         }
10800
10801         return 0;
10802 }
10803
10804 static int ipw_config(struct ipw_priv *priv)
10805 {
10806         /* This is only called from ipw_up, which resets/reloads the firmware
10807            so, we don't need to first disable the card before we configure
10808            it */
10809         if (ipw_set_tx_power(priv))
10810                 goto error;
10811
10812         /* initialize adapter address */
10813         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10814                 goto error;
10815
10816         /* set basic system config settings */
10817         init_sys_config(&priv->sys_config);
10818
10819         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10820          * Does not support BT priority yet (don't abort or defer our Tx) */
10821         if (bt_coexist) {
10822                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10823
10824                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10825                         priv->sys_config.bt_coexistence
10826                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10827                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10828                         priv->sys_config.bt_coexistence
10829                             |= CFG_BT_COEXISTENCE_OOB;
10830         }
10831
10832 #ifdef CONFIG_IPW2200_PROMISCUOUS
10833         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10834                 priv->sys_config.accept_all_data_frames = 1;
10835                 priv->sys_config.accept_non_directed_frames = 1;
10836                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10837                 priv->sys_config.accept_all_mgmt_frames = 1;
10838         }
10839 #endif
10840
10841         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10842                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10843         else
10844                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10845
10846         if (ipw_send_system_config(priv))
10847                 goto error;
10848
10849         init_supported_rates(priv, &priv->rates);
10850         if (ipw_send_supported_rates(priv, &priv->rates))
10851                 goto error;
10852
10853         /* Set request-to-send threshold */
10854         if (priv->rts_threshold) {
10855                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10856                         goto error;
10857         }
10858 #ifdef CONFIG_IPW2200_QOS
10859         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10860         ipw_qos_activate(priv, NULL);
10861 #endif                          /* CONFIG_IPW2200_QOS */
10862
10863         if (ipw_set_random_seed(priv))
10864                 goto error;
10865
10866         /* final state transition to the RUN state */
10867         if (ipw_send_host_complete(priv))
10868                 goto error;
10869
10870         priv->status |= STATUS_INIT;
10871
10872         ipw_led_init(priv);
10873         ipw_led_radio_on(priv);
10874         priv->notif_missed_beacons = 0;
10875
10876         /* Set hardware WEP key if it is configured. */
10877         if ((priv->capability & CAP_PRIVACY_ON) &&
10878             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10879             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10880                 ipw_set_hwcrypto_keys(priv);
10881
10882         return 0;
10883
10884       error:
10885         return -EIO;
10886 }
10887
10888 /*
10889  * NOTE:
10890  *
10891  * These tables have been tested in conjunction with the
10892  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10893  *
10894  * Altering this values, using it on other hardware, or in geographies
10895  * not intended for resale of the above mentioned Intel adapters has
10896  * not been tested.
10897  *
10898  * Remember to update the table in README.ipw2200 when changing this
10899  * table.
10900  *
10901  */
10902 static const struct ieee80211_geo ipw_geos[] = {
10903         {                       /* Restricted */
10904          "---",
10905          .bg_channels = 11,
10906          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10907                 {2427, 4}, {2432, 5}, {2437, 6},
10908                 {2442, 7}, {2447, 8}, {2452, 9},
10909                 {2457, 10}, {2462, 11}},
10910          },
10911
10912         {                       /* Custom US/Canada */
10913          "ZZF",
10914          .bg_channels = 11,
10915          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10916                 {2427, 4}, {2432, 5}, {2437, 6},
10917                 {2442, 7}, {2447, 8}, {2452, 9},
10918                 {2457, 10}, {2462, 11}},
10919          .a_channels = 8,
10920          .a = {{5180, 36},
10921                {5200, 40},
10922                {5220, 44},
10923                {5240, 48},
10924                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10925                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10926                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10927                {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
10928          },
10929
10930         {                       /* Rest of World */
10931          "ZZD",
10932          .bg_channels = 13,
10933          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10934                 {2427, 4}, {2432, 5}, {2437, 6},
10935                 {2442, 7}, {2447, 8}, {2452, 9},
10936                 {2457, 10}, {2462, 11}, {2467, 12},
10937                 {2472, 13}},
10938          },
10939
10940         {                       /* Custom USA & Europe & High */
10941          "ZZA",
10942          .bg_channels = 11,
10943          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10944                 {2427, 4}, {2432, 5}, {2437, 6},
10945                 {2442, 7}, {2447, 8}, {2452, 9},
10946                 {2457, 10}, {2462, 11}},
10947          .a_channels = 13,
10948          .a = {{5180, 36},
10949                {5200, 40},
10950                {5220, 44},
10951                {5240, 48},
10952                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10953                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10954                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10955                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10956                {5745, 149},
10957                {5765, 153},
10958                {5785, 157},
10959                {5805, 161},
10960                {5825, 165}},
10961          },
10962
10963         {                       /* Custom NA & Europe */
10964          "ZZB",
10965          .bg_channels = 11,
10966          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10967                 {2427, 4}, {2432, 5}, {2437, 6},
10968                 {2442, 7}, {2447, 8}, {2452, 9},
10969                 {2457, 10}, {2462, 11}},
10970          .a_channels = 13,
10971          .a = {{5180, 36},
10972                {5200, 40},
10973                {5220, 44},
10974                {5240, 48},
10975                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10976                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10977                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10978                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10979                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10980                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10981                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10982                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10983                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10984          },
10985
10986         {                       /* Custom Japan */
10987          "ZZC",
10988          .bg_channels = 11,
10989          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10990                 {2427, 4}, {2432, 5}, {2437, 6},
10991                 {2442, 7}, {2447, 8}, {2452, 9},
10992                 {2457, 10}, {2462, 11}},
10993          .a_channels = 4,
10994          .a = {{5170, 34}, {5190, 38},
10995                {5210, 42}, {5230, 46}},
10996          },
10997
10998         {                       /* Custom */
10999          "ZZM",
11000          .bg_channels = 11,
11001          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11002                 {2427, 4}, {2432, 5}, {2437, 6},
11003                 {2442, 7}, {2447, 8}, {2452, 9},
11004                 {2457, 10}, {2462, 11}},
11005          },
11006
11007         {                       /* Europe */
11008          "ZZE",
11009          .bg_channels = 13,
11010          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11011                 {2427, 4}, {2432, 5}, {2437, 6},
11012                 {2442, 7}, {2447, 8}, {2452, 9},
11013                 {2457, 10}, {2462, 11}, {2467, 12},
11014                 {2472, 13}},
11015          .a_channels = 19,
11016          .a = {{5180, 36},
11017                {5200, 40},
11018                {5220, 44},
11019                {5240, 48},
11020                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11021                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11022                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11023                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11024                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11025                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11026                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11027                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11028                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11029                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11030                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11031                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11032                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11033                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11034                {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11035          },
11036
11037         {                       /* Custom Japan */
11038          "ZZJ",
11039          .bg_channels = 14,
11040          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11041                 {2427, 4}, {2432, 5}, {2437, 6},
11042                 {2442, 7}, {2447, 8}, {2452, 9},
11043                 {2457, 10}, {2462, 11}, {2467, 12},
11044                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11045          .a_channels = 4,
11046          .a = {{5170, 34}, {5190, 38},
11047                {5210, 42}, {5230, 46}},
11048          },
11049
11050         {                       /* Rest of World */
11051          "ZZR",
11052          .bg_channels = 14,
11053          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11054                 {2427, 4}, {2432, 5}, {2437, 6},
11055                 {2442, 7}, {2447, 8}, {2452, 9},
11056                 {2457, 10}, {2462, 11}, {2467, 12},
11057                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11058                              IEEE80211_CH_PASSIVE_ONLY}},
11059          },
11060
11061         {                       /* High Band */
11062          "ZZH",
11063          .bg_channels = 13,
11064          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11065                 {2427, 4}, {2432, 5}, {2437, 6},
11066                 {2442, 7}, {2447, 8}, {2452, 9},
11067                 {2457, 10}, {2462, 11},
11068                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11069                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11070          .a_channels = 4,
11071          .a = {{5745, 149}, {5765, 153},
11072                {5785, 157}, {5805, 161}},
11073          },
11074
11075         {                       /* Custom Europe */
11076          "ZZG",
11077          .bg_channels = 13,
11078          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11079                 {2427, 4}, {2432, 5}, {2437, 6},
11080                 {2442, 7}, {2447, 8}, {2452, 9},
11081                 {2457, 10}, {2462, 11},
11082                 {2467, 12}, {2472, 13}},
11083          .a_channels = 4,
11084          .a = {{5180, 36}, {5200, 40},
11085                {5220, 44}, {5240, 48}},
11086          },
11087
11088         {                       /* Europe */
11089          "ZZK",
11090          .bg_channels = 13,
11091          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11092                 {2427, 4}, {2432, 5}, {2437, 6},
11093                 {2442, 7}, {2447, 8}, {2452, 9},
11094                 {2457, 10}, {2462, 11},
11095                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11096                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11097          .a_channels = 24,
11098          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11099                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11100                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11101                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11102                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11103                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11104                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11105                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11106                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11107                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11108                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11109                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11110                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11111                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11112                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11113                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11114                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11115                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11116                {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11117                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11118                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11119                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11120                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11121                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11122          },
11123
11124         {                       /* Europe */
11125          "ZZL",
11126          .bg_channels = 11,
11127          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11128                 {2427, 4}, {2432, 5}, {2437, 6},
11129                 {2442, 7}, {2447, 8}, {2452, 9},
11130                 {2457, 10}, {2462, 11}},
11131          .a_channels = 13,
11132          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11133                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11134                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11135                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11136                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11137                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11138                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11139                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11140                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11141                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11142                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11143                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11144                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11145          }
11146 };
11147
11148 #define MAX_HW_RESTARTS 5
11149 static int ipw_up(struct ipw_priv *priv)
11150 {
11151         int rc, i, j;
11152
11153         if (priv->status & STATUS_EXIT_PENDING)
11154                 return -EIO;
11155
11156         if (cmdlog && !priv->cmdlog) {
11157                 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11158                                        GFP_KERNEL);
11159                 if (priv->cmdlog == NULL) {
11160                         IPW_ERROR("Error allocating %d command log entries.\n",
11161                                   cmdlog);
11162                         return -ENOMEM;
11163                 } else {
11164                         priv->cmdlog_len = cmdlog;
11165                 }
11166         }
11167
11168         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11169                 /* Load the microcode, firmware, and eeprom.
11170                  * Also start the clocks. */
11171                 rc = ipw_load(priv);
11172                 if (rc) {
11173                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11174                         return rc;
11175                 }
11176
11177                 ipw_init_ordinals(priv);
11178                 if (!(priv->config & CFG_CUSTOM_MAC))
11179                         eeprom_parse_mac(priv, priv->mac_addr);
11180                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11181
11182                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11183                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11184                                     ipw_geos[j].name, 3))
11185                                 break;
11186                 }
11187                 if (j == ARRAY_SIZE(ipw_geos)) {
11188                         IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11189                                     priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11190                                     priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11191                                     priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11192                         j = 0;
11193                 }
11194                 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11195                         IPW_WARNING("Could not set geography.");
11196                         return 0;
11197                 }
11198
11199                 if (priv->status & STATUS_RF_KILL_SW) {
11200                         IPW_WARNING("Radio disabled by module parameter.\n");
11201                         return 0;
11202                 } else if (rf_kill_active(priv)) {
11203                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11204                                     "Kill switch must be turned off for "
11205                                     "wireless networking to work.\n");
11206                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
11207                                            2 * HZ);
11208                         return 0;
11209                 }
11210
11211                 rc = ipw_config(priv);
11212                 if (!rc) {
11213                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11214
11215                         /* If configure to try and auto-associate, kick
11216                          * off a scan. */
11217                         queue_delayed_work(priv->workqueue,
11218                                            &priv->request_scan, 0);
11219
11220                         return 0;
11221                 }
11222
11223                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11224                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11225                                i, MAX_HW_RESTARTS);
11226
11227                 /* We had an error bringing up the hardware, so take it
11228                  * all the way back down so we can try again */
11229                 ipw_down(priv);
11230         }
11231
11232         /* tried to restart and config the device for as long as our
11233          * patience could withstand */
11234         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11235
11236         return -EIO;
11237 }
11238
11239 static void ipw_bg_up(struct work_struct *work)
11240 {
11241         struct ipw_priv *priv =
11242                 container_of(work, struct ipw_priv, up);
11243         mutex_lock(&priv->mutex);
11244         ipw_up(priv);
11245         mutex_unlock(&priv->mutex);
11246 }
11247
11248 static void ipw_deinit(struct ipw_priv *priv)
11249 {
11250         int i;
11251
11252         if (priv->status & STATUS_SCANNING) {
11253                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11254                 ipw_abort_scan(priv);
11255         }
11256
11257         if (priv->status & STATUS_ASSOCIATED) {
11258                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11259                 ipw_disassociate(priv);
11260         }
11261
11262         ipw_led_shutdown(priv);
11263
11264         /* Wait up to 1s for status to change to not scanning and not
11265          * associated (disassociation can take a while for a ful 802.11
11266          * exchange */
11267         for (i = 1000; i && (priv->status &
11268                              (STATUS_DISASSOCIATING |
11269                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11270                 udelay(10);
11271
11272         if (priv->status & (STATUS_DISASSOCIATING |
11273                             STATUS_ASSOCIATED | STATUS_SCANNING))
11274                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11275         else
11276                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11277
11278         /* Attempt to disable the card */
11279         ipw_send_card_disable(priv, 0);
11280
11281         priv->status &= ~STATUS_INIT;
11282 }
11283
11284 static void ipw_down(struct ipw_priv *priv)
11285 {
11286         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11287
11288         priv->status |= STATUS_EXIT_PENDING;
11289
11290         if (ipw_is_init(priv))
11291                 ipw_deinit(priv);
11292
11293         /* Wipe out the EXIT_PENDING status bit if we are not actually
11294          * exiting the module */
11295         if (!exit_pending)
11296                 priv->status &= ~STATUS_EXIT_PENDING;
11297
11298         /* tell the device to stop sending interrupts */
11299         ipw_disable_interrupts(priv);
11300
11301         /* Clear all bits but the RF Kill */
11302         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11303         netif_carrier_off(priv->net_dev);
11304         netif_stop_queue(priv->net_dev);
11305
11306         ipw_stop_nic(priv);
11307
11308         ipw_led_radio_off(priv);
11309 }
11310
11311 static void ipw_bg_down(struct work_struct *work)
11312 {
11313         struct ipw_priv *priv =
11314                 container_of(work, struct ipw_priv, down);
11315         mutex_lock(&priv->mutex);
11316         ipw_down(priv);
11317         mutex_unlock(&priv->mutex);
11318 }
11319
11320 /* Called by register_netdev() */
11321 static int ipw_net_init(struct net_device *dev)
11322 {
11323         struct ipw_priv *priv = ieee80211_priv(dev);
11324         mutex_lock(&priv->mutex);
11325
11326         if (ipw_up(priv)) {
11327                 mutex_unlock(&priv->mutex);
11328                 return -EIO;
11329         }
11330
11331         mutex_unlock(&priv->mutex);
11332         return 0;
11333 }
11334
11335 /* PCI driver stuff */
11336 static struct pci_device_id card_ids[] = {
11337         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11338         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11339         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11340         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11341         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11342         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11343         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11344         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11345         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11346         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11347         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11348         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11349         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11350         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11351         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11352         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11353         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11354         {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11355         {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11356         {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11357         {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11358         {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11359
11360         /* required last entry */
11361         {0,}
11362 };
11363
11364 MODULE_DEVICE_TABLE(pci, card_ids);
11365
11366 static struct attribute *ipw_sysfs_entries[] = {
11367         &dev_attr_rf_kill.attr,
11368         &dev_attr_direct_dword.attr,
11369         &dev_attr_indirect_byte.attr,
11370         &dev_attr_indirect_dword.attr,
11371         &dev_attr_mem_gpio_reg.attr,
11372         &dev_attr_command_event_reg.attr,
11373         &dev_attr_nic_type.attr,
11374         &dev_attr_status.attr,
11375         &dev_attr_cfg.attr,
11376         &dev_attr_error.attr,
11377         &dev_attr_event_log.attr,
11378         &dev_attr_cmd_log.attr,
11379         &dev_attr_eeprom_delay.attr,
11380         &dev_attr_ucode_version.attr,
11381         &dev_attr_rtc.attr,
11382         &dev_attr_scan_age.attr,
11383         &dev_attr_led.attr,
11384         &dev_attr_speed_scan.attr,
11385         &dev_attr_net_stats.attr,
11386 #ifdef CONFIG_IPW2200_PROMISCUOUS
11387         &dev_attr_rtap_iface.attr,
11388         &dev_attr_rtap_filter.attr,
11389 #endif
11390         NULL
11391 };
11392
11393 static struct attribute_group ipw_attribute_group = {
11394         .name = NULL,           /* put in device directory */
11395         .attrs = ipw_sysfs_entries,
11396 };
11397
11398 #ifdef CONFIG_IPW2200_PROMISCUOUS
11399 static int ipw_prom_open(struct net_device *dev)
11400 {
11401         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11402         struct ipw_priv *priv = prom_priv->priv;
11403
11404         IPW_DEBUG_INFO("prom dev->open\n");
11405         netif_carrier_off(dev);
11406         netif_stop_queue(dev);
11407
11408         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11409                 priv->sys_config.accept_all_data_frames = 1;
11410                 priv->sys_config.accept_non_directed_frames = 1;
11411                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11412                 priv->sys_config.accept_all_mgmt_frames = 1;
11413
11414                 ipw_send_system_config(priv);
11415         }
11416
11417         return 0;
11418 }
11419
11420 static int ipw_prom_stop(struct net_device *dev)
11421 {
11422         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11423         struct ipw_priv *priv = prom_priv->priv;
11424
11425         IPW_DEBUG_INFO("prom dev->stop\n");
11426
11427         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11428                 priv->sys_config.accept_all_data_frames = 0;
11429                 priv->sys_config.accept_non_directed_frames = 0;
11430                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11431                 priv->sys_config.accept_all_mgmt_frames = 0;
11432
11433                 ipw_send_system_config(priv);
11434         }
11435
11436         return 0;
11437 }
11438
11439 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11440 {
11441         IPW_DEBUG_INFO("prom dev->xmit\n");
11442         netif_stop_queue(dev);
11443         return -EOPNOTSUPP;
11444 }
11445
11446 static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11447 {
11448         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11449         return &prom_priv->ieee->stats;
11450 }
11451
11452 static int ipw_prom_alloc(struct ipw_priv *priv)
11453 {
11454         int rc = 0;
11455
11456         if (priv->prom_net_dev)
11457                 return -EPERM;
11458
11459         priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11460         if (priv->prom_net_dev == NULL)
11461                 return -ENOMEM;
11462
11463         priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11464         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11465         priv->prom_priv->priv = priv;
11466
11467         strcpy(priv->prom_net_dev->name, "rtap%d");
11468
11469         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11470         priv->prom_net_dev->open = ipw_prom_open;
11471         priv->prom_net_dev->stop = ipw_prom_stop;
11472         priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11473         priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11474
11475         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11476
11477         rc = register_netdev(priv->prom_net_dev);
11478         if (rc) {
11479                 free_ieee80211(priv->prom_net_dev);
11480                 priv->prom_net_dev = NULL;
11481                 return rc;
11482         }
11483
11484         return 0;
11485 }
11486
11487 static void ipw_prom_free(struct ipw_priv *priv)
11488 {
11489         if (!priv->prom_net_dev)
11490                 return;
11491
11492         unregister_netdev(priv->prom_net_dev);
11493         free_ieee80211(priv->prom_net_dev);
11494
11495         priv->prom_net_dev = NULL;
11496 }
11497
11498 #endif
11499
11500
11501 static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
11502 {
11503         int err = 0;
11504         struct net_device *net_dev;
11505         void __iomem *base;
11506         u32 length, val;
11507         struct ipw_priv *priv;
11508         int i;
11509
11510         net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11511         if (net_dev == NULL) {
11512                 err = -ENOMEM;
11513                 goto out;
11514         }
11515
11516         priv = ieee80211_priv(net_dev);
11517         priv->ieee = netdev_priv(net_dev);
11518
11519         priv->net_dev = net_dev;
11520         priv->pci_dev = pdev;
11521         ipw_debug_level = debug;
11522         spin_lock_init(&priv->irq_lock);
11523         spin_lock_init(&priv->lock);
11524         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11525                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11526
11527         mutex_init(&priv->mutex);
11528         if (pci_enable_device(pdev)) {
11529                 err = -ENODEV;
11530                 goto out_free_ieee80211;
11531         }
11532
11533         pci_set_master(pdev);
11534
11535         err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11536         if (!err)
11537                 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11538         if (err) {
11539                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11540                 goto out_pci_disable_device;
11541         }
11542
11543         pci_set_drvdata(pdev, priv);
11544
11545         err = pci_request_regions(pdev, DRV_NAME);
11546         if (err)
11547                 goto out_pci_disable_device;
11548
11549         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11550          * PCI Tx retries from interfering with C3 CPU state */
11551         pci_read_config_dword(pdev, 0x40, &val);
11552         if ((val & 0x0000ff00) != 0)
11553                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11554
11555         length = pci_resource_len(pdev, 0);
11556         priv->hw_len = length;
11557
11558         base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11559         if (!base) {
11560                 err = -ENODEV;
11561                 goto out_pci_release_regions;
11562         }
11563
11564         priv->hw_base = base;
11565         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11566         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11567
11568         err = ipw_setup_deferred_work(priv);
11569         if (err) {
11570                 IPW_ERROR("Unable to setup deferred work\n");
11571                 goto out_iounmap;
11572         }
11573
11574         ipw_sw_reset(priv, 1);
11575
11576         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11577         if (err) {
11578                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11579                 goto out_destroy_workqueue;
11580         }
11581
11582         SET_MODULE_OWNER(net_dev);
11583         SET_NETDEV_DEV(net_dev, &pdev->dev);
11584
11585         mutex_lock(&priv->mutex);
11586
11587         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11588         priv->ieee->set_security = shim__set_security;
11589         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11590
11591 #ifdef CONFIG_IPW2200_QOS
11592         priv->ieee->is_qos_active = ipw_is_qos_active;
11593         priv->ieee->handle_probe_response = ipw_handle_beacon;
11594         priv->ieee->handle_beacon = ipw_handle_probe_response;
11595         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11596 #endif                          /* CONFIG_IPW2200_QOS */
11597
11598         priv->ieee->perfect_rssi = -20;
11599         priv->ieee->worst_rssi = -85;
11600
11601         net_dev->open = ipw_net_open;
11602         net_dev->stop = ipw_net_stop;
11603         net_dev->init = ipw_net_init;
11604         net_dev->get_stats = ipw_net_get_stats;
11605         net_dev->set_multicast_list = ipw_net_set_multicast_list;
11606         net_dev->set_mac_address = ipw_net_set_mac_address;
11607         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11608         net_dev->wireless_data = &priv->wireless_data;
11609         net_dev->wireless_handlers = &ipw_wx_handler_def;
11610         net_dev->ethtool_ops = &ipw_ethtool_ops;
11611         net_dev->irq = pdev->irq;
11612         net_dev->base_addr = (unsigned long)priv->hw_base;
11613         net_dev->mem_start = pci_resource_start(pdev, 0);
11614         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11615
11616         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11617         if (err) {
11618                 IPW_ERROR("failed to create sysfs device attributes\n");
11619                 mutex_unlock(&priv->mutex);
11620                 goto out_release_irq;
11621         }
11622
11623         mutex_unlock(&priv->mutex);
11624         err = register_netdev(net_dev);
11625         if (err) {
11626                 IPW_ERROR("failed to register network device\n");
11627                 goto out_remove_sysfs;
11628         }
11629
11630 #ifdef CONFIG_IPW2200_PROMISCUOUS
11631         if (rtap_iface) {
11632                 err = ipw_prom_alloc(priv);
11633                 if (err) {
11634                         IPW_ERROR("Failed to register promiscuous network "
11635                                   "device (error %d).\n", err);
11636                         unregister_netdev(priv->net_dev);
11637                         goto out_remove_sysfs;
11638                 }
11639         }
11640 #endif
11641
11642         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11643                "channels, %d 802.11a channels)\n",
11644                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11645                priv->ieee->geo.a_channels);
11646
11647         return 0;
11648
11649       out_remove_sysfs:
11650         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11651       out_release_irq:
11652         free_irq(pdev->irq, priv);
11653       out_destroy_workqueue:
11654         destroy_workqueue(priv->workqueue);
11655         priv->workqueue = NULL;
11656       out_iounmap:
11657         iounmap(priv->hw_base);
11658       out_pci_release_regions:
11659         pci_release_regions(pdev);
11660       out_pci_disable_device:
11661         pci_disable_device(pdev);
11662         pci_set_drvdata(pdev, NULL);
11663       out_free_ieee80211:
11664         free_ieee80211(priv->net_dev);
11665       out:
11666         return err;
11667 }
11668
11669 static void ipw_pci_remove(struct pci_dev *pdev)
11670 {
11671         struct ipw_priv *priv = pci_get_drvdata(pdev);
11672         struct list_head *p, *q;
11673         int i;
11674
11675         if (!priv)
11676                 return;
11677
11678         mutex_lock(&priv->mutex);
11679
11680         priv->status |= STATUS_EXIT_PENDING;
11681         ipw_down(priv);
11682         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11683
11684         mutex_unlock(&priv->mutex);
11685
11686         unregister_netdev(priv->net_dev);
11687
11688         if (priv->rxq) {
11689                 ipw_rx_queue_free(priv, priv->rxq);
11690                 priv->rxq = NULL;
11691         }
11692         ipw_tx_queue_free(priv);
11693
11694         if (priv->cmdlog) {
11695                 kfree(priv->cmdlog);
11696                 priv->cmdlog = NULL;
11697         }
11698         /* ipw_down will ensure that there is no more pending work
11699          * in the workqueue's, so we can safely remove them now. */
11700         cancel_delayed_work(&priv->adhoc_check);
11701         cancel_delayed_work(&priv->gather_stats);
11702         cancel_delayed_work(&priv->request_scan);
11703         cancel_delayed_work(&priv->rf_kill);
11704         cancel_delayed_work(&priv->scan_check);
11705         destroy_workqueue(priv->workqueue);
11706         priv->workqueue = NULL;
11707
11708         /* Free MAC hash list for ADHOC */
11709         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11710                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11711                         list_del(p);
11712                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11713                 }
11714         }
11715
11716         kfree(priv->error);
11717         priv->error = NULL;
11718
11719 #ifdef CONFIG_IPW2200_PROMISCUOUS
11720         ipw_prom_free(priv);
11721 #endif
11722
11723         free_irq(pdev->irq, priv);
11724         iounmap(priv->hw_base);
11725         pci_release_regions(pdev);
11726         pci_disable_device(pdev);
11727         pci_set_drvdata(pdev, NULL);
11728         free_ieee80211(priv->net_dev);
11729         free_firmware();
11730 }
11731
11732 #ifdef CONFIG_PM
11733 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11734 {
11735         struct ipw_priv *priv = pci_get_drvdata(pdev);
11736         struct net_device *dev = priv->net_dev;
11737
11738         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11739
11740         /* Take down the device; powers it off, etc. */
11741         ipw_down(priv);
11742
11743         /* Remove the PRESENT state of the device */
11744         netif_device_detach(dev);
11745
11746         pci_save_state(pdev);
11747         pci_disable_device(pdev);
11748         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11749
11750         return 0;
11751 }
11752
11753 static int ipw_pci_resume(struct pci_dev *pdev)
11754 {
11755         struct ipw_priv *priv = pci_get_drvdata(pdev);
11756         struct net_device *dev = priv->net_dev;
11757         int err;
11758         u32 val;
11759
11760         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11761
11762         pci_set_power_state(pdev, PCI_D0);
11763         err = pci_enable_device(pdev);
11764         if (err) {
11765                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11766                        dev->name);
11767                 return err;
11768         }
11769         pci_restore_state(pdev);
11770
11771         /*
11772          * Suspend/Resume resets the PCI configuration space, so we have to
11773          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11774          * from interfering with C3 CPU state. pci_restore_state won't help
11775          * here since it only restores the first 64 bytes pci config header.
11776          */
11777         pci_read_config_dword(pdev, 0x40, &val);
11778         if ((val & 0x0000ff00) != 0)
11779                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11780
11781         /* Set the device back into the PRESENT state; this will also wake
11782          * the queue of needed */
11783         netif_device_attach(dev);
11784
11785         /* Bring the device back up */
11786         queue_work(priv->workqueue, &priv->up);
11787
11788         return 0;
11789 }
11790 #endif
11791
11792 static void ipw_pci_shutdown(struct pci_dev *pdev)
11793 {
11794         struct ipw_priv *priv = pci_get_drvdata(pdev);
11795
11796         /* Take down the device; powers it off, etc. */
11797         ipw_down(priv);
11798
11799         pci_disable_device(pdev);
11800 }
11801
11802 /* driver initialization stuff */
11803 static struct pci_driver ipw_driver = {
11804         .name = DRV_NAME,
11805         .id_table = card_ids,
11806         .probe = ipw_pci_probe,
11807         .remove = __devexit_p(ipw_pci_remove),
11808 #ifdef CONFIG_PM
11809         .suspend = ipw_pci_suspend,
11810         .resume = ipw_pci_resume,
11811 #endif
11812         .shutdown = ipw_pci_shutdown,
11813 };
11814
11815 static int __init ipw_init(void)
11816 {
11817         int ret;
11818
11819         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11820         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11821
11822         ret = pci_register_driver(&ipw_driver);
11823         if (ret) {
11824                 IPW_ERROR("Unable to initialize PCI module\n");
11825                 return ret;
11826         }
11827
11828         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11829         if (ret) {
11830                 IPW_ERROR("Unable to create driver sysfs file\n");
11831                 pci_unregister_driver(&ipw_driver);
11832                 return ret;
11833         }
11834
11835         return ret;
11836 }
11837
11838 static void __exit ipw_exit(void)
11839 {
11840         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11841         pci_unregister_driver(&ipw_driver);
11842 }
11843
11844 module_param(disable, int, 0444);
11845 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11846
11847 module_param(associate, int, 0444);
11848 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11849
11850 module_param(auto_create, int, 0444);
11851 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11852
11853 module_param(led, int, 0444);
11854 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11855
11856 module_param(debug, int, 0444);
11857 MODULE_PARM_DESC(debug, "debug output mask");
11858
11859 module_param(channel, int, 0444);
11860 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11861
11862 #ifdef CONFIG_IPW2200_PROMISCUOUS
11863 module_param(rtap_iface, int, 0444);
11864 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11865 #endif
11866
11867 #ifdef CONFIG_IPW2200_QOS
11868 module_param(qos_enable, int, 0444);
11869 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11870
11871 module_param(qos_burst_enable, int, 0444);
11872 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11873
11874 module_param(qos_no_ack_mask, int, 0444);
11875 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11876
11877 module_param(burst_duration_CCK, int, 0444);
11878 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11879
11880 module_param(burst_duration_OFDM, int, 0444);
11881 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11882 #endif                          /* CONFIG_IPW2200_QOS */
11883
11884 #ifdef CONFIG_IPW2200_MONITOR
11885 module_param(mode, int, 0444);
11886 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11887 #else
11888 module_param(mode, int, 0444);
11889 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11890 #endif
11891
11892 module_param(bt_coexist, int, 0444);
11893 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11894
11895 module_param(hwcrypto, int, 0444);
11896 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11897
11898 module_param(cmdlog, int, 0444);
11899 MODULE_PARM_DESC(cmdlog,
11900                  "allocate a ring buffer for logging firmware commands");
11901
11902 module_param(roaming, int, 0444);
11903 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11904
11905 module_param(antenna, int, 0444);
11906 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
11907
11908 module_exit(ipw_exit);
11909 module_init(ipw_init);