1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/hpet.h>
8 #include <linux/init.h>
13 #include <asm/fixmap.h>
14 #include <asm/i8253.h>
17 #define HPET_MASK CLOCKSOURCE_MASK(32)
22 #define FSEC_PER_NSEC 1000000L
24 #define HPET_DEV_USED_BIT 2
25 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID 0x8
27 #define HPET_DEV_FSB_CAP 0x1000
28 #define HPET_DEV_PERI_CAP 0x2000
30 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
33 * HPET address is set in acpi/boot.c, when an ACPI entry exists
35 unsigned long hpet_address;
37 static unsigned long hpet_num_timers;
39 static void __iomem *hpet_virt_address;
42 struct clock_event_device evt;
50 unsigned long hpet_readl(unsigned long a)
52 return readl(hpet_virt_address + a);
55 static inline void hpet_writel(unsigned long d, unsigned long a)
57 writel(d, hpet_virt_address + a);
61 #include <asm/pgtable.h>
64 static inline void hpet_set_mapping(void)
66 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
68 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
72 static inline void hpet_clear_mapping(void)
74 iounmap(hpet_virt_address);
75 hpet_virt_address = NULL;
79 * HPET command line enable / disable
81 static int boot_hpet_disable;
83 static int hpet_verbose;
85 static int __init hpet_setup(char *str)
88 if (!strncmp("disable", str, 7))
89 boot_hpet_disable = 1;
90 if (!strncmp("force", str, 5))
92 if (!strncmp("verbose", str, 7))
97 __setup("hpet=", hpet_setup);
99 static int __init disable_hpet(char *str)
101 boot_hpet_disable = 1;
104 __setup("nohpet", disable_hpet);
106 static inline int is_hpet_capable(void)
108 return !boot_hpet_disable && hpet_address;
112 * HPET timer interrupt enable / disable
114 static int hpet_legacy_int_enabled;
117 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
119 int is_hpet_enabled(void)
121 return is_hpet_capable() && hpet_legacy_int_enabled;
123 EXPORT_SYMBOL_GPL(is_hpet_enabled);
125 static void _hpet_print_config(const char *function, int line)
128 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
129 l = hpet_readl(HPET_ID);
130 h = hpet_readl(HPET_PERIOD);
131 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
132 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
133 l = hpet_readl(HPET_CFG);
134 h = hpet_readl(HPET_STATUS);
135 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
136 l = hpet_readl(HPET_COUNTER);
137 h = hpet_readl(HPET_COUNTER+4);
138 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
140 for (i = 0; i < timers; i++) {
141 l = hpet_readl(HPET_Tn_CFG(i));
142 h = hpet_readl(HPET_Tn_CFG(i)+4);
143 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
145 l = hpet_readl(HPET_Tn_CMP(i));
146 h = hpet_readl(HPET_Tn_CMP(i)+4);
147 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
149 l = hpet_readl(HPET_Tn_ROUTE(i));
150 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
151 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
156 #define hpet_print_config() \
159 _hpet_print_config(__FUNCTION__, __LINE__); \
163 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
164 * timer 0 and timer 1 in case of RTC emulation.
168 static void hpet_reserve_msi_timers(struct hpet_data *hd);
170 static void hpet_reserve_platform_timers(unsigned long id)
172 struct hpet __iomem *hpet = hpet_virt_address;
173 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
174 unsigned int nrtimers, i;
177 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
179 memset(&hd, 0, sizeof(hd));
180 hd.hd_phys_address = hpet_address;
181 hd.hd_address = hpet;
182 hd.hd_nirqs = nrtimers;
183 hpet_reserve_timer(&hd, 0);
185 #ifdef CONFIG_HPET_EMULATE_RTC
186 hpet_reserve_timer(&hd, 1);
190 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
191 * is wrong for i8259!) not the output IRQ. Many BIOS writers
192 * don't bother configuring *any* comparator interrupts.
194 hd.hd_irq[0] = HPET_LEGACY_8254;
195 hd.hd_irq[1] = HPET_LEGACY_RTC;
197 for (i = 2; i < nrtimers; timer++, i++) {
198 hd.hd_irq[i] = (readl(&timer->hpet_config) &
199 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
202 hpet_reserve_msi_timers(&hd);
208 static void hpet_reserve_platform_timers(unsigned long id) { }
214 static unsigned long hpet_period;
216 static void hpet_legacy_set_mode(enum clock_event_mode mode,
217 struct clock_event_device *evt);
218 static int hpet_legacy_next_event(unsigned long delta,
219 struct clock_event_device *evt);
222 * The hpet clock event device
224 static struct clock_event_device hpet_clockevent = {
226 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
227 .set_mode = hpet_legacy_set_mode,
228 .set_next_event = hpet_legacy_next_event,
234 static void hpet_stop_counter(void)
236 unsigned long cfg = hpet_readl(HPET_CFG);
237 cfg &= ~HPET_CFG_ENABLE;
238 hpet_writel(cfg, HPET_CFG);
239 hpet_writel(0, HPET_COUNTER);
240 hpet_writel(0, HPET_COUNTER + 4);
243 static void hpet_start_counter(void)
245 unsigned long cfg = hpet_readl(HPET_CFG);
246 cfg |= HPET_CFG_ENABLE;
247 hpet_writel(cfg, HPET_CFG);
250 static void hpet_restart_counter(void)
253 hpet_start_counter();
256 static void hpet_resume_device(void)
261 static void hpet_resume_counter(void)
263 hpet_resume_device();
264 hpet_restart_counter();
267 static void hpet_enable_legacy_int(void)
269 unsigned long cfg = hpet_readl(HPET_CFG);
271 cfg |= HPET_CFG_LEGACY;
272 hpet_writel(cfg, HPET_CFG);
273 hpet_legacy_int_enabled = 1;
276 static void hpet_legacy_clockevent_register(void)
278 /* Start HPET legacy interrupts */
279 hpet_enable_legacy_int();
282 * The mult factor is defined as (include/linux/clockchips.h)
283 * mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
284 * hpet_period is in units of femtoseconds (per cycle), so
285 * mult/2^shift = cyc/ns = 10^6/hpet_period
286 * mult = (10^6 * 2^shift)/hpet_period
287 * mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
289 hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
290 hpet_period, hpet_clockevent.shift);
291 /* Calculate the min / max delta */
292 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
294 /* 5 usec minimum reprogramming delta. */
295 hpet_clockevent.min_delta_ns = 5000;
298 * Start hpet with the boot cpu mask and make it
299 * global after the IO_APIC has been initialized.
301 hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
302 clockevents_register_device(&hpet_clockevent);
303 global_clock_event = &hpet_clockevent;
304 printk(KERN_DEBUG "hpet clockevent registered\n");
307 static int hpet_setup_msi_irq(unsigned int irq);
309 static void hpet_set_mode(enum clock_event_mode mode,
310 struct clock_event_device *evt, int timer)
316 case CLOCK_EVT_MODE_PERIODIC:
318 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
319 delta >>= evt->shift;
320 cfg = hpet_readl(HPET_Tn_CFG(timer));
321 /* Make sure we use edge triggered interrupts */
322 cfg &= ~HPET_TN_LEVEL;
323 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
324 HPET_TN_SETVAL | HPET_TN_32BIT;
325 hpet_writel(cfg, HPET_Tn_CFG(timer));
326 hpet_writel((unsigned long) delta, HPET_Tn_CMP(timer));
327 hpet_start_counter();
331 case CLOCK_EVT_MODE_ONESHOT:
332 cfg = hpet_readl(HPET_Tn_CFG(timer));
333 cfg &= ~HPET_TN_PERIODIC;
334 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
335 hpet_writel(cfg, HPET_Tn_CFG(timer));
338 case CLOCK_EVT_MODE_UNUSED:
339 case CLOCK_EVT_MODE_SHUTDOWN:
340 cfg = hpet_readl(HPET_Tn_CFG(timer));
341 cfg &= ~HPET_TN_ENABLE;
342 hpet_writel(cfg, HPET_Tn_CFG(timer));
345 case CLOCK_EVT_MODE_RESUME:
347 hpet_enable_legacy_int();
349 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
350 hpet_setup_msi_irq(hdev->irq);
351 disable_irq(hdev->irq);
352 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
353 enable_irq(hdev->irq);
360 static int hpet_next_event(unsigned long delta,
361 struct clock_event_device *evt, int timer)
365 cnt = hpet_readl(HPET_COUNTER);
367 hpet_writel(cnt, HPET_Tn_CMP(timer));
370 * We need to read back the CMP register to make sure that
371 * what we wrote hit the chip before we compare it to the
374 WARN_ON_ONCE((u32)hpet_readl(HPET_Tn_CMP(timer)) != cnt);
376 return (s32)((u32)hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
379 static void hpet_legacy_set_mode(enum clock_event_mode mode,
380 struct clock_event_device *evt)
382 hpet_set_mode(mode, evt, 0);
385 static int hpet_legacy_next_event(unsigned long delta,
386 struct clock_event_device *evt)
388 return hpet_next_event(delta, evt, 0);
394 #ifdef CONFIG_PCI_MSI
396 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
397 static struct hpet_dev *hpet_devs;
399 void hpet_msi_unmask(unsigned int irq)
401 struct hpet_dev *hdev = get_irq_data(irq);
405 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
407 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
410 void hpet_msi_mask(unsigned int irq)
413 struct hpet_dev *hdev = get_irq_data(irq);
416 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
418 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
421 void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
423 struct hpet_dev *hdev = get_irq_data(irq);
425 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
426 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
429 void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
431 struct hpet_dev *hdev = get_irq_data(irq);
433 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
434 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
438 static void hpet_msi_set_mode(enum clock_event_mode mode,
439 struct clock_event_device *evt)
441 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
442 hpet_set_mode(mode, evt, hdev->num);
445 static int hpet_msi_next_event(unsigned long delta,
446 struct clock_event_device *evt)
448 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
449 return hpet_next_event(delta, evt, hdev->num);
452 static int hpet_setup_msi_irq(unsigned int irq)
454 if (arch_setup_hpet_msi(irq)) {
461 static int hpet_assign_irq(struct hpet_dev *dev)
469 set_irq_data(irq, dev);
471 if (hpet_setup_msi_irq(irq))
478 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
480 struct hpet_dev *dev = (struct hpet_dev *)data;
481 struct clock_event_device *hevt = &dev->evt;
483 if (!hevt->event_handler) {
484 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
489 hevt->event_handler(hevt);
493 static int hpet_setup_irq(struct hpet_dev *dev)
496 if (request_irq(dev->irq, hpet_interrupt_handler,
497 IRQF_DISABLED|IRQF_NOBALANCING, dev->name, dev))
500 disable_irq(dev->irq);
501 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
502 enable_irq(dev->irq);
504 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
505 dev->name, dev->irq);
510 /* This should be called in specific @cpu */
511 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
513 struct clock_event_device *evt = &hdev->evt;
516 WARN_ON(cpu != smp_processor_id());
517 if (!(hdev->flags & HPET_DEV_VALID))
520 if (hpet_setup_msi_irq(hdev->irq))
524 per_cpu(cpu_hpet_dev, cpu) = hdev;
525 evt->name = hdev->name;
526 hpet_setup_irq(hdev);
527 evt->irq = hdev->irq;
530 evt->features = CLOCK_EVT_FEAT_ONESHOT;
531 if (hdev->flags & HPET_DEV_PERI_CAP)
532 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
534 evt->set_mode = hpet_msi_set_mode;
535 evt->set_next_event = hpet_msi_next_event;
539 * The period is a femto seconds value. We need to calculate the
540 * scaled math multiplication factor for nanosecond to hpet tick
543 hpet_freq = 1000000000000000ULL;
544 do_div(hpet_freq, hpet_period);
545 evt->mult = div_sc((unsigned long) hpet_freq,
546 NSEC_PER_SEC, evt->shift);
547 /* Calculate the max delta */
548 evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
549 /* 5 usec minimum reprogramming delta. */
550 evt->min_delta_ns = 5000;
552 evt->cpumask = cpumask_of(hdev->cpu);
553 clockevents_register_device(evt);
557 /* Reserve at least one timer for userspace (/dev/hpet) */
558 #define RESERVE_TIMERS 1
560 #define RESERVE_TIMERS 0
563 static void hpet_msi_capability_lookup(unsigned int start_timer)
566 unsigned int num_timers;
567 unsigned int num_timers_used = 0;
570 id = hpet_readl(HPET_ID);
572 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
573 num_timers++; /* Value read out starts from 0 */
576 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
580 hpet_num_timers = num_timers;
582 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
583 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
584 unsigned long cfg = hpet_readl(HPET_Tn_CFG(i));
586 /* Only consider HPET timer with MSI support */
587 if (!(cfg & HPET_TN_FSB_CAP))
591 if (cfg & HPET_TN_PERIODIC_CAP)
592 hdev->flags |= HPET_DEV_PERI_CAP;
595 sprintf(hdev->name, "hpet%d", i);
596 if (hpet_assign_irq(hdev))
599 hdev->flags |= HPET_DEV_FSB_CAP;
600 hdev->flags |= HPET_DEV_VALID;
602 if (num_timers_used == num_possible_cpus())
606 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
607 num_timers, num_timers_used);
611 static void hpet_reserve_msi_timers(struct hpet_data *hd)
618 for (i = 0; i < hpet_num_timers; i++) {
619 struct hpet_dev *hdev = &hpet_devs[i];
621 if (!(hdev->flags & HPET_DEV_VALID))
624 hd->hd_irq[hdev->num] = hdev->irq;
625 hpet_reserve_timer(hd, hdev->num);
630 static struct hpet_dev *hpet_get_unused_timer(void)
637 for (i = 0; i < hpet_num_timers; i++) {
638 struct hpet_dev *hdev = &hpet_devs[i];
640 if (!(hdev->flags & HPET_DEV_VALID))
642 if (test_and_set_bit(HPET_DEV_USED_BIT,
643 (unsigned long *)&hdev->flags))
650 struct hpet_work_struct {
651 struct delayed_work work;
652 struct completion complete;
655 static void hpet_work(struct work_struct *w)
657 struct hpet_dev *hdev;
658 int cpu = smp_processor_id();
659 struct hpet_work_struct *hpet_work;
661 hpet_work = container_of(w, struct hpet_work_struct, work.work);
663 hdev = hpet_get_unused_timer();
665 init_one_hpet_msi_clockevent(hdev, cpu);
667 complete(&hpet_work->complete);
670 static int hpet_cpuhp_notify(struct notifier_block *n,
671 unsigned long action, void *hcpu)
673 unsigned long cpu = (unsigned long)hcpu;
674 struct hpet_work_struct work;
675 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
677 switch (action & 0xf) {
679 INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
680 init_completion(&work.complete);
681 /* FIXME: add schedule_work_on() */
682 schedule_delayed_work_on(cpu, &work.work, 0);
683 wait_for_completion(&work.complete);
684 destroy_timer_on_stack(&work.work.timer);
688 free_irq(hdev->irq, hdev);
689 hdev->flags &= ~HPET_DEV_USED;
690 per_cpu(cpu_hpet_dev, cpu) = NULL;
698 static int hpet_setup_msi_irq(unsigned int irq)
702 static void hpet_msi_capability_lookup(unsigned int start_timer)
708 static void hpet_reserve_msi_timers(struct hpet_data *hd)
714 static int hpet_cpuhp_notify(struct notifier_block *n,
715 unsigned long action, void *hcpu)
723 * Clock source related code
725 static cycle_t read_hpet(void)
727 return (cycle_t)hpet_readl(HPET_COUNTER);
731 static cycle_t __vsyscall_fn vread_hpet(void)
733 return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
737 static struct clocksource clocksource_hpet = {
743 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
744 .resume = hpet_resume_counter,
750 static int hpet_clocksource_register(void)
755 /* Start the counter */
756 hpet_restart_counter();
758 /* Verify whether hpet counter works */
763 * We don't know the TSC frequency yet, but waiting for
764 * 200000 TSC cycles is safe:
771 } while ((now - start) < 200000UL);
773 if (t1 == read_hpet()) {
775 "HPET counter not counting. HPET disabled\n");
780 * The definition of mult is (include/linux/clocksource.h)
781 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
782 * so we first need to convert hpet_period to ns/cyc units:
783 * mult/2^shift = ns/cyc = hpet_period/10^6
784 * mult = (hpet_period * 2^shift)/10^6
785 * mult = (hpet_period << shift)/FSEC_PER_NSEC
787 clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
789 clocksource_register(&clocksource_hpet);
795 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
797 int __init hpet_enable(void)
802 if (!is_hpet_capable())
808 * Read the period and check for a sane value:
810 hpet_period = hpet_readl(HPET_PERIOD);
813 * AMD SB700 based systems with spread spectrum enabled use a
814 * SMM based HPET emulation to provide proper frequency
815 * setting. The SMM code is initialized with the first HPET
816 * register access and takes some time to complete. During
817 * this time the config register reads 0xffffffff. We check
818 * for max. 1000 loops whether the config register reads a non
819 * 0xffffffff value to make sure that HPET is up and running
820 * before we go further. A counting loop is safe, as the HPET
821 * access takes thousands of CPU cycles. On non SB700 based
822 * machines this check is only done once and has no side
825 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
828 "HPET config register value = 0xFFFFFFFF. "
834 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
838 * Read the HPET ID register to retrieve the IRQ routing
839 * information and the number of channels
841 id = hpet_readl(HPET_ID);
844 #ifdef CONFIG_HPET_EMULATE_RTC
846 * The legacy routing mode needs at least two channels, tick timer
847 * and the rtc emulation channel.
849 if (!(id & HPET_ID_NUMBER))
853 if (hpet_clocksource_register())
856 if (id & HPET_ID_LEGSUP) {
857 hpet_legacy_clockevent_register();
858 hpet_msi_capability_lookup(2);
861 hpet_msi_capability_lookup(0);
865 hpet_clear_mapping();
871 * Needs to be late, as the reserve_timer code calls kalloc !
873 * Not a problem on i386 as hpet_enable is called from late_time_init,
874 * but on x86_64 it is necessary !
876 static __init int hpet_late_init(void)
880 if (boot_hpet_disable)
884 if (!force_hpet_address)
887 hpet_address = force_hpet_address;
891 if (!hpet_virt_address)
894 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
897 for_each_online_cpu(cpu) {
898 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
901 /* This notifier should be called after workqueue is ready */
902 hotcpu_notifier(hpet_cpuhp_notify, -20);
906 fs_initcall(hpet_late_init);
908 void hpet_disable(void)
910 if (is_hpet_capable()) {
911 unsigned long cfg = hpet_readl(HPET_CFG);
913 if (hpet_legacy_int_enabled) {
914 cfg &= ~HPET_CFG_LEGACY;
915 hpet_legacy_int_enabled = 0;
917 cfg &= ~HPET_CFG_ENABLE;
918 hpet_writel(cfg, HPET_CFG);
922 #ifdef CONFIG_HPET_EMULATE_RTC
924 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
925 * is enabled, we support RTC interrupt functionality in software.
926 * RTC has 3 kinds of interrupts:
927 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
929 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
930 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
931 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
932 * (1) and (2) above are implemented using polling at a frequency of
933 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
934 * overhead. (DEFAULT_RTC_INT_FREQ)
935 * For (3), we use interrupts at 64Hz or user specified periodic
936 * frequency, whichever is higher.
938 #include <linux/mc146818rtc.h>
939 #include <linux/rtc.h>
942 #define DEFAULT_RTC_INT_FREQ 64
943 #define DEFAULT_RTC_SHIFT 6
944 #define RTC_NUM_INTS 1
946 static unsigned long hpet_rtc_flags;
947 static int hpet_prev_update_sec;
948 static struct rtc_time hpet_alarm_time;
949 static unsigned long hpet_pie_count;
950 static u32 hpet_t1_cmp;
951 static unsigned long hpet_default_delta;
952 static unsigned long hpet_pie_delta;
953 static unsigned long hpet_pie_limit;
955 static rtc_irq_handler irq_handler;
958 * Check that the hpet counter c1 is ahead of the c2
960 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
962 return (s32)(c2 - c1) < 0;
966 * Registers a IRQ handler.
968 int hpet_register_irq_handler(rtc_irq_handler handler)
970 if (!is_hpet_enabled())
975 irq_handler = handler;
979 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
982 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
985 void hpet_unregister_irq_handler(rtc_irq_handler handler)
987 if (!is_hpet_enabled())
993 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
996 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
997 * is not supported by all HPET implementations for timer 1.
999 * hpet_rtc_timer_init() is called when the rtc is initialized.
1001 int hpet_rtc_timer_init(void)
1003 unsigned long cfg, cnt, delta, flags;
1005 if (!is_hpet_enabled())
1008 if (!hpet_default_delta) {
1011 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1012 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1013 hpet_default_delta = (unsigned long) clc;
1016 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1017 delta = hpet_default_delta;
1019 delta = hpet_pie_delta;
1021 local_irq_save(flags);
1023 cnt = delta + hpet_readl(HPET_COUNTER);
1024 hpet_writel(cnt, HPET_T1_CMP);
1027 cfg = hpet_readl(HPET_T1_CFG);
1028 cfg &= ~HPET_TN_PERIODIC;
1029 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1030 hpet_writel(cfg, HPET_T1_CFG);
1032 local_irq_restore(flags);
1036 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1039 * The functions below are called from rtc driver.
1040 * Return 0 if HPET is not being used.
1041 * Otherwise do the necessary changes and return 1.
1043 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1045 if (!is_hpet_enabled())
1048 hpet_rtc_flags &= ~bit_mask;
1051 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1053 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1055 unsigned long oldbits = hpet_rtc_flags;
1057 if (!is_hpet_enabled())
1060 hpet_rtc_flags |= bit_mask;
1062 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1063 hpet_prev_update_sec = -1;
1066 hpet_rtc_timer_init();
1070 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1072 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1075 if (!is_hpet_enabled())
1078 hpet_alarm_time.tm_hour = hrs;
1079 hpet_alarm_time.tm_min = min;
1080 hpet_alarm_time.tm_sec = sec;
1084 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1086 int hpet_set_periodic_freq(unsigned long freq)
1090 if (!is_hpet_enabled())
1093 if (freq <= DEFAULT_RTC_INT_FREQ)
1094 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1096 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1098 clc >>= hpet_clockevent.shift;
1099 hpet_pie_delta = (unsigned long) clc;
1103 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1105 int hpet_rtc_dropped_irq(void)
1107 return is_hpet_enabled();
1109 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1111 static void hpet_rtc_timer_reinit(void)
1113 unsigned long cfg, delta;
1116 if (unlikely(!hpet_rtc_flags)) {
1117 cfg = hpet_readl(HPET_T1_CFG);
1118 cfg &= ~HPET_TN_ENABLE;
1119 hpet_writel(cfg, HPET_T1_CFG);
1123 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1124 delta = hpet_default_delta;
1126 delta = hpet_pie_delta;
1129 * Increment the comparator value until we are ahead of the
1133 hpet_t1_cmp += delta;
1134 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1136 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1139 if (hpet_rtc_flags & RTC_PIE)
1140 hpet_pie_count += lost_ints;
1141 if (printk_ratelimit())
1142 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1147 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1149 struct rtc_time curr_time;
1150 unsigned long rtc_int_flag = 0;
1152 hpet_rtc_timer_reinit();
1153 memset(&curr_time, 0, sizeof(struct rtc_time));
1155 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1156 get_rtc_time(&curr_time);
1158 if (hpet_rtc_flags & RTC_UIE &&
1159 curr_time.tm_sec != hpet_prev_update_sec) {
1160 if (hpet_prev_update_sec >= 0)
1161 rtc_int_flag = RTC_UF;
1162 hpet_prev_update_sec = curr_time.tm_sec;
1165 if (hpet_rtc_flags & RTC_PIE &&
1166 ++hpet_pie_count >= hpet_pie_limit) {
1167 rtc_int_flag |= RTC_PF;
1171 if (hpet_rtc_flags & RTC_AIE &&
1172 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1173 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1174 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1175 rtc_int_flag |= RTC_AF;
1178 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1180 irq_handler(rtc_int_flag, dev_id);
1184 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);