4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_counter.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/ima.h>
50 #include <linux/syscalls.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
54 #include <linux/tracehook.h>
55 #include <linux/kmod.h>
56 #include <linux/fsnotify.h>
57 #include <linux/fs_struct.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 int suid_dumpable = 0;
68 /* The maximal length of core_pattern is also specified in sysctl.c */
70 static LIST_HEAD(formats);
71 static DEFINE_RWLOCK(binfmt_lock);
73 int __register_binfmt(struct linux_binfmt * fmt, int insert)
77 write_lock(&binfmt_lock);
78 insert ? list_add(&fmt->lh, &formats) :
79 list_add_tail(&fmt->lh, &formats);
80 write_unlock(&binfmt_lock);
84 EXPORT_SYMBOL(__register_binfmt);
86 void unregister_binfmt(struct linux_binfmt * fmt)
88 write_lock(&binfmt_lock);
90 write_unlock(&binfmt_lock);
93 EXPORT_SYMBOL(unregister_binfmt);
95 static inline void put_binfmt(struct linux_binfmt * fmt)
97 module_put(fmt->module);
101 * Note that a shared library must be both readable and executable due to
104 * Also note that we take the address to load from from the file itself.
106 SYSCALL_DEFINE1(uselib, const char __user *, library)
109 char *tmp = getname(library);
110 int error = PTR_ERR(tmp);
115 file = do_filp_open(AT_FDCWD, tmp,
116 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
117 MAY_READ | MAY_EXEC | MAY_OPEN);
119 error = PTR_ERR(file);
124 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
128 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
131 fsnotify_open(file->f_path.dentry);
135 struct linux_binfmt * fmt;
137 read_lock(&binfmt_lock);
138 list_for_each_entry(fmt, &formats, lh) {
139 if (!fmt->load_shlib)
141 if (!try_module_get(fmt->module))
143 read_unlock(&binfmt_lock);
144 error = fmt->load_shlib(file);
145 read_lock(&binfmt_lock);
147 if (error != -ENOEXEC)
150 read_unlock(&binfmt_lock);
160 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
166 #ifdef CONFIG_STACK_GROWSUP
168 ret = expand_stack_downwards(bprm->vma, pos);
173 ret = get_user_pages(current, bprm->mm, pos,
174 1, write, 1, &page, NULL);
179 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
183 * We've historically supported up to 32 pages (ARG_MAX)
184 * of argument strings even with small stacks
190 * Limit to 1/4-th the stack size for the argv+env strings.
192 * - the remaining binfmt code will not run out of stack space,
193 * - the program will have a reasonable amount of stack left
196 rlim = current->signal->rlim;
197 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
206 static void put_arg_page(struct page *page)
211 static void free_arg_page(struct linux_binprm *bprm, int i)
215 static void free_arg_pages(struct linux_binprm *bprm)
219 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
222 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
225 static int __bprm_mm_init(struct linux_binprm *bprm)
228 struct vm_area_struct *vma = NULL;
229 struct mm_struct *mm = bprm->mm;
231 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
235 down_write(&mm->mmap_sem);
239 * Place the stack at the largest stack address the architecture
240 * supports. Later, we'll move this to an appropriate place. We don't
241 * use STACK_TOP because that can depend on attributes which aren't
244 vma->vm_end = STACK_TOP_MAX;
245 vma->vm_start = vma->vm_end - PAGE_SIZE;
246 vma->vm_flags = VM_STACK_FLAGS;
247 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
248 err = insert_vm_struct(mm, vma);
252 mm->stack_vm = mm->total_vm = 1;
253 up_write(&mm->mmap_sem);
254 bprm->p = vma->vm_end - sizeof(void *);
257 up_write(&mm->mmap_sem);
259 kmem_cache_free(vm_area_cachep, vma);
263 static bool valid_arg_len(struct linux_binprm *bprm, long len)
265 return len <= MAX_ARG_STRLEN;
270 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
275 page = bprm->page[pos / PAGE_SIZE];
276 if (!page && write) {
277 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
280 bprm->page[pos / PAGE_SIZE] = page;
286 static void put_arg_page(struct page *page)
290 static void free_arg_page(struct linux_binprm *bprm, int i)
293 __free_page(bprm->page[i]);
294 bprm->page[i] = NULL;
298 static void free_arg_pages(struct linux_binprm *bprm)
302 for (i = 0; i < MAX_ARG_PAGES; i++)
303 free_arg_page(bprm, i);
306 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
311 static int __bprm_mm_init(struct linux_binprm *bprm)
313 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
317 static bool valid_arg_len(struct linux_binprm *bprm, long len)
319 return len <= bprm->p;
322 #endif /* CONFIG_MMU */
325 * Create a new mm_struct and populate it with a temporary stack
326 * vm_area_struct. We don't have enough context at this point to set the stack
327 * flags, permissions, and offset, so we use temporary values. We'll update
328 * them later in setup_arg_pages().
330 int bprm_mm_init(struct linux_binprm *bprm)
333 struct mm_struct *mm = NULL;
335 bprm->mm = mm = mm_alloc();
340 err = init_new_context(current, mm);
344 err = __bprm_mm_init(bprm);
360 * count() counts the number of strings in array ARGV.
362 static int count(char __user * __user * argv, int max)
370 if (get_user(p, argv))
384 * 'copy_strings()' copies argument/environment strings from the old
385 * processes's memory to the new process's stack. The call to get_user_pages()
386 * ensures the destination page is created and not swapped out.
388 static int copy_strings(int argc, char __user * __user * argv,
389 struct linux_binprm *bprm)
391 struct page *kmapped_page = NULL;
393 unsigned long kpos = 0;
401 if (get_user(str, argv+argc) ||
402 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
407 if (!valid_arg_len(bprm, len)) {
412 /* We're going to work our way backwords. */
418 int offset, bytes_to_copy;
420 offset = pos % PAGE_SIZE;
424 bytes_to_copy = offset;
425 if (bytes_to_copy > len)
428 offset -= bytes_to_copy;
429 pos -= bytes_to_copy;
430 str -= bytes_to_copy;
431 len -= bytes_to_copy;
433 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
436 page = get_arg_page(bprm, pos, 1);
443 flush_kernel_dcache_page(kmapped_page);
444 kunmap(kmapped_page);
445 put_arg_page(kmapped_page);
448 kaddr = kmap(kmapped_page);
449 kpos = pos & PAGE_MASK;
450 flush_arg_page(bprm, kpos, kmapped_page);
452 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
461 flush_kernel_dcache_page(kmapped_page);
462 kunmap(kmapped_page);
463 put_arg_page(kmapped_page);
469 * Like copy_strings, but get argv and its values from kernel memory.
471 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
474 mm_segment_t oldfs = get_fs();
476 r = copy_strings(argc, (char __user * __user *)argv, bprm);
480 EXPORT_SYMBOL(copy_strings_kernel);
485 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
486 * the binfmt code determines where the new stack should reside, we shift it to
487 * its final location. The process proceeds as follows:
489 * 1) Use shift to calculate the new vma endpoints.
490 * 2) Extend vma to cover both the old and new ranges. This ensures the
491 * arguments passed to subsequent functions are consistent.
492 * 3) Move vma's page tables to the new range.
493 * 4) Free up any cleared pgd range.
494 * 5) Shrink the vma to cover only the new range.
496 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
498 struct mm_struct *mm = vma->vm_mm;
499 unsigned long old_start = vma->vm_start;
500 unsigned long old_end = vma->vm_end;
501 unsigned long length = old_end - old_start;
502 unsigned long new_start = old_start - shift;
503 unsigned long new_end = old_end - shift;
504 struct mmu_gather *tlb;
506 BUG_ON(new_start > new_end);
509 * ensure there are no vmas between where we want to go
512 if (vma != find_vma(mm, new_start))
516 * cover the whole range: [new_start, old_end)
518 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
521 * move the page tables downwards, on failure we rely on
522 * process cleanup to remove whatever mess we made.
524 if (length != move_page_tables(vma, old_start,
525 vma, new_start, length))
529 tlb = tlb_gather_mmu(mm, 0);
530 if (new_end > old_start) {
532 * when the old and new regions overlap clear from new_end.
534 free_pgd_range(tlb, new_end, old_end, new_end,
535 vma->vm_next ? vma->vm_next->vm_start : 0);
538 * otherwise, clean from old_start; this is done to not touch
539 * the address space in [new_end, old_start) some architectures
540 * have constraints on va-space that make this illegal (IA64) -
541 * for the others its just a little faster.
543 free_pgd_range(tlb, old_start, old_end, new_end,
544 vma->vm_next ? vma->vm_next->vm_start : 0);
546 tlb_finish_mmu(tlb, new_end, old_end);
549 * shrink the vma to just the new range.
551 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
556 #define EXTRA_STACK_VM_PAGES 20 /* random */
559 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
560 * the stack is optionally relocated, and some extra space is added.
562 int setup_arg_pages(struct linux_binprm *bprm,
563 unsigned long stack_top,
564 int executable_stack)
567 unsigned long stack_shift;
568 struct mm_struct *mm = current->mm;
569 struct vm_area_struct *vma = bprm->vma;
570 struct vm_area_struct *prev = NULL;
571 unsigned long vm_flags;
572 unsigned long stack_base;
574 #ifdef CONFIG_STACK_GROWSUP
575 /* Limit stack size to 1GB */
576 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
577 if (stack_base > (1 << 30))
578 stack_base = 1 << 30;
580 /* Make sure we didn't let the argument array grow too large. */
581 if (vma->vm_end - vma->vm_start > stack_base)
584 stack_base = PAGE_ALIGN(stack_top - stack_base);
586 stack_shift = vma->vm_start - stack_base;
587 mm->arg_start = bprm->p - stack_shift;
588 bprm->p = vma->vm_end - stack_shift;
590 stack_top = arch_align_stack(stack_top);
591 stack_top = PAGE_ALIGN(stack_top);
592 stack_shift = vma->vm_end - stack_top;
594 bprm->p -= stack_shift;
595 mm->arg_start = bprm->p;
599 bprm->loader -= stack_shift;
600 bprm->exec -= stack_shift;
602 down_write(&mm->mmap_sem);
603 vm_flags = VM_STACK_FLAGS;
606 * Adjust stack execute permissions; explicitly enable for
607 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
608 * (arch default) otherwise.
610 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
612 else if (executable_stack == EXSTACK_DISABLE_X)
613 vm_flags &= ~VM_EXEC;
614 vm_flags |= mm->def_flags;
616 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
622 /* Move stack pages down in memory. */
624 ret = shift_arg_pages(vma, stack_shift);
626 up_write(&mm->mmap_sem);
631 #ifdef CONFIG_STACK_GROWSUP
632 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
634 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
636 ret = expand_stack(vma, stack_base);
641 up_write(&mm->mmap_sem);
644 EXPORT_SYMBOL(setup_arg_pages);
646 #endif /* CONFIG_MMU */
648 struct file *open_exec(const char *name)
653 file = do_filp_open(AT_FDCWD, name,
654 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
655 MAY_EXEC | MAY_OPEN);
660 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
663 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
666 fsnotify_open(file->f_path.dentry);
668 err = deny_write_access(file);
679 EXPORT_SYMBOL(open_exec);
681 int kernel_read(struct file *file, unsigned long offset,
682 char *addr, unsigned long count)
690 /* The cast to a user pointer is valid due to the set_fs() */
691 result = vfs_read(file, (void __user *)addr, count, &pos);
696 EXPORT_SYMBOL(kernel_read);
698 static int exec_mmap(struct mm_struct *mm)
700 struct task_struct *tsk;
701 struct mm_struct * old_mm, *active_mm;
703 /* Notify parent that we're no longer interested in the old VM */
705 old_mm = current->mm;
706 mm_release(tsk, old_mm);
710 * Make sure that if there is a core dump in progress
711 * for the old mm, we get out and die instead of going
712 * through with the exec. We must hold mmap_sem around
713 * checking core_state and changing tsk->mm.
715 down_read(&old_mm->mmap_sem);
716 if (unlikely(old_mm->core_state)) {
717 up_read(&old_mm->mmap_sem);
722 active_mm = tsk->active_mm;
725 activate_mm(active_mm, mm);
727 arch_pick_mmap_layout(mm);
729 up_read(&old_mm->mmap_sem);
730 BUG_ON(active_mm != old_mm);
731 mm_update_next_owner(old_mm);
740 * This function makes sure the current process has its own signal table,
741 * so that flush_signal_handlers can later reset the handlers without
742 * disturbing other processes. (Other processes might share the signal
743 * table via the CLONE_SIGHAND option to clone().)
745 static int de_thread(struct task_struct *tsk)
747 struct signal_struct *sig = tsk->signal;
748 struct sighand_struct *oldsighand = tsk->sighand;
749 spinlock_t *lock = &oldsighand->siglock;
752 if (thread_group_empty(tsk))
753 goto no_thread_group;
756 * Kill all other threads in the thread group.
759 if (signal_group_exit(sig)) {
761 * Another group action in progress, just
762 * return so that the signal is processed.
764 spin_unlock_irq(lock);
767 sig->group_exit_task = tsk;
768 zap_other_threads(tsk);
770 /* Account for the thread group leader hanging around: */
771 count = thread_group_leader(tsk) ? 1 : 2;
772 sig->notify_count = count;
773 while (atomic_read(&sig->count) > count) {
774 __set_current_state(TASK_UNINTERRUPTIBLE);
775 spin_unlock_irq(lock);
779 spin_unlock_irq(lock);
782 * At this point all other threads have exited, all we have to
783 * do is to wait for the thread group leader to become inactive,
784 * and to assume its PID:
786 if (!thread_group_leader(tsk)) {
787 struct task_struct *leader = tsk->group_leader;
789 sig->notify_count = -1; /* for exit_notify() */
791 write_lock_irq(&tasklist_lock);
792 if (likely(leader->exit_state))
794 __set_current_state(TASK_UNINTERRUPTIBLE);
795 write_unlock_irq(&tasklist_lock);
800 * The only record we have of the real-time age of a
801 * process, regardless of execs it's done, is start_time.
802 * All the past CPU time is accumulated in signal_struct
803 * from sister threads now dead. But in this non-leader
804 * exec, nothing survives from the original leader thread,
805 * whose birth marks the true age of this process now.
806 * When we take on its identity by switching to its PID, we
807 * also take its birthdate (always earlier than our own).
809 tsk->start_time = leader->start_time;
811 BUG_ON(!same_thread_group(leader, tsk));
812 BUG_ON(has_group_leader_pid(tsk));
814 * An exec() starts a new thread group with the
815 * TGID of the previous thread group. Rehash the
816 * two threads with a switched PID, and release
817 * the former thread group leader:
820 /* Become a process group leader with the old leader's pid.
821 * The old leader becomes a thread of the this thread group.
822 * Note: The old leader also uses this pid until release_task
823 * is called. Odd but simple and correct.
825 detach_pid(tsk, PIDTYPE_PID);
826 tsk->pid = leader->pid;
827 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
828 transfer_pid(leader, tsk, PIDTYPE_PGID);
829 transfer_pid(leader, tsk, PIDTYPE_SID);
830 list_replace_rcu(&leader->tasks, &tsk->tasks);
832 tsk->group_leader = tsk;
833 leader->group_leader = tsk;
835 tsk->exit_signal = SIGCHLD;
837 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
838 leader->exit_state = EXIT_DEAD;
839 write_unlock_irq(&tasklist_lock);
841 release_task(leader);
844 sig->group_exit_task = NULL;
845 sig->notify_count = 0;
849 flush_itimer_signals();
851 if (atomic_read(&oldsighand->count) != 1) {
852 struct sighand_struct *newsighand;
854 * This ->sighand is shared with the CLONE_SIGHAND
855 * but not CLONE_THREAD task, switch to the new one.
857 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
861 atomic_set(&newsighand->count, 1);
862 memcpy(newsighand->action, oldsighand->action,
863 sizeof(newsighand->action));
865 write_lock_irq(&tasklist_lock);
866 spin_lock(&oldsighand->siglock);
867 rcu_assign_pointer(tsk->sighand, newsighand);
868 spin_unlock(&oldsighand->siglock);
869 write_unlock_irq(&tasklist_lock);
871 __cleanup_sighand(oldsighand);
874 BUG_ON(!thread_group_leader(tsk));
879 * These functions flushes out all traces of the currently running executable
880 * so that a new one can be started
882 static void flush_old_files(struct files_struct * files)
887 spin_lock(&files->file_lock);
889 unsigned long set, i;
893 fdt = files_fdtable(files);
894 if (i >= fdt->max_fds)
896 set = fdt->close_on_exec->fds_bits[j];
899 fdt->close_on_exec->fds_bits[j] = 0;
900 spin_unlock(&files->file_lock);
901 for ( ; set ; i++,set >>= 1) {
906 spin_lock(&files->file_lock);
909 spin_unlock(&files->file_lock);
912 char *get_task_comm(char *buf, struct task_struct *tsk)
914 /* buf must be at least sizeof(tsk->comm) in size */
916 strncpy(buf, tsk->comm, sizeof(tsk->comm));
921 void set_task_comm(struct task_struct *tsk, char *buf)
924 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
926 perf_counter_comm(tsk);
929 int flush_old_exec(struct linux_binprm * bprm)
933 char tcomm[sizeof(current->comm)];
936 * Make sure we have a private signal table and that
937 * we are unassociated from the previous thread group.
939 retval = de_thread(current);
943 set_mm_exe_file(bprm->mm, bprm->file);
946 * Release all of the old mmap stuff
948 retval = exec_mmap(bprm->mm);
952 bprm->mm = NULL; /* We're using it now */
954 /* This is the point of no return */
955 current->sas_ss_sp = current->sas_ss_size = 0;
957 if (current_euid() == current_uid() && current_egid() == current_gid())
958 set_dumpable(current->mm, 1);
960 set_dumpable(current->mm, suid_dumpable);
962 name = bprm->filename;
964 /* Copies the binary name from after last slash */
965 for (i=0; (ch = *(name++)) != '\0';) {
967 i = 0; /* overwrite what we wrote */
969 if (i < (sizeof(tcomm) - 1))
973 set_task_comm(current, tcomm);
975 current->flags &= ~PF_RANDOMIZE;
978 /* Set the new mm task size. We have to do that late because it may
979 * depend on TIF_32BIT which is only updated in flush_thread() on
980 * some architectures like powerpc
982 current->mm->task_size = TASK_SIZE;
984 /* install the new credentials */
985 if (bprm->cred->uid != current_euid() ||
986 bprm->cred->gid != current_egid()) {
987 current->pdeath_signal = 0;
988 } else if (file_permission(bprm->file, MAY_READ) ||
989 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
990 set_dumpable(current->mm, suid_dumpable);
993 current->personality &= ~bprm->per_clear;
996 * Flush performance counters when crossing a
999 if (!get_dumpable(current->mm))
1000 perf_counter_exit_task(current);
1002 /* An exec changes our domain. We are no longer part of the thread
1005 current->self_exec_id++;
1007 flush_signal_handlers(current, 0);
1008 flush_old_files(current->files);
1016 EXPORT_SYMBOL(flush_old_exec);
1019 * install the new credentials for this executable
1021 void install_exec_creds(struct linux_binprm *bprm)
1023 security_bprm_committing_creds(bprm);
1025 commit_creds(bprm->cred);
1028 /* cred_guard_mutex must be held at least to this point to prevent
1029 * ptrace_attach() from altering our determination of the task's
1030 * credentials; any time after this it may be unlocked */
1032 security_bprm_committed_creds(bprm);
1034 EXPORT_SYMBOL(install_exec_creds);
1037 * determine how safe it is to execute the proposed program
1038 * - the caller must hold current->cred_guard_mutex to protect against
1041 int check_unsafe_exec(struct linux_binprm *bprm)
1043 struct task_struct *p = current, *t;
1047 bprm->unsafe = tracehook_unsafe_exec(p);
1050 write_lock(&p->fs->lock);
1052 for (t = next_thread(p); t != p; t = next_thread(t)) {
1058 if (p->fs->users > n_fs) {
1059 bprm->unsafe |= LSM_UNSAFE_SHARE;
1062 if (!p->fs->in_exec) {
1067 write_unlock(&p->fs->lock);
1073 * Fill the binprm structure from the inode.
1074 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1076 * This may be called multiple times for binary chains (scripts for example).
1078 int prepare_binprm(struct linux_binprm *bprm)
1081 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1084 mode = inode->i_mode;
1085 if (bprm->file->f_op == NULL)
1088 /* clear any previous set[ug]id data from a previous binary */
1089 bprm->cred->euid = current_euid();
1090 bprm->cred->egid = current_egid();
1092 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1094 if (mode & S_ISUID) {
1095 bprm->per_clear |= PER_CLEAR_ON_SETID;
1096 bprm->cred->euid = inode->i_uid;
1101 * If setgid is set but no group execute bit then this
1102 * is a candidate for mandatory locking, not a setgid
1105 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1106 bprm->per_clear |= PER_CLEAR_ON_SETID;
1107 bprm->cred->egid = inode->i_gid;
1111 /* fill in binprm security blob */
1112 retval = security_bprm_set_creds(bprm);
1115 bprm->cred_prepared = 1;
1117 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1118 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1121 EXPORT_SYMBOL(prepare_binprm);
1124 * Arguments are '\0' separated strings found at the location bprm->p
1125 * points to; chop off the first by relocating brpm->p to right after
1126 * the first '\0' encountered.
1128 int remove_arg_zero(struct linux_binprm *bprm)
1131 unsigned long offset;
1139 offset = bprm->p & ~PAGE_MASK;
1140 page = get_arg_page(bprm, bprm->p, 0);
1145 kaddr = kmap_atomic(page, KM_USER0);
1147 for (; offset < PAGE_SIZE && kaddr[offset];
1148 offset++, bprm->p++)
1151 kunmap_atomic(kaddr, KM_USER0);
1154 if (offset == PAGE_SIZE)
1155 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1156 } while (offset == PAGE_SIZE);
1165 EXPORT_SYMBOL(remove_arg_zero);
1168 * cycle the list of binary formats handler, until one recognizes the image
1170 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1172 unsigned int depth = bprm->recursion_depth;
1174 struct linux_binfmt *fmt;
1176 retval = security_bprm_check(bprm);
1179 retval = ima_bprm_check(bprm);
1183 /* kernel module loader fixup */
1184 /* so we don't try to load run modprobe in kernel space. */
1187 retval = audit_bprm(bprm);
1192 for (try=0; try<2; try++) {
1193 read_lock(&binfmt_lock);
1194 list_for_each_entry(fmt, &formats, lh) {
1195 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1198 if (!try_module_get(fmt->module))
1200 read_unlock(&binfmt_lock);
1201 retval = fn(bprm, regs);
1203 * Restore the depth counter to its starting value
1204 * in this call, so we don't have to rely on every
1205 * load_binary function to restore it on return.
1207 bprm->recursion_depth = depth;
1210 tracehook_report_exec(fmt, bprm, regs);
1212 allow_write_access(bprm->file);
1216 current->did_exec = 1;
1217 proc_exec_connector(current);
1220 read_lock(&binfmt_lock);
1222 if (retval != -ENOEXEC || bprm->mm == NULL)
1225 read_unlock(&binfmt_lock);
1229 read_unlock(&binfmt_lock);
1230 if (retval != -ENOEXEC || bprm->mm == NULL) {
1232 #ifdef CONFIG_MODULES
1234 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1235 if (printable(bprm->buf[0]) &&
1236 printable(bprm->buf[1]) &&
1237 printable(bprm->buf[2]) &&
1238 printable(bprm->buf[3]))
1239 break; /* -ENOEXEC */
1240 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1247 EXPORT_SYMBOL(search_binary_handler);
1249 void free_bprm(struct linux_binprm *bprm)
1251 free_arg_pages(bprm);
1253 abort_creds(bprm->cred);
1258 * sys_execve() executes a new program.
1260 int do_execve(char * filename,
1261 char __user *__user *argv,
1262 char __user *__user *envp,
1263 struct pt_regs * regs)
1265 struct linux_binprm *bprm;
1267 struct files_struct *displaced;
1271 retval = unshare_files(&displaced);
1276 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1280 retval = -ERESTARTNOINTR;
1281 if (mutex_lock_interruptible(¤t->cred_guard_mutex))
1283 current->in_execve = 1;
1286 bprm->cred = prepare_exec_creds();
1290 retval = check_unsafe_exec(bprm);
1293 clear_in_exec = retval;
1295 file = open_exec(filename);
1296 retval = PTR_ERR(file);
1303 bprm->filename = filename;
1304 bprm->interp = filename;
1306 retval = bprm_mm_init(bprm);
1310 bprm->argc = count(argv, MAX_ARG_STRINGS);
1311 if ((retval = bprm->argc) < 0)
1314 bprm->envc = count(envp, MAX_ARG_STRINGS);
1315 if ((retval = bprm->envc) < 0)
1318 retval = prepare_binprm(bprm);
1322 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1326 bprm->exec = bprm->p;
1327 retval = copy_strings(bprm->envc, envp, bprm);
1331 retval = copy_strings(bprm->argc, argv, bprm);
1335 current->flags &= ~PF_KTHREAD;
1336 retval = search_binary_handler(bprm,regs);
1340 /* execve succeeded */
1341 current->fs->in_exec = 0;
1342 current->in_execve = 0;
1343 mutex_unlock(¤t->cred_guard_mutex);
1344 acct_update_integrals(current);
1347 put_files_struct(displaced);
1356 allow_write_access(bprm->file);
1362 current->fs->in_exec = 0;
1365 current->in_execve = 0;
1366 mutex_unlock(¤t->cred_guard_mutex);
1373 reset_files_struct(displaced);
1378 int set_binfmt(struct linux_binfmt *new)
1380 struct linux_binfmt *old = current->binfmt;
1383 if (!try_module_get(new->module))
1386 current->binfmt = new;
1388 module_put(old->module);
1392 EXPORT_SYMBOL(set_binfmt);
1394 /* format_corename will inspect the pattern parameter, and output a
1395 * name into corename, which must have space for at least
1396 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1398 static int format_corename(char *corename, long signr)
1400 const struct cred *cred = current_cred();
1401 const char *pat_ptr = core_pattern;
1402 int ispipe = (*pat_ptr == '|');
1403 char *out_ptr = corename;
1404 char *const out_end = corename + CORENAME_MAX_SIZE;
1406 int pid_in_pattern = 0;
1408 /* Repeat as long as we have more pattern to process and more output
1411 if (*pat_ptr != '%') {
1412 if (out_ptr == out_end)
1414 *out_ptr++ = *pat_ptr++;
1416 switch (*++pat_ptr) {
1419 /* Double percent, output one percent */
1421 if (out_ptr == out_end)
1428 rc = snprintf(out_ptr, out_end - out_ptr,
1429 "%d", task_tgid_vnr(current));
1430 if (rc > out_end - out_ptr)
1436 rc = snprintf(out_ptr, out_end - out_ptr,
1438 if (rc > out_end - out_ptr)
1444 rc = snprintf(out_ptr, out_end - out_ptr,
1446 if (rc > out_end - out_ptr)
1450 /* signal that caused the coredump */
1452 rc = snprintf(out_ptr, out_end - out_ptr,
1454 if (rc > out_end - out_ptr)
1458 /* UNIX time of coredump */
1461 do_gettimeofday(&tv);
1462 rc = snprintf(out_ptr, out_end - out_ptr,
1464 if (rc > out_end - out_ptr)
1471 down_read(&uts_sem);
1472 rc = snprintf(out_ptr, out_end - out_ptr,
1473 "%s", utsname()->nodename);
1475 if (rc > out_end - out_ptr)
1481 rc = snprintf(out_ptr, out_end - out_ptr,
1482 "%s", current->comm);
1483 if (rc > out_end - out_ptr)
1487 /* core limit size */
1489 rc = snprintf(out_ptr, out_end - out_ptr,
1490 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1491 if (rc > out_end - out_ptr)
1501 /* Backward compatibility with core_uses_pid:
1503 * If core_pattern does not include a %p (as is the default)
1504 * and core_uses_pid is set, then .%pid will be appended to
1505 * the filename. Do not do this for piped commands. */
1506 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1507 rc = snprintf(out_ptr, out_end - out_ptr,
1508 ".%d", task_tgid_vnr(current));
1509 if (rc > out_end - out_ptr)
1518 static int zap_process(struct task_struct *start)
1520 struct task_struct *t;
1523 start->signal->flags = SIGNAL_GROUP_EXIT;
1524 start->signal->group_stop_count = 0;
1528 if (t != current && t->mm) {
1529 sigaddset(&t->pending.signal, SIGKILL);
1530 signal_wake_up(t, 1);
1533 } while_each_thread(start, t);
1538 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1539 struct core_state *core_state, int exit_code)
1541 struct task_struct *g, *p;
1542 unsigned long flags;
1545 spin_lock_irq(&tsk->sighand->siglock);
1546 if (!signal_group_exit(tsk->signal)) {
1547 mm->core_state = core_state;
1548 tsk->signal->group_exit_code = exit_code;
1549 nr = zap_process(tsk);
1551 spin_unlock_irq(&tsk->sighand->siglock);
1552 if (unlikely(nr < 0))
1555 if (atomic_read(&mm->mm_users) == nr + 1)
1558 * We should find and kill all tasks which use this mm, and we should
1559 * count them correctly into ->nr_threads. We don't take tasklist
1560 * lock, but this is safe wrt:
1563 * None of sub-threads can fork after zap_process(leader). All
1564 * processes which were created before this point should be
1565 * visible to zap_threads() because copy_process() adds the new
1566 * process to the tail of init_task.tasks list, and lock/unlock
1567 * of ->siglock provides a memory barrier.
1570 * The caller holds mm->mmap_sem. This means that the task which
1571 * uses this mm can't pass exit_mm(), so it can't exit or clear
1575 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
1576 * we must see either old or new leader, this does not matter.
1577 * However, it can change p->sighand, so lock_task_sighand(p)
1578 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1581 * Note also that "g" can be the old leader with ->mm == NULL
1582 * and already unhashed and thus removed from ->thread_group.
1583 * This is OK, __unhash_process()->list_del_rcu() does not
1584 * clear the ->next pointer, we will find the new leader via
1588 for_each_process(g) {
1589 if (g == tsk->group_leader)
1591 if (g->flags & PF_KTHREAD)
1596 if (unlikely(p->mm == mm)) {
1597 lock_task_sighand(p, &flags);
1598 nr += zap_process(p);
1599 unlock_task_sighand(p, &flags);
1603 } while_each_thread(g, p);
1607 atomic_set(&core_state->nr_threads, nr);
1611 static int coredump_wait(int exit_code, struct core_state *core_state)
1613 struct task_struct *tsk = current;
1614 struct mm_struct *mm = tsk->mm;
1615 struct completion *vfork_done;
1618 init_completion(&core_state->startup);
1619 core_state->dumper.task = tsk;
1620 core_state->dumper.next = NULL;
1621 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1622 up_write(&mm->mmap_sem);
1624 if (unlikely(core_waiters < 0))
1628 * Make sure nobody is waiting for us to release the VM,
1629 * otherwise we can deadlock when we wait on each other
1631 vfork_done = tsk->vfork_done;
1633 tsk->vfork_done = NULL;
1634 complete(vfork_done);
1638 wait_for_completion(&core_state->startup);
1640 return core_waiters;
1643 static void coredump_finish(struct mm_struct *mm)
1645 struct core_thread *curr, *next;
1646 struct task_struct *task;
1648 next = mm->core_state->dumper.next;
1649 while ((curr = next) != NULL) {
1653 * see exit_mm(), curr->task must not see
1654 * ->task == NULL before we read ->next.
1658 wake_up_process(task);
1661 mm->core_state = NULL;
1665 * set_dumpable converts traditional three-value dumpable to two flags and
1666 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1667 * these bits are not changed atomically. So get_dumpable can observe the
1668 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1669 * return either old dumpable or new one by paying attention to the order of
1670 * modifying the bits.
1672 * dumpable | mm->flags (binary)
1673 * old new | initial interim final
1674 * ---------+-----------------------
1682 * (*) get_dumpable regards interim value of 10 as 11.
1684 void set_dumpable(struct mm_struct *mm, int value)
1688 clear_bit(MMF_DUMPABLE, &mm->flags);
1690 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1693 set_bit(MMF_DUMPABLE, &mm->flags);
1695 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1698 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1700 set_bit(MMF_DUMPABLE, &mm->flags);
1705 int get_dumpable(struct mm_struct *mm)
1709 ret = mm->flags & 0x3;
1710 return (ret >= 2) ? 2 : ret;
1713 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1715 struct core_state core_state;
1716 char corename[CORENAME_MAX_SIZE + 1];
1717 struct mm_struct *mm = current->mm;
1718 struct linux_binfmt * binfmt;
1719 struct inode * inode;
1721 const struct cred *old_cred;
1726 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1727 char **helper_argv = NULL;
1728 int helper_argc = 0;
1731 audit_core_dumps(signr);
1733 binfmt = current->binfmt;
1734 if (!binfmt || !binfmt->core_dump)
1737 cred = prepare_creds();
1743 down_write(&mm->mmap_sem);
1745 * If another thread got here first, or we are not dumpable, bail out.
1747 if (mm->core_state || !get_dumpable(mm)) {
1748 up_write(&mm->mmap_sem);
1754 * We cannot trust fsuid as being the "true" uid of the
1755 * process nor do we know its entire history. We only know it
1756 * was tainted so we dump it as root in mode 2.
1758 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1759 flag = O_EXCL; /* Stop rewrite attacks */
1760 cred->fsuid = 0; /* Dump root private */
1763 retval = coredump_wait(exit_code, &core_state);
1769 old_cred = override_creds(cred);
1772 * Clear any false indication of pending signals that might
1773 * be seen by the filesystem code called to write the core file.
1775 clear_thread_flag(TIF_SIGPENDING);
1778 * lock_kernel() because format_corename() is controlled by sysctl, which
1779 * uses lock_kernel()
1782 ispipe = format_corename(corename, signr);
1785 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1786 * to a pipe. Since we're not writing directly to the filesystem
1787 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1788 * created unless the pipe reader choses to write out the core file
1789 * at which point file size limits and permissions will be imposed
1790 * as it does with any other process
1792 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1796 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1798 printk(KERN_WARNING "%s failed to allocate memory\n",
1802 /* Terminate the string before the first option */
1803 delimit = strchr(corename, ' ');
1806 delimit = strrchr(helper_argv[0], '/');
1810 delimit = helper_argv[0];
1811 if (!strcmp(delimit, current->comm)) {
1812 printk(KERN_NOTICE "Recursive core dump detected, "
1817 core_limit = RLIM_INFINITY;
1819 /* SIGPIPE can happen, but it's just never processed */
1820 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1822 printk(KERN_INFO "Core dump to %s pipe failed\n",
1827 file = filp_open(corename,
1828 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1832 inode = file->f_path.dentry->d_inode;
1833 if (inode->i_nlink > 1)
1834 goto close_fail; /* multiple links - don't dump */
1835 if (!ispipe && d_unhashed(file->f_path.dentry))
1838 /* AK: actually i see no reason to not allow this for named pipes etc.,
1839 but keep the previous behaviour for now. */
1840 if (!ispipe && !S_ISREG(inode->i_mode))
1843 * Dont allow local users get cute and trick others to coredump
1844 * into their pre-created files:
1846 if (inode->i_uid != current_fsuid())
1850 if (!file->f_op->write)
1852 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1855 retval = binfmt->core_dump(signr, regs, file, core_limit);
1858 current->signal->group_exit_code |= 0x80;
1860 filp_close(file, NULL);
1863 argv_free(helper_argv);
1865 revert_creds(old_cred);
1867 coredump_finish(mm);