3 * device driver for Conexant 2388x based TV cards
6 * (c) 2003 Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]
8 * (c) 2005-2006 Mauro Carvalho Chehab <mchehab@infradead.org>
10 * - video_ioctl2 conversion
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/kmod.h>
34 #include <linux/sound.h>
35 #include <linux/interrupt.h>
36 #include <linux/pci.h>
37 #include <linux/delay.h>
38 #include <linux/videodev2.h>
39 #include <linux/mutex.h>
42 #include <media/v4l2-common.h>
44 MODULE_DESCRIPTION("v4l2 driver module for cx2388x based TV cards");
45 MODULE_AUTHOR("Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]");
46 MODULE_LICENSE("GPL");
48 /* ------------------------------------------------------------------ */
50 static unsigned int core_debug = 0;
51 module_param(core_debug,int,0644);
52 MODULE_PARM_DESC(core_debug,"enable debug messages [core]");
54 static unsigned int nicam = 0;
55 module_param(nicam,int,0644);
56 MODULE_PARM_DESC(nicam,"tv audio is nicam");
58 static unsigned int nocomb = 0;
59 module_param(nocomb,int,0644);
60 MODULE_PARM_DESC(nocomb,"disable comb filter");
62 #define dprintk(level,fmt, arg...) if (core_debug >= level) \
63 printk(KERN_DEBUG "%s: " fmt, core->name , ## arg)
65 static unsigned int cx88_devcount;
66 static LIST_HEAD(cx88_devlist);
67 static DEFINE_MUTEX(devlist);
69 #define NO_SYNC_LINE (-1U)
71 /* @lpi: lines per IRQ, or 0 to not generate irqs. Note: IRQ to be
72 generated _after_ lpi lines are transferred. */
73 static u32* cx88_risc_field(u32 *rp, struct scatterlist *sglist,
74 unsigned int offset, u32 sync_line,
75 unsigned int bpl, unsigned int padding,
76 unsigned int lines, unsigned int lpi)
78 struct scatterlist *sg;
79 unsigned int line,todo,sol;
81 /* sync instruction */
82 if (sync_line != NO_SYNC_LINE)
83 *(rp++) = cpu_to_le32(RISC_RESYNC | sync_line);
87 for (line = 0; line < lines; line++) {
88 while (offset && offset >= sg_dma_len(sg)) {
89 offset -= sg_dma_len(sg);
92 if (lpi && line>0 && !(line % lpi))
93 sol = RISC_SOL | RISC_IRQ1 | RISC_CNT_INC;
96 if (bpl <= sg_dma_len(sg)-offset) {
97 /* fits into current chunk */
98 *(rp++)=cpu_to_le32(RISC_WRITE|sol|RISC_EOL|bpl);
99 *(rp++)=cpu_to_le32(sg_dma_address(sg)+offset);
102 /* scanline needs to be split */
104 *(rp++)=cpu_to_le32(RISC_WRITE|sol|
105 (sg_dma_len(sg)-offset));
106 *(rp++)=cpu_to_le32(sg_dma_address(sg)+offset);
107 todo -= (sg_dma_len(sg)-offset);
110 while (todo > sg_dma_len(sg)) {
111 *(rp++)=cpu_to_le32(RISC_WRITE|
113 *(rp++)=cpu_to_le32(sg_dma_address(sg));
114 todo -= sg_dma_len(sg);
117 *(rp++)=cpu_to_le32(RISC_WRITE|RISC_EOL|todo);
118 *(rp++)=cpu_to_le32(sg_dma_address(sg));
127 int cx88_risc_buffer(struct pci_dev *pci, struct btcx_riscmem *risc,
128 struct scatterlist *sglist,
129 unsigned int top_offset, unsigned int bottom_offset,
130 unsigned int bpl, unsigned int padding, unsigned int lines)
132 u32 instructions,fields;
137 if (UNSET != top_offset)
139 if (UNSET != bottom_offset)
142 /* estimate risc mem: worst case is one write per page border +
143 one write per scan line + syncs + jump (all 2 dwords). Padding
144 can cause next bpl to start close to a page border. First DMA
145 region may be smaller than PAGE_SIZE */
146 instructions = fields * (1 + ((bpl + padding) * lines) / PAGE_SIZE + lines);
148 if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0)
151 /* write risc instructions */
153 if (UNSET != top_offset)
154 rp = cx88_risc_field(rp, sglist, top_offset, 0,
155 bpl, padding, lines, 0);
156 if (UNSET != bottom_offset)
157 rp = cx88_risc_field(rp, sglist, bottom_offset, 0x200,
158 bpl, padding, lines, 0);
160 /* save pointer to jmp instruction address */
162 BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size);
166 int cx88_risc_databuffer(struct pci_dev *pci, struct btcx_riscmem *risc,
167 struct scatterlist *sglist, unsigned int bpl,
168 unsigned int lines, unsigned int lpi)
174 /* estimate risc mem: worst case is one write per page border +
175 one write per scan line + syncs + jump (all 2 dwords). Here
176 there is no padding and no sync. First DMA region may be smaller
178 instructions = 1 + (bpl * lines) / PAGE_SIZE + lines;
180 if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0)
183 /* write risc instructions */
185 rp = cx88_risc_field(rp, sglist, 0, NO_SYNC_LINE, bpl, 0, lines, lpi);
187 /* save pointer to jmp instruction address */
189 BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size);
193 int cx88_risc_stopper(struct pci_dev *pci, struct btcx_riscmem *risc,
194 u32 reg, u32 mask, u32 value)
199 if ((rc = btcx_riscmem_alloc(pci, risc, 4*16)) < 0)
202 /* write risc instructions */
204 *(rp++) = cpu_to_le32(RISC_WRITECR | RISC_IRQ2 | RISC_IMM);
205 *(rp++) = cpu_to_le32(reg);
206 *(rp++) = cpu_to_le32(value);
207 *(rp++) = cpu_to_le32(mask);
208 *(rp++) = cpu_to_le32(RISC_JUMP);
209 *(rp++) = cpu_to_le32(risc->dma);
214 cx88_free_buffer(struct videobuf_queue *q, struct cx88_buffer *buf)
216 BUG_ON(in_interrupt());
217 videobuf_waiton(&buf->vb,0,0);
218 videobuf_dma_unmap(q, &buf->vb.dma);
219 videobuf_dma_free(&buf->vb.dma);
220 btcx_riscmem_free((struct pci_dev *)q->dev, &buf->risc);
221 buf->vb.state = STATE_NEEDS_INIT;
224 /* ------------------------------------------------------------------ */
225 /* our SRAM memory layout */
227 /* we are going to put all thr risc programs into host memory, so we
228 * can use the whole SDRAM for the DMA fifos. To simplify things, we
229 * use a static memory layout. That surely will waste memory in case
230 * we don't use all DMA channels at the same time (which will be the
231 * case most of the time). But that still gives us enougth FIFO space
232 * to be able to deal with insane long pci latencies ...
234 * FIFO space allocations:
235 * channel 21 (y video) - 10.0k
236 * channel 22 (u video) - 2.0k
237 * channel 23 (v video) - 2.0k
238 * channel 24 (vbi) - 4.0k
239 * channels 25+26 (audio) - 4.0k
240 * channel 28 (mpeg) - 4.0k
243 * Every channel has 160 bytes control data (64 bytes instruction
244 * queue and 6 CDT entries), which is close to 2k total.
247 * 0x0000 - 0x03ff CMDs / reserved
248 * 0x0400 - 0x0bff instruction queues + CDs
252 struct sram_channel cx88_sram_channels[] = {
254 .name = "video y / packed",
255 .cmds_start = 0x180040,
256 .ctrl_start = 0x180400,
257 .cdt = 0x180400 + 64,
258 .fifo_start = 0x180c00,
259 .fifo_size = 0x002800,
260 .ptr1_reg = MO_DMA21_PTR1,
261 .ptr2_reg = MO_DMA21_PTR2,
262 .cnt1_reg = MO_DMA21_CNT1,
263 .cnt2_reg = MO_DMA21_CNT2,
267 .cmds_start = 0x180080,
268 .ctrl_start = 0x1804a0,
269 .cdt = 0x1804a0 + 64,
270 .fifo_start = 0x183400,
271 .fifo_size = 0x000800,
272 .ptr1_reg = MO_DMA22_PTR1,
273 .ptr2_reg = MO_DMA22_PTR2,
274 .cnt1_reg = MO_DMA22_CNT1,
275 .cnt2_reg = MO_DMA22_CNT2,
279 .cmds_start = 0x1800c0,
280 .ctrl_start = 0x180540,
281 .cdt = 0x180540 + 64,
282 .fifo_start = 0x183c00,
283 .fifo_size = 0x000800,
284 .ptr1_reg = MO_DMA23_PTR1,
285 .ptr2_reg = MO_DMA23_PTR2,
286 .cnt1_reg = MO_DMA23_CNT1,
287 .cnt2_reg = MO_DMA23_CNT2,
291 .cmds_start = 0x180100,
292 .ctrl_start = 0x1805e0,
293 .cdt = 0x1805e0 + 64,
294 .fifo_start = 0x184400,
295 .fifo_size = 0x001000,
296 .ptr1_reg = MO_DMA24_PTR1,
297 .ptr2_reg = MO_DMA24_PTR2,
298 .cnt1_reg = MO_DMA24_CNT1,
299 .cnt2_reg = MO_DMA24_CNT2,
302 .name = "audio from",
303 .cmds_start = 0x180140,
304 .ctrl_start = 0x180680,
305 .cdt = 0x180680 + 64,
306 .fifo_start = 0x185400,
307 .fifo_size = 0x001000,
308 .ptr1_reg = MO_DMA25_PTR1,
309 .ptr2_reg = MO_DMA25_PTR2,
310 .cnt1_reg = MO_DMA25_CNT1,
311 .cnt2_reg = MO_DMA25_CNT2,
315 .cmds_start = 0x180180,
316 .ctrl_start = 0x180720,
317 .cdt = 0x180680 + 64, /* same as audio IN */
318 .fifo_start = 0x185400, /* same as audio IN */
319 .fifo_size = 0x001000, /* same as audio IN */
320 .ptr1_reg = MO_DMA26_PTR1,
321 .ptr2_reg = MO_DMA26_PTR2,
322 .cnt1_reg = MO_DMA26_CNT1,
323 .cnt2_reg = MO_DMA26_CNT2,
327 .cmds_start = 0x180200,
328 .ctrl_start = 0x1807C0,
329 .cdt = 0x1807C0 + 64,
330 .fifo_start = 0x186400,
331 .fifo_size = 0x001000,
332 .ptr1_reg = MO_DMA28_PTR1,
333 .ptr2_reg = MO_DMA28_PTR2,
334 .cnt1_reg = MO_DMA28_CNT1,
335 .cnt2_reg = MO_DMA28_CNT2,
339 int cx88_sram_channel_setup(struct cx88_core *core,
340 struct sram_channel *ch,
341 unsigned int bpl, u32 risc)
343 unsigned int i,lines;
346 bpl = (bpl + 7) & ~7; /* alignment */
348 lines = ch->fifo_size / bpl;
354 for (i = 0; i < lines; i++)
355 cx_write(cdt + 16*i, ch->fifo_start + bpl*i);
358 cx_write(ch->cmds_start + 0, risc);
359 cx_write(ch->cmds_start + 4, cdt);
360 cx_write(ch->cmds_start + 8, (lines*16) >> 3);
361 cx_write(ch->cmds_start + 12, ch->ctrl_start);
362 cx_write(ch->cmds_start + 16, 64 >> 2);
363 for (i = 20; i < 64; i += 4)
364 cx_write(ch->cmds_start + i, 0);
367 cx_write(ch->ptr1_reg, ch->fifo_start);
368 cx_write(ch->ptr2_reg, cdt);
369 cx_write(ch->cnt1_reg, (bpl >> 3) -1);
370 cx_write(ch->cnt2_reg, (lines*16) >> 3);
372 dprintk(2,"sram setup %s: bpl=%d lines=%d\n", ch->name, bpl, lines);
376 /* ------------------------------------------------------------------ */
377 /* debug helper code */
379 static int cx88_risc_decode(u32 risc)
381 static char *instr[16] = {
382 [ RISC_SYNC >> 28 ] = "sync",
383 [ RISC_WRITE >> 28 ] = "write",
384 [ RISC_WRITEC >> 28 ] = "writec",
385 [ RISC_READ >> 28 ] = "read",
386 [ RISC_READC >> 28 ] = "readc",
387 [ RISC_JUMP >> 28 ] = "jump",
388 [ RISC_SKIP >> 28 ] = "skip",
389 [ RISC_WRITERM >> 28 ] = "writerm",
390 [ RISC_WRITECM >> 28 ] = "writecm",
391 [ RISC_WRITECR >> 28 ] = "writecr",
393 static int incr[16] = {
394 [ RISC_WRITE >> 28 ] = 2,
395 [ RISC_JUMP >> 28 ] = 2,
396 [ RISC_WRITERM >> 28 ] = 3,
397 [ RISC_WRITECM >> 28 ] = 3,
398 [ RISC_WRITECR >> 28 ] = 4,
400 static char *bits[] = {
401 "12", "13", "14", "resync",
402 "cnt0", "cnt1", "18", "19",
403 "20", "21", "22", "23",
404 "irq1", "irq2", "eol", "sol",
408 printk("0x%08x [ %s", risc,
409 instr[risc >> 28] ? instr[risc >> 28] : "INVALID");
410 for (i = ARRAY_SIZE(bits)-1; i >= 0; i--)
411 if (risc & (1 << (i + 12)))
412 printk(" %s",bits[i]);
413 printk(" count=%d ]\n", risc & 0xfff);
414 return incr[risc >> 28] ? incr[risc >> 28] : 1;
418 void cx88_sram_channel_dump(struct cx88_core *core,
419 struct sram_channel *ch)
421 static char *name[] = {
437 printk("%s: %s - dma channel status dump\n",
438 core->name,ch->name);
439 for (i = 0; i < ARRAY_SIZE(name); i++)
440 printk("%s: cmds: %-12s: 0x%08x\n",
442 cx_read(ch->cmds_start + 4*i));
443 for (n = 1, i = 0; i < 4; i++) {
444 risc = cx_read(ch->cmds_start + 4 * (i+11));
445 printk("%s: risc%d: ", core->name, i);
447 printk("0x%08x [ arg #%d ]\n", risc, n);
449 n = cx88_risc_decode(risc);
451 for (i = 0; i < 16; i += n) {
452 risc = cx_read(ch->ctrl_start + 4 * i);
453 printk("%s: iq %x: ", core->name, i);
454 n = cx88_risc_decode(risc);
455 for (j = 1; j < n; j++) {
456 risc = cx_read(ch->ctrl_start + 4 * (i+j));
457 printk("%s: iq %x: 0x%08x [ arg #%d ]\n",
458 core->name, i+j, risc, j);
462 printk("%s: fifo: 0x%08x -> 0x%x\n",
463 core->name, ch->fifo_start, ch->fifo_start+ch->fifo_size);
464 printk("%s: ctrl: 0x%08x -> 0x%x\n",
465 core->name, ch->ctrl_start, ch->ctrl_start+6*16);
466 printk("%s: ptr1_reg: 0x%08x\n",
467 core->name,cx_read(ch->ptr1_reg));
468 printk("%s: ptr2_reg: 0x%08x\n",
469 core->name,cx_read(ch->ptr2_reg));
470 printk("%s: cnt1_reg: 0x%08x\n",
471 core->name,cx_read(ch->cnt1_reg));
472 printk("%s: cnt2_reg: 0x%08x\n",
473 core->name,cx_read(ch->cnt2_reg));
476 static char *cx88_pci_irqs[32] = {
477 "vid", "aud", "ts", "vip", "hst", "5", "6", "tm1",
478 "src_dma", "dst_dma", "risc_rd_err", "risc_wr_err",
479 "brdg_err", "src_dma_err", "dst_dma_err", "ipb_dma_err",
480 "i2c", "i2c_rack", "ir_smp", "gpio0", "gpio1"
483 void cx88_print_irqbits(char *name, char *tag, char **strings,
484 int len, u32 bits, u32 mask)
488 printk(KERN_DEBUG "%s: %s [0x%x]", name, tag, bits);
489 for (i = 0; i < len; i++) {
490 if (!(bits & (1 << i)))
493 printk(" %s", strings[i]);
496 if (!(mask & (1 << i)))
503 /* ------------------------------------------------------------------ */
505 int cx88_core_irq(struct cx88_core *core, u32 status)
509 if (status & PCI_INT_IR_SMPINT) {
514 cx88_print_irqbits(core->name, "irq pci",
515 cx88_pci_irqs, ARRAY_SIZE(cx88_pci_irqs),
516 status, core->pci_irqmask);
520 void cx88_wakeup(struct cx88_core *core,
521 struct cx88_dmaqueue *q, u32 count)
523 struct cx88_buffer *buf;
526 for (bc = 0;; bc++) {
527 if (list_empty(&q->active))
529 buf = list_entry(q->active.next,
530 struct cx88_buffer, vb.queue);
531 /* count comes from the hw and is is 16bit wide --
532 * this trick handles wrap-arounds correctly for
533 * up to 32767 buffers in flight... */
534 if ((s16) (count - buf->count) < 0)
536 do_gettimeofday(&buf->vb.ts);
537 dprintk(2,"[%p/%d] wakeup reg=%d buf=%d\n",buf,buf->vb.i,
539 buf->vb.state = STATE_DONE;
540 list_del(&buf->vb.queue);
541 wake_up(&buf->vb.done);
543 if (list_empty(&q->active)) {
544 del_timer(&q->timeout);
546 mod_timer(&q->timeout, jiffies+BUFFER_TIMEOUT);
549 printk("%s: %d buffers handled (should be 1)\n",__FUNCTION__,bc);
552 void cx88_shutdown(struct cx88_core *core)
554 /* disable RISC controller + IRQs */
555 cx_write(MO_DEV_CNTRL2, 0);
557 /* stop dma transfers */
558 cx_write(MO_VID_DMACNTRL, 0x0);
559 cx_write(MO_AUD_DMACNTRL, 0x0);
560 cx_write(MO_TS_DMACNTRL, 0x0);
561 cx_write(MO_VIP_DMACNTRL, 0x0);
562 cx_write(MO_GPHST_DMACNTRL, 0x0);
564 /* stop interrupts */
565 cx_write(MO_PCI_INTMSK, 0x0);
566 cx_write(MO_VID_INTMSK, 0x0);
567 cx_write(MO_AUD_INTMSK, 0x0);
568 cx_write(MO_TS_INTMSK, 0x0);
569 cx_write(MO_VIP_INTMSK, 0x0);
570 cx_write(MO_GPHST_INTMSK, 0x0);
573 cx_write(VID_CAPTURE_CONTROL, 0);
576 int cx88_reset(struct cx88_core *core)
578 dprintk(1,"%s\n",__FUNCTION__);
581 /* clear irq status */
582 cx_write(MO_VID_INTSTAT, 0xFFFFFFFF); // Clear PIV int
583 cx_write(MO_PCI_INTSTAT, 0xFFFFFFFF); // Clear PCI int
584 cx_write(MO_INT1_STAT, 0xFFFFFFFF); // Clear RISC int
590 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH21], 720*4, 0);
591 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH22], 128, 0);
592 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH23], 128, 0);
593 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH24], 128, 0);
594 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], 128, 0);
595 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], 128, 0);
596 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH28], 188*4, 0);
599 cx_write(MO_INPUT_FORMAT, ((1 << 13) | // agc enable
600 (1 << 12) | // agc gain
601 (1 << 11) | // adaptibe agc
602 (0 << 10) | // chroma agc
603 (0 << 9) | // ckillen
606 /* setup image format */
607 cx_andor(MO_COLOR_CTRL, 0x4000, 0x4000);
609 /* setup FIFO Threshholds */
610 cx_write(MO_PDMA_STHRSH, 0x0807);
611 cx_write(MO_PDMA_DTHRSH, 0x0807);
613 /* fixes flashing of image */
614 cx_write(MO_AGC_SYNC_TIP1, 0x0380000F);
615 cx_write(MO_AGC_BACK_VBI, 0x00E00555);
617 cx_write(MO_VID_INTSTAT, 0xFFFFFFFF); // Clear PIV int
618 cx_write(MO_PCI_INTSTAT, 0xFFFFFFFF); // Clear PCI int
619 cx_write(MO_INT1_STAT, 0xFFFFFFFF); // Clear RISC int
621 /* Reset on-board parts */
622 cx_write(MO_SRST_IO, 0);
624 cx_write(MO_SRST_IO, 1);
629 /* ------------------------------------------------------------------ */
631 static unsigned int inline norm_swidth(v4l2_std_id norm)
633 return (norm & (V4L2_STD_MN & ~V4L2_STD_PAL_Nc)) ? 754 : 922;
636 static unsigned int inline norm_hdelay(v4l2_std_id norm)
638 return (norm & (V4L2_STD_MN & ~V4L2_STD_PAL_Nc)) ? 135 : 186;
641 static unsigned int inline norm_vdelay(v4l2_std_id norm)
643 return (norm & V4L2_STD_625_50) ? 0x24 : 0x18;
646 static unsigned int inline norm_fsc8(v4l2_std_id norm)
648 if (norm & V4L2_STD_PAL_M)
649 return 28604892; // 3.575611 MHz
651 if (norm & (V4L2_STD_PAL_Nc))
652 return 28656448; // 3.582056 MHz
654 if (norm & V4L2_STD_NTSC) // All NTSC/M and variants
655 return 28636360; // 3.57954545 MHz +/- 10 Hz
657 /* SECAM have also different sub carrier for chroma,
658 but step_db and step_dr, at cx88_set_tvnorm already handles that.
660 The same FSC applies to PAL/BGDKIH, PAL/60, NTSC/4.43 and PAL/N
663 return 35468950; // 4.43361875 MHz +/- 5 Hz
666 static unsigned int inline norm_htotal(v4l2_std_id norm)
669 unsigned int fsc4=norm_fsc8(norm)/2;
671 /* returns 4*FSC / vtotal / frames per seconds */
672 return (norm & V4L2_STD_625_50) ?
673 ((fsc4+312)/625+12)/25 :
674 ((fsc4+262)/525*1001+15000)/30000;
677 static unsigned int inline norm_vbipack(v4l2_std_id norm)
679 return (norm & V4L2_STD_625_50) ? 511 : 400;
682 int cx88_set_scale(struct cx88_core *core, unsigned int width, unsigned int height,
683 enum v4l2_field field)
685 unsigned int swidth = norm_swidth(core->tvnorm);
686 unsigned int sheight = norm_maxh(core->tvnorm);
689 dprintk(1,"set_scale: %dx%d [%s%s,%s]\n", width, height,
690 V4L2_FIELD_HAS_TOP(field) ? "T" : "",
691 V4L2_FIELD_HAS_BOTTOM(field) ? "B" : "",
692 v4l2_norm_to_name(core->tvnorm));
693 if (!V4L2_FIELD_HAS_BOTH(field))
696 // recalc H delay and scale registers
697 value = (width * norm_hdelay(core->tvnorm)) / swidth;
699 cx_write(MO_HDELAY_EVEN, value);
700 cx_write(MO_HDELAY_ODD, value);
701 dprintk(1,"set_scale: hdelay 0x%04x (width %d)\n", value,swidth);
703 value = (swidth * 4096 / width) - 4096;
704 cx_write(MO_HSCALE_EVEN, value);
705 cx_write(MO_HSCALE_ODD, value);
706 dprintk(1,"set_scale: hscale 0x%04x\n", value);
708 cx_write(MO_HACTIVE_EVEN, width);
709 cx_write(MO_HACTIVE_ODD, width);
710 dprintk(1,"set_scale: hactive 0x%04x\n", width);
712 // recalc V scale Register (delay is constant)
713 cx_write(MO_VDELAY_EVEN, norm_vdelay(core->tvnorm));
714 cx_write(MO_VDELAY_ODD, norm_vdelay(core->tvnorm));
715 dprintk(1,"set_scale: vdelay 0x%04x\n", norm_vdelay(core->tvnorm));
717 value = (0x10000 - (sheight * 512 / height - 512)) & 0x1fff;
718 cx_write(MO_VSCALE_EVEN, value);
719 cx_write(MO_VSCALE_ODD, value);
720 dprintk(1,"set_scale: vscale 0x%04x\n", value);
722 cx_write(MO_VACTIVE_EVEN, sheight);
723 cx_write(MO_VACTIVE_ODD, sheight);
724 dprintk(1,"set_scale: vactive 0x%04x\n", sheight);
728 value |= (1 << 19); // CFILT (default)
729 if (core->tvnorm & V4L2_STD_SECAM) {
733 if (INPUT(core->input).type == CX88_VMUX_SVIDEO)
734 value |= (1 << 13) | (1 << 5);
735 if (V4L2_FIELD_INTERLACED == field)
736 value |= (1 << 3); // VINT (interlaced vertical scaling)
738 value |= (1 << 0); // 3-tap interpolation
740 value |= (1 << 1); // 5-tap interpolation
742 value |= (3 << 5); // disable comb filter
744 cx_write(MO_FILTER_EVEN, value);
745 cx_write(MO_FILTER_ODD, value);
746 dprintk(1,"set_scale: filter 0x%04x\n", value);
751 static const u32 xtal = 28636363;
753 static int set_pll(struct cx88_core *core, int prescale, u32 ofreq)
755 static u32 pre[] = { 0, 0, 0, 3, 2, 1 };
765 pll = ofreq * 8 * prescale * (u64)(1 << 20);
767 reg = (pll & 0x3ffffff) | (pre[prescale] << 26);
768 if (((reg >> 20) & 0x3f) < 14) {
769 printk("%s/0: pll out of range\n",core->name);
773 dprintk(1,"set_pll: MO_PLL_REG 0x%08x [old=0x%08x,freq=%d]\n",
774 reg, cx_read(MO_PLL_REG), ofreq);
775 cx_write(MO_PLL_REG, reg);
776 for (i = 0; i < 100; i++) {
777 reg = cx_read(MO_DEVICE_STATUS);
779 dprintk(1,"pll locked [pre=%d,ofreq=%d]\n",
783 dprintk(1,"pll not locked yet, waiting ...\n");
786 dprintk(1,"pll NOT locked [pre=%d,ofreq=%d]\n",prescale,ofreq);
790 int cx88_start_audio_dma(struct cx88_core *core)
792 /* constant 128 made buzz in analog Nicam-stereo for bigger fifo_size */
793 int bpl = cx88_sram_channels[SRAM_CH25].fifo_size/4;
795 /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
796 if (cx_read(MO_AUD_DMACNTRL) & 0x10)
799 /* setup fifo + format */
800 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], bpl, 0);
801 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], bpl, 0);
803 cx_write(MO_AUDD_LNGTH, bpl); /* fifo bpl size */
804 cx_write(MO_AUDR_LNGTH, bpl); /* fifo bpl size */
807 cx_write(MO_AUD_DMACNTRL, 0x0003); /* Up and Down fifo enable */
812 int cx88_stop_audio_dma(struct cx88_core *core)
814 /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
815 if (cx_read(MO_AUD_DMACNTRL) & 0x10)
819 cx_write(MO_AUD_DMACNTRL, 0x0000);
824 static int set_tvaudio(struct cx88_core *core)
826 v4l2_std_id norm = core->tvnorm;
828 if (CX88_VMUX_TELEVISION != INPUT(core->input).type)
831 if (V4L2_STD_PAL_BG & norm) {
832 core->tvaudio = WW_BG;
834 } else if (V4L2_STD_PAL_DK & norm) {
835 core->tvaudio = WW_DK;
837 } else if (V4L2_STD_PAL_I & norm) {
838 core->tvaudio = WW_I;
840 } else if (V4L2_STD_SECAM_L & norm) {
841 core->tvaudio = WW_L;
843 } else if (V4L2_STD_SECAM_DK & norm) {
844 core->tvaudio = WW_DK;
846 } else if ((V4L2_STD_NTSC_M & norm) ||
847 (V4L2_STD_PAL_M & norm)) {
848 core->tvaudio = WW_BTSC;
850 } else if (V4L2_STD_NTSC_M_JP & norm) {
851 core->tvaudio = WW_EIAJ;
854 printk("%s/0: tvaudio support needs work for this tv norm [%s], sorry\n",
855 core->name, v4l2_norm_to_name(core->tvnorm));
860 cx_andor(MO_AFECFG_IO, 0x1f, 0x0);
861 cx88_set_tvaudio(core);
862 /* cx88_set_stereo(dev,V4L2_TUNER_MODE_STEREO); */
865 This should be needed only on cx88-alsa. It seems that some cx88 chips have
866 bugs and does require DMA enabled for it to work.
868 cx88_start_audio_dma(core);
874 int cx88_set_tvnorm(struct cx88_core *core, v4l2_std_id norm)
881 u32 bdelay,agcdelay,htotal;
882 u32 cxiformat, cxoformat;
885 fsc8 = norm_fsc8(norm);
891 if (norm & V4L2_STD_NTSC_M_JP) {
892 cxiformat = VideoFormatNTSCJapan;
893 cxoformat = 0x181f0008;
894 } else if (norm & V4L2_STD_NTSC_443) {
895 cxiformat = VideoFormatNTSC443;
896 cxoformat = 0x181f0008;
897 } else if (norm & V4L2_STD_PAL_M) {
898 cxiformat = VideoFormatPALM;
899 cxoformat = 0x1c1f0008;
900 } else if (norm & V4L2_STD_PAL_N) {
901 cxiformat = VideoFormatPALN;
902 cxoformat = 0x1c1f0008;
903 } else if (norm & V4L2_STD_PAL_Nc) {
904 cxiformat = VideoFormatPALNC;
905 cxoformat = 0x1c1f0008;
906 } else if (norm & V4L2_STD_PAL_60) {
907 cxiformat = VideoFormatPAL60;
908 cxoformat = 0x181f0008;
909 } else if (norm & V4L2_STD_NTSC) {
910 cxiformat = VideoFormatNTSC;
911 cxoformat = 0x181f0008;
912 } else if (norm & V4L2_STD_SECAM) {
913 step_db = 4250000 * 8;
914 step_dr = 4406250 * 8;
916 cxiformat = VideoFormatSECAM;
917 cxoformat = 0x181f0008;
919 cxiformat = VideoFormatPAL;
920 cxoformat = 0x181f0008;
923 dprintk(1,"set_tvnorm: \"%s\" fsc8=%d adc=%d vdec=%d db/dr=%d/%d\n",
924 v4l2_norm_to_name(core->tvnorm), fsc8, adc_clock, vdec_clock,
926 set_pll(core,2,vdec_clock);
928 dprintk(1,"set_tvnorm: MO_INPUT_FORMAT 0x%08x [old=0x%08x]\n",
929 cxiformat, cx_read(MO_INPUT_FORMAT) & 0x0f);
930 cx_andor(MO_INPUT_FORMAT, 0xf, cxiformat);
932 // FIXME: as-is from DScaler
933 dprintk(1,"set_tvnorm: MO_OUTPUT_FORMAT 0x%08x [old=0x%08x]\n",
934 cxoformat, cx_read(MO_OUTPUT_FORMAT));
935 cx_write(MO_OUTPUT_FORMAT, cxoformat);
937 // MO_SCONV_REG = adc clock / video dec clock * 2^17
938 tmp64 = adc_clock * (u64)(1 << 17);
939 do_div(tmp64, vdec_clock);
940 dprintk(1,"set_tvnorm: MO_SCONV_REG 0x%08x [old=0x%08x]\n",
941 (u32)tmp64, cx_read(MO_SCONV_REG));
942 cx_write(MO_SCONV_REG, (u32)tmp64);
944 // MO_SUB_STEP = 8 * fsc / video dec clock * 2^22
945 tmp64 = step_db * (u64)(1 << 22);
946 do_div(tmp64, vdec_clock);
947 dprintk(1,"set_tvnorm: MO_SUB_STEP 0x%08x [old=0x%08x]\n",
948 (u32)tmp64, cx_read(MO_SUB_STEP));
949 cx_write(MO_SUB_STEP, (u32)tmp64);
951 // MO_SUB_STEP_DR = 8 * 4406250 / video dec clock * 2^22
952 tmp64 = step_dr * (u64)(1 << 22);
953 do_div(tmp64, vdec_clock);
954 dprintk(1,"set_tvnorm: MO_SUB_STEP_DR 0x%08x [old=0x%08x]\n",
955 (u32)tmp64, cx_read(MO_SUB_STEP_DR));
956 cx_write(MO_SUB_STEP_DR, (u32)tmp64);
959 bdelay = vdec_clock * 65 / 20000000 + 21;
960 agcdelay = vdec_clock * 68 / 20000000 + 15;
961 dprintk(1,"set_tvnorm: MO_AGC_BURST 0x%08x [old=0x%08x,bdelay=%d,agcdelay=%d]\n",
962 (bdelay << 8) | agcdelay, cx_read(MO_AGC_BURST), bdelay, agcdelay);
963 cx_write(MO_AGC_BURST, (bdelay << 8) | agcdelay);
966 tmp64 = norm_htotal(norm) * (u64)vdec_clock;
968 htotal = (u32)tmp64 | (HLNotchFilter4xFsc << 11);
969 dprintk(1,"set_tvnorm: MO_HTOTAL 0x%08x [old=0x%08x,htotal=%d]\n",
970 htotal, cx_read(MO_HTOTAL), (u32)tmp64);
971 cx_write(MO_HTOTAL, htotal);
973 // vbi stuff, set vbi offset to 10 (for 20 Clk*2 pixels), this makes
974 // the effective vbi offset ~244 samples, the same as the Bt8x8
975 cx_write(MO_VBI_PACKET, (10<<11) | norm_vbipack(norm));
977 // this is needed as well to set all tvnorm parameter
978 cx88_set_scale(core, 320, 240, V4L2_FIELD_INTERLACED);
984 cx88_call_i2c_clients(core,VIDIOC_S_STD,&norm);
990 /* ------------------------------------------------------------------ */
992 struct video_device *cx88_vdev_init(struct cx88_core *core,
994 struct video_device *template,
997 struct video_device *vfd;
999 vfd = video_device_alloc();
1004 vfd->dev = &pci->dev;
1005 vfd->release = video_device_release;
1006 snprintf(vfd->name, sizeof(vfd->name), "%s %s (%s)",
1007 core->name, type, core->board.name);
1011 struct cx88_core* cx88_core_get(struct pci_dev *pci)
1013 struct cx88_core *core;
1014 struct list_head *item;
1016 mutex_lock(&devlist);
1017 list_for_each(item,&cx88_devlist) {
1018 core = list_entry(item, struct cx88_core, devlist);
1019 if (pci->bus->number != core->pci_bus)
1021 if (PCI_SLOT(pci->devfn) != core->pci_slot)
1024 if (0 != cx88_get_resources(core, pci)) {
1025 mutex_unlock(&devlist);
1028 atomic_inc(&core->refcount);
1029 mutex_unlock(&devlist);
1033 core = cx88_core_create(pci, cx88_devcount);
1036 list_add_tail(&core->devlist, &cx88_devlist);
1039 mutex_unlock(&devlist);
1043 void cx88_core_put(struct cx88_core *core, struct pci_dev *pci)
1045 release_mem_region(pci_resource_start(pci,0),
1046 pci_resource_len(pci,0));
1048 if (!atomic_dec_and_test(&core->refcount))
1051 mutex_lock(&devlist);
1053 if (0 == core->i2c_rc)
1054 i2c_del_adapter(&core->i2c_adap);
1055 list_del(&core->devlist);
1056 iounmap(core->lmmio);
1058 mutex_unlock(&devlist);
1062 /* ------------------------------------------------------------------ */
1064 EXPORT_SYMBOL(cx88_print_irqbits);
1066 EXPORT_SYMBOL(cx88_core_irq);
1067 EXPORT_SYMBOL(cx88_wakeup);
1068 EXPORT_SYMBOL(cx88_reset);
1069 EXPORT_SYMBOL(cx88_shutdown);
1071 EXPORT_SYMBOL(cx88_risc_buffer);
1072 EXPORT_SYMBOL(cx88_risc_databuffer);
1073 EXPORT_SYMBOL(cx88_risc_stopper);
1074 EXPORT_SYMBOL(cx88_free_buffer);
1076 EXPORT_SYMBOL(cx88_sram_channels);
1077 EXPORT_SYMBOL(cx88_sram_channel_setup);
1078 EXPORT_SYMBOL(cx88_sram_channel_dump);
1080 EXPORT_SYMBOL(cx88_set_tvnorm);
1081 EXPORT_SYMBOL(cx88_set_scale);
1083 EXPORT_SYMBOL(cx88_vdev_init);
1084 EXPORT_SYMBOL(cx88_core_get);
1085 EXPORT_SYMBOL(cx88_core_put);
1091 * kate: eol "unix"; indent-width 3; remove-trailing-space on; replace-trailing-space-save on; tab-width 8; replace-tabs off; space-indent off; mixed-indent off