2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
62 /* debounce timing parameters in msecs { interval, duration, timeout } */
63 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
64 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
65 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
67 static unsigned int ata_dev_init_params(struct ata_device *dev,
68 u16 heads, u16 sectors);
69 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
70 static void ata_dev_xfermask(struct ata_device *dev);
72 static unsigned int ata_unique_id = 1;
73 static struct workqueue_struct *ata_wq;
75 struct workqueue_struct *ata_aux_wq;
77 int atapi_enabled = 1;
78 module_param(atapi_enabled, int, 0444);
79 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82 module_param(atapi_dmadir, int, 0444);
83 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
86 module_param_named(fua, libata_fua, int, 0444);
87 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
89 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
90 module_param(ata_probe_timeout, int, 0444);
91 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
93 MODULE_AUTHOR("Jeff Garzik");
94 MODULE_DESCRIPTION("Library module for ATA devices");
95 MODULE_LICENSE("GPL");
96 MODULE_VERSION(DRV_VERSION);
100 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
101 * @tf: Taskfile to convert
102 * @fis: Buffer into which data will output
103 * @pmp: Port multiplier port
105 * Converts a standard ATA taskfile to a Serial ATA
106 * FIS structure (Register - Host to Device).
109 * Inherited from caller.
112 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
114 fis[0] = 0x27; /* Register - Host to Device FIS */
115 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
116 bit 7 indicates Command FIS */
117 fis[2] = tf->command;
118 fis[3] = tf->feature;
125 fis[8] = tf->hob_lbal;
126 fis[9] = tf->hob_lbam;
127 fis[10] = tf->hob_lbah;
128 fis[11] = tf->hob_feature;
131 fis[13] = tf->hob_nsect;
142 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
143 * @fis: Buffer from which data will be input
144 * @tf: Taskfile to output
146 * Converts a serial ATA FIS structure to a standard ATA taskfile.
149 * Inherited from caller.
152 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
154 tf->command = fis[2]; /* status */
155 tf->feature = fis[3]; /* error */
162 tf->hob_lbal = fis[8];
163 tf->hob_lbam = fis[9];
164 tf->hob_lbah = fis[10];
167 tf->hob_nsect = fis[13];
170 static const u8 ata_rw_cmds[] = {
174 ATA_CMD_READ_MULTI_EXT,
175 ATA_CMD_WRITE_MULTI_EXT,
179 ATA_CMD_WRITE_MULTI_FUA_EXT,
183 ATA_CMD_PIO_READ_EXT,
184 ATA_CMD_PIO_WRITE_EXT,
197 ATA_CMD_WRITE_FUA_EXT
201 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
202 * @qc: command to examine and configure
204 * Examine the device configuration and tf->flags to calculate
205 * the proper read/write commands and protocol to use.
210 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
212 struct ata_taskfile *tf = &qc->tf;
213 struct ata_device *dev = qc->dev;
216 int index, fua, lba48, write;
218 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
219 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
220 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
222 if (dev->flags & ATA_DFLAG_PIO) {
223 tf->protocol = ATA_PROT_PIO;
224 index = dev->multi_count ? 0 : 8;
225 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
226 /* Unable to use DMA due to host limitation */
227 tf->protocol = ATA_PROT_PIO;
228 index = dev->multi_count ? 0 : 8;
230 tf->protocol = ATA_PROT_DMA;
234 cmd = ata_rw_cmds[index + fua + lba48 + write];
243 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
244 * @pio_mask: pio_mask
245 * @mwdma_mask: mwdma_mask
246 * @udma_mask: udma_mask
248 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
249 * unsigned int xfer_mask.
257 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
258 unsigned int mwdma_mask,
259 unsigned int udma_mask)
261 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
262 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
263 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
267 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
268 * @xfer_mask: xfer_mask to unpack
269 * @pio_mask: resulting pio_mask
270 * @mwdma_mask: resulting mwdma_mask
271 * @udma_mask: resulting udma_mask
273 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
274 * Any NULL distination masks will be ignored.
276 static void ata_unpack_xfermask(unsigned int xfer_mask,
277 unsigned int *pio_mask,
278 unsigned int *mwdma_mask,
279 unsigned int *udma_mask)
282 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
284 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
286 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
289 static const struct ata_xfer_ent {
293 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
294 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
295 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
300 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
301 * @xfer_mask: xfer_mask of interest
303 * Return matching XFER_* value for @xfer_mask. Only the highest
304 * bit of @xfer_mask is considered.
310 * Matching XFER_* value, 0 if no match found.
312 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
314 int highbit = fls(xfer_mask) - 1;
315 const struct ata_xfer_ent *ent;
317 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
318 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
319 return ent->base + highbit - ent->shift;
324 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
325 * @xfer_mode: XFER_* of interest
327 * Return matching xfer_mask for @xfer_mode.
333 * Matching xfer_mask, 0 if no match found.
335 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
337 const struct ata_xfer_ent *ent;
339 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
340 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
341 return 1 << (ent->shift + xfer_mode - ent->base);
346 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
347 * @xfer_mode: XFER_* of interest
349 * Return matching xfer_shift for @xfer_mode.
355 * Matching xfer_shift, -1 if no match found.
357 static int ata_xfer_mode2shift(unsigned int xfer_mode)
359 const struct ata_xfer_ent *ent;
361 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
362 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
368 * ata_mode_string - convert xfer_mask to string
369 * @xfer_mask: mask of bits supported; only highest bit counts.
371 * Determine string which represents the highest speed
372 * (highest bit in @modemask).
378 * Constant C string representing highest speed listed in
379 * @mode_mask, or the constant C string "<n/a>".
381 static const char *ata_mode_string(unsigned int xfer_mask)
383 static const char * const xfer_mode_str[] = {
407 highbit = fls(xfer_mask) - 1;
408 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
409 return xfer_mode_str[highbit];
413 static const char *sata_spd_string(unsigned int spd)
415 static const char * const spd_str[] = {
420 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
422 return spd_str[spd - 1];
425 void ata_dev_disable(struct ata_device *dev)
427 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
428 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
434 * ata_pio_devchk - PATA device presence detection
435 * @ap: ATA channel to examine
436 * @device: Device to examine (starting at zero)
438 * This technique was originally described in
439 * Hale Landis's ATADRVR (www.ata-atapi.com), and
440 * later found its way into the ATA/ATAPI spec.
442 * Write a pattern to the ATA shadow registers,
443 * and if a device is present, it will respond by
444 * correctly storing and echoing back the
445 * ATA shadow register contents.
451 static unsigned int ata_pio_devchk(struct ata_port *ap,
454 struct ata_ioports *ioaddr = &ap->ioaddr;
457 ap->ops->dev_select(ap, device);
459 outb(0x55, ioaddr->nsect_addr);
460 outb(0xaa, ioaddr->lbal_addr);
462 outb(0xaa, ioaddr->nsect_addr);
463 outb(0x55, ioaddr->lbal_addr);
465 outb(0x55, ioaddr->nsect_addr);
466 outb(0xaa, ioaddr->lbal_addr);
468 nsect = inb(ioaddr->nsect_addr);
469 lbal = inb(ioaddr->lbal_addr);
471 if ((nsect == 0x55) && (lbal == 0xaa))
472 return 1; /* we found a device */
474 return 0; /* nothing found */
478 * ata_mmio_devchk - PATA device presence detection
479 * @ap: ATA channel to examine
480 * @device: Device to examine (starting at zero)
482 * This technique was originally described in
483 * Hale Landis's ATADRVR (www.ata-atapi.com), and
484 * later found its way into the ATA/ATAPI spec.
486 * Write a pattern to the ATA shadow registers,
487 * and if a device is present, it will respond by
488 * correctly storing and echoing back the
489 * ATA shadow register contents.
495 static unsigned int ata_mmio_devchk(struct ata_port *ap,
498 struct ata_ioports *ioaddr = &ap->ioaddr;
501 ap->ops->dev_select(ap, device);
503 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
506 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
507 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
509 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
510 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
512 nsect = readb((void __iomem *) ioaddr->nsect_addr);
513 lbal = readb((void __iomem *) ioaddr->lbal_addr);
515 if ((nsect == 0x55) && (lbal == 0xaa))
516 return 1; /* we found a device */
518 return 0; /* nothing found */
522 * ata_devchk - PATA device presence detection
523 * @ap: ATA channel to examine
524 * @device: Device to examine (starting at zero)
526 * Dispatch ATA device presence detection, depending
527 * on whether we are using PIO or MMIO to talk to the
528 * ATA shadow registers.
534 static unsigned int ata_devchk(struct ata_port *ap,
537 if (ap->flags & ATA_FLAG_MMIO)
538 return ata_mmio_devchk(ap, device);
539 return ata_pio_devchk(ap, device);
543 * ata_dev_classify - determine device type based on ATA-spec signature
544 * @tf: ATA taskfile register set for device to be identified
546 * Determine from taskfile register contents whether a device is
547 * ATA or ATAPI, as per "Signature and persistence" section
548 * of ATA/PI spec (volume 1, sect 5.14).
554 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
555 * the event of failure.
558 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
560 /* Apple's open source Darwin code hints that some devices only
561 * put a proper signature into the LBA mid/high registers,
562 * So, we only check those. It's sufficient for uniqueness.
565 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
566 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
567 DPRINTK("found ATA device by sig\n");
571 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
572 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
573 DPRINTK("found ATAPI device by sig\n");
574 return ATA_DEV_ATAPI;
577 DPRINTK("unknown device\n");
578 return ATA_DEV_UNKNOWN;
582 * ata_dev_try_classify - Parse returned ATA device signature
583 * @ap: ATA channel to examine
584 * @device: Device to examine (starting at zero)
585 * @r_err: Value of error register on completion
587 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
588 * an ATA/ATAPI-defined set of values is placed in the ATA
589 * shadow registers, indicating the results of device detection
592 * Select the ATA device, and read the values from the ATA shadow
593 * registers. Then parse according to the Error register value,
594 * and the spec-defined values examined by ata_dev_classify().
600 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
604 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
606 struct ata_taskfile tf;
610 ap->ops->dev_select(ap, device);
612 memset(&tf, 0, sizeof(tf));
614 ap->ops->tf_read(ap, &tf);
619 /* see if device passed diags: if master then continue and warn later */
620 if (err == 0 && device == 0)
621 /* diagnostic fail : do nothing _YET_ */
622 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
625 else if ((device == 0) && (err == 0x81))
630 /* determine if device is ATA or ATAPI */
631 class = ata_dev_classify(&tf);
633 if (class == ATA_DEV_UNKNOWN)
635 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
641 * ata_id_string - Convert IDENTIFY DEVICE page into string
642 * @id: IDENTIFY DEVICE results we will examine
643 * @s: string into which data is output
644 * @ofs: offset into identify device page
645 * @len: length of string to return. must be an even number.
647 * The strings in the IDENTIFY DEVICE page are broken up into
648 * 16-bit chunks. Run through the string, and output each
649 * 8-bit chunk linearly, regardless of platform.
655 void ata_id_string(const u16 *id, unsigned char *s,
656 unsigned int ofs, unsigned int len)
675 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
676 * @id: IDENTIFY DEVICE results we will examine
677 * @s: string into which data is output
678 * @ofs: offset into identify device page
679 * @len: length of string to return. must be an odd number.
681 * This function is identical to ata_id_string except that it
682 * trims trailing spaces and terminates the resulting string with
683 * null. @len must be actual maximum length (even number) + 1.
688 void ata_id_c_string(const u16 *id, unsigned char *s,
689 unsigned int ofs, unsigned int len)
695 ata_id_string(id, s, ofs, len - 1);
697 p = s + strnlen(s, len - 1);
698 while (p > s && p[-1] == ' ')
703 static u64 ata_id_n_sectors(const u16 *id)
705 if (ata_id_has_lba(id)) {
706 if (ata_id_has_lba48(id))
707 return ata_id_u64(id, 100);
709 return ata_id_u32(id, 60);
711 if (ata_id_current_chs_valid(id))
712 return ata_id_u32(id, 57);
714 return id[1] * id[3] * id[6];
719 * ata_noop_dev_select - Select device 0/1 on ATA bus
720 * @ap: ATA channel to manipulate
721 * @device: ATA device (numbered from zero) to select
723 * This function performs no actual function.
725 * May be used as the dev_select() entry in ata_port_operations.
730 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
736 * ata_std_dev_select - Select device 0/1 on ATA bus
737 * @ap: ATA channel to manipulate
738 * @device: ATA device (numbered from zero) to select
740 * Use the method defined in the ATA specification to
741 * make either device 0, or device 1, active on the
742 * ATA channel. Works with both PIO and MMIO.
744 * May be used as the dev_select() entry in ata_port_operations.
750 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
755 tmp = ATA_DEVICE_OBS;
757 tmp = ATA_DEVICE_OBS | ATA_DEV1;
759 if (ap->flags & ATA_FLAG_MMIO) {
760 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
762 outb(tmp, ap->ioaddr.device_addr);
764 ata_pause(ap); /* needed; also flushes, for mmio */
768 * ata_dev_select - Select device 0/1 on ATA bus
769 * @ap: ATA channel to manipulate
770 * @device: ATA device (numbered from zero) to select
771 * @wait: non-zero to wait for Status register BSY bit to clear
772 * @can_sleep: non-zero if context allows sleeping
774 * Use the method defined in the ATA specification to
775 * make either device 0, or device 1, active on the
778 * This is a high-level version of ata_std_dev_select(),
779 * which additionally provides the services of inserting
780 * the proper pauses and status polling, where needed.
786 void ata_dev_select(struct ata_port *ap, unsigned int device,
787 unsigned int wait, unsigned int can_sleep)
789 if (ata_msg_probe(ap))
790 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
791 "device %u, wait %u\n", ap->id, device, wait);
796 ap->ops->dev_select(ap, device);
799 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
806 * ata_dump_id - IDENTIFY DEVICE info debugging output
807 * @id: IDENTIFY DEVICE page to dump
809 * Dump selected 16-bit words from the given IDENTIFY DEVICE
816 static inline void ata_dump_id(const u16 *id)
818 DPRINTK("49==0x%04x "
828 DPRINTK("80==0x%04x "
838 DPRINTK("88==0x%04x "
845 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
846 * @id: IDENTIFY data to compute xfer mask from
848 * Compute the xfermask for this device. This is not as trivial
849 * as it seems if we must consider early devices correctly.
851 * FIXME: pre IDE drive timing (do we care ?).
859 static unsigned int ata_id_xfermask(const u16 *id)
861 unsigned int pio_mask, mwdma_mask, udma_mask;
863 /* Usual case. Word 53 indicates word 64 is valid */
864 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
865 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
869 /* If word 64 isn't valid then Word 51 high byte holds
870 * the PIO timing number for the maximum. Turn it into
873 u8 mode = id[ATA_ID_OLD_PIO_MODES] & 0xFF;
874 if (mode < 5) /* Valid PIO range */
875 pio_mask = (2 << mode) - 1;
879 /* But wait.. there's more. Design your standards by
880 * committee and you too can get a free iordy field to
881 * process. However its the speeds not the modes that
882 * are supported... Note drivers using the timing API
883 * will get this right anyway
887 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
889 if (ata_id_is_cfa(id)) {
891 * Process compact flash extended modes
893 int pio = id[163] & 0x7;
894 int dma = (id[163] >> 3) & 7;
897 pio_mask |= (1 << 5);
899 pio_mask |= (1 << 6);
901 mwdma_mask |= (1 << 3);
903 mwdma_mask |= (1 << 4);
907 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
908 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
910 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
914 * ata_port_queue_task - Queue port_task
915 * @ap: The ata_port to queue port_task for
916 * @fn: workqueue function to be scheduled
917 * @data: data value to pass to workqueue function
918 * @delay: delay time for workqueue function
920 * Schedule @fn(@data) for execution after @delay jiffies using
921 * port_task. There is one port_task per port and it's the
922 * user(low level driver)'s responsibility to make sure that only
923 * one task is active at any given time.
925 * libata core layer takes care of synchronization between
926 * port_task and EH. ata_port_queue_task() may be ignored for EH
930 * Inherited from caller.
932 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
937 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
940 PREPARE_WORK(&ap->port_task, fn, data);
943 rc = queue_work(ata_wq, &ap->port_task);
945 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
947 /* rc == 0 means that another user is using port task */
952 * ata_port_flush_task - Flush port_task
953 * @ap: The ata_port to flush port_task for
955 * After this function completes, port_task is guranteed not to
956 * be running or scheduled.
959 * Kernel thread context (may sleep)
961 void ata_port_flush_task(struct ata_port *ap)
967 spin_lock_irqsave(ap->lock, flags);
968 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
969 spin_unlock_irqrestore(ap->lock, flags);
971 DPRINTK("flush #1\n");
972 flush_workqueue(ata_wq);
975 * At this point, if a task is running, it's guaranteed to see
976 * the FLUSH flag; thus, it will never queue pio tasks again.
979 if (!cancel_delayed_work(&ap->port_task)) {
981 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
983 flush_workqueue(ata_wq);
986 spin_lock_irqsave(ap->lock, flags);
987 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
988 spin_unlock_irqrestore(ap->lock, flags);
991 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
994 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
996 struct completion *waiting = qc->private_data;
1002 * ata_exec_internal - execute libata internal command
1003 * @dev: Device to which the command is sent
1004 * @tf: Taskfile registers for the command and the result
1005 * @cdb: CDB for packet command
1006 * @dma_dir: Data tranfer direction of the command
1007 * @buf: Data buffer of the command
1008 * @buflen: Length of data buffer
1010 * Executes libata internal command with timeout. @tf contains
1011 * command on entry and result on return. Timeout and error
1012 * conditions are reported via return value. No recovery action
1013 * is taken after a command times out. It's caller's duty to
1014 * clean up after timeout.
1017 * None. Should be called with kernel context, might sleep.
1020 * Zero on success, AC_ERR_* mask on failure
1022 unsigned ata_exec_internal(struct ata_device *dev,
1023 struct ata_taskfile *tf, const u8 *cdb,
1024 int dma_dir, void *buf, unsigned int buflen)
1026 struct ata_port *ap = dev->ap;
1027 u8 command = tf->command;
1028 struct ata_queued_cmd *qc;
1029 unsigned int tag, preempted_tag;
1030 u32 preempted_sactive, preempted_qc_active;
1031 DECLARE_COMPLETION_ONSTACK(wait);
1032 unsigned long flags;
1033 unsigned int err_mask;
1036 spin_lock_irqsave(ap->lock, flags);
1038 /* no internal command while frozen */
1039 if (ap->pflags & ATA_PFLAG_FROZEN) {
1040 spin_unlock_irqrestore(ap->lock, flags);
1041 return AC_ERR_SYSTEM;
1044 /* initialize internal qc */
1046 /* XXX: Tag 0 is used for drivers with legacy EH as some
1047 * drivers choke if any other tag is given. This breaks
1048 * ata_tag_internal() test for those drivers. Don't use new
1049 * EH stuff without converting to it.
1051 if (ap->ops->error_handler)
1052 tag = ATA_TAG_INTERNAL;
1056 if (test_and_set_bit(tag, &ap->qc_allocated))
1058 qc = __ata_qc_from_tag(ap, tag);
1066 preempted_tag = ap->active_tag;
1067 preempted_sactive = ap->sactive;
1068 preempted_qc_active = ap->qc_active;
1069 ap->active_tag = ATA_TAG_POISON;
1073 /* prepare & issue qc */
1076 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1077 qc->flags |= ATA_QCFLAG_RESULT_TF;
1078 qc->dma_dir = dma_dir;
1079 if (dma_dir != DMA_NONE) {
1080 ata_sg_init_one(qc, buf, buflen);
1081 qc->nsect = buflen / ATA_SECT_SIZE;
1084 qc->private_data = &wait;
1085 qc->complete_fn = ata_qc_complete_internal;
1089 spin_unlock_irqrestore(ap->lock, flags);
1091 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1093 ata_port_flush_task(ap);
1096 spin_lock_irqsave(ap->lock, flags);
1098 /* We're racing with irq here. If we lose, the
1099 * following test prevents us from completing the qc
1100 * twice. If we win, the port is frozen and will be
1101 * cleaned up by ->post_internal_cmd().
1103 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1104 qc->err_mask |= AC_ERR_TIMEOUT;
1106 if (ap->ops->error_handler)
1107 ata_port_freeze(ap);
1109 ata_qc_complete(qc);
1111 if (ata_msg_warn(ap))
1112 ata_dev_printk(dev, KERN_WARNING,
1113 "qc timeout (cmd 0x%x)\n", command);
1116 spin_unlock_irqrestore(ap->lock, flags);
1119 /* do post_internal_cmd */
1120 if (ap->ops->post_internal_cmd)
1121 ap->ops->post_internal_cmd(qc);
1123 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1124 if (ata_msg_warn(ap))
1125 ata_dev_printk(dev, KERN_WARNING,
1126 "zero err_mask for failed "
1127 "internal command, assuming AC_ERR_OTHER\n");
1128 qc->err_mask |= AC_ERR_OTHER;
1132 spin_lock_irqsave(ap->lock, flags);
1134 *tf = qc->result_tf;
1135 err_mask = qc->err_mask;
1138 ap->active_tag = preempted_tag;
1139 ap->sactive = preempted_sactive;
1140 ap->qc_active = preempted_qc_active;
1142 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1143 * Until those drivers are fixed, we detect the condition
1144 * here, fail the command with AC_ERR_SYSTEM and reenable the
1147 * Note that this doesn't change any behavior as internal
1148 * command failure results in disabling the device in the
1149 * higher layer for LLDDs without new reset/EH callbacks.
1151 * Kill the following code as soon as those drivers are fixed.
1153 if (ap->flags & ATA_FLAG_DISABLED) {
1154 err_mask |= AC_ERR_SYSTEM;
1158 spin_unlock_irqrestore(ap->lock, flags);
1164 * ata_do_simple_cmd - execute simple internal command
1165 * @dev: Device to which the command is sent
1166 * @cmd: Opcode to execute
1168 * Execute a 'simple' command, that only consists of the opcode
1169 * 'cmd' itself, without filling any other registers
1172 * Kernel thread context (may sleep).
1175 * Zero on success, AC_ERR_* mask on failure
1177 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1179 struct ata_taskfile tf;
1181 ata_tf_init(dev, &tf);
1184 tf.flags |= ATA_TFLAG_DEVICE;
1185 tf.protocol = ATA_PROT_NODATA;
1187 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1191 * ata_pio_need_iordy - check if iordy needed
1194 * Check if the current speed of the device requires IORDY. Used
1195 * by various controllers for chip configuration.
1198 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1201 int speed = adev->pio_mode - XFER_PIO_0;
1208 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1210 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1211 pio = adev->id[ATA_ID_EIDE_PIO];
1212 /* Is the speed faster than the drive allows non IORDY ? */
1214 /* This is cycle times not frequency - watch the logic! */
1215 if (pio > 240) /* PIO2 is 240nS per cycle */
1224 * ata_dev_read_id - Read ID data from the specified device
1225 * @dev: target device
1226 * @p_class: pointer to class of the target device (may be changed)
1227 * @post_reset: is this read ID post-reset?
1228 * @id: buffer to read IDENTIFY data into
1230 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1231 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1232 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1233 * for pre-ATA4 drives.
1236 * Kernel thread context (may sleep)
1239 * 0 on success, -errno otherwise.
1241 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1242 int post_reset, u16 *id)
1244 struct ata_port *ap = dev->ap;
1245 unsigned int class = *p_class;
1246 struct ata_taskfile tf;
1247 unsigned int err_mask = 0;
1251 if (ata_msg_ctl(ap))
1252 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1253 __FUNCTION__, ap->id, dev->devno);
1255 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1258 ata_tf_init(dev, &tf);
1262 tf.command = ATA_CMD_ID_ATA;
1265 tf.command = ATA_CMD_ID_ATAPI;
1269 reason = "unsupported class";
1273 tf.protocol = ATA_PROT_PIO;
1275 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1276 id, sizeof(id[0]) * ATA_ID_WORDS);
1279 reason = "I/O error";
1283 swap_buf_le16(id, ATA_ID_WORDS);
1287 reason = "device reports illegal type";
1289 if (class == ATA_DEV_ATA) {
1290 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1293 if (ata_id_is_ata(id))
1297 if (post_reset && class == ATA_DEV_ATA) {
1299 * The exact sequence expected by certain pre-ATA4 drives is:
1302 * INITIALIZE DEVICE PARAMETERS
1304 * Some drives were very specific about that exact sequence.
1306 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1307 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1310 reason = "INIT_DEV_PARAMS failed";
1314 /* current CHS translation info (id[53-58]) might be
1315 * changed. reread the identify device info.
1327 if (ata_msg_warn(ap))
1328 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1329 "(%s, err_mask=0x%x)\n", reason, err_mask);
1333 static inline u8 ata_dev_knobble(struct ata_device *dev)
1335 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1338 static void ata_dev_config_ncq(struct ata_device *dev,
1339 char *desc, size_t desc_sz)
1341 struct ata_port *ap = dev->ap;
1342 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1344 if (!ata_id_has_ncq(dev->id)) {
1348 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1349 snprintf(desc, desc_sz, "NCQ (not used)");
1352 if (ap->flags & ATA_FLAG_NCQ) {
1353 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1354 dev->flags |= ATA_DFLAG_NCQ;
1357 if (hdepth >= ddepth)
1358 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1360 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1363 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1367 if (ap->scsi_host) {
1368 unsigned int len = 0;
1370 for (i = 0; i < ATA_MAX_DEVICES; i++)
1371 len = max(len, ap->device[i].cdb_len);
1373 ap->scsi_host->max_cmd_len = len;
1378 * ata_dev_configure - Configure the specified ATA/ATAPI device
1379 * @dev: Target device to configure
1381 * Configure @dev according to @dev->id. Generic and low-level
1382 * driver specific fixups are also applied.
1385 * Kernel thread context (may sleep)
1388 * 0 on success, -errno otherwise
1390 int ata_dev_configure(struct ata_device *dev)
1392 struct ata_port *ap = dev->ap;
1393 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1394 const u16 *id = dev->id;
1395 unsigned int xfer_mask;
1396 char revbuf[7]; /* XYZ-99\0 */
1399 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1400 ata_dev_printk(dev, KERN_INFO,
1401 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1402 __FUNCTION__, ap->id, dev->devno);
1406 if (ata_msg_probe(ap))
1407 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1408 __FUNCTION__, ap->id, dev->devno);
1410 /* print device capabilities */
1411 if (ata_msg_probe(ap))
1412 ata_dev_printk(dev, KERN_DEBUG,
1413 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1414 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1416 id[49], id[82], id[83], id[84],
1417 id[85], id[86], id[87], id[88]);
1419 /* initialize to-be-configured parameters */
1420 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1421 dev->max_sectors = 0;
1429 * common ATA, ATAPI feature tests
1432 /* find max transfer mode; for printk only */
1433 xfer_mask = ata_id_xfermask(id);
1435 if (ata_msg_probe(ap))
1438 /* ATA-specific feature tests */
1439 if (dev->class == ATA_DEV_ATA) {
1440 if (ata_id_is_cfa(id)) {
1441 if (id[162] & 1) /* CPRM may make this media unusable */
1442 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1443 ap->id, dev->devno);
1444 snprintf(revbuf, 7, "CFA");
1447 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1449 dev->n_sectors = ata_id_n_sectors(id);
1451 if (ata_id_has_lba(id)) {
1452 const char *lba_desc;
1456 dev->flags |= ATA_DFLAG_LBA;
1457 if (ata_id_has_lba48(id)) {
1458 dev->flags |= ATA_DFLAG_LBA48;
1463 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1465 /* print device info to dmesg */
1466 if (ata_msg_drv(ap) && print_info)
1467 ata_dev_printk(dev, KERN_INFO, "%s, "
1468 "max %s, %Lu sectors: %s %s\n",
1470 ata_mode_string(xfer_mask),
1471 (unsigned long long)dev->n_sectors,
1472 lba_desc, ncq_desc);
1476 /* Default translation */
1477 dev->cylinders = id[1];
1479 dev->sectors = id[6];
1481 if (ata_id_current_chs_valid(id)) {
1482 /* Current CHS translation is valid. */
1483 dev->cylinders = id[54];
1484 dev->heads = id[55];
1485 dev->sectors = id[56];
1488 /* print device info to dmesg */
1489 if (ata_msg_drv(ap) && print_info)
1490 ata_dev_printk(dev, KERN_INFO, "%s, "
1491 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1493 ata_mode_string(xfer_mask),
1494 (unsigned long long)dev->n_sectors,
1495 dev->cylinders, dev->heads,
1499 if (dev->id[59] & 0x100) {
1500 dev->multi_count = dev->id[59] & 0xff;
1501 if (ata_msg_drv(ap) && print_info)
1502 ata_dev_printk(dev, KERN_INFO,
1503 "ata%u: dev %u multi count %u\n",
1504 ap->id, dev->devno, dev->multi_count);
1510 /* ATAPI-specific feature tests */
1511 else if (dev->class == ATA_DEV_ATAPI) {
1512 char *cdb_intr_string = "";
1514 rc = atapi_cdb_len(id);
1515 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1516 if (ata_msg_warn(ap))
1517 ata_dev_printk(dev, KERN_WARNING,
1518 "unsupported CDB len\n");
1522 dev->cdb_len = (unsigned int) rc;
1524 if (ata_id_cdb_intr(dev->id)) {
1525 dev->flags |= ATA_DFLAG_CDB_INTR;
1526 cdb_intr_string = ", CDB intr";
1529 /* print device info to dmesg */
1530 if (ata_msg_drv(ap) && print_info)
1531 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1532 ata_mode_string(xfer_mask),
1536 /* determine max_sectors */
1537 dev->max_sectors = ATA_MAX_SECTORS;
1538 if (dev->flags & ATA_DFLAG_LBA48)
1539 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1541 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1542 /* Let the user know. We don't want to disallow opens for
1543 rescue purposes, or in case the vendor is just a blithering
1546 ata_dev_printk(dev, KERN_WARNING,
1547 "Drive reports diagnostics failure. This may indicate a drive\n");
1548 ata_dev_printk(dev, KERN_WARNING,
1549 "fault or invalid emulation. Contact drive vendor for information.\n");
1553 ata_set_port_max_cmd_len(ap);
1555 /* limit bridge transfers to udma5, 200 sectors */
1556 if (ata_dev_knobble(dev)) {
1557 if (ata_msg_drv(ap) && print_info)
1558 ata_dev_printk(dev, KERN_INFO,
1559 "applying bridge limits\n");
1560 dev->udma_mask &= ATA_UDMA5;
1561 dev->max_sectors = ATA_MAX_SECTORS;
1564 if (ap->ops->dev_config)
1565 ap->ops->dev_config(ap, dev);
1567 if (ata_msg_probe(ap))
1568 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1569 __FUNCTION__, ata_chk_status(ap));
1573 if (ata_msg_probe(ap))
1574 ata_dev_printk(dev, KERN_DEBUG,
1575 "%s: EXIT, err\n", __FUNCTION__);
1580 * ata_bus_probe - Reset and probe ATA bus
1583 * Master ATA bus probing function. Initiates a hardware-dependent
1584 * bus reset, then attempts to identify any devices found on
1588 * PCI/etc. bus probe sem.
1591 * Zero on success, negative errno otherwise.
1594 int ata_bus_probe(struct ata_port *ap)
1596 unsigned int classes[ATA_MAX_DEVICES];
1597 int tries[ATA_MAX_DEVICES];
1598 int i, rc, down_xfermask;
1599 struct ata_device *dev;
1603 for (i = 0; i < ATA_MAX_DEVICES; i++)
1604 tries[i] = ATA_PROBE_MAX_TRIES;
1609 /* reset and determine device classes */
1610 ap->ops->phy_reset(ap);
1612 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1613 dev = &ap->device[i];
1615 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1616 dev->class != ATA_DEV_UNKNOWN)
1617 classes[dev->devno] = dev->class;
1619 classes[dev->devno] = ATA_DEV_NONE;
1621 dev->class = ATA_DEV_UNKNOWN;
1626 /* after the reset the device state is PIO 0 and the controller
1627 state is undefined. Record the mode */
1629 for (i = 0; i < ATA_MAX_DEVICES; i++)
1630 ap->device[i].pio_mode = XFER_PIO_0;
1632 /* read IDENTIFY page and configure devices */
1633 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1634 dev = &ap->device[i];
1637 dev->class = classes[i];
1639 if (!ata_dev_enabled(dev))
1642 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1646 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1647 rc = ata_dev_configure(dev);
1648 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
1653 /* configure transfer mode */
1654 rc = ata_set_mode(ap, &dev);
1660 for (i = 0; i < ATA_MAX_DEVICES; i++)
1661 if (ata_dev_enabled(&ap->device[i]))
1664 /* no device present, disable port */
1665 ata_port_disable(ap);
1666 ap->ops->port_disable(ap);
1673 tries[dev->devno] = 0;
1676 sata_down_spd_limit(ap);
1679 tries[dev->devno]--;
1680 if (down_xfermask &&
1681 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1682 tries[dev->devno] = 0;
1685 if (!tries[dev->devno]) {
1686 ata_down_xfermask_limit(dev, 1);
1687 ata_dev_disable(dev);
1694 * ata_port_probe - Mark port as enabled
1695 * @ap: Port for which we indicate enablement
1697 * Modify @ap data structure such that the system
1698 * thinks that the entire port is enabled.
1700 * LOCKING: host lock, or some other form of
1704 void ata_port_probe(struct ata_port *ap)
1706 ap->flags &= ~ATA_FLAG_DISABLED;
1710 * sata_print_link_status - Print SATA link status
1711 * @ap: SATA port to printk link status about
1713 * This function prints link speed and status of a SATA link.
1718 static void sata_print_link_status(struct ata_port *ap)
1720 u32 sstatus, scontrol, tmp;
1722 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1724 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1726 if (ata_port_online(ap)) {
1727 tmp = (sstatus >> 4) & 0xf;
1728 ata_port_printk(ap, KERN_INFO,
1729 "SATA link up %s (SStatus %X SControl %X)\n",
1730 sata_spd_string(tmp), sstatus, scontrol);
1732 ata_port_printk(ap, KERN_INFO,
1733 "SATA link down (SStatus %X SControl %X)\n",
1739 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1740 * @ap: SATA port associated with target SATA PHY.
1742 * This function issues commands to standard SATA Sxxx
1743 * PHY registers, to wake up the phy (and device), and
1744 * clear any reset condition.
1747 * PCI/etc. bus probe sem.
1750 void __sata_phy_reset(struct ata_port *ap)
1753 unsigned long timeout = jiffies + (HZ * 5);
1755 if (ap->flags & ATA_FLAG_SATA_RESET) {
1756 /* issue phy wake/reset */
1757 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1758 /* Couldn't find anything in SATA I/II specs, but
1759 * AHCI-1.1 10.4.2 says at least 1 ms. */
1762 /* phy wake/clear reset */
1763 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1765 /* wait for phy to become ready, if necessary */
1768 sata_scr_read(ap, SCR_STATUS, &sstatus);
1769 if ((sstatus & 0xf) != 1)
1771 } while (time_before(jiffies, timeout));
1773 /* print link status */
1774 sata_print_link_status(ap);
1776 /* TODO: phy layer with polling, timeouts, etc. */
1777 if (!ata_port_offline(ap))
1780 ata_port_disable(ap);
1782 if (ap->flags & ATA_FLAG_DISABLED)
1785 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1786 ata_port_disable(ap);
1790 ap->cbl = ATA_CBL_SATA;
1794 * sata_phy_reset - Reset SATA bus.
1795 * @ap: SATA port associated with target SATA PHY.
1797 * This function resets the SATA bus, and then probes
1798 * the bus for devices.
1801 * PCI/etc. bus probe sem.
1804 void sata_phy_reset(struct ata_port *ap)
1806 __sata_phy_reset(ap);
1807 if (ap->flags & ATA_FLAG_DISABLED)
1813 * ata_dev_pair - return other device on cable
1816 * Obtain the other device on the same cable, or if none is
1817 * present NULL is returned
1820 struct ata_device *ata_dev_pair(struct ata_device *adev)
1822 struct ata_port *ap = adev->ap;
1823 struct ata_device *pair = &ap->device[1 - adev->devno];
1824 if (!ata_dev_enabled(pair))
1830 * ata_port_disable - Disable port.
1831 * @ap: Port to be disabled.
1833 * Modify @ap data structure such that the system
1834 * thinks that the entire port is disabled, and should
1835 * never attempt to probe or communicate with devices
1838 * LOCKING: host lock, or some other form of
1842 void ata_port_disable(struct ata_port *ap)
1844 ap->device[0].class = ATA_DEV_NONE;
1845 ap->device[1].class = ATA_DEV_NONE;
1846 ap->flags |= ATA_FLAG_DISABLED;
1850 * sata_down_spd_limit - adjust SATA spd limit downward
1851 * @ap: Port to adjust SATA spd limit for
1853 * Adjust SATA spd limit of @ap downward. Note that this
1854 * function only adjusts the limit. The change must be applied
1855 * using sata_set_spd().
1858 * Inherited from caller.
1861 * 0 on success, negative errno on failure
1863 int sata_down_spd_limit(struct ata_port *ap)
1865 u32 sstatus, spd, mask;
1868 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1872 mask = ap->sata_spd_limit;
1875 highbit = fls(mask) - 1;
1876 mask &= ~(1 << highbit);
1878 spd = (sstatus >> 4) & 0xf;
1882 mask &= (1 << spd) - 1;
1886 ap->sata_spd_limit = mask;
1888 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1889 sata_spd_string(fls(mask)));
1894 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1898 if (ap->sata_spd_limit == UINT_MAX)
1901 limit = fls(ap->sata_spd_limit);
1903 spd = (*scontrol >> 4) & 0xf;
1904 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1906 return spd != limit;
1910 * sata_set_spd_needed - is SATA spd configuration needed
1911 * @ap: Port in question
1913 * Test whether the spd limit in SControl matches
1914 * @ap->sata_spd_limit. This function is used to determine
1915 * whether hardreset is necessary to apply SATA spd
1919 * Inherited from caller.
1922 * 1 if SATA spd configuration is needed, 0 otherwise.
1924 int sata_set_spd_needed(struct ata_port *ap)
1928 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1931 return __sata_set_spd_needed(ap, &scontrol);
1935 * sata_set_spd - set SATA spd according to spd limit
1936 * @ap: Port to set SATA spd for
1938 * Set SATA spd of @ap according to sata_spd_limit.
1941 * Inherited from caller.
1944 * 0 if spd doesn't need to be changed, 1 if spd has been
1945 * changed. Negative errno if SCR registers are inaccessible.
1947 int sata_set_spd(struct ata_port *ap)
1952 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1955 if (!__sata_set_spd_needed(ap, &scontrol))
1958 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1965 * This mode timing computation functionality is ported over from
1966 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1969 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1970 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1971 * for UDMA6, which is currently supported only by Maxtor drives.
1973 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
1976 static const struct ata_timing ata_timing[] = {
1978 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1979 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1980 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1981 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1983 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
1984 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
1985 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1986 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1987 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1989 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1991 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1992 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1993 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1995 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1996 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1997 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1999 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2000 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2001 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2002 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2004 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2005 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2006 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2008 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2013 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2014 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2016 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2018 q->setup = EZ(t->setup * 1000, T);
2019 q->act8b = EZ(t->act8b * 1000, T);
2020 q->rec8b = EZ(t->rec8b * 1000, T);
2021 q->cyc8b = EZ(t->cyc8b * 1000, T);
2022 q->active = EZ(t->active * 1000, T);
2023 q->recover = EZ(t->recover * 1000, T);
2024 q->cycle = EZ(t->cycle * 1000, T);
2025 q->udma = EZ(t->udma * 1000, UT);
2028 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2029 struct ata_timing *m, unsigned int what)
2031 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2032 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2033 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2034 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2035 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2036 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2037 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2038 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2041 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2043 const struct ata_timing *t;
2045 for (t = ata_timing; t->mode != speed; t++)
2046 if (t->mode == 0xFF)
2051 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2052 struct ata_timing *t, int T, int UT)
2054 const struct ata_timing *s;
2055 struct ata_timing p;
2061 if (!(s = ata_timing_find_mode(speed)))
2064 memcpy(t, s, sizeof(*s));
2067 * If the drive is an EIDE drive, it can tell us it needs extended
2068 * PIO/MW_DMA cycle timing.
2071 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2072 memset(&p, 0, sizeof(p));
2073 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2074 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2075 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2076 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2077 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2079 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2083 * Convert the timing to bus clock counts.
2086 ata_timing_quantize(t, t, T, UT);
2089 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2090 * S.M.A.R.T * and some other commands. We have to ensure that the
2091 * DMA cycle timing is slower/equal than the fastest PIO timing.
2094 if (speed > XFER_PIO_4) {
2095 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2096 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2100 * Lengthen active & recovery time so that cycle time is correct.
2103 if (t->act8b + t->rec8b < t->cyc8b) {
2104 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2105 t->rec8b = t->cyc8b - t->act8b;
2108 if (t->active + t->recover < t->cycle) {
2109 t->active += (t->cycle - (t->active + t->recover)) / 2;
2110 t->recover = t->cycle - t->active;
2117 * ata_down_xfermask_limit - adjust dev xfer masks downward
2118 * @dev: Device to adjust xfer masks
2119 * @force_pio0: Force PIO0
2121 * Adjust xfer masks of @dev downward. Note that this function
2122 * does not apply the change. Invoking ata_set_mode() afterwards
2123 * will apply the limit.
2126 * Inherited from caller.
2129 * 0 on success, negative errno on failure
2131 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2133 unsigned long xfer_mask;
2136 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2141 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2142 if (xfer_mask & ATA_MASK_UDMA)
2143 xfer_mask &= ~ATA_MASK_MWDMA;
2145 highbit = fls(xfer_mask) - 1;
2146 xfer_mask &= ~(1 << highbit);
2148 xfer_mask &= 1 << ATA_SHIFT_PIO;
2152 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2155 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2156 ata_mode_string(xfer_mask));
2164 static int ata_dev_set_mode(struct ata_device *dev)
2166 struct ata_eh_context *ehc = &dev->ap->eh_context;
2167 unsigned int err_mask;
2170 dev->flags &= ~ATA_DFLAG_PIO;
2171 if (dev->xfer_shift == ATA_SHIFT_PIO)
2172 dev->flags |= ATA_DFLAG_PIO;
2174 err_mask = ata_dev_set_xfermode(dev);
2176 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2177 "(err_mask=0x%x)\n", err_mask);
2181 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2182 rc = ata_dev_revalidate(dev, 0);
2183 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2187 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2188 dev->xfer_shift, (int)dev->xfer_mode);
2190 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2191 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2196 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2197 * @ap: port on which timings will be programmed
2198 * @r_failed_dev: out paramter for failed device
2200 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2201 * ata_set_mode() fails, pointer to the failing device is
2202 * returned in @r_failed_dev.
2205 * PCI/etc. bus probe sem.
2208 * 0 on success, negative errno otherwise
2210 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2212 struct ata_device *dev;
2213 int i, rc = 0, used_dma = 0, found = 0;
2215 /* has private set_mode? */
2216 if (ap->ops->set_mode) {
2217 /* FIXME: make ->set_mode handle no device case and
2218 * return error code and failing device on failure.
2220 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2221 if (ata_dev_ready(&ap->device[i])) {
2222 ap->ops->set_mode(ap);
2229 /* step 1: calculate xfer_mask */
2230 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2231 unsigned int pio_mask, dma_mask;
2233 dev = &ap->device[i];
2235 if (!ata_dev_enabled(dev))
2238 ata_dev_xfermask(dev);
2240 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2241 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2242 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2243 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2252 /* step 2: always set host PIO timings */
2253 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2254 dev = &ap->device[i];
2255 if (!ata_dev_enabled(dev))
2258 if (!dev->pio_mode) {
2259 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2264 dev->xfer_mode = dev->pio_mode;
2265 dev->xfer_shift = ATA_SHIFT_PIO;
2266 if (ap->ops->set_piomode)
2267 ap->ops->set_piomode(ap, dev);
2270 /* step 3: set host DMA timings */
2271 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2272 dev = &ap->device[i];
2274 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2277 dev->xfer_mode = dev->dma_mode;
2278 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2279 if (ap->ops->set_dmamode)
2280 ap->ops->set_dmamode(ap, dev);
2283 /* step 4: update devices' xfer mode */
2284 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2285 dev = &ap->device[i];
2287 /* don't udpate suspended devices' xfer mode */
2288 if (!ata_dev_ready(dev))
2291 rc = ata_dev_set_mode(dev);
2296 /* Record simplex status. If we selected DMA then the other
2297 * host channels are not permitted to do so.
2299 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2300 ap->host->simplex_claimed = 1;
2302 /* step5: chip specific finalisation */
2303 if (ap->ops->post_set_mode)
2304 ap->ops->post_set_mode(ap);
2308 *r_failed_dev = dev;
2313 * ata_tf_to_host - issue ATA taskfile to host controller
2314 * @ap: port to which command is being issued
2315 * @tf: ATA taskfile register set
2317 * Issues ATA taskfile register set to ATA host controller,
2318 * with proper synchronization with interrupt handler and
2322 * spin_lock_irqsave(host lock)
2325 static inline void ata_tf_to_host(struct ata_port *ap,
2326 const struct ata_taskfile *tf)
2328 ap->ops->tf_load(ap, tf);
2329 ap->ops->exec_command(ap, tf);
2333 * ata_busy_sleep - sleep until BSY clears, or timeout
2334 * @ap: port containing status register to be polled
2335 * @tmout_pat: impatience timeout
2336 * @tmout: overall timeout
2338 * Sleep until ATA Status register bit BSY clears,
2339 * or a timeout occurs.
2342 * Kernel thread context (may sleep).
2345 * 0 on success, -errno otherwise.
2347 int ata_busy_sleep(struct ata_port *ap,
2348 unsigned long tmout_pat, unsigned long tmout)
2350 unsigned long timer_start, timeout;
2353 status = ata_busy_wait(ap, ATA_BUSY, 300);
2354 timer_start = jiffies;
2355 timeout = timer_start + tmout_pat;
2356 while (status != 0xff && (status & ATA_BUSY) &&
2357 time_before(jiffies, timeout)) {
2359 status = ata_busy_wait(ap, ATA_BUSY, 3);
2362 if (status != 0xff && (status & ATA_BUSY))
2363 ata_port_printk(ap, KERN_WARNING,
2364 "port is slow to respond, please be patient "
2365 "(Status 0x%x)\n", status);
2367 timeout = timer_start + tmout;
2368 while (status != 0xff && (status & ATA_BUSY) &&
2369 time_before(jiffies, timeout)) {
2371 status = ata_chk_status(ap);
2377 if (status & ATA_BUSY) {
2378 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2379 "(%lu secs, Status 0x%x)\n",
2380 tmout / HZ, status);
2387 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2389 struct ata_ioports *ioaddr = &ap->ioaddr;
2390 unsigned int dev0 = devmask & (1 << 0);
2391 unsigned int dev1 = devmask & (1 << 1);
2392 unsigned long timeout;
2394 /* if device 0 was found in ata_devchk, wait for its
2398 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2400 /* if device 1 was found in ata_devchk, wait for
2401 * register access, then wait for BSY to clear
2403 timeout = jiffies + ATA_TMOUT_BOOT;
2407 ap->ops->dev_select(ap, 1);
2408 if (ap->flags & ATA_FLAG_MMIO) {
2409 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2410 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2412 nsect = inb(ioaddr->nsect_addr);
2413 lbal = inb(ioaddr->lbal_addr);
2415 if ((nsect == 1) && (lbal == 1))
2417 if (time_after(jiffies, timeout)) {
2421 msleep(50); /* give drive a breather */
2424 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2426 /* is all this really necessary? */
2427 ap->ops->dev_select(ap, 0);
2429 ap->ops->dev_select(ap, 1);
2431 ap->ops->dev_select(ap, 0);
2434 static unsigned int ata_bus_softreset(struct ata_port *ap,
2435 unsigned int devmask)
2437 struct ata_ioports *ioaddr = &ap->ioaddr;
2439 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2441 /* software reset. causes dev0 to be selected */
2442 if (ap->flags & ATA_FLAG_MMIO) {
2443 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2444 udelay(20); /* FIXME: flush */
2445 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2446 udelay(20); /* FIXME: flush */
2447 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2449 outb(ap->ctl, ioaddr->ctl_addr);
2451 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2453 outb(ap->ctl, ioaddr->ctl_addr);
2456 /* spec mandates ">= 2ms" before checking status.
2457 * We wait 150ms, because that was the magic delay used for
2458 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2459 * between when the ATA command register is written, and then
2460 * status is checked. Because waiting for "a while" before
2461 * checking status is fine, post SRST, we perform this magic
2462 * delay here as well.
2464 * Old drivers/ide uses the 2mS rule and then waits for ready
2468 /* Before we perform post reset processing we want to see if
2469 * the bus shows 0xFF because the odd clown forgets the D7
2470 * pulldown resistor.
2472 if (ata_check_status(ap) == 0xFF)
2475 ata_bus_post_reset(ap, devmask);
2481 * ata_bus_reset - reset host port and associated ATA channel
2482 * @ap: port to reset
2484 * This is typically the first time we actually start issuing
2485 * commands to the ATA channel. We wait for BSY to clear, then
2486 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2487 * result. Determine what devices, if any, are on the channel
2488 * by looking at the device 0/1 error register. Look at the signature
2489 * stored in each device's taskfile registers, to determine if
2490 * the device is ATA or ATAPI.
2493 * PCI/etc. bus probe sem.
2494 * Obtains host lock.
2497 * Sets ATA_FLAG_DISABLED if bus reset fails.
2500 void ata_bus_reset(struct ata_port *ap)
2502 struct ata_ioports *ioaddr = &ap->ioaddr;
2503 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2505 unsigned int dev0, dev1 = 0, devmask = 0;
2507 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2509 /* determine if device 0/1 are present */
2510 if (ap->flags & ATA_FLAG_SATA_RESET)
2513 dev0 = ata_devchk(ap, 0);
2515 dev1 = ata_devchk(ap, 1);
2519 devmask |= (1 << 0);
2521 devmask |= (1 << 1);
2523 /* select device 0 again */
2524 ap->ops->dev_select(ap, 0);
2526 /* issue bus reset */
2527 if (ap->flags & ATA_FLAG_SRST)
2528 if (ata_bus_softreset(ap, devmask))
2532 * determine by signature whether we have ATA or ATAPI devices
2534 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2535 if ((slave_possible) && (err != 0x81))
2536 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2538 /* re-enable interrupts */
2539 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2542 /* is double-select really necessary? */
2543 if (ap->device[1].class != ATA_DEV_NONE)
2544 ap->ops->dev_select(ap, 1);
2545 if (ap->device[0].class != ATA_DEV_NONE)
2546 ap->ops->dev_select(ap, 0);
2548 /* if no devices were detected, disable this port */
2549 if ((ap->device[0].class == ATA_DEV_NONE) &&
2550 (ap->device[1].class == ATA_DEV_NONE))
2553 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2554 /* set up device control for ATA_FLAG_SATA_RESET */
2555 if (ap->flags & ATA_FLAG_MMIO)
2556 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2558 outb(ap->ctl, ioaddr->ctl_addr);
2565 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2566 ap->ops->port_disable(ap);
2572 * sata_phy_debounce - debounce SATA phy status
2573 * @ap: ATA port to debounce SATA phy status for
2574 * @params: timing parameters { interval, duratinon, timeout } in msec
2576 * Make sure SStatus of @ap reaches stable state, determined by
2577 * holding the same value where DET is not 1 for @duration polled
2578 * every @interval, before @timeout. Timeout constraints the
2579 * beginning of the stable state. Because, after hot unplugging,
2580 * DET gets stuck at 1 on some controllers, this functions waits
2581 * until timeout then returns 0 if DET is stable at 1.
2584 * Kernel thread context (may sleep)
2587 * 0 on success, -errno on failure.
2589 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2591 unsigned long interval_msec = params[0];
2592 unsigned long duration = params[1] * HZ / 1000;
2593 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2594 unsigned long last_jiffies;
2598 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2603 last_jiffies = jiffies;
2606 msleep(interval_msec);
2607 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2613 if (cur == 1 && time_before(jiffies, timeout))
2615 if (time_after(jiffies, last_jiffies + duration))
2620 /* unstable, start over */
2622 last_jiffies = jiffies;
2625 if (time_after(jiffies, timeout))
2631 * sata_phy_resume - resume SATA phy
2632 * @ap: ATA port to resume SATA phy for
2633 * @params: timing parameters { interval, duratinon, timeout } in msec
2635 * Resume SATA phy of @ap and debounce it.
2638 * Kernel thread context (may sleep)
2641 * 0 on success, -errno on failure.
2643 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2648 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2651 scontrol = (scontrol & 0x0f0) | 0x300;
2653 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2656 /* Some PHYs react badly if SStatus is pounded immediately
2657 * after resuming. Delay 200ms before debouncing.
2661 return sata_phy_debounce(ap, params);
2664 static void ata_wait_spinup(struct ata_port *ap)
2666 struct ata_eh_context *ehc = &ap->eh_context;
2667 unsigned long end, secs;
2670 /* first, debounce phy if SATA */
2671 if (ap->cbl == ATA_CBL_SATA) {
2672 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2674 /* if debounced successfully and offline, no need to wait */
2675 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2679 /* okay, let's give the drive time to spin up */
2680 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2681 secs = ((end - jiffies) + HZ - 1) / HZ;
2683 if (time_after(jiffies, end))
2687 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2688 "(%lu secs)\n", secs);
2690 schedule_timeout_uninterruptible(end - jiffies);
2694 * ata_std_prereset - prepare for reset
2695 * @ap: ATA port to be reset
2697 * @ap is about to be reset. Initialize it.
2700 * Kernel thread context (may sleep)
2703 * 0 on success, -errno otherwise.
2705 int ata_std_prereset(struct ata_port *ap)
2707 struct ata_eh_context *ehc = &ap->eh_context;
2708 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2711 /* handle link resume & hotplug spinup */
2712 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2713 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2714 ehc->i.action |= ATA_EH_HARDRESET;
2716 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2717 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2718 ata_wait_spinup(ap);
2720 /* if we're about to do hardreset, nothing more to do */
2721 if (ehc->i.action & ATA_EH_HARDRESET)
2724 /* if SATA, resume phy */
2725 if (ap->cbl == ATA_CBL_SATA) {
2726 rc = sata_phy_resume(ap, timing);
2727 if (rc && rc != -EOPNOTSUPP) {
2728 /* phy resume failed */
2729 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2730 "link for reset (errno=%d)\n", rc);
2735 /* Wait for !BSY if the controller can wait for the first D2H
2736 * Reg FIS and we don't know that no device is attached.
2738 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2739 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2745 * ata_std_softreset - reset host port via ATA SRST
2746 * @ap: port to reset
2747 * @classes: resulting classes of attached devices
2749 * Reset host port using ATA SRST.
2752 * Kernel thread context (may sleep)
2755 * 0 on success, -errno otherwise.
2757 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2759 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2760 unsigned int devmask = 0, err_mask;
2765 if (ata_port_offline(ap)) {
2766 classes[0] = ATA_DEV_NONE;
2770 /* determine if device 0/1 are present */
2771 if (ata_devchk(ap, 0))
2772 devmask |= (1 << 0);
2773 if (slave_possible && ata_devchk(ap, 1))
2774 devmask |= (1 << 1);
2776 /* select device 0 again */
2777 ap->ops->dev_select(ap, 0);
2779 /* issue bus reset */
2780 DPRINTK("about to softreset, devmask=%x\n", devmask);
2781 err_mask = ata_bus_softreset(ap, devmask);
2783 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2788 /* determine by signature whether we have ATA or ATAPI devices */
2789 classes[0] = ata_dev_try_classify(ap, 0, &err);
2790 if (slave_possible && err != 0x81)
2791 classes[1] = ata_dev_try_classify(ap, 1, &err);
2794 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2799 * sata_port_hardreset - reset port via SATA phy reset
2800 * @ap: port to reset
2801 * @timing: timing parameters { interval, duratinon, timeout } in msec
2803 * SATA phy-reset host port using DET bits of SControl register.
2806 * Kernel thread context (may sleep)
2809 * 0 on success, -errno otherwise.
2811 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
2818 if (sata_set_spd_needed(ap)) {
2819 /* SATA spec says nothing about how to reconfigure
2820 * spd. To be on the safe side, turn off phy during
2821 * reconfiguration. This works for at least ICH7 AHCI
2824 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2827 scontrol = (scontrol & 0x0f0) | 0x304;
2829 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2835 /* issue phy wake/reset */
2836 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2839 scontrol = (scontrol & 0x0f0) | 0x301;
2841 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2844 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2845 * 10.4.2 says at least 1 ms.
2849 /* bring phy back */
2850 rc = sata_phy_resume(ap, timing);
2852 DPRINTK("EXIT, rc=%d\n", rc);
2857 * sata_std_hardreset - reset host port via SATA phy reset
2858 * @ap: port to reset
2859 * @class: resulting class of attached device
2861 * SATA phy-reset host port using DET bits of SControl register,
2862 * wait for !BSY and classify the attached device.
2865 * Kernel thread context (may sleep)
2868 * 0 on success, -errno otherwise.
2870 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2872 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
2878 rc = sata_port_hardreset(ap, timing);
2880 ata_port_printk(ap, KERN_ERR,
2881 "COMRESET failed (errno=%d)\n", rc);
2885 /* TODO: phy layer with polling, timeouts, etc. */
2886 if (ata_port_offline(ap)) {
2887 *class = ATA_DEV_NONE;
2888 DPRINTK("EXIT, link offline\n");
2892 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2893 ata_port_printk(ap, KERN_ERR,
2894 "COMRESET failed (device not ready)\n");
2898 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2900 *class = ata_dev_try_classify(ap, 0, NULL);
2902 DPRINTK("EXIT, class=%u\n", *class);
2907 * ata_std_postreset - standard postreset callback
2908 * @ap: the target ata_port
2909 * @classes: classes of attached devices
2911 * This function is invoked after a successful reset. Note that
2912 * the device might have been reset more than once using
2913 * different reset methods before postreset is invoked.
2916 * Kernel thread context (may sleep)
2918 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2924 /* print link status */
2925 sata_print_link_status(ap);
2928 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2929 sata_scr_write(ap, SCR_ERROR, serror);
2931 /* re-enable interrupts */
2932 if (!ap->ops->error_handler) {
2933 /* FIXME: hack. create a hook instead */
2934 if (ap->ioaddr.ctl_addr)
2938 /* is double-select really necessary? */
2939 if (classes[0] != ATA_DEV_NONE)
2940 ap->ops->dev_select(ap, 1);
2941 if (classes[1] != ATA_DEV_NONE)
2942 ap->ops->dev_select(ap, 0);
2944 /* bail out if no device is present */
2945 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2946 DPRINTK("EXIT, no device\n");
2950 /* set up device control */
2951 if (ap->ioaddr.ctl_addr) {
2952 if (ap->flags & ATA_FLAG_MMIO)
2953 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2955 outb(ap->ctl, ap->ioaddr.ctl_addr);
2962 * ata_dev_same_device - Determine whether new ID matches configured device
2963 * @dev: device to compare against
2964 * @new_class: class of the new device
2965 * @new_id: IDENTIFY page of the new device
2967 * Compare @new_class and @new_id against @dev and determine
2968 * whether @dev is the device indicated by @new_class and
2975 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2977 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2980 const u16 *old_id = dev->id;
2981 unsigned char model[2][41], serial[2][21];
2984 if (dev->class != new_class) {
2985 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2986 dev->class, new_class);
2990 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2991 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2992 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2993 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2994 new_n_sectors = ata_id_n_sectors(new_id);
2996 if (strcmp(model[0], model[1])) {
2997 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2998 "'%s' != '%s'\n", model[0], model[1]);
3002 if (strcmp(serial[0], serial[1])) {
3003 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3004 "'%s' != '%s'\n", serial[0], serial[1]);
3008 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3009 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3011 (unsigned long long)dev->n_sectors,
3012 (unsigned long long)new_n_sectors);
3020 * ata_dev_revalidate - Revalidate ATA device
3021 * @dev: device to revalidate
3022 * @post_reset: is this revalidation after reset?
3024 * Re-read IDENTIFY page and make sure @dev is still attached to
3028 * Kernel thread context (may sleep)
3031 * 0 on success, negative errno otherwise
3033 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
3035 unsigned int class = dev->class;
3036 u16 *id = (void *)dev->ap->sector_buf;
3039 if (!ata_dev_enabled(dev)) {
3045 rc = ata_dev_read_id(dev, &class, post_reset, id);
3049 /* is the device still there? */
3050 if (!ata_dev_same_device(dev, class, id)) {
3055 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3057 /* configure device according to the new ID */
3058 rc = ata_dev_configure(dev);
3063 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3067 struct ata_blacklist_entry {
3068 const char *model_num;
3069 const char *model_rev;
3070 unsigned long horkage;
3073 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3074 /* Devices with DMA related problems under Linux */
3075 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3076 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3077 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3078 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3079 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3080 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3081 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3082 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3083 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3084 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3085 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3086 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3087 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3088 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3089 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3090 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3091 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3092 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3093 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3094 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3095 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3096 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3097 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3098 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3099 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3100 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3101 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3102 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3103 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3104 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3106 /* Devices we expect to fail diagnostics */
3108 /* Devices where NCQ should be avoided */
3110 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3112 /* Devices with NCQ limits */
3118 static int ata_strim(char *s, size_t len)
3120 len = strnlen(s, len);
3122 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3123 while ((len > 0) && (s[len - 1] == ' ')) {
3130 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3132 unsigned char model_num[40];
3133 unsigned char model_rev[16];
3134 unsigned int nlen, rlen;
3135 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3137 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3139 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3141 nlen = ata_strim(model_num, sizeof(model_num));
3142 rlen = ata_strim(model_rev, sizeof(model_rev));
3144 while (ad->model_num) {
3145 if (!strncmp(ad->model_num, model_num, nlen)) {
3146 if (ad->model_rev == NULL)
3148 if (!strncmp(ad->model_rev, model_rev, rlen))
3156 static int ata_dma_blacklisted(const struct ata_device *dev)
3158 /* We don't support polling DMA.
3159 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3160 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3162 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3163 (dev->flags & ATA_DFLAG_CDB_INTR))
3165 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3169 * ata_dev_xfermask - Compute supported xfermask of the given device
3170 * @dev: Device to compute xfermask for
3172 * Compute supported xfermask of @dev and store it in
3173 * dev->*_mask. This function is responsible for applying all
3174 * known limits including host controller limits, device
3180 static void ata_dev_xfermask(struct ata_device *dev)
3182 struct ata_port *ap = dev->ap;
3183 struct ata_host *host = ap->host;
3184 unsigned long xfer_mask;
3186 /* controller modes available */
3187 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3188 ap->mwdma_mask, ap->udma_mask);
3190 /* Apply cable rule here. Don't apply it early because when
3191 * we handle hot plug the cable type can itself change.
3193 if (ap->cbl == ATA_CBL_PATA40)
3194 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3195 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3196 * host side are checked drive side as well. Cases where we know a
3197 * 40wire cable is used safely for 80 are not checked here.
3199 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3200 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3203 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3204 dev->mwdma_mask, dev->udma_mask);
3205 xfer_mask &= ata_id_xfermask(dev->id);
3208 * CFA Advanced TrueIDE timings are not allowed on a shared
3211 if (ata_dev_pair(dev)) {
3212 /* No PIO5 or PIO6 */
3213 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3214 /* No MWDMA3 or MWDMA 4 */
3215 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3218 if (ata_dma_blacklisted(dev)) {
3219 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3220 ata_dev_printk(dev, KERN_WARNING,
3221 "device is on DMA blacklist, disabling DMA\n");
3224 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
3225 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3226 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3227 "other device, disabling DMA\n");
3230 if (ap->ops->mode_filter)
3231 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3233 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3234 &dev->mwdma_mask, &dev->udma_mask);
3238 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3239 * @dev: Device to which command will be sent
3241 * Issue SET FEATURES - XFER MODE command to device @dev
3245 * PCI/etc. bus probe sem.
3248 * 0 on success, AC_ERR_* mask otherwise.
3251 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3253 struct ata_taskfile tf;
3254 unsigned int err_mask;
3256 /* set up set-features taskfile */
3257 DPRINTK("set features - xfer mode\n");
3259 ata_tf_init(dev, &tf);
3260 tf.command = ATA_CMD_SET_FEATURES;
3261 tf.feature = SETFEATURES_XFER;
3262 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3263 tf.protocol = ATA_PROT_NODATA;
3264 tf.nsect = dev->xfer_mode;
3266 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3268 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3273 * ata_dev_init_params - Issue INIT DEV PARAMS command
3274 * @dev: Device to which command will be sent
3275 * @heads: Number of heads (taskfile parameter)
3276 * @sectors: Number of sectors (taskfile parameter)
3279 * Kernel thread context (may sleep)
3282 * 0 on success, AC_ERR_* mask otherwise.
3284 static unsigned int ata_dev_init_params(struct ata_device *dev,
3285 u16 heads, u16 sectors)
3287 struct ata_taskfile tf;
3288 unsigned int err_mask;
3290 /* Number of sectors per track 1-255. Number of heads 1-16 */
3291 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3292 return AC_ERR_INVALID;
3294 /* set up init dev params taskfile */
3295 DPRINTK("init dev params \n");
3297 ata_tf_init(dev, &tf);
3298 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3299 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3300 tf.protocol = ATA_PROT_NODATA;
3302 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3304 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3306 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3311 * ata_sg_clean - Unmap DMA memory associated with command
3312 * @qc: Command containing DMA memory to be released
3314 * Unmap all mapped DMA memory associated with this command.
3317 * spin_lock_irqsave(host lock)
3320 static void ata_sg_clean(struct ata_queued_cmd *qc)
3322 struct ata_port *ap = qc->ap;
3323 struct scatterlist *sg = qc->__sg;
3324 int dir = qc->dma_dir;
3325 void *pad_buf = NULL;
3327 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3328 WARN_ON(sg == NULL);
3330 if (qc->flags & ATA_QCFLAG_SINGLE)
3331 WARN_ON(qc->n_elem > 1);
3333 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3335 /* if we padded the buffer out to 32-bit bound, and data
3336 * xfer direction is from-device, we must copy from the
3337 * pad buffer back into the supplied buffer
3339 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3340 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3342 if (qc->flags & ATA_QCFLAG_SG) {
3344 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3345 /* restore last sg */
3346 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3348 struct scatterlist *psg = &qc->pad_sgent;
3349 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3350 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3351 kunmap_atomic(addr, KM_IRQ0);
3355 dma_unmap_single(ap->dev,
3356 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3359 sg->length += qc->pad_len;
3361 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3362 pad_buf, qc->pad_len);
3365 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3370 * ata_fill_sg - Fill PCI IDE PRD table
3371 * @qc: Metadata associated with taskfile to be transferred
3373 * Fill PCI IDE PRD (scatter-gather) table with segments
3374 * associated with the current disk command.
3377 * spin_lock_irqsave(host lock)
3380 static void ata_fill_sg(struct ata_queued_cmd *qc)
3382 struct ata_port *ap = qc->ap;
3383 struct scatterlist *sg;
3386 WARN_ON(qc->__sg == NULL);
3387 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3390 ata_for_each_sg(sg, qc) {
3394 /* determine if physical DMA addr spans 64K boundary.
3395 * Note h/w doesn't support 64-bit, so we unconditionally
3396 * truncate dma_addr_t to u32.
3398 addr = (u32) sg_dma_address(sg);
3399 sg_len = sg_dma_len(sg);
3402 offset = addr & 0xffff;
3404 if ((offset + sg_len) > 0x10000)
3405 len = 0x10000 - offset;
3407 ap->prd[idx].addr = cpu_to_le32(addr);
3408 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3409 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3418 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3421 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3422 * @qc: Metadata associated with taskfile to check
3424 * Allow low-level driver to filter ATA PACKET commands, returning
3425 * a status indicating whether or not it is OK to use DMA for the
3426 * supplied PACKET command.
3429 * spin_lock_irqsave(host lock)
3431 * RETURNS: 0 when ATAPI DMA can be used
3434 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3436 struct ata_port *ap = qc->ap;
3437 int rc = 0; /* Assume ATAPI DMA is OK by default */
3439 if (ap->ops->check_atapi_dma)
3440 rc = ap->ops->check_atapi_dma(qc);
3445 * ata_qc_prep - Prepare taskfile for submission
3446 * @qc: Metadata associated with taskfile to be prepared
3448 * Prepare ATA taskfile for submission.
3451 * spin_lock_irqsave(host lock)
3453 void ata_qc_prep(struct ata_queued_cmd *qc)
3455 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3461 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3464 * ata_sg_init_one - Associate command with memory buffer
3465 * @qc: Command to be associated
3466 * @buf: Memory buffer
3467 * @buflen: Length of memory buffer, in bytes.
3469 * Initialize the data-related elements of queued_cmd @qc
3470 * to point to a single memory buffer, @buf of byte length @buflen.
3473 * spin_lock_irqsave(host lock)
3476 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3478 struct scatterlist *sg;
3480 qc->flags |= ATA_QCFLAG_SINGLE;
3482 memset(&qc->sgent, 0, sizeof(qc->sgent));
3483 qc->__sg = &qc->sgent;
3485 qc->orig_n_elem = 1;
3487 qc->nbytes = buflen;
3490 sg_init_one(sg, buf, buflen);
3494 * ata_sg_init - Associate command with scatter-gather table.
3495 * @qc: Command to be associated
3496 * @sg: Scatter-gather table.
3497 * @n_elem: Number of elements in s/g table.
3499 * Initialize the data-related elements of queued_cmd @qc
3500 * to point to a scatter-gather table @sg, containing @n_elem
3504 * spin_lock_irqsave(host lock)
3507 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3508 unsigned int n_elem)
3510 qc->flags |= ATA_QCFLAG_SG;
3512 qc->n_elem = n_elem;
3513 qc->orig_n_elem = n_elem;
3517 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3518 * @qc: Command with memory buffer to be mapped.
3520 * DMA-map the memory buffer associated with queued_cmd @qc.
3523 * spin_lock_irqsave(host lock)
3526 * Zero on success, negative on error.
3529 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3531 struct ata_port *ap = qc->ap;
3532 int dir = qc->dma_dir;
3533 struct scatterlist *sg = qc->__sg;
3534 dma_addr_t dma_address;
3537 /* we must lengthen transfers to end on a 32-bit boundary */
3538 qc->pad_len = sg->length & 3;
3540 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3541 struct scatterlist *psg = &qc->pad_sgent;
3543 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3545 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3547 if (qc->tf.flags & ATA_TFLAG_WRITE)
3548 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3551 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3552 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3554 sg->length -= qc->pad_len;
3555 if (sg->length == 0)
3558 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3559 sg->length, qc->pad_len);
3567 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3569 if (dma_mapping_error(dma_address)) {
3571 sg->length += qc->pad_len;
3575 sg_dma_address(sg) = dma_address;
3576 sg_dma_len(sg) = sg->length;
3579 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3580 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3586 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3587 * @qc: Command with scatter-gather table to be mapped.
3589 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3592 * spin_lock_irqsave(host lock)
3595 * Zero on success, negative on error.
3599 static int ata_sg_setup(struct ata_queued_cmd *qc)
3601 struct ata_port *ap = qc->ap;
3602 struct scatterlist *sg = qc->__sg;
3603 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3604 int n_elem, pre_n_elem, dir, trim_sg = 0;
3606 VPRINTK("ENTER, ata%u\n", ap->id);
3607 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3609 /* we must lengthen transfers to end on a 32-bit boundary */
3610 qc->pad_len = lsg->length & 3;
3612 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3613 struct scatterlist *psg = &qc->pad_sgent;
3614 unsigned int offset;
3616 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3618 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3621 * psg->page/offset are used to copy to-be-written
3622 * data in this function or read data in ata_sg_clean.
3624 offset = lsg->offset + lsg->length - qc->pad_len;
3625 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3626 psg->offset = offset_in_page(offset);
3628 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3629 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3630 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3631 kunmap_atomic(addr, KM_IRQ0);
3634 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3635 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3637 lsg->length -= qc->pad_len;
3638 if (lsg->length == 0)
3641 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3642 qc->n_elem - 1, lsg->length, qc->pad_len);
3645 pre_n_elem = qc->n_elem;
3646 if (trim_sg && pre_n_elem)
3655 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3657 /* restore last sg */
3658 lsg->length += qc->pad_len;
3662 DPRINTK("%d sg elements mapped\n", n_elem);
3665 qc->n_elem = n_elem;
3671 * swap_buf_le16 - swap halves of 16-bit words in place
3672 * @buf: Buffer to swap
3673 * @buf_words: Number of 16-bit words in buffer.
3675 * Swap halves of 16-bit words if needed to convert from
3676 * little-endian byte order to native cpu byte order, or
3680 * Inherited from caller.
3682 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3687 for (i = 0; i < buf_words; i++)
3688 buf[i] = le16_to_cpu(buf[i]);
3689 #endif /* __BIG_ENDIAN */
3693 * ata_mmio_data_xfer - Transfer data by MMIO
3694 * @adev: device for this I/O
3696 * @buflen: buffer length
3697 * @write_data: read/write
3699 * Transfer data from/to the device data register by MMIO.
3702 * Inherited from caller.
3705 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3706 unsigned int buflen, int write_data)
3708 struct ata_port *ap = adev->ap;
3710 unsigned int words = buflen >> 1;
3711 u16 *buf16 = (u16 *) buf;
3712 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3714 /* Transfer multiple of 2 bytes */
3716 for (i = 0; i < words; i++)
3717 writew(le16_to_cpu(buf16[i]), mmio);
3719 for (i = 0; i < words; i++)
3720 buf16[i] = cpu_to_le16(readw(mmio));
3723 /* Transfer trailing 1 byte, if any. */
3724 if (unlikely(buflen & 0x01)) {
3725 u16 align_buf[1] = { 0 };
3726 unsigned char *trailing_buf = buf + buflen - 1;
3729 memcpy(align_buf, trailing_buf, 1);
3730 writew(le16_to_cpu(align_buf[0]), mmio);
3732 align_buf[0] = cpu_to_le16(readw(mmio));
3733 memcpy(trailing_buf, align_buf, 1);
3739 * ata_pio_data_xfer - Transfer data by PIO
3740 * @adev: device to target
3742 * @buflen: buffer length
3743 * @write_data: read/write
3745 * Transfer data from/to the device data register by PIO.
3748 * Inherited from caller.
3751 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3752 unsigned int buflen, int write_data)
3754 struct ata_port *ap = adev->ap;
3755 unsigned int words = buflen >> 1;
3757 /* Transfer multiple of 2 bytes */
3759 outsw(ap->ioaddr.data_addr, buf, words);
3761 insw(ap->ioaddr.data_addr, buf, words);
3763 /* Transfer trailing 1 byte, if any. */
3764 if (unlikely(buflen & 0x01)) {
3765 u16 align_buf[1] = { 0 };
3766 unsigned char *trailing_buf = buf + buflen - 1;
3769 memcpy(align_buf, trailing_buf, 1);
3770 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3772 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3773 memcpy(trailing_buf, align_buf, 1);
3779 * ata_pio_data_xfer_noirq - Transfer data by PIO
3780 * @adev: device to target
3782 * @buflen: buffer length
3783 * @write_data: read/write
3785 * Transfer data from/to the device data register by PIO. Do the
3786 * transfer with interrupts disabled.
3789 * Inherited from caller.
3792 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3793 unsigned int buflen, int write_data)
3795 unsigned long flags;
3796 local_irq_save(flags);
3797 ata_pio_data_xfer(adev, buf, buflen, write_data);
3798 local_irq_restore(flags);
3803 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3804 * @qc: Command on going
3806 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3809 * Inherited from caller.
3812 static void ata_pio_sector(struct ata_queued_cmd *qc)
3814 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3815 struct scatterlist *sg = qc->__sg;
3816 struct ata_port *ap = qc->ap;
3818 unsigned int offset;
3821 if (qc->cursect == (qc->nsect - 1))
3822 ap->hsm_task_state = HSM_ST_LAST;
3824 page = sg[qc->cursg].page;
3825 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3827 /* get the current page and offset */
3828 page = nth_page(page, (offset >> PAGE_SHIFT));
3829 offset %= PAGE_SIZE;
3831 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3833 if (PageHighMem(page)) {
3834 unsigned long flags;
3836 /* FIXME: use a bounce buffer */
3837 local_irq_save(flags);
3838 buf = kmap_atomic(page, KM_IRQ0);
3840 /* do the actual data transfer */
3841 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3843 kunmap_atomic(buf, KM_IRQ0);
3844 local_irq_restore(flags);
3846 buf = page_address(page);
3847 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3853 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3860 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3861 * @qc: Command on going
3863 * Transfer one or many ATA_SECT_SIZE of data from/to the
3864 * ATA device for the DRQ request.
3867 * Inherited from caller.
3870 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3872 if (is_multi_taskfile(&qc->tf)) {
3873 /* READ/WRITE MULTIPLE */
3876 WARN_ON(qc->dev->multi_count == 0);
3878 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3886 * atapi_send_cdb - Write CDB bytes to hardware
3887 * @ap: Port to which ATAPI device is attached.
3888 * @qc: Taskfile currently active
3890 * When device has indicated its readiness to accept
3891 * a CDB, this function is called. Send the CDB.
3897 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3900 DPRINTK("send cdb\n");
3901 WARN_ON(qc->dev->cdb_len < 12);
3903 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3904 ata_altstatus(ap); /* flush */
3906 switch (qc->tf.protocol) {
3907 case ATA_PROT_ATAPI:
3908 ap->hsm_task_state = HSM_ST;
3910 case ATA_PROT_ATAPI_NODATA:
3911 ap->hsm_task_state = HSM_ST_LAST;
3913 case ATA_PROT_ATAPI_DMA:
3914 ap->hsm_task_state = HSM_ST_LAST;
3915 /* initiate bmdma */
3916 ap->ops->bmdma_start(qc);
3922 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3923 * @qc: Command on going
3924 * @bytes: number of bytes
3926 * Transfer Transfer data from/to the ATAPI device.
3929 * Inherited from caller.
3933 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3935 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3936 struct scatterlist *sg = qc->__sg;
3937 struct ata_port *ap = qc->ap;
3940 unsigned int offset, count;
3942 if (qc->curbytes + bytes >= qc->nbytes)
3943 ap->hsm_task_state = HSM_ST_LAST;
3946 if (unlikely(qc->cursg >= qc->n_elem)) {
3948 * The end of qc->sg is reached and the device expects
3949 * more data to transfer. In order not to overrun qc->sg
3950 * and fulfill length specified in the byte count register,
3951 * - for read case, discard trailing data from the device
3952 * - for write case, padding zero data to the device
3954 u16 pad_buf[1] = { 0 };
3955 unsigned int words = bytes >> 1;
3958 if (words) /* warning if bytes > 1 */
3959 ata_dev_printk(qc->dev, KERN_WARNING,
3960 "%u bytes trailing data\n", bytes);
3962 for (i = 0; i < words; i++)
3963 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
3965 ap->hsm_task_state = HSM_ST_LAST;
3969 sg = &qc->__sg[qc->cursg];
3972 offset = sg->offset + qc->cursg_ofs;
3974 /* get the current page and offset */
3975 page = nth_page(page, (offset >> PAGE_SHIFT));
3976 offset %= PAGE_SIZE;
3978 /* don't overrun current sg */
3979 count = min(sg->length - qc->cursg_ofs, bytes);
3981 /* don't cross page boundaries */
3982 count = min(count, (unsigned int)PAGE_SIZE - offset);
3984 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3986 if (PageHighMem(page)) {
3987 unsigned long flags;
3989 /* FIXME: use bounce buffer */
3990 local_irq_save(flags);
3991 buf = kmap_atomic(page, KM_IRQ0);
3993 /* do the actual data transfer */
3994 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3996 kunmap_atomic(buf, KM_IRQ0);
3997 local_irq_restore(flags);
3999 buf = page_address(page);
4000 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4004 qc->curbytes += count;
4005 qc->cursg_ofs += count;
4007 if (qc->cursg_ofs == sg->length) {
4017 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4018 * @qc: Command on going
4020 * Transfer Transfer data from/to the ATAPI device.
4023 * Inherited from caller.
4026 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4028 struct ata_port *ap = qc->ap;
4029 struct ata_device *dev = qc->dev;
4030 unsigned int ireason, bc_lo, bc_hi, bytes;
4031 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4033 /* Abuse qc->result_tf for temp storage of intermediate TF
4034 * here to save some kernel stack usage.
4035 * For normal completion, qc->result_tf is not relevant. For
4036 * error, qc->result_tf is later overwritten by ata_qc_complete().
4037 * So, the correctness of qc->result_tf is not affected.
4039 ap->ops->tf_read(ap, &qc->result_tf);
4040 ireason = qc->result_tf.nsect;
4041 bc_lo = qc->result_tf.lbam;
4042 bc_hi = qc->result_tf.lbah;
4043 bytes = (bc_hi << 8) | bc_lo;
4045 /* shall be cleared to zero, indicating xfer of data */
4046 if (ireason & (1 << 0))
4049 /* make sure transfer direction matches expected */
4050 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4051 if (do_write != i_write)
4054 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
4056 __atapi_pio_bytes(qc, bytes);
4061 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4062 qc->err_mask |= AC_ERR_HSM;
4063 ap->hsm_task_state = HSM_ST_ERR;
4067 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4068 * @ap: the target ata_port
4072 * 1 if ok in workqueue, 0 otherwise.
4075 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4077 if (qc->tf.flags & ATA_TFLAG_POLLING)
4080 if (ap->hsm_task_state == HSM_ST_FIRST) {
4081 if (qc->tf.protocol == ATA_PROT_PIO &&
4082 (qc->tf.flags & ATA_TFLAG_WRITE))
4085 if (is_atapi_taskfile(&qc->tf) &&
4086 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4094 * ata_hsm_qc_complete - finish a qc running on standard HSM
4095 * @qc: Command to complete
4096 * @in_wq: 1 if called from workqueue, 0 otherwise
4098 * Finish @qc which is running on standard HSM.
4101 * If @in_wq is zero, spin_lock_irqsave(host lock).
4102 * Otherwise, none on entry and grabs host lock.
4104 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4106 struct ata_port *ap = qc->ap;
4107 unsigned long flags;
4109 if (ap->ops->error_handler) {
4111 spin_lock_irqsave(ap->lock, flags);
4113 /* EH might have kicked in while host lock is
4116 qc = ata_qc_from_tag(ap, qc->tag);
4118 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4120 ata_qc_complete(qc);
4122 ata_port_freeze(ap);
4125 spin_unlock_irqrestore(ap->lock, flags);
4127 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4128 ata_qc_complete(qc);
4130 ata_port_freeze(ap);
4134 spin_lock_irqsave(ap->lock, flags);
4136 ata_qc_complete(qc);
4137 spin_unlock_irqrestore(ap->lock, flags);
4139 ata_qc_complete(qc);
4142 ata_altstatus(ap); /* flush */
4146 * ata_hsm_move - move the HSM to the next state.
4147 * @ap: the target ata_port
4149 * @status: current device status
4150 * @in_wq: 1 if called from workqueue, 0 otherwise
4153 * 1 when poll next status needed, 0 otherwise.
4155 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4156 u8 status, int in_wq)
4158 unsigned long flags = 0;
4161 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4163 /* Make sure ata_qc_issue_prot() does not throw things
4164 * like DMA polling into the workqueue. Notice that
4165 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4167 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4170 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4171 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4173 switch (ap->hsm_task_state) {
4175 /* Send first data block or PACKET CDB */
4177 /* If polling, we will stay in the work queue after
4178 * sending the data. Otherwise, interrupt handler
4179 * takes over after sending the data.
4181 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4183 /* check device status */
4184 if (unlikely((status & ATA_DRQ) == 0)) {
4185 /* handle BSY=0, DRQ=0 as error */
4186 if (likely(status & (ATA_ERR | ATA_DF)))
4187 /* device stops HSM for abort/error */
4188 qc->err_mask |= AC_ERR_DEV;
4190 /* HSM violation. Let EH handle this */
4191 qc->err_mask |= AC_ERR_HSM;
4193 ap->hsm_task_state = HSM_ST_ERR;
4197 /* Device should not ask for data transfer (DRQ=1)
4198 * when it finds something wrong.
4199 * We ignore DRQ here and stop the HSM by
4200 * changing hsm_task_state to HSM_ST_ERR and
4201 * let the EH abort the command or reset the device.
4203 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4204 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4206 qc->err_mask |= AC_ERR_HSM;
4207 ap->hsm_task_state = HSM_ST_ERR;
4211 /* Send the CDB (atapi) or the first data block (ata pio out).
4212 * During the state transition, interrupt handler shouldn't
4213 * be invoked before the data transfer is complete and
4214 * hsm_task_state is changed. Hence, the following locking.
4217 spin_lock_irqsave(ap->lock, flags);
4219 if (qc->tf.protocol == ATA_PROT_PIO) {
4220 /* PIO data out protocol.
4221 * send first data block.
4224 /* ata_pio_sectors() might change the state
4225 * to HSM_ST_LAST. so, the state is changed here
4226 * before ata_pio_sectors().
4228 ap->hsm_task_state = HSM_ST;
4229 ata_pio_sectors(qc);
4230 ata_altstatus(ap); /* flush */
4233 atapi_send_cdb(ap, qc);
4236 spin_unlock_irqrestore(ap->lock, flags);
4238 /* if polling, ata_pio_task() handles the rest.
4239 * otherwise, interrupt handler takes over from here.
4244 /* complete command or read/write the data register */
4245 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4246 /* ATAPI PIO protocol */
4247 if ((status & ATA_DRQ) == 0) {
4248 /* No more data to transfer or device error.
4249 * Device error will be tagged in HSM_ST_LAST.
4251 ap->hsm_task_state = HSM_ST_LAST;
4255 /* Device should not ask for data transfer (DRQ=1)
4256 * when it finds something wrong.
4257 * We ignore DRQ here and stop the HSM by
4258 * changing hsm_task_state to HSM_ST_ERR and
4259 * let the EH abort the command or reset the device.
4261 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4262 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4264 qc->err_mask |= AC_ERR_HSM;
4265 ap->hsm_task_state = HSM_ST_ERR;
4269 atapi_pio_bytes(qc);
4271 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4272 /* bad ireason reported by device */
4276 /* ATA PIO protocol */
4277 if (unlikely((status & ATA_DRQ) == 0)) {
4278 /* handle BSY=0, DRQ=0 as error */
4279 if (likely(status & (ATA_ERR | ATA_DF)))
4280 /* device stops HSM for abort/error */
4281 qc->err_mask |= AC_ERR_DEV;
4283 /* HSM violation. Let EH handle this */
4284 qc->err_mask |= AC_ERR_HSM;
4286 ap->hsm_task_state = HSM_ST_ERR;
4290 /* For PIO reads, some devices may ask for
4291 * data transfer (DRQ=1) alone with ERR=1.
4292 * We respect DRQ here and transfer one
4293 * block of junk data before changing the
4294 * hsm_task_state to HSM_ST_ERR.
4296 * For PIO writes, ERR=1 DRQ=1 doesn't make
4297 * sense since the data block has been
4298 * transferred to the device.
4300 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4301 /* data might be corrputed */
4302 qc->err_mask |= AC_ERR_DEV;
4304 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4305 ata_pio_sectors(qc);
4307 status = ata_wait_idle(ap);
4310 if (status & (ATA_BUSY | ATA_DRQ))
4311 qc->err_mask |= AC_ERR_HSM;
4313 /* ata_pio_sectors() might change the
4314 * state to HSM_ST_LAST. so, the state
4315 * is changed after ata_pio_sectors().
4317 ap->hsm_task_state = HSM_ST_ERR;
4321 ata_pio_sectors(qc);
4323 if (ap->hsm_task_state == HSM_ST_LAST &&
4324 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4327 status = ata_wait_idle(ap);
4332 ata_altstatus(ap); /* flush */
4337 if (unlikely(!ata_ok(status))) {
4338 qc->err_mask |= __ac_err_mask(status);
4339 ap->hsm_task_state = HSM_ST_ERR;
4343 /* no more data to transfer */
4344 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4345 ap->id, qc->dev->devno, status);
4347 WARN_ON(qc->err_mask);
4349 ap->hsm_task_state = HSM_ST_IDLE;
4351 /* complete taskfile transaction */
4352 ata_hsm_qc_complete(qc, in_wq);
4358 /* make sure qc->err_mask is available to
4359 * know what's wrong and recover
4361 WARN_ON(qc->err_mask == 0);
4363 ap->hsm_task_state = HSM_ST_IDLE;
4365 /* complete taskfile transaction */
4366 ata_hsm_qc_complete(qc, in_wq);
4378 static void ata_pio_task(void *_data)
4380 struct ata_queued_cmd *qc = _data;
4381 struct ata_port *ap = qc->ap;
4386 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4389 * This is purely heuristic. This is a fast path.
4390 * Sometimes when we enter, BSY will be cleared in
4391 * a chk-status or two. If not, the drive is probably seeking
4392 * or something. Snooze for a couple msecs, then
4393 * chk-status again. If still busy, queue delayed work.
4395 status = ata_busy_wait(ap, ATA_BUSY, 5);
4396 if (status & ATA_BUSY) {
4398 status = ata_busy_wait(ap, ATA_BUSY, 10);
4399 if (status & ATA_BUSY) {
4400 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4406 poll_next = ata_hsm_move(ap, qc, status, 1);
4408 /* another command or interrupt handler
4409 * may be running at this point.
4416 * ata_qc_new - Request an available ATA command, for queueing
4417 * @ap: Port associated with device @dev
4418 * @dev: Device from whom we request an available command structure
4424 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4426 struct ata_queued_cmd *qc = NULL;
4429 /* no command while frozen */
4430 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4433 /* the last tag is reserved for internal command. */
4434 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4435 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4436 qc = __ata_qc_from_tag(ap, i);
4447 * ata_qc_new_init - Request an available ATA command, and initialize it
4448 * @dev: Device from whom we request an available command structure
4454 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4456 struct ata_port *ap = dev->ap;
4457 struct ata_queued_cmd *qc;
4459 qc = ata_qc_new(ap);
4472 * ata_qc_free - free unused ata_queued_cmd
4473 * @qc: Command to complete
4475 * Designed to free unused ata_queued_cmd object
4476 * in case something prevents using it.
4479 * spin_lock_irqsave(host lock)
4481 void ata_qc_free(struct ata_queued_cmd *qc)
4483 struct ata_port *ap = qc->ap;
4486 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4490 if (likely(ata_tag_valid(tag))) {
4491 qc->tag = ATA_TAG_POISON;
4492 clear_bit(tag, &ap->qc_allocated);
4496 void __ata_qc_complete(struct ata_queued_cmd *qc)
4498 struct ata_port *ap = qc->ap;
4500 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4501 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4503 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4506 /* command should be marked inactive atomically with qc completion */
4507 if (qc->tf.protocol == ATA_PROT_NCQ)
4508 ap->sactive &= ~(1 << qc->tag);
4510 ap->active_tag = ATA_TAG_POISON;
4512 /* atapi: mark qc as inactive to prevent the interrupt handler
4513 * from completing the command twice later, before the error handler
4514 * is called. (when rc != 0 and atapi request sense is needed)
4516 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4517 ap->qc_active &= ~(1 << qc->tag);
4519 /* call completion callback */
4520 qc->complete_fn(qc);
4524 * ata_qc_complete - Complete an active ATA command
4525 * @qc: Command to complete
4526 * @err_mask: ATA Status register contents
4528 * Indicate to the mid and upper layers that an ATA
4529 * command has completed, with either an ok or not-ok status.
4532 * spin_lock_irqsave(host lock)
4534 void ata_qc_complete(struct ata_queued_cmd *qc)
4536 struct ata_port *ap = qc->ap;
4538 /* XXX: New EH and old EH use different mechanisms to
4539 * synchronize EH with regular execution path.
4541 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4542 * Normal execution path is responsible for not accessing a
4543 * failed qc. libata core enforces the rule by returning NULL
4544 * from ata_qc_from_tag() for failed qcs.
4546 * Old EH depends on ata_qc_complete() nullifying completion
4547 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4548 * not synchronize with interrupt handler. Only PIO task is
4551 if (ap->ops->error_handler) {
4552 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4554 if (unlikely(qc->err_mask))
4555 qc->flags |= ATA_QCFLAG_FAILED;
4557 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4558 if (!ata_tag_internal(qc->tag)) {
4559 /* always fill result TF for failed qc */
4560 ap->ops->tf_read(ap, &qc->result_tf);
4561 ata_qc_schedule_eh(qc);
4566 /* read result TF if requested */
4567 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4568 ap->ops->tf_read(ap, &qc->result_tf);
4570 __ata_qc_complete(qc);
4572 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4575 /* read result TF if failed or requested */
4576 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4577 ap->ops->tf_read(ap, &qc->result_tf);
4579 __ata_qc_complete(qc);
4584 * ata_qc_complete_multiple - Complete multiple qcs successfully
4585 * @ap: port in question
4586 * @qc_active: new qc_active mask
4587 * @finish_qc: LLDD callback invoked before completing a qc
4589 * Complete in-flight commands. This functions is meant to be
4590 * called from low-level driver's interrupt routine to complete
4591 * requests normally. ap->qc_active and @qc_active is compared
4592 * and commands are completed accordingly.
4595 * spin_lock_irqsave(host lock)
4598 * Number of completed commands on success, -errno otherwise.
4600 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4601 void (*finish_qc)(struct ata_queued_cmd *))
4607 done_mask = ap->qc_active ^ qc_active;
4609 if (unlikely(done_mask & qc_active)) {
4610 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4611 "(%08x->%08x)\n", ap->qc_active, qc_active);
4615 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4616 struct ata_queued_cmd *qc;
4618 if (!(done_mask & (1 << i)))
4621 if ((qc = ata_qc_from_tag(ap, i))) {
4624 ata_qc_complete(qc);
4632 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4634 struct ata_port *ap = qc->ap;
4636 switch (qc->tf.protocol) {
4639 case ATA_PROT_ATAPI_DMA:
4642 case ATA_PROT_ATAPI:
4644 if (ap->flags & ATA_FLAG_PIO_DMA)
4657 * ata_qc_issue - issue taskfile to device
4658 * @qc: command to issue to device
4660 * Prepare an ATA command to submission to device.
4661 * This includes mapping the data into a DMA-able
4662 * area, filling in the S/G table, and finally
4663 * writing the taskfile to hardware, starting the command.
4666 * spin_lock_irqsave(host lock)
4668 void ata_qc_issue(struct ata_queued_cmd *qc)
4670 struct ata_port *ap = qc->ap;
4672 /* Make sure only one non-NCQ command is outstanding. The
4673 * check is skipped for old EH because it reuses active qc to
4674 * request ATAPI sense.
4676 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4678 if (qc->tf.protocol == ATA_PROT_NCQ) {
4679 WARN_ON(ap->sactive & (1 << qc->tag));
4680 ap->sactive |= 1 << qc->tag;
4682 WARN_ON(ap->sactive);
4683 ap->active_tag = qc->tag;
4686 qc->flags |= ATA_QCFLAG_ACTIVE;
4687 ap->qc_active |= 1 << qc->tag;
4689 if (ata_should_dma_map(qc)) {
4690 if (qc->flags & ATA_QCFLAG_SG) {
4691 if (ata_sg_setup(qc))
4693 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4694 if (ata_sg_setup_one(qc))
4698 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4701 ap->ops->qc_prep(qc);
4703 qc->err_mask |= ap->ops->qc_issue(qc);
4704 if (unlikely(qc->err_mask))
4709 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4710 qc->err_mask |= AC_ERR_SYSTEM;
4712 ata_qc_complete(qc);
4716 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4717 * @qc: command to issue to device
4719 * Using various libata functions and hooks, this function
4720 * starts an ATA command. ATA commands are grouped into
4721 * classes called "protocols", and issuing each type of protocol
4722 * is slightly different.
4724 * May be used as the qc_issue() entry in ata_port_operations.
4727 * spin_lock_irqsave(host lock)
4730 * Zero on success, AC_ERR_* mask on failure
4733 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4735 struct ata_port *ap = qc->ap;
4737 /* Use polling pio if the LLD doesn't handle
4738 * interrupt driven pio and atapi CDB interrupt.
4740 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4741 switch (qc->tf.protocol) {
4743 case ATA_PROT_ATAPI:
4744 case ATA_PROT_ATAPI_NODATA:
4745 qc->tf.flags |= ATA_TFLAG_POLLING;
4747 case ATA_PROT_ATAPI_DMA:
4748 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4749 /* see ata_dma_blacklisted() */
4757 /* select the device */
4758 ata_dev_select(ap, qc->dev->devno, 1, 0);
4760 /* start the command */
4761 switch (qc->tf.protocol) {
4762 case ATA_PROT_NODATA:
4763 if (qc->tf.flags & ATA_TFLAG_POLLING)
4764 ata_qc_set_polling(qc);
4766 ata_tf_to_host(ap, &qc->tf);
4767 ap->hsm_task_state = HSM_ST_LAST;
4769 if (qc->tf.flags & ATA_TFLAG_POLLING)
4770 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4775 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4777 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4778 ap->ops->bmdma_setup(qc); /* set up bmdma */
4779 ap->ops->bmdma_start(qc); /* initiate bmdma */
4780 ap->hsm_task_state = HSM_ST_LAST;
4784 if (qc->tf.flags & ATA_TFLAG_POLLING)
4785 ata_qc_set_polling(qc);
4787 ata_tf_to_host(ap, &qc->tf);
4789 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4790 /* PIO data out protocol */
4791 ap->hsm_task_state = HSM_ST_FIRST;
4792 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4794 /* always send first data block using
4795 * the ata_pio_task() codepath.
4798 /* PIO data in protocol */
4799 ap->hsm_task_state = HSM_ST;
4801 if (qc->tf.flags & ATA_TFLAG_POLLING)
4802 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4804 /* if polling, ata_pio_task() handles the rest.
4805 * otherwise, interrupt handler takes over from here.
4811 case ATA_PROT_ATAPI:
4812 case ATA_PROT_ATAPI_NODATA:
4813 if (qc->tf.flags & ATA_TFLAG_POLLING)
4814 ata_qc_set_polling(qc);
4816 ata_tf_to_host(ap, &qc->tf);
4818 ap->hsm_task_state = HSM_ST_FIRST;
4820 /* send cdb by polling if no cdb interrupt */
4821 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4822 (qc->tf.flags & ATA_TFLAG_POLLING))
4823 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4826 case ATA_PROT_ATAPI_DMA:
4827 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4829 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4830 ap->ops->bmdma_setup(qc); /* set up bmdma */
4831 ap->hsm_task_state = HSM_ST_FIRST;
4833 /* send cdb by polling if no cdb interrupt */
4834 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4835 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4840 return AC_ERR_SYSTEM;
4847 * ata_host_intr - Handle host interrupt for given (port, task)
4848 * @ap: Port on which interrupt arrived (possibly...)
4849 * @qc: Taskfile currently active in engine
4851 * Handle host interrupt for given queued command. Currently,
4852 * only DMA interrupts are handled. All other commands are
4853 * handled via polling with interrupts disabled (nIEN bit).
4856 * spin_lock_irqsave(host lock)
4859 * One if interrupt was handled, zero if not (shared irq).
4862 inline unsigned int ata_host_intr (struct ata_port *ap,
4863 struct ata_queued_cmd *qc)
4865 u8 status, host_stat = 0;
4867 VPRINTK("ata%u: protocol %d task_state %d\n",
4868 ap->id, qc->tf.protocol, ap->hsm_task_state);
4870 /* Check whether we are expecting interrupt in this state */
4871 switch (ap->hsm_task_state) {
4873 /* Some pre-ATAPI-4 devices assert INTRQ
4874 * at this state when ready to receive CDB.
4877 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4878 * The flag was turned on only for atapi devices.
4879 * No need to check is_atapi_taskfile(&qc->tf) again.
4881 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4885 if (qc->tf.protocol == ATA_PROT_DMA ||
4886 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4887 /* check status of DMA engine */
4888 host_stat = ap->ops->bmdma_status(ap);
4889 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4891 /* if it's not our irq... */
4892 if (!(host_stat & ATA_DMA_INTR))
4895 /* before we do anything else, clear DMA-Start bit */
4896 ap->ops->bmdma_stop(qc);
4898 if (unlikely(host_stat & ATA_DMA_ERR)) {
4899 /* error when transfering data to/from memory */
4900 qc->err_mask |= AC_ERR_HOST_BUS;
4901 ap->hsm_task_state = HSM_ST_ERR;
4911 /* check altstatus */
4912 status = ata_altstatus(ap);
4913 if (status & ATA_BUSY)
4916 /* check main status, clearing INTRQ */
4917 status = ata_chk_status(ap);
4918 if (unlikely(status & ATA_BUSY))
4921 /* ack bmdma irq events */
4922 ap->ops->irq_clear(ap);
4924 ata_hsm_move(ap, qc, status, 0);
4925 return 1; /* irq handled */
4928 ap->stats.idle_irq++;
4931 if ((ap->stats.idle_irq % 1000) == 0) {
4932 ata_irq_ack(ap, 0); /* debug trap */
4933 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
4937 return 0; /* irq not handled */
4941 * ata_interrupt - Default ATA host interrupt handler
4942 * @irq: irq line (unused)
4943 * @dev_instance: pointer to our ata_host information structure
4945 * Default interrupt handler for PCI IDE devices. Calls
4946 * ata_host_intr() for each port that is not disabled.
4949 * Obtains host lock during operation.
4952 * IRQ_NONE or IRQ_HANDLED.
4955 irqreturn_t ata_interrupt (int irq, void *dev_instance)
4957 struct ata_host *host = dev_instance;
4959 unsigned int handled = 0;
4960 unsigned long flags;
4962 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4963 spin_lock_irqsave(&host->lock, flags);
4965 for (i = 0; i < host->n_ports; i++) {
4966 struct ata_port *ap;
4968 ap = host->ports[i];
4970 !(ap->flags & ATA_FLAG_DISABLED)) {
4971 struct ata_queued_cmd *qc;
4973 qc = ata_qc_from_tag(ap, ap->active_tag);
4974 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4975 (qc->flags & ATA_QCFLAG_ACTIVE))
4976 handled |= ata_host_intr(ap, qc);
4980 spin_unlock_irqrestore(&host->lock, flags);
4982 return IRQ_RETVAL(handled);
4986 * sata_scr_valid - test whether SCRs are accessible
4987 * @ap: ATA port to test SCR accessibility for
4989 * Test whether SCRs are accessible for @ap.
4995 * 1 if SCRs are accessible, 0 otherwise.
4997 int sata_scr_valid(struct ata_port *ap)
4999 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5003 * sata_scr_read - read SCR register of the specified port
5004 * @ap: ATA port to read SCR for
5006 * @val: Place to store read value
5008 * Read SCR register @reg of @ap into *@val. This function is
5009 * guaranteed to succeed if the cable type of the port is SATA
5010 * and the port implements ->scr_read.
5016 * 0 on success, negative errno on failure.
5018 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5020 if (sata_scr_valid(ap)) {
5021 *val = ap->ops->scr_read(ap, reg);
5028 * sata_scr_write - write SCR register of the specified port
5029 * @ap: ATA port to write SCR for
5030 * @reg: SCR to write
5031 * @val: value to write
5033 * Write @val to SCR register @reg of @ap. This function is
5034 * guaranteed to succeed if the cable type of the port is SATA
5035 * and the port implements ->scr_read.
5041 * 0 on success, negative errno on failure.
5043 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5045 if (sata_scr_valid(ap)) {
5046 ap->ops->scr_write(ap, reg, val);
5053 * sata_scr_write_flush - write SCR register of the specified port and flush
5054 * @ap: ATA port to write SCR for
5055 * @reg: SCR to write
5056 * @val: value to write
5058 * This function is identical to sata_scr_write() except that this
5059 * function performs flush after writing to the register.
5065 * 0 on success, negative errno on failure.
5067 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5069 if (sata_scr_valid(ap)) {
5070 ap->ops->scr_write(ap, reg, val);
5071 ap->ops->scr_read(ap, reg);
5078 * ata_port_online - test whether the given port is online
5079 * @ap: ATA port to test
5081 * Test whether @ap is online. Note that this function returns 0
5082 * if online status of @ap cannot be obtained, so
5083 * ata_port_online(ap) != !ata_port_offline(ap).
5089 * 1 if the port online status is available and online.
5091 int ata_port_online(struct ata_port *ap)
5095 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5101 * ata_port_offline - test whether the given port is offline
5102 * @ap: ATA port to test
5104 * Test whether @ap is offline. Note that this function returns
5105 * 0 if offline status of @ap cannot be obtained, so
5106 * ata_port_online(ap) != !ata_port_offline(ap).
5112 * 1 if the port offline status is available and offline.
5114 int ata_port_offline(struct ata_port *ap)
5118 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5123 int ata_flush_cache(struct ata_device *dev)
5125 unsigned int err_mask;
5128 if (!ata_try_flush_cache(dev))
5131 if (ata_id_has_flush_ext(dev->id))
5132 cmd = ATA_CMD_FLUSH_EXT;
5134 cmd = ATA_CMD_FLUSH;
5136 err_mask = ata_do_simple_cmd(dev, cmd);
5138 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5145 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5146 unsigned int action, unsigned int ehi_flags,
5149 unsigned long flags;
5152 for (i = 0; i < host->n_ports; i++) {
5153 struct ata_port *ap = host->ports[i];
5155 /* Previous resume operation might still be in
5156 * progress. Wait for PM_PENDING to clear.
5158 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5159 ata_port_wait_eh(ap);
5160 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5163 /* request PM ops to EH */
5164 spin_lock_irqsave(ap->lock, flags);
5169 ap->pm_result = &rc;
5172 ap->pflags |= ATA_PFLAG_PM_PENDING;
5173 ap->eh_info.action |= action;
5174 ap->eh_info.flags |= ehi_flags;
5176 ata_port_schedule_eh(ap);
5178 spin_unlock_irqrestore(ap->lock, flags);
5180 /* wait and check result */
5182 ata_port_wait_eh(ap);
5183 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5193 * ata_host_suspend - suspend host
5194 * @host: host to suspend
5197 * Suspend @host. Actual operation is performed by EH. This
5198 * function requests EH to perform PM operations and waits for EH
5202 * Kernel thread context (may sleep).
5205 * 0 on success, -errno on failure.
5207 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5211 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5215 /* EH is quiescent now. Fail if we have any ready device.
5216 * This happens if hotplug occurs between completion of device
5217 * suspension and here.
5219 for (i = 0; i < host->n_ports; i++) {
5220 struct ata_port *ap = host->ports[i];
5222 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5223 struct ata_device *dev = &ap->device[j];
5225 if (ata_dev_ready(dev)) {
5226 ata_port_printk(ap, KERN_WARNING,
5227 "suspend failed, device %d "
5228 "still active\n", dev->devno);
5235 host->dev->power.power_state = mesg;
5239 ata_host_resume(host);
5244 * ata_host_resume - resume host
5245 * @host: host to resume
5247 * Resume @host. Actual operation is performed by EH. This
5248 * function requests EH to perform PM operations and returns.
5249 * Note that all resume operations are performed parallely.
5252 * Kernel thread context (may sleep).
5254 void ata_host_resume(struct ata_host *host)
5256 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5257 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5258 host->dev->power.power_state = PMSG_ON;
5262 * ata_port_start - Set port up for dma.
5263 * @ap: Port to initialize
5265 * Called just after data structures for each port are
5266 * initialized. Allocates space for PRD table.
5268 * May be used as the port_start() entry in ata_port_operations.
5271 * Inherited from caller.
5274 int ata_port_start (struct ata_port *ap)
5276 struct device *dev = ap->dev;
5279 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5283 rc = ata_pad_alloc(ap, dev);
5285 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5289 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5296 * ata_port_stop - Undo ata_port_start()
5297 * @ap: Port to shut down
5299 * Frees the PRD table.
5301 * May be used as the port_stop() entry in ata_port_operations.
5304 * Inherited from caller.
5307 void ata_port_stop (struct ata_port *ap)
5309 struct device *dev = ap->dev;
5311 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5312 ata_pad_free(ap, dev);
5315 void ata_host_stop (struct ata_host *host)
5317 if (host->mmio_base)
5318 iounmap(host->mmio_base);
5322 * ata_dev_init - Initialize an ata_device structure
5323 * @dev: Device structure to initialize
5325 * Initialize @dev in preparation for probing.
5328 * Inherited from caller.
5330 void ata_dev_init(struct ata_device *dev)
5332 struct ata_port *ap = dev->ap;
5333 unsigned long flags;
5335 /* SATA spd limit is bound to the first device */
5336 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5338 /* High bits of dev->flags are used to record warm plug
5339 * requests which occur asynchronously. Synchronize using
5342 spin_lock_irqsave(ap->lock, flags);
5343 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5344 spin_unlock_irqrestore(ap->lock, flags);
5346 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5347 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5348 dev->pio_mask = UINT_MAX;
5349 dev->mwdma_mask = UINT_MAX;
5350 dev->udma_mask = UINT_MAX;
5354 * ata_port_init - Initialize an ata_port structure
5355 * @ap: Structure to initialize
5356 * @host: Collection of hosts to which @ap belongs
5357 * @ent: Probe information provided by low-level driver
5358 * @port_no: Port number associated with this ata_port
5360 * Initialize a new ata_port structure.
5363 * Inherited from caller.
5365 void ata_port_init(struct ata_port *ap, struct ata_host *host,
5366 const struct ata_probe_ent *ent, unsigned int port_no)
5370 ap->lock = &host->lock;
5371 ap->flags = ATA_FLAG_DISABLED;
5372 ap->id = ata_unique_id++;
5373 ap->ctl = ATA_DEVCTL_OBS;
5376 ap->port_no = port_no;
5377 if (port_no == 1 && ent->pinfo2) {
5378 ap->pio_mask = ent->pinfo2->pio_mask;
5379 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5380 ap->udma_mask = ent->pinfo2->udma_mask;
5381 ap->flags |= ent->pinfo2->flags;
5382 ap->ops = ent->pinfo2->port_ops;
5384 ap->pio_mask = ent->pio_mask;
5385 ap->mwdma_mask = ent->mwdma_mask;
5386 ap->udma_mask = ent->udma_mask;
5387 ap->flags |= ent->port_flags;
5388 ap->ops = ent->port_ops;
5390 ap->hw_sata_spd_limit = UINT_MAX;
5391 ap->active_tag = ATA_TAG_POISON;
5392 ap->last_ctl = 0xFF;
5394 #if defined(ATA_VERBOSE_DEBUG)
5395 /* turn on all debugging levels */
5396 ap->msg_enable = 0x00FF;
5397 #elif defined(ATA_DEBUG)
5398 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5400 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5403 INIT_WORK(&ap->port_task, NULL, NULL);
5404 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
5405 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
5406 INIT_LIST_HEAD(&ap->eh_done_q);
5407 init_waitqueue_head(&ap->eh_wait_q);
5409 /* set cable type */
5410 ap->cbl = ATA_CBL_NONE;
5411 if (ap->flags & ATA_FLAG_SATA)
5412 ap->cbl = ATA_CBL_SATA;
5414 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5415 struct ata_device *dev = &ap->device[i];
5422 ap->stats.unhandled_irq = 1;
5423 ap->stats.idle_irq = 1;
5426 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5430 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5431 * @ap: ATA port to initialize SCSI host for
5432 * @shost: SCSI host associated with @ap
5434 * Initialize SCSI host @shost associated with ATA port @ap.
5437 * Inherited from caller.
5439 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
5441 ap->scsi_host = shost;
5443 shost->unique_id = ap->id;
5446 shost->max_channel = 1;
5447 shost->max_cmd_len = 12;
5451 * ata_port_add - Attach low-level ATA driver to system
5452 * @ent: Information provided by low-level driver
5453 * @host: Collections of ports to which we add
5454 * @port_no: Port number associated with this host
5456 * Attach low-level ATA driver to system.
5459 * PCI/etc. bus probe sem.
5462 * New ata_port on success, for NULL on error.
5464 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
5465 struct ata_host *host,
5466 unsigned int port_no)
5468 struct Scsi_Host *shost;
5469 struct ata_port *ap;
5473 if (!ent->port_ops->error_handler &&
5474 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5475 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5480 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5484 shost->transportt = &ata_scsi_transport_template;
5486 ap = ata_shost_to_port(shost);
5488 ata_port_init(ap, host, ent, port_no);
5489 ata_port_init_shost(ap, shost);
5495 * ata_sas_host_init - Initialize a host struct
5496 * @host: host to initialize
5497 * @dev: device host is attached to
5498 * @flags: host flags
5502 * PCI/etc. bus probe sem.
5506 void ata_host_init(struct ata_host *host, struct device *dev,
5507 unsigned long flags, const struct ata_port_operations *ops)
5509 spin_lock_init(&host->lock);
5511 host->flags = flags;
5516 * ata_device_add - Register hardware device with ATA and SCSI layers
5517 * @ent: Probe information describing hardware device to be registered
5519 * This function processes the information provided in the probe
5520 * information struct @ent, allocates the necessary ATA and SCSI
5521 * host information structures, initializes them, and registers
5522 * everything with requisite kernel subsystems.
5524 * This function requests irqs, probes the ATA bus, and probes
5528 * PCI/etc. bus probe sem.
5531 * Number of ports registered. Zero on error (no ports registered).
5533 int ata_device_add(const struct ata_probe_ent *ent)
5536 struct device *dev = ent->dev;
5537 struct ata_host *host;
5542 if (ent->irq == 0) {
5543 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5546 /* alloc a container for our list of ATA ports (buses) */
5547 host = kzalloc(sizeof(struct ata_host) +
5548 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5552 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5553 host->n_ports = ent->n_ports;
5554 host->irq = ent->irq;
5555 host->irq2 = ent->irq2;
5556 host->mmio_base = ent->mmio_base;
5557 host->private_data = ent->private_data;
5559 /* register each port bound to this device */
5560 for (i = 0; i < host->n_ports; i++) {
5561 struct ata_port *ap;
5562 unsigned long xfer_mode_mask;
5563 int irq_line = ent->irq;
5565 ap = ata_port_add(ent, host, i);
5566 host->ports[i] = ap;
5571 if (ent->dummy_port_mask & (1 << i)) {
5572 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5573 ap->ops = &ata_dummy_port_ops;
5578 rc = ap->ops->port_start(ap);
5580 host->ports[i] = NULL;
5581 scsi_host_put(ap->scsi_host);
5585 /* Report the secondary IRQ for second channel legacy */
5586 if (i == 1 && ent->irq2)
5587 irq_line = ent->irq2;
5589 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5590 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5591 (ap->pio_mask << ATA_SHIFT_PIO);
5593 /* print per-port info to dmesg */
5594 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5595 "ctl 0x%lX bmdma 0x%lX irq %d\n",
5596 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5597 ata_mode_string(xfer_mode_mask),
5598 ap->ioaddr.cmd_addr,
5599 ap->ioaddr.ctl_addr,
5600 ap->ioaddr.bmdma_addr,
5604 host->ops->irq_clear(ap);
5605 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
5608 /* obtain irq, that may be shared between channels */
5609 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5612 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5617 /* do we have a second IRQ for the other channel, eg legacy mode */
5619 /* We will get weird core code crashes later if this is true
5621 BUG_ON(ent->irq == ent->irq2);
5623 rc = request_irq(ent->irq2, ent->port_ops->irq_handler, ent->irq_flags,
5626 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5628 goto err_out_free_irq;
5632 /* perform each probe synchronously */
5633 DPRINTK("probe begin\n");
5634 for (i = 0; i < host->n_ports; i++) {
5635 struct ata_port *ap = host->ports[i];
5639 /* init sata_spd_limit to the current value */
5640 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5641 int spd = (scontrol >> 4) & 0xf;
5642 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5644 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5646 rc = scsi_add_host(ap->scsi_host, dev);
5648 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5649 /* FIXME: do something useful here */
5650 /* FIXME: handle unconditional calls to
5651 * scsi_scan_host and ata_host_remove, below,
5656 if (ap->ops->error_handler) {
5657 struct ata_eh_info *ehi = &ap->eh_info;
5658 unsigned long flags;
5662 /* kick EH for boot probing */
5663 spin_lock_irqsave(ap->lock, flags);
5665 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5666 ehi->action |= ATA_EH_SOFTRESET;
5667 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5669 ap->pflags |= ATA_PFLAG_LOADING;
5670 ata_port_schedule_eh(ap);
5672 spin_unlock_irqrestore(ap->lock, flags);
5674 /* wait for EH to finish */
5675 ata_port_wait_eh(ap);
5677 DPRINTK("ata%u: bus probe begin\n", ap->id);
5678 rc = ata_bus_probe(ap);
5679 DPRINTK("ata%u: bus probe end\n", ap->id);
5682 /* FIXME: do something useful here?
5683 * Current libata behavior will
5684 * tear down everything when
5685 * the module is removed
5686 * or the h/w is unplugged.
5692 /* probes are done, now scan each port's disk(s) */
5693 DPRINTK("host probe begin\n");
5694 for (i = 0; i < host->n_ports; i++) {
5695 struct ata_port *ap = host->ports[i];
5697 ata_scsi_scan_host(ap);
5700 dev_set_drvdata(dev, host);
5702 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5703 return ent->n_ports; /* success */
5706 free_irq(ent->irq, host);
5708 for (i = 0; i < host->n_ports; i++) {
5709 struct ata_port *ap = host->ports[i];
5711 ap->ops->port_stop(ap);
5712 scsi_host_put(ap->scsi_host);
5717 VPRINTK("EXIT, returning 0\n");
5722 * ata_port_detach - Detach ATA port in prepration of device removal
5723 * @ap: ATA port to be detached
5725 * Detach all ATA devices and the associated SCSI devices of @ap;
5726 * then, remove the associated SCSI host. @ap is guaranteed to
5727 * be quiescent on return from this function.
5730 * Kernel thread context (may sleep).
5732 void ata_port_detach(struct ata_port *ap)
5734 unsigned long flags;
5737 if (!ap->ops->error_handler)
5740 /* tell EH we're leaving & flush EH */
5741 spin_lock_irqsave(ap->lock, flags);
5742 ap->pflags |= ATA_PFLAG_UNLOADING;
5743 spin_unlock_irqrestore(ap->lock, flags);
5745 ata_port_wait_eh(ap);
5747 /* EH is now guaranteed to see UNLOADING, so no new device
5748 * will be attached. Disable all existing devices.
5750 spin_lock_irqsave(ap->lock, flags);
5752 for (i = 0; i < ATA_MAX_DEVICES; i++)
5753 ata_dev_disable(&ap->device[i]);
5755 spin_unlock_irqrestore(ap->lock, flags);
5757 /* Final freeze & EH. All in-flight commands are aborted. EH
5758 * will be skipped and retrials will be terminated with bad
5761 spin_lock_irqsave(ap->lock, flags);
5762 ata_port_freeze(ap); /* won't be thawed */
5763 spin_unlock_irqrestore(ap->lock, flags);
5765 ata_port_wait_eh(ap);
5767 /* Flush hotplug task. The sequence is similar to
5768 * ata_port_flush_task().
5770 flush_workqueue(ata_aux_wq);
5771 cancel_delayed_work(&ap->hotplug_task);
5772 flush_workqueue(ata_aux_wq);
5775 /* remove the associated SCSI host */
5776 scsi_remove_host(ap->scsi_host);
5780 * ata_host_remove - PCI layer callback for device removal
5781 * @host: ATA host set that was removed
5783 * Unregister all objects associated with this host set. Free those
5787 * Inherited from calling layer (may sleep).
5790 void ata_host_remove(struct ata_host *host)
5794 for (i = 0; i < host->n_ports; i++)
5795 ata_port_detach(host->ports[i]);
5797 free_irq(host->irq, host);
5799 free_irq(host->irq2, host);
5801 for (i = 0; i < host->n_ports; i++) {
5802 struct ata_port *ap = host->ports[i];
5804 ata_scsi_release(ap->scsi_host);
5806 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5807 struct ata_ioports *ioaddr = &ap->ioaddr;
5809 /* FIXME: Add -ac IDE pci mods to remove these special cases */
5810 if (ioaddr->cmd_addr == ATA_PRIMARY_CMD)
5811 release_region(ATA_PRIMARY_CMD, 8);
5812 else if (ioaddr->cmd_addr == ATA_SECONDARY_CMD)
5813 release_region(ATA_SECONDARY_CMD, 8);
5816 scsi_host_put(ap->scsi_host);
5819 if (host->ops->host_stop)
5820 host->ops->host_stop(host);
5826 * ata_scsi_release - SCSI layer callback hook for host unload
5827 * @shost: libata host to be unloaded
5829 * Performs all duties necessary to shut down a libata port...
5830 * Kill port kthread, disable port, and release resources.
5833 * Inherited from SCSI layer.
5839 int ata_scsi_release(struct Scsi_Host *shost)
5841 struct ata_port *ap = ata_shost_to_port(shost);
5845 ap->ops->port_disable(ap);
5846 ap->ops->port_stop(ap);
5852 struct ata_probe_ent *
5853 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
5855 struct ata_probe_ent *probe_ent;
5857 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
5859 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
5860 kobject_name(&(dev->kobj)));
5864 INIT_LIST_HEAD(&probe_ent->node);
5865 probe_ent->dev = dev;
5867 probe_ent->sht = port->sht;
5868 probe_ent->port_flags = port->flags;
5869 probe_ent->pio_mask = port->pio_mask;
5870 probe_ent->mwdma_mask = port->mwdma_mask;
5871 probe_ent->udma_mask = port->udma_mask;
5872 probe_ent->port_ops = port->port_ops;
5873 probe_ent->private_data = port->private_data;
5879 * ata_std_ports - initialize ioaddr with standard port offsets.
5880 * @ioaddr: IO address structure to be initialized
5882 * Utility function which initializes data_addr, error_addr,
5883 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5884 * device_addr, status_addr, and command_addr to standard offsets
5885 * relative to cmd_addr.
5887 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5890 void ata_std_ports(struct ata_ioports *ioaddr)
5892 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5893 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5894 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5895 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5896 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5897 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5898 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5899 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5900 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5901 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5907 void ata_pci_host_stop (struct ata_host *host)
5909 struct pci_dev *pdev = to_pci_dev(host->dev);
5911 pci_iounmap(pdev, host->mmio_base);
5915 * ata_pci_remove_one - PCI layer callback for device removal
5916 * @pdev: PCI device that was removed
5918 * PCI layer indicates to libata via this hook that
5919 * hot-unplug or module unload event has occurred.
5920 * Handle this by unregistering all objects associated
5921 * with this PCI device. Free those objects. Then finally
5922 * release PCI resources and disable device.
5925 * Inherited from PCI layer (may sleep).
5928 void ata_pci_remove_one (struct pci_dev *pdev)
5930 struct device *dev = pci_dev_to_dev(pdev);
5931 struct ata_host *host = dev_get_drvdata(dev);
5933 ata_host_remove(host);
5935 pci_release_regions(pdev);
5936 pci_disable_device(pdev);
5937 dev_set_drvdata(dev, NULL);
5940 /* move to PCI subsystem */
5941 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5943 unsigned long tmp = 0;
5945 switch (bits->width) {
5948 pci_read_config_byte(pdev, bits->reg, &tmp8);
5954 pci_read_config_word(pdev, bits->reg, &tmp16);
5960 pci_read_config_dword(pdev, bits->reg, &tmp32);
5971 return (tmp == bits->val) ? 1 : 0;
5974 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
5976 pci_save_state(pdev);
5978 if (mesg.event == PM_EVENT_SUSPEND) {
5979 pci_disable_device(pdev);
5980 pci_set_power_state(pdev, PCI_D3hot);
5984 void ata_pci_device_do_resume(struct pci_dev *pdev)
5986 pci_set_power_state(pdev, PCI_D0);
5987 pci_restore_state(pdev);
5988 pci_enable_device(pdev);
5989 pci_set_master(pdev);
5992 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
5994 struct ata_host *host = dev_get_drvdata(&pdev->dev);
5997 rc = ata_host_suspend(host, mesg);
6001 ata_pci_device_do_suspend(pdev, mesg);
6006 int ata_pci_device_resume(struct pci_dev *pdev)
6008 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6010 ata_pci_device_do_resume(pdev);
6011 ata_host_resume(host);
6014 #endif /* CONFIG_PCI */
6017 static int __init ata_init(void)
6019 ata_probe_timeout *= HZ;
6020 ata_wq = create_workqueue("ata");
6024 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6026 destroy_workqueue(ata_wq);
6030 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6034 static void __exit ata_exit(void)
6036 destroy_workqueue(ata_wq);
6037 destroy_workqueue(ata_aux_wq);
6040 subsys_initcall(ata_init);
6041 module_exit(ata_exit);
6043 static unsigned long ratelimit_time;
6044 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6046 int ata_ratelimit(void)
6049 unsigned long flags;
6051 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6053 if (time_after(jiffies, ratelimit_time)) {
6055 ratelimit_time = jiffies + (HZ/5);
6059 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6065 * ata_wait_register - wait until register value changes
6066 * @reg: IO-mapped register
6067 * @mask: Mask to apply to read register value
6068 * @val: Wait condition
6069 * @interval_msec: polling interval in milliseconds
6070 * @timeout_msec: timeout in milliseconds
6072 * Waiting for some bits of register to change is a common
6073 * operation for ATA controllers. This function reads 32bit LE
6074 * IO-mapped register @reg and tests for the following condition.
6076 * (*@reg & mask) != val
6078 * If the condition is met, it returns; otherwise, the process is
6079 * repeated after @interval_msec until timeout.
6082 * Kernel thread context (may sleep)
6085 * The final register value.
6087 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6088 unsigned long interval_msec,
6089 unsigned long timeout_msec)
6091 unsigned long timeout;
6094 tmp = ioread32(reg);
6096 /* Calculate timeout _after_ the first read to make sure
6097 * preceding writes reach the controller before starting to
6098 * eat away the timeout.
6100 timeout = jiffies + (timeout_msec * HZ) / 1000;
6102 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6103 msleep(interval_msec);
6104 tmp = ioread32(reg);
6113 static void ata_dummy_noret(struct ata_port *ap) { }
6114 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6115 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6117 static u8 ata_dummy_check_status(struct ata_port *ap)
6122 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6124 return AC_ERR_SYSTEM;
6127 const struct ata_port_operations ata_dummy_port_ops = {
6128 .port_disable = ata_port_disable,
6129 .check_status = ata_dummy_check_status,
6130 .check_altstatus = ata_dummy_check_status,
6131 .dev_select = ata_noop_dev_select,
6132 .qc_prep = ata_noop_qc_prep,
6133 .qc_issue = ata_dummy_qc_issue,
6134 .freeze = ata_dummy_noret,
6135 .thaw = ata_dummy_noret,
6136 .error_handler = ata_dummy_noret,
6137 .post_internal_cmd = ata_dummy_qc_noret,
6138 .irq_clear = ata_dummy_noret,
6139 .port_start = ata_dummy_ret0,
6140 .port_stop = ata_dummy_noret,
6144 * libata is essentially a library of internal helper functions for
6145 * low-level ATA host controller drivers. As such, the API/ABI is
6146 * likely to change as new drivers are added and updated.
6147 * Do not depend on ABI/API stability.
6150 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6151 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6152 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6153 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6154 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6155 EXPORT_SYMBOL_GPL(ata_std_ports);
6156 EXPORT_SYMBOL_GPL(ata_host_init);
6157 EXPORT_SYMBOL_GPL(ata_device_add);
6158 EXPORT_SYMBOL_GPL(ata_port_detach);
6159 EXPORT_SYMBOL_GPL(ata_host_remove);
6160 EXPORT_SYMBOL_GPL(ata_sg_init);
6161 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6162 EXPORT_SYMBOL_GPL(ata_hsm_move);
6163 EXPORT_SYMBOL_GPL(ata_qc_complete);
6164 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6165 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6166 EXPORT_SYMBOL_GPL(ata_tf_load);
6167 EXPORT_SYMBOL_GPL(ata_tf_read);
6168 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6169 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6170 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6171 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6172 EXPORT_SYMBOL_GPL(ata_check_status);
6173 EXPORT_SYMBOL_GPL(ata_altstatus);
6174 EXPORT_SYMBOL_GPL(ata_exec_command);
6175 EXPORT_SYMBOL_GPL(ata_port_start);
6176 EXPORT_SYMBOL_GPL(ata_port_stop);
6177 EXPORT_SYMBOL_GPL(ata_host_stop);
6178 EXPORT_SYMBOL_GPL(ata_interrupt);
6179 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
6180 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
6181 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
6182 EXPORT_SYMBOL_GPL(ata_qc_prep);
6183 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6184 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6185 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6186 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6187 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6188 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6189 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6190 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6191 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6192 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6193 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6194 EXPORT_SYMBOL_GPL(ata_port_probe);
6195 EXPORT_SYMBOL_GPL(sata_set_spd);
6196 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6197 EXPORT_SYMBOL_GPL(sata_phy_resume);
6198 EXPORT_SYMBOL_GPL(sata_phy_reset);
6199 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6200 EXPORT_SYMBOL_GPL(ata_bus_reset);
6201 EXPORT_SYMBOL_GPL(ata_std_prereset);
6202 EXPORT_SYMBOL_GPL(ata_std_softreset);
6203 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6204 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6205 EXPORT_SYMBOL_GPL(ata_std_postreset);
6206 EXPORT_SYMBOL_GPL(ata_dev_classify);
6207 EXPORT_SYMBOL_GPL(ata_dev_pair);
6208 EXPORT_SYMBOL_GPL(ata_port_disable);
6209 EXPORT_SYMBOL_GPL(ata_ratelimit);
6210 EXPORT_SYMBOL_GPL(ata_wait_register);
6211 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6212 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6213 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6214 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6215 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6216 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6217 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6218 EXPORT_SYMBOL_GPL(ata_scsi_release);
6219 EXPORT_SYMBOL_GPL(ata_host_intr);
6220 EXPORT_SYMBOL_GPL(sata_scr_valid);
6221 EXPORT_SYMBOL_GPL(sata_scr_read);
6222 EXPORT_SYMBOL_GPL(sata_scr_write);
6223 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6224 EXPORT_SYMBOL_GPL(ata_port_online);
6225 EXPORT_SYMBOL_GPL(ata_port_offline);
6226 EXPORT_SYMBOL_GPL(ata_host_suspend);
6227 EXPORT_SYMBOL_GPL(ata_host_resume);
6228 EXPORT_SYMBOL_GPL(ata_id_string);
6229 EXPORT_SYMBOL_GPL(ata_id_c_string);
6230 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6231 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6233 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6234 EXPORT_SYMBOL_GPL(ata_timing_compute);
6235 EXPORT_SYMBOL_GPL(ata_timing_merge);
6238 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6239 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
6240 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6241 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6242 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6243 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6244 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6245 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6246 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6247 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6248 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6249 #endif /* CONFIG_PCI */
6251 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6252 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6254 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6255 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6256 EXPORT_SYMBOL_GPL(ata_port_abort);
6257 EXPORT_SYMBOL_GPL(ata_port_freeze);
6258 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6259 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6260 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6261 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6262 EXPORT_SYMBOL_GPL(ata_do_eh);