2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (c) 1994 - 1997, 1999, 2000 Ralf Baechle (ralf@gnu.org)
7 * Copyright (c) 1999, 2000 Silicon Graphics, Inc.
12 #include <linux/config.h>
13 #include <linux/compiler.h>
14 #include <linux/types.h>
16 #include <asm/byteorder.h> /* sigh ... */
17 #include <asm/cpu-features.h>
19 #if (_MIPS_SZLONG == 32)
21 #define SZLONG_MASK 31UL
24 #define cpu_to_lelongp(x) cpu_to_le32p((__u32 *) (x))
25 #elif (_MIPS_SZLONG == 64)
27 #define SZLONG_MASK 63UL
30 #define cpu_to_lelongp(x) cpu_to_le64p((__u64 *) (x))
35 #include <asm/interrupt.h>
36 #include <asm/sgidefs.h>
40 * clear_bit() doesn't provide any barrier for the compiler.
42 #define smp_mb__before_clear_bit() smp_mb()
43 #define smp_mb__after_clear_bit() smp_mb()
46 * Only disable interrupt for kernel mode stuff to keep usermode stuff
47 * that dares to use kernel include files alive.
50 #define __bi_flags unsigned long flags
51 #define __bi_local_irq_save(x) local_irq_save(x)
52 #define __bi_local_irq_restore(x) local_irq_restore(x)
55 #define __bi_local_irq_save(x)
56 #define __bi_local_irq_restore(x)
57 #endif /* __KERNEL__ */
60 * set_bit - Atomically set a bit in memory
62 * @addr: the address to start counting from
64 * This function is atomic and may not be reordered. See __set_bit()
65 * if you do not require the atomic guarantees.
66 * Note that @nr may be almost arbitrarily large; this function is not
67 * restricted to acting on a single-word quantity.
69 static inline void set_bit(unsigned long nr, volatile unsigned long *addr)
71 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
74 if (cpu_has_llsc && R10000_LLSC_WAR) {
77 "1: " __LL "%0, %1 # set_bit \n"
82 : "=&r" (temp), "=m" (*m)
83 : "ir" (1UL << (nr & SZLONG_MASK)), "m" (*m));
84 } else if (cpu_has_llsc) {
87 "1: " __LL "%0, %1 # set_bit \n"
92 : "=&r" (temp), "=m" (*m)
93 : "ir" (1UL << (nr & SZLONG_MASK)), "m" (*m));
95 volatile unsigned long *a = addr;
99 a += nr >> SZLONG_LOG;
100 mask = 1UL << (nr & SZLONG_MASK);
101 __bi_local_irq_save(flags);
103 __bi_local_irq_restore(flags);
108 * __set_bit - Set a bit in memory
109 * @nr: the bit to set
110 * @addr: the address to start counting from
112 * Unlike set_bit(), this function is non-atomic and may be reordered.
113 * If it's called on the same region of memory simultaneously, the effect
114 * may be that only one operation succeeds.
116 static inline void __set_bit(unsigned long nr, volatile unsigned long * addr)
118 unsigned long * m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
120 *m |= 1UL << (nr & SZLONG_MASK);
124 * clear_bit - Clears a bit in memory
126 * @addr: Address to start counting from
128 * clear_bit() is atomic and may not be reordered. However, it does
129 * not contain a memory barrier, so if it is used for locking purposes,
130 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
131 * in order to ensure changes are visible on other processors.
133 static inline void clear_bit(unsigned long nr, volatile unsigned long *addr)
135 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
138 if (cpu_has_llsc && R10000_LLSC_WAR) {
139 __asm__ __volatile__(
141 "1: " __LL "%0, %1 # clear_bit \n"
146 : "=&r" (temp), "=m" (*m)
147 : "ir" (~(1UL << (nr & SZLONG_MASK))), "m" (*m));
148 } else if (cpu_has_llsc) {
149 __asm__ __volatile__(
151 "1: " __LL "%0, %1 # clear_bit \n"
156 : "=&r" (temp), "=m" (*m)
157 : "ir" (~(1UL << (nr & SZLONG_MASK))), "m" (*m));
159 volatile unsigned long *a = addr;
163 a += nr >> SZLONG_LOG;
164 mask = 1UL << (nr & SZLONG_MASK);
165 __bi_local_irq_save(flags);
167 __bi_local_irq_restore(flags);
172 * __clear_bit - Clears a bit in memory
174 * @addr: Address to start counting from
176 * Unlike clear_bit(), this function is non-atomic and may be reordered.
177 * If it's called on the same region of memory simultaneously, the effect
178 * may be that only one operation succeeds.
180 static inline void __clear_bit(unsigned long nr, volatile unsigned long * addr)
182 unsigned long * m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
184 *m &= ~(1UL << (nr & SZLONG_MASK));
188 * change_bit - Toggle a bit in memory
190 * @addr: Address to start counting from
192 * change_bit() is atomic and may not be reordered.
193 * Note that @nr may be almost arbitrarily large; this function is not
194 * restricted to acting on a single-word quantity.
196 static inline void change_bit(unsigned long nr, volatile unsigned long *addr)
198 if (cpu_has_llsc && R10000_LLSC_WAR) {
199 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
202 __asm__ __volatile__(
204 "1: " __LL "%0, %1 # change_bit \n"
209 : "=&r" (temp), "=m" (*m)
210 : "ir" (1UL << (nr & SZLONG_MASK)), "m" (*m));
211 } else if (cpu_has_llsc) {
212 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
215 __asm__ __volatile__(
217 "1: " __LL "%0, %1 # change_bit \n"
222 : "=&r" (temp), "=m" (*m)
223 : "ir" (1UL << (nr & SZLONG_MASK)), "m" (*m));
225 volatile unsigned long *a = addr;
229 a += nr >> SZLONG_LOG;
230 mask = 1UL << (nr & SZLONG_MASK);
231 __bi_local_irq_save(flags);
233 __bi_local_irq_restore(flags);
238 * __change_bit - Toggle a bit in memory
239 * @nr: the bit to change
240 * @addr: the address to start counting from
242 * Unlike change_bit(), this function is non-atomic and may be reordered.
243 * If it's called on the same region of memory simultaneously, the effect
244 * may be that only one operation succeeds.
246 static inline void __change_bit(unsigned long nr, volatile unsigned long * addr)
248 unsigned long * m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
250 *m ^= 1UL << (nr & SZLONG_MASK);
254 * test_and_set_bit - Set a bit and return its old value
256 * @addr: Address to count from
258 * This operation is atomic and cannot be reordered.
259 * It also implies a memory barrier.
261 static inline int test_and_set_bit(unsigned long nr,
262 volatile unsigned long *addr)
264 if (cpu_has_llsc && R10000_LLSC_WAR) {
265 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
266 unsigned long temp, res;
268 __asm__ __volatile__(
270 "1: " __LL "%0, %1 # test_and_set_bit \n"
279 : "=&r" (temp), "=m" (*m), "=&r" (res)
280 : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m)
284 } else if (cpu_has_llsc) {
285 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
286 unsigned long temp, res;
288 __asm__ __volatile__(
292 "1: " __LL "%0, %1 # test_and_set_bit \n"
301 : "=&r" (temp), "=m" (*m), "=&r" (res)
302 : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m)
307 volatile unsigned long *a = addr;
312 a += nr >> SZLONG_LOG;
313 mask = 1UL << (nr & SZLONG_MASK);
314 __bi_local_irq_save(flags);
315 retval = (mask & *a) != 0;
317 __bi_local_irq_restore(flags);
324 * __test_and_set_bit - Set a bit and return its old value
326 * @addr: Address to count from
328 * This operation is non-atomic and can be reordered.
329 * If two examples of this operation race, one can appear to succeed
330 * but actually fail. You must protect multiple accesses with a lock.
332 static inline int __test_and_set_bit(unsigned long nr,
333 volatile unsigned long *addr)
335 volatile unsigned long *a = addr;
339 a += nr >> SZLONG_LOG;
340 mask = 1UL << (nr & SZLONG_MASK);
341 retval = (mask & *a) != 0;
348 * test_and_clear_bit - Clear a bit and return its old value
350 * @addr: Address to count from
352 * This operation is atomic and cannot be reordered.
353 * It also implies a memory barrier.
355 static inline int test_and_clear_bit(unsigned long nr,
356 volatile unsigned long *addr)
358 if (cpu_has_llsc && R10000_LLSC_WAR) {
359 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
360 unsigned long temp, res;
362 __asm__ __volatile__(
364 "1: " __LL "%0, %1 # test_and_clear_bit \n"
374 : "=&r" (temp), "=m" (*m), "=&r" (res)
375 : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m)
379 } else if (cpu_has_llsc) {
380 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
381 unsigned long temp, res;
383 __asm__ __volatile__(
387 "1: " __LL "%0, %1 # test_and_clear_bit \n"
397 : "=&r" (temp), "=m" (*m), "=&r" (res)
398 : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m)
403 volatile unsigned long *a = addr;
408 a += nr >> SZLONG_LOG;
409 mask = 1UL << (nr & SZLONG_MASK);
410 __bi_local_irq_save(flags);
411 retval = (mask & *a) != 0;
413 __bi_local_irq_restore(flags);
420 * __test_and_clear_bit - Clear a bit and return its old value
422 * @addr: Address to count from
424 * This operation is non-atomic and can be reordered.
425 * If two examples of this operation race, one can appear to succeed
426 * but actually fail. You must protect multiple accesses with a lock.
428 static inline int __test_and_clear_bit(unsigned long nr,
429 volatile unsigned long * addr)
431 volatile unsigned long *a = addr;
435 a += (nr >> SZLONG_LOG);
436 mask = 1UL << (nr & SZLONG_MASK);
437 retval = ((mask & *a) != 0);
444 * test_and_change_bit - Change a bit and return its old value
446 * @addr: Address to count from
448 * This operation is atomic and cannot be reordered.
449 * It also implies a memory barrier.
451 static inline int test_and_change_bit(unsigned long nr,
452 volatile unsigned long *addr)
454 if (cpu_has_llsc && R10000_LLSC_WAR) {
455 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
456 unsigned long temp, res;
458 __asm__ __volatile__(
460 "1: " __LL "%0, %1 # test_and_change_bit \n"
469 : "=&r" (temp), "=m" (*m), "=&r" (res)
470 : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m)
474 } else if (cpu_has_llsc) {
475 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
476 unsigned long temp, res;
478 __asm__ __volatile__(
482 "1: " __LL "%0, %1 # test_and_change_bit \n"
484 " " __SC "\t%2, %1 \n"
491 : "=&r" (temp), "=m" (*m), "=&r" (res)
492 : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m)
497 volatile unsigned long *a = addr;
498 unsigned long mask, retval;
501 a += nr >> SZLONG_LOG;
502 mask = 1UL << (nr & SZLONG_MASK);
503 __bi_local_irq_save(flags);
504 retval = (mask & *a) != 0;
506 __bi_local_irq_restore(flags);
513 * __test_and_change_bit - Change a bit and return its old value
515 * @addr: Address to count from
517 * This operation is non-atomic and can be reordered.
518 * If two examples of this operation race, one can appear to succeed
519 * but actually fail. You must protect multiple accesses with a lock.
521 static inline int __test_and_change_bit(unsigned long nr,
522 volatile unsigned long *addr)
524 volatile unsigned long *a = addr;
528 a += (nr >> SZLONG_LOG);
529 mask = 1UL << (nr & SZLONG_MASK);
530 retval = ((mask & *a) != 0);
537 #undef __bi_local_irq_save
538 #undef __bi_local_irq_restore
541 * test_bit - Determine whether a bit is set
542 * @nr: bit number to test
543 * @addr: Address to start counting from
545 static inline int test_bit(unsigned long nr, const volatile unsigned long *addr)
547 return 1UL & (addr[nr >> SZLONG_LOG] >> (nr & SZLONG_MASK));
551 * Return the bit position (0..63) of the most significant 1 bit in a word
552 * Returns -1 if no 1 bit exists
554 static inline int __ilog2(unsigned long x)
558 if (sizeof(x) == 4) {
570 BUG_ON(sizeof(x) != 8);
584 * __ffs - find first bit in word.
585 * @word: The word to search
587 * Returns 0..SZLONG-1
588 * Undefined if no bit exists, so code should check against 0 first.
590 static inline unsigned long __ffs(unsigned long word)
592 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
593 return __ilog2(word & -word);
598 s = 16; if (word << 16 != 0) s = 0; b += s; word >>= s;
599 s = 8; if (word << 24 != 0) s = 0; b += s; word >>= s;
600 s = 4; if (word << 28 != 0) s = 0; b += s; word >>= s;
601 s = 2; if (word << 30 != 0) s = 0; b += s; word >>= s;
602 s = 1; if (word << 31 != 0) s = 0; b += s;
607 s = 32; if (word << 32 != 0) s = 0; b += s; word >>= s;
608 s = 16; if (word << 48 != 0) s = 0; b += s; word >>= s;
609 s = 8; if (word << 56 != 0) s = 0; b += s; word >>= s;
610 s = 4; if (word << 60 != 0) s = 0; b += s; word >>= s;
611 s = 2; if (word << 62 != 0) s = 0; b += s; word >>= s;
612 s = 1; if (word << 63 != 0) s = 0; b += s;
620 * ffs - find first bit set.
621 * @word: The word to search
624 * Returns 0 if no bit exists
627 static inline unsigned long ffs(unsigned long word)
632 return __ffs(word) + 1;
636 * ffz - find first zero in word.
637 * @word: The word to search
639 * Undefined if no zero exists, so code should check against ~0UL first.
641 static inline unsigned long ffz(unsigned long word)
643 return __ffs (~word);
647 * flz - find last zero in word.
648 * @word: The word to search
650 * Returns 0..SZLONG-1
651 * Undefined if no zero exists, so code should check against ~0UL first.
653 static inline unsigned long flz(unsigned long word)
655 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
656 return __ilog2(~word);
661 s = 16; if ((word & 0xffff0000)) s = 0; r -= s; word <<= s;
662 s = 8; if ((word & 0xff000000)) s = 0; r -= s; word <<= s;
663 s = 4; if ((word & 0xf0000000)) s = 0; r -= s; word <<= s;
664 s = 2; if ((word & 0xc0000000)) s = 0; r -= s; word <<= s;
665 s = 1; if ((word & 0x80000000)) s = 0; r -= s;
672 s = 32; if ((word & 0xffffffff00000000UL)) s = 0; r -= s; word <<= s;
673 s = 16; if ((word & 0xffff000000000000UL)) s = 0; r -= s; word <<= s;
674 s = 8; if ((word & 0xff00000000000000UL)) s = 0; r -= s; word <<= s;
675 s = 4; if ((word & 0xf000000000000000UL)) s = 0; r -= s; word <<= s;
676 s = 2; if ((word & 0xc000000000000000UL)) s = 0; r -= s; word <<= s;
677 s = 1; if ((word & 0x8000000000000000UL)) s = 0; r -= s;
685 * fls - find last bit set.
686 * @word: The word to search
689 * Returns 0 if no bit exists
691 static inline unsigned long fls(unsigned long word)
696 return flz(~word) + 1;
698 #define fls64(x) generic_fls64(x)
701 * find_next_zero_bit - find the first zero bit in a memory region
702 * @addr: The address to base the search on
703 * @offset: The bitnumber to start searching at
704 * @size: The maximum size to search
706 static inline unsigned long find_next_zero_bit(const unsigned long *addr,
707 unsigned long size, unsigned long offset)
709 const unsigned long *p = addr + (offset >> SZLONG_LOG);
710 unsigned long result = offset & ~SZLONG_MASK;
716 offset &= SZLONG_MASK;
719 tmp |= ~0UL >> (_MIPS_SZLONG-offset);
720 if (size < _MIPS_SZLONG)
724 size -= _MIPS_SZLONG;
725 result += _MIPS_SZLONG;
727 while (size & ~SZLONG_MASK) {
730 result += _MIPS_SZLONG;
731 size -= _MIPS_SZLONG;
739 if (tmp == ~0UL) /* Are any bits zero? */
740 return result + size; /* Nope. */
742 return result + ffz(tmp);
745 #define find_first_zero_bit(addr, size) \
746 find_next_zero_bit((addr), (size), 0)
749 * find_next_bit - find the next set bit in a memory region
750 * @addr: The address to base the search on
751 * @offset: The bitnumber to start searching at
752 * @size: The maximum size to search
754 static inline unsigned long find_next_bit(const unsigned long *addr,
755 unsigned long size, unsigned long offset)
757 const unsigned long *p = addr + (offset >> SZLONG_LOG);
758 unsigned long result = offset & ~SZLONG_MASK;
764 offset &= SZLONG_MASK;
767 tmp &= ~0UL << offset;
768 if (size < _MIPS_SZLONG)
772 size -= _MIPS_SZLONG;
773 result += _MIPS_SZLONG;
775 while (size & ~SZLONG_MASK) {
778 result += _MIPS_SZLONG;
779 size -= _MIPS_SZLONG;
786 tmp &= ~0UL >> (_MIPS_SZLONG - size);
787 if (tmp == 0UL) /* Are any bits set? */
788 return result + size; /* Nope. */
790 return result + __ffs(tmp);
794 * find_first_bit - find the first set bit in a memory region
795 * @addr: The address to start the search at
796 * @size: The maximum size to search
798 * Returns the bit-number of the first set bit, not the number of the byte
801 #define find_first_bit(addr, size) \
802 find_next_bit((addr), (size), 0)
807 * Every architecture must define this function. It's the fastest
808 * way of searching a 140-bit bitmap where the first 100 bits are
809 * unlikely to be set. It's guaranteed that at least one of the 140
812 static inline int sched_find_first_bit(const unsigned long *b)
818 return __ffs(b[1]) + 32;
820 return __ffs(b[2]) + 64;
822 return __ffs(b[3]) + 96;
823 return __ffs(b[4]) + 128;
829 return __ffs(b[1]) + 64;
830 return __ffs(b[2]) + 128;
835 * hweightN - returns the hamming weight of a N-bit word
836 * @x: the word to weigh
838 * The Hamming Weight of a number is the total number of bits set in it.
841 #define hweight64(x) generic_hweight64(x)
842 #define hweight32(x) generic_hweight32(x)
843 #define hweight16(x) generic_hweight16(x)
844 #define hweight8(x) generic_hweight8(x)
846 static inline int __test_and_set_le_bit(unsigned long nr, unsigned long *addr)
848 unsigned char *ADDR = (unsigned char *) addr;
852 mask = 1 << (nr & 0x07);
853 retval = (mask & *ADDR) != 0;
859 static inline int __test_and_clear_le_bit(unsigned long nr, unsigned long *addr)
861 unsigned char *ADDR = (unsigned char *) addr;
865 mask = 1 << (nr & 0x07);
866 retval = (mask & *ADDR) != 0;
872 static inline int test_le_bit(unsigned long nr, const unsigned long * addr)
874 const unsigned char *ADDR = (const unsigned char *) addr;
878 mask = 1 << (nr & 0x07);
880 return ((mask & *ADDR) != 0);
883 static inline unsigned long find_next_zero_le_bit(unsigned long *addr,
884 unsigned long size, unsigned long offset)
886 unsigned long *p = ((unsigned long *) addr) + (offset >> SZLONG_LOG);
887 unsigned long result = offset & ~SZLONG_MASK;
893 offset &= SZLONG_MASK;
895 tmp = cpu_to_lelongp(p++);
896 tmp |= ~0UL >> (_MIPS_SZLONG-offset); /* bug or feature ? */
897 if (size < _MIPS_SZLONG)
901 size -= _MIPS_SZLONG;
902 result += _MIPS_SZLONG;
904 while (size & ~SZLONG_MASK) {
905 if (~(tmp = cpu_to_lelongp(p++)))
907 result += _MIPS_SZLONG;
908 size -= _MIPS_SZLONG;
912 tmp = cpu_to_lelongp(p);
916 if (tmp == ~0UL) /* Are any bits zero? */
917 return result + size; /* Nope. */
920 return result + ffz(tmp);
923 #define find_first_zero_le_bit(addr, size) \
924 find_next_zero_le_bit((addr), (size), 0)
926 #define ext2_set_bit(nr,addr) \
927 __test_and_set_le_bit((nr),(unsigned long*)addr)
928 #define ext2_clear_bit(nr, addr) \
929 __test_and_clear_le_bit((nr),(unsigned long*)addr)
930 #define ext2_set_bit_atomic(lock, nr, addr) \
934 ret = ext2_set_bit((nr), (addr)); \
939 #define ext2_clear_bit_atomic(lock, nr, addr) \
943 ret = ext2_clear_bit((nr), (addr)); \
947 #define ext2_test_bit(nr, addr) test_le_bit((nr),(unsigned long*)addr)
948 #define ext2_find_first_zero_bit(addr, size) \
949 find_first_zero_le_bit((unsigned long*)addr, size)
950 #define ext2_find_next_zero_bit(addr, size, off) \
951 find_next_zero_le_bit((unsigned long*)addr, size, off)
954 * Bitmap functions for the minix filesystem.
956 * FIXME: These assume that Minix uses the native byte/bitorder.
957 * This limits the Minix filesystem's value for data exchange very much.
959 #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
960 #define minix_set_bit(nr,addr) set_bit(nr,addr)
961 #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
962 #define minix_test_bit(nr,addr) test_bit(nr,addr)
963 #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
965 #endif /* __KERNEL__ */
967 #endif /* _ASM_BITOPS_H */