Merge branch 'merge'
[linux-2.6] / arch / powerpc / platforms / iseries / setup.c
1 /*
2  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3  *    Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
4  *
5  *    Description:
6  *      Architecture- / platform-specific boot-time initialization code for
7  *      the IBM iSeries LPAR.  Adapted from original code by Grant Erickson and
8  *      code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
9  *      <dan@net4x.com>.
10  *
11  *      This program is free software; you can redistribute it and/or
12  *      modify it under the terms of the GNU General Public License
13  *      as published by the Free Software Foundation; either version
14  *      2 of the License, or (at your option) any later version.
15  */
16
17 #undef DEBUG
18
19 #include <linux/config.h>
20 #include <linux/init.h>
21 #include <linux/threads.h>
22 #include <linux/smp.h>
23 #include <linux/param.h>
24 #include <linux/string.h>
25 #include <linux/initrd.h>
26 #include <linux/seq_file.h>
27 #include <linux/kdev_t.h>
28 #include <linux/major.h>
29 #include <linux/root_dev.h>
30 #include <linux/kernel.h>
31
32 #include <asm/processor.h>
33 #include <asm/machdep.h>
34 #include <asm/page.h>
35 #include <asm/mmu.h>
36 #include <asm/pgtable.h>
37 #include <asm/mmu_context.h>
38 #include <asm/cputable.h>
39 #include <asm/sections.h>
40 #include <asm/iommu.h>
41 #include <asm/firmware.h>
42 #include <asm/system.h>
43 #include <asm/time.h>
44 #include <asm/paca.h>
45 #include <asm/cache.h>
46 #include <asm/sections.h>
47 #include <asm/abs_addr.h>
48 #include <asm/iseries/hv_lp_config.h>
49 #include <asm/iseries/hv_call_event.h>
50 #include <asm/iseries/hv_call_xm.h>
51 #include <asm/iseries/it_lp_queue.h>
52 #include <asm/iseries/mf.h>
53 #include <asm/iseries/it_exp_vpd_panel.h>
54 #include <asm/iseries/hv_lp_event.h>
55 #include <asm/iseries/lpar_map.h>
56 #include <asm/udbg.h>
57 #include <asm/irq.h>
58
59 #include "naca.h"
60 #include "setup.h"
61 #include "irq.h"
62 #include "vpd_areas.h"
63 #include "processor_vpd.h"
64 #include "main_store.h"
65 #include "call_sm.h"
66 #include "call_hpt.h"
67
68 #ifdef DEBUG
69 #define DBG(fmt...) udbg_printf(fmt)
70 #else
71 #define DBG(fmt...)
72 #endif
73
74 /* Function Prototypes */
75 static unsigned long build_iSeries_Memory_Map(void);
76 static void iseries_shared_idle(void);
77 static void iseries_dedicated_idle(void);
78 #ifdef CONFIG_PCI
79 extern void iSeries_pci_final_fixup(void);
80 #else
81 static void iSeries_pci_final_fixup(void) { }
82 #endif
83
84 extern int rd_size;             /* Defined in drivers/block/rd.c */
85 extern unsigned long embedded_sysmap_start;
86 extern unsigned long embedded_sysmap_end;
87
88 extern unsigned long iSeries_recal_tb;
89 extern unsigned long iSeries_recal_titan;
90
91 static unsigned long cmd_mem_limit;
92
93 struct MemoryBlock {
94         unsigned long absStart;
95         unsigned long absEnd;
96         unsigned long logicalStart;
97         unsigned long logicalEnd;
98 };
99
100 /*
101  * Process the main store vpd to determine where the holes in memory are
102  * and return the number of physical blocks and fill in the array of
103  * block data.
104  */
105 static unsigned long iSeries_process_Condor_mainstore_vpd(
106                 struct MemoryBlock *mb_array, unsigned long max_entries)
107 {
108         unsigned long holeFirstChunk, holeSizeChunks;
109         unsigned long numMemoryBlocks = 1;
110         struct IoHriMainStoreSegment4 *msVpd =
111                 (struct IoHriMainStoreSegment4 *)xMsVpd;
112         unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
113         unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
114         unsigned long holeSize = holeEnd - holeStart;
115
116         printk("Mainstore_VPD: Condor\n");
117         /*
118          * Determine if absolute memory has any
119          * holes so that we can interpret the
120          * access map we get back from the hypervisor
121          * correctly.
122          */
123         mb_array[0].logicalStart = 0;
124         mb_array[0].logicalEnd = 0x100000000;
125         mb_array[0].absStart = 0;
126         mb_array[0].absEnd = 0x100000000;
127
128         if (holeSize) {
129                 numMemoryBlocks = 2;
130                 holeStart = holeStart & 0x000fffffffffffff;
131                 holeStart = addr_to_chunk(holeStart);
132                 holeFirstChunk = holeStart;
133                 holeSize = addr_to_chunk(holeSize);
134                 holeSizeChunks = holeSize;
135                 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
136                                 holeFirstChunk, holeSizeChunks );
137                 mb_array[0].logicalEnd = holeFirstChunk;
138                 mb_array[0].absEnd = holeFirstChunk;
139                 mb_array[1].logicalStart = holeFirstChunk;
140                 mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
141                 mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
142                 mb_array[1].absEnd = 0x100000000;
143         }
144         return numMemoryBlocks;
145 }
146
147 #define MaxSegmentAreas                 32
148 #define MaxSegmentAdrRangeBlocks        128
149 #define MaxAreaRangeBlocks              4
150
151 static unsigned long iSeries_process_Regatta_mainstore_vpd(
152                 struct MemoryBlock *mb_array, unsigned long max_entries)
153 {
154         struct IoHriMainStoreSegment5 *msVpdP =
155                 (struct IoHriMainStoreSegment5 *)xMsVpd;
156         unsigned long numSegmentBlocks = 0;
157         u32 existsBits = msVpdP->msAreaExists;
158         unsigned long area_num;
159
160         printk("Mainstore_VPD: Regatta\n");
161
162         for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
163                 unsigned long numAreaBlocks;
164                 struct IoHriMainStoreArea4 *currentArea;
165
166                 if (existsBits & 0x80000000) {
167                         unsigned long block_num;
168
169                         currentArea = &msVpdP->msAreaArray[area_num];
170                         numAreaBlocks = currentArea->numAdrRangeBlocks;
171                         printk("ms_vpd: processing area %2ld  blocks=%ld",
172                                         area_num, numAreaBlocks);
173                         for (block_num = 0; block_num < numAreaBlocks;
174                                         ++block_num ) {
175                                 /* Process an address range block */
176                                 struct MemoryBlock tempBlock;
177                                 unsigned long i;
178
179                                 tempBlock.absStart =
180                                         (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
181                                 tempBlock.absEnd =
182                                         (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
183                                 tempBlock.logicalStart = 0;
184                                 tempBlock.logicalEnd   = 0;
185                                 printk("\n          block %ld absStart=%016lx absEnd=%016lx",
186                                                 block_num, tempBlock.absStart,
187                                                 tempBlock.absEnd);
188
189                                 for (i = 0; i < numSegmentBlocks; ++i) {
190                                         if (mb_array[i].absStart ==
191                                                         tempBlock.absStart)
192                                                 break;
193                                 }
194                                 if (i == numSegmentBlocks) {
195                                         if (numSegmentBlocks == max_entries)
196                                                 panic("iSeries_process_mainstore_vpd: too many memory blocks");
197                                         mb_array[numSegmentBlocks] = tempBlock;
198                                         ++numSegmentBlocks;
199                                 } else
200                                         printk(" (duplicate)");
201                         }
202                         printk("\n");
203                 }
204                 existsBits <<= 1;
205         }
206         /* Now sort the blocks found into ascending sequence */
207         if (numSegmentBlocks > 1) {
208                 unsigned long m, n;
209
210                 for (m = 0; m < numSegmentBlocks - 1; ++m) {
211                         for (n = numSegmentBlocks - 1; m < n; --n) {
212                                 if (mb_array[n].absStart <
213                                                 mb_array[n-1].absStart) {
214                                         struct MemoryBlock tempBlock;
215
216                                         tempBlock = mb_array[n];
217                                         mb_array[n] = mb_array[n-1];
218                                         mb_array[n-1] = tempBlock;
219                                 }
220                         }
221                 }
222         }
223         /*
224          * Assign "logical" addresses to each block.  These
225          * addresses correspond to the hypervisor "bitmap" space.
226          * Convert all addresses into units of 256K chunks.
227          */
228         {
229         unsigned long i, nextBitmapAddress;
230
231         printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
232         nextBitmapAddress = 0;
233         for (i = 0; i < numSegmentBlocks; ++i) {
234                 unsigned long length = mb_array[i].absEnd -
235                         mb_array[i].absStart;
236
237                 mb_array[i].logicalStart = nextBitmapAddress;
238                 mb_array[i].logicalEnd = nextBitmapAddress + length;
239                 nextBitmapAddress += length;
240                 printk("          Bitmap range: %016lx - %016lx\n"
241                                 "        Absolute range: %016lx - %016lx\n",
242                                 mb_array[i].logicalStart,
243                                 mb_array[i].logicalEnd,
244                                 mb_array[i].absStart, mb_array[i].absEnd);
245                 mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
246                                 0x000fffffffffffff);
247                 mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
248                                 0x000fffffffffffff);
249                 mb_array[i].logicalStart =
250                         addr_to_chunk(mb_array[i].logicalStart);
251                 mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
252         }
253         }
254
255         return numSegmentBlocks;
256 }
257
258 static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
259                 unsigned long max_entries)
260 {
261         unsigned long i;
262         unsigned long mem_blocks = 0;
263
264         if (cpu_has_feature(CPU_FTR_SLB))
265                 mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
266                                 max_entries);
267         else
268                 mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
269                                 max_entries);
270
271         printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
272         for (i = 0; i < mem_blocks; ++i) {
273                 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
274                        "                             abs chunks %016lx - %016lx\n",
275                         i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
276                         mb_array[i].absStart, mb_array[i].absEnd);
277         }
278         return mem_blocks;
279 }
280
281 static void __init iSeries_get_cmdline(void)
282 {
283         char *p, *q;
284
285         /* copy the command line parameter from the primary VSP  */
286         HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
287                         HvLpDma_Direction_RemoteToLocal);
288
289         p = cmd_line;
290         q = cmd_line + 255;
291         while(p < q) {
292                 if (!*p || *p == '\n')
293                         break;
294                 ++p;
295         }
296         *p = 0;
297 }
298
299 static void __init iSeries_init_early(void)
300 {
301         DBG(" -> iSeries_init_early()\n");
302
303         ppc64_interrupt_controller = IC_ISERIES;
304
305 #if defined(CONFIG_BLK_DEV_INITRD)
306         /*
307          * If the init RAM disk has been configured and there is
308          * a non-zero starting address for it, set it up
309          */
310         if (naca.xRamDisk) {
311                 initrd_start = (unsigned long)__va(naca.xRamDisk);
312                 initrd_end = initrd_start + naca.xRamDiskSize * HW_PAGE_SIZE;
313                 initrd_below_start_ok = 1;      // ramdisk in kernel space
314                 ROOT_DEV = Root_RAM0;
315                 if (((rd_size * 1024) / HW_PAGE_SIZE) < naca.xRamDiskSize)
316                         rd_size = (naca.xRamDiskSize * HW_PAGE_SIZE) / 1024;
317         } else
318 #endif /* CONFIG_BLK_DEV_INITRD */
319         {
320             /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
321         }
322
323         iSeries_recal_tb = get_tb();
324         iSeries_recal_titan = HvCallXm_loadTod();
325
326         /*
327          * Initialize the hash table management pointers
328          */
329         hpte_init_iSeries();
330
331         /*
332          * Initialize the DMA/TCE management
333          */
334         iommu_init_early_iSeries();
335
336         /* Initialize machine-dependency vectors */
337 #ifdef CONFIG_SMP
338         smp_init_iSeries();
339 #endif
340
341         /* Associate Lp Event Queue 0 with processor 0 */
342         HvCallEvent_setLpEventQueueInterruptProc(0, 0);
343
344         mf_init();
345
346         /* If we were passed an initrd, set the ROOT_DEV properly if the values
347          * look sensible. If not, clear initrd reference.
348          */
349 #ifdef CONFIG_BLK_DEV_INITRD
350         if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE &&
351             initrd_end > initrd_start)
352                 ROOT_DEV = Root_RAM0;
353         else
354                 initrd_start = initrd_end = 0;
355 #endif /* CONFIG_BLK_DEV_INITRD */
356
357         DBG(" <- iSeries_init_early()\n");
358 }
359
360 struct mschunks_map mschunks_map = {
361         /* XXX We don't use these, but Piranha might need them. */
362         .chunk_size  = MSCHUNKS_CHUNK_SIZE,
363         .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
364         .chunk_mask  = MSCHUNKS_OFFSET_MASK,
365 };
366 EXPORT_SYMBOL(mschunks_map);
367
368 void mschunks_alloc(unsigned long num_chunks)
369 {
370         klimit = _ALIGN(klimit, sizeof(u32));
371         mschunks_map.mapping = (u32 *)klimit;
372         klimit += num_chunks * sizeof(u32);
373         mschunks_map.num_chunks = num_chunks;
374 }
375
376 /*
377  * The iSeries may have very large memories ( > 128 GB ) and a partition
378  * may get memory in "chunks" that may be anywhere in the 2**52 real
379  * address space.  The chunks are 256K in size.  To map this to the
380  * memory model Linux expects, the AS/400 specific code builds a
381  * translation table to translate what Linux thinks are "physical"
382  * addresses to the actual real addresses.  This allows us to make
383  * it appear to Linux that we have contiguous memory starting at
384  * physical address zero while in fact this could be far from the truth.
385  * To avoid confusion, I'll let the words physical and/or real address
386  * apply to the Linux addresses while I'll use "absolute address" to
387  * refer to the actual hardware real address.
388  *
389  * build_iSeries_Memory_Map gets information from the Hypervisor and
390  * looks at the Main Store VPD to determine the absolute addresses
391  * of the memory that has been assigned to our partition and builds
392  * a table used to translate Linux's physical addresses to these
393  * absolute addresses.  Absolute addresses are needed when
394  * communicating with the hypervisor (e.g. to build HPT entries)
395  *
396  * Returns the physical memory size
397  */
398
399 static unsigned long __init build_iSeries_Memory_Map(void)
400 {
401         u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
402         u32 nextPhysChunk;
403         u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
404         u32 totalChunks,moreChunks;
405         u32 currChunk, thisChunk, absChunk;
406         u32 currDword;
407         u32 chunkBit;
408         u64 map;
409         struct MemoryBlock mb[32];
410         unsigned long numMemoryBlocks, curBlock;
411
412         /* Chunk size on iSeries is 256K bytes */
413         totalChunks = (u32)HvLpConfig_getMsChunks();
414         mschunks_alloc(totalChunks);
415
416         /*
417          * Get absolute address of our load area
418          * and map it to physical address 0
419          * This guarantees that the loadarea ends up at physical 0
420          * otherwise, it might not be returned by PLIC as the first
421          * chunks
422          */
423
424         loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
425         loadAreaSize =  itLpNaca.xLoadAreaChunks;
426
427         /*
428          * Only add the pages already mapped here.
429          * Otherwise we might add the hpt pages
430          * The rest of the pages of the load area
431          * aren't in the HPT yet and can still
432          * be assigned an arbitrary physical address
433          */
434         if ((loadAreaSize * 64) > HvPagesToMap)
435                 loadAreaSize = HvPagesToMap / 64;
436
437         loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
438
439         /*
440          * TODO Do we need to do something if the HPT is in the 64MB load area?
441          * This would be required if the itLpNaca.xLoadAreaChunks includes
442          * the HPT size
443          */
444
445         printk("Mapping load area - physical addr = 0000000000000000\n"
446                 "                    absolute addr = %016lx\n",
447                 chunk_to_addr(loadAreaFirstChunk));
448         printk("Load area size %dK\n", loadAreaSize * 256);
449
450         for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
451                 mschunks_map.mapping[nextPhysChunk] =
452                         loadAreaFirstChunk + nextPhysChunk;
453
454         /*
455          * Get absolute address of our HPT and remember it so
456          * we won't map it to any physical address
457          */
458         hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
459         hptSizePages = (u32)HvCallHpt_getHptPages();
460         hptSizeChunks = hptSizePages >>
461                 (MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
462         hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
463
464         printk("HPT absolute addr = %016lx, size = %dK\n",
465                         chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
466
467         /*
468          * Determine if absolute memory has any
469          * holes so that we can interpret the
470          * access map we get back from the hypervisor
471          * correctly.
472          */
473         numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
474
475         /*
476          * Process the main store access map from the hypervisor
477          * to build up our physical -> absolute translation table
478          */
479         curBlock = 0;
480         currChunk = 0;
481         currDword = 0;
482         moreChunks = totalChunks;
483
484         while (moreChunks) {
485                 map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
486                                 currDword);
487                 thisChunk = currChunk;
488                 while (map) {
489                         chunkBit = map >> 63;
490                         map <<= 1;
491                         if (chunkBit) {
492                                 --moreChunks;
493                                 while (thisChunk >= mb[curBlock].logicalEnd) {
494                                         ++curBlock;
495                                         if (curBlock >= numMemoryBlocks)
496                                                 panic("out of memory blocks");
497                                 }
498                                 if (thisChunk < mb[curBlock].logicalStart)
499                                         panic("memory block error");
500
501                                 absChunk = mb[curBlock].absStart +
502                                         (thisChunk - mb[curBlock].logicalStart);
503                                 if (((absChunk < hptFirstChunk) ||
504                                      (absChunk > hptLastChunk)) &&
505                                     ((absChunk < loadAreaFirstChunk) ||
506                                      (absChunk > loadAreaLastChunk))) {
507                                         mschunks_map.mapping[nextPhysChunk] =
508                                                 absChunk;
509                                         ++nextPhysChunk;
510                                 }
511                         }
512                         ++thisChunk;
513                 }
514                 ++currDword;
515                 currChunk += 64;
516         }
517
518         /*
519          * main store size (in chunks) is
520          *   totalChunks - hptSizeChunks
521          * which should be equal to
522          *   nextPhysChunk
523          */
524         return chunk_to_addr(nextPhysChunk);
525 }
526
527 /*
528  * Document me.
529  */
530 static void __init iSeries_setup_arch(void)
531 {
532         if (get_lppaca()->shared_proc) {
533                 ppc_md.idle_loop = iseries_shared_idle;
534                 printk(KERN_DEBUG "Using shared processor idle loop\n");
535         } else {
536                 ppc_md.idle_loop = iseries_dedicated_idle;
537                 printk(KERN_DEBUG "Using dedicated idle loop\n");
538         }
539
540         /* Setup the Lp Event Queue */
541         setup_hvlpevent_queue();
542
543         printk("Max  logical processors = %d\n",
544                         itVpdAreas.xSlicMaxLogicalProcs);
545         printk("Max physical processors = %d\n",
546                         itVpdAreas.xSlicMaxPhysicalProcs);
547 }
548
549 static void iSeries_show_cpuinfo(struct seq_file *m)
550 {
551         seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
552 }
553
554 static void __init iSeries_progress(char * st, unsigned short code)
555 {
556         printk("Progress: [%04x] - %s\n", (unsigned)code, st);
557         mf_display_progress(code);
558 }
559
560 static void __init iSeries_fixup_klimit(void)
561 {
562         /*
563          * Change klimit to take into account any ram disk
564          * that may be included
565          */
566         if (naca.xRamDisk)
567                 klimit = KERNELBASE + (u64)naca.xRamDisk +
568                         (naca.xRamDiskSize * HW_PAGE_SIZE);
569         else {
570                 /*
571                  * No ram disk was included - check and see if there
572                  * was an embedded system map.  Change klimit to take
573                  * into account any embedded system map
574                  */
575                 if (embedded_sysmap_end)
576                         klimit = KERNELBASE + ((embedded_sysmap_end + 4095) &
577                                         0xfffffffffffff000);
578         }
579 }
580
581 static int __init iSeries_src_init(void)
582 {
583         /* clear the progress line */
584         ppc_md.progress(" ", 0xffff);
585         return 0;
586 }
587
588 late_initcall(iSeries_src_init);
589
590 static inline void process_iSeries_events(void)
591 {
592         asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
593 }
594
595 static void yield_shared_processor(void)
596 {
597         unsigned long tb;
598
599         HvCall_setEnabledInterrupts(HvCall_MaskIPI |
600                                     HvCall_MaskLpEvent |
601                                     HvCall_MaskLpProd |
602                                     HvCall_MaskTimeout);
603
604         tb = get_tb();
605         /* Compute future tb value when yield should expire */
606         HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
607
608         /*
609          * The decrementer stops during the yield.  Force a fake decrementer
610          * here and let the timer_interrupt code sort out the actual time.
611          */
612         get_lppaca()->int_dword.fields.decr_int = 1;
613         ppc64_runlatch_on();
614         process_iSeries_events();
615 }
616
617 static void iseries_shared_idle(void)
618 {
619         while (1) {
620                 while (!need_resched() && !hvlpevent_is_pending()) {
621                         local_irq_disable();
622                         ppc64_runlatch_off();
623
624                         /* Recheck with irqs off */
625                         if (!need_resched() && !hvlpevent_is_pending())
626                                 yield_shared_processor();
627
628                         HMT_medium();
629                         local_irq_enable();
630                 }
631
632                 ppc64_runlatch_on();
633
634                 if (hvlpevent_is_pending())
635                         process_iSeries_events();
636
637                 preempt_enable_no_resched();
638                 schedule();
639                 preempt_disable();
640         }
641 }
642
643 static void iseries_dedicated_idle(void)
644 {
645         set_thread_flag(TIF_POLLING_NRFLAG);
646
647         while (1) {
648                 if (!need_resched()) {
649                         while (!need_resched()) {
650                                 ppc64_runlatch_off();
651                                 HMT_low();
652
653                                 if (hvlpevent_is_pending()) {
654                                         HMT_medium();
655                                         ppc64_runlatch_on();
656                                         process_iSeries_events();
657                                 }
658                         }
659
660                         HMT_medium();
661                 }
662
663                 ppc64_runlatch_on();
664                 preempt_enable_no_resched();
665                 schedule();
666                 preempt_disable();
667         }
668 }
669
670 #ifndef CONFIG_PCI
671 void __init iSeries_init_IRQ(void) { }
672 #endif
673
674 static int __init iseries_probe(void)
675 {
676         unsigned long root = of_get_flat_dt_root();
677         if (!of_flat_dt_is_compatible(root, "IBM,iSeries"))
678                 return 0;
679
680         powerpc_firmware_features |= FW_FEATURE_ISERIES;
681         powerpc_firmware_features |= FW_FEATURE_LPAR;
682
683         /*
684          * The Hypervisor only allows us up to 256 interrupt
685          * sources (the irq number is passed in a u8).
686          */
687         virt_irq_max = 255;
688
689         return 1;
690 }
691
692 define_machine(iseries) {
693         .name           = "iSeries",
694         .setup_arch     = iSeries_setup_arch,
695         .show_cpuinfo   = iSeries_show_cpuinfo,
696         .init_IRQ       = iSeries_init_IRQ,
697         .get_irq        = iSeries_get_irq,
698         .init_early     = iSeries_init_early,
699         .pcibios_fixup  = iSeries_pci_final_fixup,
700         .restart        = mf_reboot,
701         .power_off      = mf_power_off,
702         .halt           = mf_power_off,
703         .get_boot_time  = iSeries_get_boot_time,
704         .set_rtc_time   = iSeries_set_rtc_time,
705         .get_rtc_time   = iSeries_get_rtc_time,
706         .calibrate_decr = generic_calibrate_decr,
707         .progress       = iSeries_progress,
708         .probe          = iseries_probe,
709         /* XXX Implement enable_pmcs for iSeries */
710 };
711
712 struct blob {
713         unsigned char data[PAGE_SIZE];
714         unsigned long next;
715 };
716
717 struct iseries_flat_dt {
718         struct boot_param_header header;
719         u64 reserve_map[2];
720         struct blob dt;
721         struct blob strings;
722 };
723
724 struct iseries_flat_dt iseries_dt;
725
726 void dt_init(struct iseries_flat_dt *dt)
727 {
728         dt->header.off_mem_rsvmap =
729                 offsetof(struct iseries_flat_dt, reserve_map);
730         dt->header.off_dt_struct = offsetof(struct iseries_flat_dt, dt);
731         dt->header.off_dt_strings = offsetof(struct iseries_flat_dt, strings);
732         dt->header.totalsize = sizeof(struct iseries_flat_dt);
733         dt->header.dt_strings_size = sizeof(struct blob);
734
735         /* There is no notion of hardware cpu id on iSeries */
736         dt->header.boot_cpuid_phys = smp_processor_id();
737
738         dt->dt.next = (unsigned long)&dt->dt.data;
739         dt->strings.next = (unsigned long)&dt->strings.data;
740
741         dt->header.magic = OF_DT_HEADER;
742         dt->header.version = 0x10;
743         dt->header.last_comp_version = 0x10;
744
745         dt->reserve_map[0] = 0;
746         dt->reserve_map[1] = 0;
747 }
748
749 void dt_check_blob(struct blob *b)
750 {
751         if (b->next >= (unsigned long)&b->next) {
752                 DBG("Ran out of space in flat device tree blob!\n");
753                 BUG();
754         }
755 }
756
757 void dt_push_u32(struct iseries_flat_dt *dt, u32 value)
758 {
759         *((u32*)dt->dt.next) = value;
760         dt->dt.next += sizeof(u32);
761
762         dt_check_blob(&dt->dt);
763 }
764
765 void dt_push_u64(struct iseries_flat_dt *dt, u64 value)
766 {
767         *((u64*)dt->dt.next) = value;
768         dt->dt.next += sizeof(u64);
769
770         dt_check_blob(&dt->dt);
771 }
772
773 unsigned long dt_push_bytes(struct blob *blob, char *data, int len)
774 {
775         unsigned long start = blob->next - (unsigned long)blob->data;
776
777         memcpy((char *)blob->next, data, len);
778         blob->next = _ALIGN(blob->next + len, 4);
779
780         dt_check_blob(blob);
781
782         return start;
783 }
784
785 void dt_start_node(struct iseries_flat_dt *dt, char *name)
786 {
787         dt_push_u32(dt, OF_DT_BEGIN_NODE);
788         dt_push_bytes(&dt->dt, name, strlen(name) + 1);
789 }
790
791 #define dt_end_node(dt) dt_push_u32(dt, OF_DT_END_NODE)
792
793 void dt_prop(struct iseries_flat_dt *dt, char *name, char *data, int len)
794 {
795         unsigned long offset;
796
797         dt_push_u32(dt, OF_DT_PROP);
798
799         /* Length of the data */
800         dt_push_u32(dt, len);
801
802         /* Put the property name in the string blob. */
803         offset = dt_push_bytes(&dt->strings, name, strlen(name) + 1);
804
805         /* The offset of the properties name in the string blob. */
806         dt_push_u32(dt, (u32)offset);
807
808         /* The actual data. */
809         dt_push_bytes(&dt->dt, data, len);
810 }
811
812 void dt_prop_str(struct iseries_flat_dt *dt, char *name, char *data)
813 {
814         dt_prop(dt, name, data, strlen(data) + 1); /* + 1 for NULL */
815 }
816
817 void dt_prop_u32(struct iseries_flat_dt *dt, char *name, u32 data)
818 {
819         dt_prop(dt, name, (char *)&data, sizeof(u32));
820 }
821
822 void dt_prop_u64(struct iseries_flat_dt *dt, char *name, u64 data)
823 {
824         dt_prop(dt, name, (char *)&data, sizeof(u64));
825 }
826
827 void dt_prop_u64_list(struct iseries_flat_dt *dt, char *name, u64 *data, int n)
828 {
829         dt_prop(dt, name, (char *)data, sizeof(u64) * n);
830 }
831
832 void dt_prop_u32_list(struct iseries_flat_dt *dt, char *name, u32 *data, int n)
833 {
834         dt_prop(dt, name, (char *)data, sizeof(u32) * n);
835 }
836
837 void dt_prop_empty(struct iseries_flat_dt *dt, char *name)
838 {
839         dt_prop(dt, name, NULL, 0);
840 }
841
842 void dt_cpus(struct iseries_flat_dt *dt)
843 {
844         unsigned char buf[32];
845         unsigned char *p;
846         unsigned int i, index;
847         struct IoHriProcessorVpd *d;
848         u32 pft_size[2];
849
850         /* yuck */
851         snprintf(buf, 32, "PowerPC,%s", cur_cpu_spec->cpu_name);
852         p = strchr(buf, ' ');
853         if (!p) p = buf + strlen(buf);
854
855         dt_start_node(dt, "cpus");
856         dt_prop_u32(dt, "#address-cells", 1);
857         dt_prop_u32(dt, "#size-cells", 0);
858
859         pft_size[0] = 0; /* NUMA CEC cookie, 0 for non NUMA  */
860         pft_size[1] = __ilog2(HvCallHpt_getHptPages() * HW_PAGE_SIZE);
861
862         for (i = 0; i < NR_CPUS; i++) {
863                 if (lppaca[i].dyn_proc_status >= 2)
864                         continue;
865
866                 snprintf(p, 32 - (p - buf), "@%d", i);
867                 dt_start_node(dt, buf);
868
869                 dt_prop_str(dt, "device_type", "cpu");
870
871                 index = lppaca[i].dyn_hv_phys_proc_index;
872                 d = &xIoHriProcessorVpd[index];
873
874                 dt_prop_u32(dt, "i-cache-size", d->xInstCacheSize * 1024);
875                 dt_prop_u32(dt, "i-cache-line-size", d->xInstCacheOperandSize);
876
877                 dt_prop_u32(dt, "d-cache-size", d->xDataL1CacheSizeKB * 1024);
878                 dt_prop_u32(dt, "d-cache-line-size", d->xDataCacheOperandSize);
879
880                 /* magic conversions to Hz copied from old code */
881                 dt_prop_u32(dt, "clock-frequency",
882                         ((1UL << 34) * 1000000) / d->xProcFreq);
883                 dt_prop_u32(dt, "timebase-frequency",
884                         ((1UL << 32) * 1000000) / d->xTimeBaseFreq);
885
886                 dt_prop_u32(dt, "reg", i);
887
888                 dt_prop_u32_list(dt, "ibm,pft-size", pft_size, 2);
889
890                 dt_end_node(dt);
891         }
892
893         dt_end_node(dt);
894 }
895
896 void dt_model(struct iseries_flat_dt *dt)
897 {
898         char buf[16] = "IBM,";
899
900         /* "IBM," + mfgId[2:3] + systemSerial[1:5] */
901         strne2a(buf + 4, xItExtVpdPanel.mfgID + 2, 2);
902         strne2a(buf + 6, xItExtVpdPanel.systemSerial + 1, 5);
903         buf[11] = '\0';
904         dt_prop_str(dt, "system-id", buf);
905
906         /* "IBM," + machineType[0:4] */
907         strne2a(buf + 4, xItExtVpdPanel.machineType, 4);
908         buf[8] = '\0';
909         dt_prop_str(dt, "model", buf);
910
911         dt_prop_str(dt, "compatible", "IBM,iSeries");
912 }
913
914 void build_flat_dt(struct iseries_flat_dt *dt, unsigned long phys_mem_size)
915 {
916         u64 tmp[2];
917
918         dt_init(dt);
919
920         dt_start_node(dt, "");
921
922         dt_prop_u32(dt, "#address-cells", 2);
923         dt_prop_u32(dt, "#size-cells", 2);
924         dt_model(dt);
925
926         /* /memory */
927         dt_start_node(dt, "memory@0");
928         dt_prop_str(dt, "name", "memory");
929         dt_prop_str(dt, "device_type", "memory");
930         tmp[0] = 0;
931         tmp[1] = phys_mem_size;
932         dt_prop_u64_list(dt, "reg", tmp, 2);
933         dt_end_node(dt);
934
935         /* /chosen */
936         dt_start_node(dt, "chosen");
937         dt_prop_str(dt, "bootargs", cmd_line);
938         if (cmd_mem_limit)
939                 dt_prop_u64(dt, "linux,memory-limit", cmd_mem_limit);
940         dt_end_node(dt);
941
942         dt_cpus(dt);
943
944         dt_end_node(dt);
945
946         dt_push_u32(dt, OF_DT_END);
947 }
948
949 void * __init iSeries_early_setup(void)
950 {
951         unsigned long phys_mem_size;
952
953         iSeries_fixup_klimit();
954
955         /*
956          * Initialize the table which translate Linux physical addresses to
957          * AS/400 absolute addresses
958          */
959         phys_mem_size = build_iSeries_Memory_Map();
960
961         iSeries_get_cmdline();
962
963         /* Save unparsed command line copy for /proc/cmdline */
964         strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
965
966         /* Parse early parameters, in particular mem=x */
967         parse_early_param();
968
969         build_flat_dt(&iseries_dt, phys_mem_size);
970
971         return (void *) __pa(&iseries_dt);
972 }
973
974 /*
975  * On iSeries we just parse the mem=X option from the command line.
976  * On pSeries it's a bit more complicated, see prom_init_mem()
977  */
978 static int __init early_parsemem(char *p)
979 {
980         if (p)
981                 cmd_mem_limit = ALIGN(memparse(p, &p), PAGE_SIZE);
982         return 0;
983 }
984 early_param("mem", early_parsemem);
985
986 static void hvputc(char c)
987 {
988         if (c == '\n')
989                 hvputc('\r');
990
991         HvCall_writeLogBuffer(&c, 1);
992 }
993
994 void __init udbg_init_iseries(void)
995 {
996         udbg_putc = hvputc;
997 }