2 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3 * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
6 * Architecture- / platform-specific boot-time initialization code for
7 * the IBM iSeries LPAR. Adapted from original code by Grant Erickson and
8 * code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
19 #include <linux/config.h>
20 #include <linux/init.h>
21 #include <linux/threads.h>
22 #include <linux/smp.h>
23 #include <linux/param.h>
24 #include <linux/string.h>
25 #include <linux/initrd.h>
26 #include <linux/seq_file.h>
27 #include <linux/kdev_t.h>
28 #include <linux/major.h>
29 #include <linux/root_dev.h>
30 #include <linux/kernel.h>
32 #include <asm/processor.h>
33 #include <asm/machdep.h>
36 #include <asm/pgtable.h>
37 #include <asm/mmu_context.h>
38 #include <asm/cputable.h>
39 #include <asm/sections.h>
40 #include <asm/iommu.h>
41 #include <asm/firmware.h>
42 #include <asm/system.h>
45 #include <asm/cache.h>
46 #include <asm/sections.h>
47 #include <asm/abs_addr.h>
48 #include <asm/iseries/hv_lp_config.h>
49 #include <asm/iseries/hv_call_event.h>
50 #include <asm/iseries/hv_call_xm.h>
51 #include <asm/iseries/it_lp_queue.h>
52 #include <asm/iseries/mf.h>
53 #include <asm/iseries/it_exp_vpd_panel.h>
54 #include <asm/iseries/hv_lp_event.h>
55 #include <asm/iseries/lpar_map.h>
62 #include "vpd_areas.h"
63 #include "processor_vpd.h"
64 #include "main_store.h"
69 #define DBG(fmt...) udbg_printf(fmt)
74 /* Function Prototypes */
75 static unsigned long build_iSeries_Memory_Map(void);
76 static void iseries_shared_idle(void);
77 static void iseries_dedicated_idle(void);
79 extern void iSeries_pci_final_fixup(void);
81 static void iSeries_pci_final_fixup(void) { }
84 extern int rd_size; /* Defined in drivers/block/rd.c */
85 extern unsigned long embedded_sysmap_start;
86 extern unsigned long embedded_sysmap_end;
88 extern unsigned long iSeries_recal_tb;
89 extern unsigned long iSeries_recal_titan;
91 static unsigned long cmd_mem_limit;
94 unsigned long absStart;
96 unsigned long logicalStart;
97 unsigned long logicalEnd;
101 * Process the main store vpd to determine where the holes in memory are
102 * and return the number of physical blocks and fill in the array of
105 static unsigned long iSeries_process_Condor_mainstore_vpd(
106 struct MemoryBlock *mb_array, unsigned long max_entries)
108 unsigned long holeFirstChunk, holeSizeChunks;
109 unsigned long numMemoryBlocks = 1;
110 struct IoHriMainStoreSegment4 *msVpd =
111 (struct IoHriMainStoreSegment4 *)xMsVpd;
112 unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
113 unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
114 unsigned long holeSize = holeEnd - holeStart;
116 printk("Mainstore_VPD: Condor\n");
118 * Determine if absolute memory has any
119 * holes so that we can interpret the
120 * access map we get back from the hypervisor
123 mb_array[0].logicalStart = 0;
124 mb_array[0].logicalEnd = 0x100000000;
125 mb_array[0].absStart = 0;
126 mb_array[0].absEnd = 0x100000000;
130 holeStart = holeStart & 0x000fffffffffffff;
131 holeStart = addr_to_chunk(holeStart);
132 holeFirstChunk = holeStart;
133 holeSize = addr_to_chunk(holeSize);
134 holeSizeChunks = holeSize;
135 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
136 holeFirstChunk, holeSizeChunks );
137 mb_array[0].logicalEnd = holeFirstChunk;
138 mb_array[0].absEnd = holeFirstChunk;
139 mb_array[1].logicalStart = holeFirstChunk;
140 mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
141 mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
142 mb_array[1].absEnd = 0x100000000;
144 return numMemoryBlocks;
147 #define MaxSegmentAreas 32
148 #define MaxSegmentAdrRangeBlocks 128
149 #define MaxAreaRangeBlocks 4
151 static unsigned long iSeries_process_Regatta_mainstore_vpd(
152 struct MemoryBlock *mb_array, unsigned long max_entries)
154 struct IoHriMainStoreSegment5 *msVpdP =
155 (struct IoHriMainStoreSegment5 *)xMsVpd;
156 unsigned long numSegmentBlocks = 0;
157 u32 existsBits = msVpdP->msAreaExists;
158 unsigned long area_num;
160 printk("Mainstore_VPD: Regatta\n");
162 for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
163 unsigned long numAreaBlocks;
164 struct IoHriMainStoreArea4 *currentArea;
166 if (existsBits & 0x80000000) {
167 unsigned long block_num;
169 currentArea = &msVpdP->msAreaArray[area_num];
170 numAreaBlocks = currentArea->numAdrRangeBlocks;
171 printk("ms_vpd: processing area %2ld blocks=%ld",
172 area_num, numAreaBlocks);
173 for (block_num = 0; block_num < numAreaBlocks;
175 /* Process an address range block */
176 struct MemoryBlock tempBlock;
180 (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
182 (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
183 tempBlock.logicalStart = 0;
184 tempBlock.logicalEnd = 0;
185 printk("\n block %ld absStart=%016lx absEnd=%016lx",
186 block_num, tempBlock.absStart,
189 for (i = 0; i < numSegmentBlocks; ++i) {
190 if (mb_array[i].absStart ==
194 if (i == numSegmentBlocks) {
195 if (numSegmentBlocks == max_entries)
196 panic("iSeries_process_mainstore_vpd: too many memory blocks");
197 mb_array[numSegmentBlocks] = tempBlock;
200 printk(" (duplicate)");
206 /* Now sort the blocks found into ascending sequence */
207 if (numSegmentBlocks > 1) {
210 for (m = 0; m < numSegmentBlocks - 1; ++m) {
211 for (n = numSegmentBlocks - 1; m < n; --n) {
212 if (mb_array[n].absStart <
213 mb_array[n-1].absStart) {
214 struct MemoryBlock tempBlock;
216 tempBlock = mb_array[n];
217 mb_array[n] = mb_array[n-1];
218 mb_array[n-1] = tempBlock;
224 * Assign "logical" addresses to each block. These
225 * addresses correspond to the hypervisor "bitmap" space.
226 * Convert all addresses into units of 256K chunks.
229 unsigned long i, nextBitmapAddress;
231 printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
232 nextBitmapAddress = 0;
233 for (i = 0; i < numSegmentBlocks; ++i) {
234 unsigned long length = mb_array[i].absEnd -
235 mb_array[i].absStart;
237 mb_array[i].logicalStart = nextBitmapAddress;
238 mb_array[i].logicalEnd = nextBitmapAddress + length;
239 nextBitmapAddress += length;
240 printk(" Bitmap range: %016lx - %016lx\n"
241 " Absolute range: %016lx - %016lx\n",
242 mb_array[i].logicalStart,
243 mb_array[i].logicalEnd,
244 mb_array[i].absStart, mb_array[i].absEnd);
245 mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
247 mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
249 mb_array[i].logicalStart =
250 addr_to_chunk(mb_array[i].logicalStart);
251 mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
255 return numSegmentBlocks;
258 static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
259 unsigned long max_entries)
262 unsigned long mem_blocks = 0;
264 if (cpu_has_feature(CPU_FTR_SLB))
265 mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
268 mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
271 printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
272 for (i = 0; i < mem_blocks; ++i) {
273 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
274 " abs chunks %016lx - %016lx\n",
275 i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
276 mb_array[i].absStart, mb_array[i].absEnd);
281 static void __init iSeries_get_cmdline(void)
285 /* copy the command line parameter from the primary VSP */
286 HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
287 HvLpDma_Direction_RemoteToLocal);
292 if (!*p || *p == '\n')
299 static void __init iSeries_init_early(void)
301 DBG(" -> iSeries_init_early()\n");
303 ppc64_interrupt_controller = IC_ISERIES;
305 #if defined(CONFIG_BLK_DEV_INITRD)
307 * If the init RAM disk has been configured and there is
308 * a non-zero starting address for it, set it up
311 initrd_start = (unsigned long)__va(naca.xRamDisk);
312 initrd_end = initrd_start + naca.xRamDiskSize * HW_PAGE_SIZE;
313 initrd_below_start_ok = 1; // ramdisk in kernel space
314 ROOT_DEV = Root_RAM0;
315 if (((rd_size * 1024) / HW_PAGE_SIZE) < naca.xRamDiskSize)
316 rd_size = (naca.xRamDiskSize * HW_PAGE_SIZE) / 1024;
318 #endif /* CONFIG_BLK_DEV_INITRD */
320 /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
323 iSeries_recal_tb = get_tb();
324 iSeries_recal_titan = HvCallXm_loadTod();
327 * Initialize the hash table management pointers
332 * Initialize the DMA/TCE management
334 iommu_init_early_iSeries();
336 /* Initialize machine-dependency vectors */
341 /* Associate Lp Event Queue 0 with processor 0 */
342 HvCallEvent_setLpEventQueueInterruptProc(0, 0);
346 /* If we were passed an initrd, set the ROOT_DEV properly if the values
347 * look sensible. If not, clear initrd reference.
349 #ifdef CONFIG_BLK_DEV_INITRD
350 if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE &&
351 initrd_end > initrd_start)
352 ROOT_DEV = Root_RAM0;
354 initrd_start = initrd_end = 0;
355 #endif /* CONFIG_BLK_DEV_INITRD */
357 DBG(" <- iSeries_init_early()\n");
360 struct mschunks_map mschunks_map = {
361 /* XXX We don't use these, but Piranha might need them. */
362 .chunk_size = MSCHUNKS_CHUNK_SIZE,
363 .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
364 .chunk_mask = MSCHUNKS_OFFSET_MASK,
366 EXPORT_SYMBOL(mschunks_map);
368 void mschunks_alloc(unsigned long num_chunks)
370 klimit = _ALIGN(klimit, sizeof(u32));
371 mschunks_map.mapping = (u32 *)klimit;
372 klimit += num_chunks * sizeof(u32);
373 mschunks_map.num_chunks = num_chunks;
377 * The iSeries may have very large memories ( > 128 GB ) and a partition
378 * may get memory in "chunks" that may be anywhere in the 2**52 real
379 * address space. The chunks are 256K in size. To map this to the
380 * memory model Linux expects, the AS/400 specific code builds a
381 * translation table to translate what Linux thinks are "physical"
382 * addresses to the actual real addresses. This allows us to make
383 * it appear to Linux that we have contiguous memory starting at
384 * physical address zero while in fact this could be far from the truth.
385 * To avoid confusion, I'll let the words physical and/or real address
386 * apply to the Linux addresses while I'll use "absolute address" to
387 * refer to the actual hardware real address.
389 * build_iSeries_Memory_Map gets information from the Hypervisor and
390 * looks at the Main Store VPD to determine the absolute addresses
391 * of the memory that has been assigned to our partition and builds
392 * a table used to translate Linux's physical addresses to these
393 * absolute addresses. Absolute addresses are needed when
394 * communicating with the hypervisor (e.g. to build HPT entries)
396 * Returns the physical memory size
399 static unsigned long __init build_iSeries_Memory_Map(void)
401 u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
403 u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
404 u32 totalChunks,moreChunks;
405 u32 currChunk, thisChunk, absChunk;
409 struct MemoryBlock mb[32];
410 unsigned long numMemoryBlocks, curBlock;
412 /* Chunk size on iSeries is 256K bytes */
413 totalChunks = (u32)HvLpConfig_getMsChunks();
414 mschunks_alloc(totalChunks);
417 * Get absolute address of our load area
418 * and map it to physical address 0
419 * This guarantees that the loadarea ends up at physical 0
420 * otherwise, it might not be returned by PLIC as the first
424 loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
425 loadAreaSize = itLpNaca.xLoadAreaChunks;
428 * Only add the pages already mapped here.
429 * Otherwise we might add the hpt pages
430 * The rest of the pages of the load area
431 * aren't in the HPT yet and can still
432 * be assigned an arbitrary physical address
434 if ((loadAreaSize * 64) > HvPagesToMap)
435 loadAreaSize = HvPagesToMap / 64;
437 loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
440 * TODO Do we need to do something if the HPT is in the 64MB load area?
441 * This would be required if the itLpNaca.xLoadAreaChunks includes
445 printk("Mapping load area - physical addr = 0000000000000000\n"
446 " absolute addr = %016lx\n",
447 chunk_to_addr(loadAreaFirstChunk));
448 printk("Load area size %dK\n", loadAreaSize * 256);
450 for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
451 mschunks_map.mapping[nextPhysChunk] =
452 loadAreaFirstChunk + nextPhysChunk;
455 * Get absolute address of our HPT and remember it so
456 * we won't map it to any physical address
458 hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
459 hptSizePages = (u32)HvCallHpt_getHptPages();
460 hptSizeChunks = hptSizePages >>
461 (MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
462 hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
464 printk("HPT absolute addr = %016lx, size = %dK\n",
465 chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
468 * Determine if absolute memory has any
469 * holes so that we can interpret the
470 * access map we get back from the hypervisor
473 numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
476 * Process the main store access map from the hypervisor
477 * to build up our physical -> absolute translation table
482 moreChunks = totalChunks;
485 map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
487 thisChunk = currChunk;
489 chunkBit = map >> 63;
493 while (thisChunk >= mb[curBlock].logicalEnd) {
495 if (curBlock >= numMemoryBlocks)
496 panic("out of memory blocks");
498 if (thisChunk < mb[curBlock].logicalStart)
499 panic("memory block error");
501 absChunk = mb[curBlock].absStart +
502 (thisChunk - mb[curBlock].logicalStart);
503 if (((absChunk < hptFirstChunk) ||
504 (absChunk > hptLastChunk)) &&
505 ((absChunk < loadAreaFirstChunk) ||
506 (absChunk > loadAreaLastChunk))) {
507 mschunks_map.mapping[nextPhysChunk] =
519 * main store size (in chunks) is
520 * totalChunks - hptSizeChunks
521 * which should be equal to
524 return chunk_to_addr(nextPhysChunk);
530 static void __init iSeries_setup_arch(void)
532 if (get_lppaca()->shared_proc) {
533 ppc_md.idle_loop = iseries_shared_idle;
534 printk(KERN_DEBUG "Using shared processor idle loop\n");
536 ppc_md.idle_loop = iseries_dedicated_idle;
537 printk(KERN_DEBUG "Using dedicated idle loop\n");
540 /* Setup the Lp Event Queue */
541 setup_hvlpevent_queue();
543 printk("Max logical processors = %d\n",
544 itVpdAreas.xSlicMaxLogicalProcs);
545 printk("Max physical processors = %d\n",
546 itVpdAreas.xSlicMaxPhysicalProcs);
549 static void iSeries_show_cpuinfo(struct seq_file *m)
551 seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
554 static void __init iSeries_progress(char * st, unsigned short code)
556 printk("Progress: [%04x] - %s\n", (unsigned)code, st);
557 mf_display_progress(code);
560 static void __init iSeries_fixup_klimit(void)
563 * Change klimit to take into account any ram disk
564 * that may be included
567 klimit = KERNELBASE + (u64)naca.xRamDisk +
568 (naca.xRamDiskSize * HW_PAGE_SIZE);
571 * No ram disk was included - check and see if there
572 * was an embedded system map. Change klimit to take
573 * into account any embedded system map
575 if (embedded_sysmap_end)
576 klimit = KERNELBASE + ((embedded_sysmap_end + 4095) &
581 static int __init iSeries_src_init(void)
583 /* clear the progress line */
584 ppc_md.progress(" ", 0xffff);
588 late_initcall(iSeries_src_init);
590 static inline void process_iSeries_events(void)
592 asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
595 static void yield_shared_processor(void)
599 HvCall_setEnabledInterrupts(HvCall_MaskIPI |
605 /* Compute future tb value when yield should expire */
606 HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
609 * The decrementer stops during the yield. Force a fake decrementer
610 * here and let the timer_interrupt code sort out the actual time.
612 get_lppaca()->int_dword.fields.decr_int = 1;
614 process_iSeries_events();
617 static void iseries_shared_idle(void)
620 while (!need_resched() && !hvlpevent_is_pending()) {
622 ppc64_runlatch_off();
624 /* Recheck with irqs off */
625 if (!need_resched() && !hvlpevent_is_pending())
626 yield_shared_processor();
634 if (hvlpevent_is_pending())
635 process_iSeries_events();
637 preempt_enable_no_resched();
643 static void iseries_dedicated_idle(void)
645 set_thread_flag(TIF_POLLING_NRFLAG);
648 if (!need_resched()) {
649 while (!need_resched()) {
650 ppc64_runlatch_off();
653 if (hvlpevent_is_pending()) {
656 process_iSeries_events();
664 preempt_enable_no_resched();
671 void __init iSeries_init_IRQ(void) { }
674 static int __init iseries_probe(void)
676 unsigned long root = of_get_flat_dt_root();
677 if (!of_flat_dt_is_compatible(root, "IBM,iSeries"))
680 powerpc_firmware_features |= FW_FEATURE_ISERIES;
681 powerpc_firmware_features |= FW_FEATURE_LPAR;
684 * The Hypervisor only allows us up to 256 interrupt
685 * sources (the irq number is passed in a u8).
692 define_machine(iseries) {
694 .setup_arch = iSeries_setup_arch,
695 .show_cpuinfo = iSeries_show_cpuinfo,
696 .init_IRQ = iSeries_init_IRQ,
697 .get_irq = iSeries_get_irq,
698 .init_early = iSeries_init_early,
699 .pcibios_fixup = iSeries_pci_final_fixup,
700 .restart = mf_reboot,
701 .power_off = mf_power_off,
702 .halt = mf_power_off,
703 .get_boot_time = iSeries_get_boot_time,
704 .set_rtc_time = iSeries_set_rtc_time,
705 .get_rtc_time = iSeries_get_rtc_time,
706 .calibrate_decr = generic_calibrate_decr,
707 .progress = iSeries_progress,
708 .probe = iseries_probe,
709 /* XXX Implement enable_pmcs for iSeries */
713 unsigned char data[PAGE_SIZE];
717 struct iseries_flat_dt {
718 struct boot_param_header header;
724 struct iseries_flat_dt iseries_dt;
726 void dt_init(struct iseries_flat_dt *dt)
728 dt->header.off_mem_rsvmap =
729 offsetof(struct iseries_flat_dt, reserve_map);
730 dt->header.off_dt_struct = offsetof(struct iseries_flat_dt, dt);
731 dt->header.off_dt_strings = offsetof(struct iseries_flat_dt, strings);
732 dt->header.totalsize = sizeof(struct iseries_flat_dt);
733 dt->header.dt_strings_size = sizeof(struct blob);
735 /* There is no notion of hardware cpu id on iSeries */
736 dt->header.boot_cpuid_phys = smp_processor_id();
738 dt->dt.next = (unsigned long)&dt->dt.data;
739 dt->strings.next = (unsigned long)&dt->strings.data;
741 dt->header.magic = OF_DT_HEADER;
742 dt->header.version = 0x10;
743 dt->header.last_comp_version = 0x10;
745 dt->reserve_map[0] = 0;
746 dt->reserve_map[1] = 0;
749 void dt_check_blob(struct blob *b)
751 if (b->next >= (unsigned long)&b->next) {
752 DBG("Ran out of space in flat device tree blob!\n");
757 void dt_push_u32(struct iseries_flat_dt *dt, u32 value)
759 *((u32*)dt->dt.next) = value;
760 dt->dt.next += sizeof(u32);
762 dt_check_blob(&dt->dt);
765 void dt_push_u64(struct iseries_flat_dt *dt, u64 value)
767 *((u64*)dt->dt.next) = value;
768 dt->dt.next += sizeof(u64);
770 dt_check_blob(&dt->dt);
773 unsigned long dt_push_bytes(struct blob *blob, char *data, int len)
775 unsigned long start = blob->next - (unsigned long)blob->data;
777 memcpy((char *)blob->next, data, len);
778 blob->next = _ALIGN(blob->next + len, 4);
785 void dt_start_node(struct iseries_flat_dt *dt, char *name)
787 dt_push_u32(dt, OF_DT_BEGIN_NODE);
788 dt_push_bytes(&dt->dt, name, strlen(name) + 1);
791 #define dt_end_node(dt) dt_push_u32(dt, OF_DT_END_NODE)
793 void dt_prop(struct iseries_flat_dt *dt, char *name, char *data, int len)
795 unsigned long offset;
797 dt_push_u32(dt, OF_DT_PROP);
799 /* Length of the data */
800 dt_push_u32(dt, len);
802 /* Put the property name in the string blob. */
803 offset = dt_push_bytes(&dt->strings, name, strlen(name) + 1);
805 /* The offset of the properties name in the string blob. */
806 dt_push_u32(dt, (u32)offset);
808 /* The actual data. */
809 dt_push_bytes(&dt->dt, data, len);
812 void dt_prop_str(struct iseries_flat_dt *dt, char *name, char *data)
814 dt_prop(dt, name, data, strlen(data) + 1); /* + 1 for NULL */
817 void dt_prop_u32(struct iseries_flat_dt *dt, char *name, u32 data)
819 dt_prop(dt, name, (char *)&data, sizeof(u32));
822 void dt_prop_u64(struct iseries_flat_dt *dt, char *name, u64 data)
824 dt_prop(dt, name, (char *)&data, sizeof(u64));
827 void dt_prop_u64_list(struct iseries_flat_dt *dt, char *name, u64 *data, int n)
829 dt_prop(dt, name, (char *)data, sizeof(u64) * n);
832 void dt_prop_u32_list(struct iseries_flat_dt *dt, char *name, u32 *data, int n)
834 dt_prop(dt, name, (char *)data, sizeof(u32) * n);
837 void dt_prop_empty(struct iseries_flat_dt *dt, char *name)
839 dt_prop(dt, name, NULL, 0);
842 void dt_cpus(struct iseries_flat_dt *dt)
844 unsigned char buf[32];
846 unsigned int i, index;
847 struct IoHriProcessorVpd *d;
851 snprintf(buf, 32, "PowerPC,%s", cur_cpu_spec->cpu_name);
852 p = strchr(buf, ' ');
853 if (!p) p = buf + strlen(buf);
855 dt_start_node(dt, "cpus");
856 dt_prop_u32(dt, "#address-cells", 1);
857 dt_prop_u32(dt, "#size-cells", 0);
859 pft_size[0] = 0; /* NUMA CEC cookie, 0 for non NUMA */
860 pft_size[1] = __ilog2(HvCallHpt_getHptPages() * HW_PAGE_SIZE);
862 for (i = 0; i < NR_CPUS; i++) {
863 if (lppaca[i].dyn_proc_status >= 2)
866 snprintf(p, 32 - (p - buf), "@%d", i);
867 dt_start_node(dt, buf);
869 dt_prop_str(dt, "device_type", "cpu");
871 index = lppaca[i].dyn_hv_phys_proc_index;
872 d = &xIoHriProcessorVpd[index];
874 dt_prop_u32(dt, "i-cache-size", d->xInstCacheSize * 1024);
875 dt_prop_u32(dt, "i-cache-line-size", d->xInstCacheOperandSize);
877 dt_prop_u32(dt, "d-cache-size", d->xDataL1CacheSizeKB * 1024);
878 dt_prop_u32(dt, "d-cache-line-size", d->xDataCacheOperandSize);
880 /* magic conversions to Hz copied from old code */
881 dt_prop_u32(dt, "clock-frequency",
882 ((1UL << 34) * 1000000) / d->xProcFreq);
883 dt_prop_u32(dt, "timebase-frequency",
884 ((1UL << 32) * 1000000) / d->xTimeBaseFreq);
886 dt_prop_u32(dt, "reg", i);
888 dt_prop_u32_list(dt, "ibm,pft-size", pft_size, 2);
896 void dt_model(struct iseries_flat_dt *dt)
898 char buf[16] = "IBM,";
900 /* "IBM," + mfgId[2:3] + systemSerial[1:5] */
901 strne2a(buf + 4, xItExtVpdPanel.mfgID + 2, 2);
902 strne2a(buf + 6, xItExtVpdPanel.systemSerial + 1, 5);
904 dt_prop_str(dt, "system-id", buf);
906 /* "IBM," + machineType[0:4] */
907 strne2a(buf + 4, xItExtVpdPanel.machineType, 4);
909 dt_prop_str(dt, "model", buf);
911 dt_prop_str(dt, "compatible", "IBM,iSeries");
914 void build_flat_dt(struct iseries_flat_dt *dt, unsigned long phys_mem_size)
920 dt_start_node(dt, "");
922 dt_prop_u32(dt, "#address-cells", 2);
923 dt_prop_u32(dt, "#size-cells", 2);
927 dt_start_node(dt, "memory@0");
928 dt_prop_str(dt, "name", "memory");
929 dt_prop_str(dt, "device_type", "memory");
931 tmp[1] = phys_mem_size;
932 dt_prop_u64_list(dt, "reg", tmp, 2);
936 dt_start_node(dt, "chosen");
937 dt_prop_str(dt, "bootargs", cmd_line);
939 dt_prop_u64(dt, "linux,memory-limit", cmd_mem_limit);
946 dt_push_u32(dt, OF_DT_END);
949 void * __init iSeries_early_setup(void)
951 unsigned long phys_mem_size;
953 iSeries_fixup_klimit();
956 * Initialize the table which translate Linux physical addresses to
957 * AS/400 absolute addresses
959 phys_mem_size = build_iSeries_Memory_Map();
961 iSeries_get_cmdline();
963 /* Save unparsed command line copy for /proc/cmdline */
964 strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
966 /* Parse early parameters, in particular mem=x */
969 build_flat_dt(&iseries_dt, phys_mem_size);
971 return (void *) __pa(&iseries_dt);
975 * On iSeries we just parse the mem=X option from the command line.
976 * On pSeries it's a bit more complicated, see prom_init_mem()
978 static int __init early_parsemem(char *p)
981 cmd_mem_limit = ALIGN(memparse(p, &p), PAGE_SIZE);
984 early_param("mem", early_parsemem);
986 static void hvputc(char c)
991 HvCall_writeLogBuffer(&c, 1);
994 void __init udbg_init_iseries(void)