2 * linux/arch/arm/mach-integrator/core.c
4 * Copyright (C) 2000-2003 Deep Blue Solutions Ltd
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2, as
8 * published by the Free Software Foundation.
10 #include <linux/types.h>
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/device.h>
14 #include <linux/spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/sched.h>
17 #include <linux/smp.h>
19 #include <asm/hardware.h>
22 #include <asm/hardware/amba.h>
23 #include <asm/arch/cm.h>
24 #include <asm/system.h>
26 #include <asm/mach/time.h>
30 static struct amba_device rtc_device = {
35 .start = INTEGRATOR_RTC_BASE,
36 .end = INTEGRATOR_RTC_BASE + SZ_4K - 1,
37 .flags = IORESOURCE_MEM,
39 .irq = { IRQ_RTCINT, NO_IRQ },
40 .periphid = 0x00041030,
43 static struct amba_device uart0_device = {
48 .start = INTEGRATOR_UART0_BASE,
49 .end = INTEGRATOR_UART0_BASE + SZ_4K - 1,
50 .flags = IORESOURCE_MEM,
52 .irq = { IRQ_UARTINT0, NO_IRQ },
53 .periphid = 0x0041010,
56 static struct amba_device uart1_device = {
61 .start = INTEGRATOR_UART1_BASE,
62 .end = INTEGRATOR_UART1_BASE + SZ_4K - 1,
63 .flags = IORESOURCE_MEM,
65 .irq = { IRQ_UARTINT1, NO_IRQ },
66 .periphid = 0x0041010,
69 static struct amba_device kmi0_device = {
75 .end = KMI0_BASE + SZ_4K - 1,
76 .flags = IORESOURCE_MEM,
78 .irq = { IRQ_KMIINT0, NO_IRQ },
79 .periphid = 0x00041050,
82 static struct amba_device kmi1_device = {
88 .end = KMI1_BASE + SZ_4K - 1,
89 .flags = IORESOURCE_MEM,
91 .irq = { IRQ_KMIINT1, NO_IRQ },
92 .periphid = 0x00041050,
95 static struct amba_device *amba_devs[] __initdata = {
103 static int __init integrator_init(void)
107 for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
108 struct amba_device *d = amba_devs[i];
109 amba_device_register(d, &iomem_resource);
115 arch_initcall(integrator_init);
117 #define CM_CTRL IO_ADDRESS(INTEGRATOR_HDR_BASE) + INTEGRATOR_HDR_CTRL_OFFSET
119 static DEFINE_SPINLOCK(cm_lock);
122 * cm_control - update the CM_CTRL register.
123 * @mask: bits to change
126 void cm_control(u32 mask, u32 set)
131 spin_lock_irqsave(&cm_lock, flags);
132 val = readl(CM_CTRL) & ~mask;
133 writel(val | set, CM_CTRL);
134 spin_unlock_irqrestore(&cm_lock, flags);
137 EXPORT_SYMBOL(cm_control);
140 * Where is the timer (VA)?
142 #define TIMER0_VA_BASE (IO_ADDRESS(INTEGRATOR_CT_BASE)+0x00000000)
143 #define TIMER1_VA_BASE (IO_ADDRESS(INTEGRATOR_CT_BASE)+0x00000100)
144 #define TIMER2_VA_BASE (IO_ADDRESS(INTEGRATOR_CT_BASE)+0x00000200)
145 #define VA_IC_BASE IO_ADDRESS(INTEGRATOR_IC_BASE)
148 * How long is the timer interval?
150 #define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
151 #if TIMER_INTERVAL >= 0x100000
152 #define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
153 #elif TIMER_INTERVAL >= 0x10000
154 #define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
156 #define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
160 * What does it look like?
162 typedef struct TimerStruct {
163 unsigned long TimerLoad;
164 unsigned long TimerValue;
165 unsigned long TimerControl;
166 unsigned long TimerClear;
169 static unsigned long timer_reload;
172 * Returns number of ms since last clock interrupt. Note that interrupts
173 * will have been disabled by do_gettimeoffset()
175 unsigned long integrator_gettimeoffset(void)
177 volatile TimerStruct_t *timer1 = (TimerStruct_t *)TIMER1_VA_BASE;
178 unsigned long ticks1, ticks2, status;
181 * Get the current number of ticks. Note that there is a race
182 * condition between us reading the timer and checking for
183 * an interrupt. We get around this by ensuring that the
184 * counter has not reloaded between our two reads.
186 ticks2 = timer1->TimerValue & 0xffff;
189 status = __raw_readl(VA_IC_BASE + IRQ_RAW_STATUS);
190 ticks2 = timer1->TimerValue & 0xffff;
191 } while (ticks2 > ticks1);
194 * Number of ticks since last interrupt.
196 ticks1 = timer_reload - ticks2;
199 * Interrupt pending? If so, we've reloaded once already.
201 if (status & (1 << IRQ_TIMERINT1))
202 ticks1 += timer_reload;
205 * Convert the ticks to usecs
207 return TICKS2USECS(ticks1);
211 * IRQ handler for the timer
214 integrator_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
216 volatile TimerStruct_t *timer1 = (volatile TimerStruct_t *)TIMER1_VA_BASE;
218 write_seqlock(&xtime_lock);
221 * clear the interrupt
223 timer1->TimerClear = 1;
226 * the clock tick routines are only processed on the
229 if (hard_smp_processor_id() == 0) {
238 * this is the ARM equivalent of the APIC timer interrupt
240 update_process_times(user_mode(regs));
241 #endif /* CONFIG_SMP */
243 write_sequnlock(&xtime_lock);
248 static struct irqaction integrator_timer_irq = {
249 .name = "Integrator Timer Tick",
250 .flags = SA_INTERRUPT,
251 .handler = integrator_timer_interrupt
255 * Set up timer interrupt, and return the current time in seconds.
257 void __init integrator_time_init(unsigned long reload, unsigned int ctrl)
259 volatile TimerStruct_t *timer0 = (volatile TimerStruct_t *)TIMER0_VA_BASE;
260 volatile TimerStruct_t *timer1 = (volatile TimerStruct_t *)TIMER1_VA_BASE;
261 volatile TimerStruct_t *timer2 = (volatile TimerStruct_t *)TIMER2_VA_BASE;
262 unsigned int timer_ctrl = 0x80 | 0x40; /* periodic */
264 timer_reload = reload;
267 if (timer_reload > 0x100000) {
269 timer_ctrl |= 0x08; /* /256 */
270 } else if (timer_reload > 0x010000) {
272 timer_ctrl |= 0x04; /* /16 */
276 * Initialise to a known state (all timers off)
278 timer0->TimerControl = 0;
279 timer1->TimerControl = 0;
280 timer2->TimerControl = 0;
282 timer1->TimerLoad = timer_reload;
283 timer1->TimerValue = timer_reload;
284 timer1->TimerControl = timer_ctrl;
287 * Make irqs happen for the system timer
289 setup_irq(IRQ_TIMERINT1, &integrator_timer_irq);