2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/config.h>
63 #include <linux/smp_lock.h>
64 #include <linux/socket.h>
65 #include <linux/file.h>
66 #include <linux/net.h>
67 #include <linux/interrupt.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/divert.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
89 #include <asm/uaccess.h>
90 #include <asm/unistd.h>
92 #include <net/compat.h>
95 #include <linux/netfilter.h>
97 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
98 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *buf,
99 size_t size, loff_t pos);
100 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *buf,
101 size_t size, loff_t pos);
102 static int sock_mmap(struct file *file, struct vm_area_struct * vma);
104 static int sock_close(struct inode *inode, struct file *file);
105 static unsigned int sock_poll(struct file *file,
106 struct poll_table_struct *wait);
107 static long sock_ioctl(struct file *file,
108 unsigned int cmd, unsigned long arg);
109 static int sock_fasync(int fd, struct file *filp, int on);
110 static ssize_t sock_readv(struct file *file, const struct iovec *vector,
111 unsigned long count, loff_t *ppos);
112 static ssize_t sock_writev(struct file *file, const struct iovec *vector,
113 unsigned long count, loff_t *ppos);
114 static ssize_t sock_sendpage(struct file *file, struct page *page,
115 int offset, size_t size, loff_t *ppos, int more);
119 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
120 * in the operation structures but are done directly via the socketcall() multiplexor.
123 static struct file_operations socket_file_ops = {
124 .owner = THIS_MODULE,
126 .aio_read = sock_aio_read,
127 .aio_write = sock_aio_write,
129 .unlocked_ioctl = sock_ioctl,
131 .open = sock_no_open, /* special open code to disallow open via /proc */
132 .release = sock_close,
133 .fasync = sock_fasync,
135 .writev = sock_writev,
136 .sendpage = sock_sendpage
140 * The protocol list. Each protocol is registered in here.
143 static struct net_proto_family *net_families[NPROTO];
145 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
146 static atomic_t net_family_lockct = ATOMIC_INIT(0);
147 static DEFINE_SPINLOCK(net_family_lock);
149 /* The strategy is: modifications net_family vector are short, do not
150 sleep and veeery rare, but read access should be free of any exclusive
154 static void net_family_write_lock(void)
156 spin_lock(&net_family_lock);
157 while (atomic_read(&net_family_lockct) != 0) {
158 spin_unlock(&net_family_lock);
162 spin_lock(&net_family_lock);
166 static __inline__ void net_family_write_unlock(void)
168 spin_unlock(&net_family_lock);
171 static __inline__ void net_family_read_lock(void)
173 atomic_inc(&net_family_lockct);
174 spin_unlock_wait(&net_family_lock);
177 static __inline__ void net_family_read_unlock(void)
179 atomic_dec(&net_family_lockct);
183 #define net_family_write_lock() do { } while(0)
184 #define net_family_write_unlock() do { } while(0)
185 #define net_family_read_lock() do { } while(0)
186 #define net_family_read_unlock() do { } while(0)
191 * Statistics counters of the socket lists
194 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
197 * Support routines. Move socket addresses back and forth across the kernel/user
198 * divide and look after the messy bits.
201 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
202 16 for IP, 16 for IPX,
205 must be at least one bigger than
206 the AF_UNIX size (see net/unix/af_unix.c
211 * move_addr_to_kernel - copy a socket address into kernel space
212 * @uaddr: Address in user space
213 * @kaddr: Address in kernel space
214 * @ulen: Length in user space
216 * The address is copied into kernel space. If the provided address is
217 * too long an error code of -EINVAL is returned. If the copy gives
218 * invalid addresses -EFAULT is returned. On a success 0 is returned.
221 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
223 if(ulen<0||ulen>MAX_SOCK_ADDR)
227 if(copy_from_user(kaddr,uaddr,ulen))
229 return audit_sockaddr(ulen, kaddr);
233 * move_addr_to_user - copy an address to user space
234 * @kaddr: kernel space address
235 * @klen: length of address in kernel
236 * @uaddr: user space address
237 * @ulen: pointer to user length field
239 * The value pointed to by ulen on entry is the buffer length available.
240 * This is overwritten with the buffer space used. -EINVAL is returned
241 * if an overlong buffer is specified or a negative buffer size. -EFAULT
242 * is returned if either the buffer or the length field are not
244 * After copying the data up to the limit the user specifies, the true
245 * length of the data is written over the length limit the user
246 * specified. Zero is returned for a success.
249 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, int __user *ulen)
254 if((err=get_user(len, ulen)))
258 if(len<0 || len> MAX_SOCK_ADDR)
262 if(copy_to_user(uaddr,kaddr,len))
266 * "fromlen shall refer to the value before truncation.."
269 return __put_user(klen, ulen);
272 #define SOCKFS_MAGIC 0x534F434B
274 static kmem_cache_t * sock_inode_cachep __read_mostly;
276 static struct inode *sock_alloc_inode(struct super_block *sb)
278 struct socket_alloc *ei;
279 ei = (struct socket_alloc *)kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL);
282 init_waitqueue_head(&ei->socket.wait);
284 ei->socket.fasync_list = NULL;
285 ei->socket.state = SS_UNCONNECTED;
286 ei->socket.flags = 0;
287 ei->socket.ops = NULL;
288 ei->socket.sk = NULL;
289 ei->socket.file = NULL;
290 ei->socket.flags = 0;
292 return &ei->vfs_inode;
295 static void sock_destroy_inode(struct inode *inode)
297 kmem_cache_free(sock_inode_cachep,
298 container_of(inode, struct socket_alloc, vfs_inode));
301 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
303 struct socket_alloc *ei = (struct socket_alloc *) foo;
305 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
306 SLAB_CTOR_CONSTRUCTOR)
307 inode_init_once(&ei->vfs_inode);
310 static int init_inodecache(void)
312 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
313 sizeof(struct socket_alloc),
314 0, SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT,
316 if (sock_inode_cachep == NULL)
321 static struct super_operations sockfs_ops = {
322 .alloc_inode = sock_alloc_inode,
323 .destroy_inode =sock_destroy_inode,
324 .statfs = simple_statfs,
327 static struct super_block *sockfs_get_sb(struct file_system_type *fs_type,
328 int flags, const char *dev_name, void *data)
330 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC);
333 static struct vfsmount *sock_mnt __read_mostly;
335 static struct file_system_type sock_fs_type = {
337 .get_sb = sockfs_get_sb,
338 .kill_sb = kill_anon_super,
340 static int sockfs_delete_dentry(struct dentry *dentry)
344 static struct dentry_operations sockfs_dentry_operations = {
345 .d_delete = sockfs_delete_dentry,
349 * Obtains the first available file descriptor and sets it up for use.
351 * These functions create file structures and maps them to fd space
352 * of the current process. On success it returns file descriptor
353 * and file struct implicitly stored in sock->file.
354 * Note that another thread may close file descriptor before we return
355 * from this function. We use the fact that now we do not refer
356 * to socket after mapping. If one day we will need it, this
357 * function will increment ref. count on file by 1.
359 * In any case returned fd MAY BE not valid!
360 * This race condition is unavoidable
361 * with shared fd spaces, we cannot solve it inside kernel,
362 * but we take care of internal coherence yet.
365 static int sock_alloc_fd(struct file **filep)
369 fd = get_unused_fd();
370 if (likely(fd >= 0)) {
371 struct file *file = get_empty_filp();
374 if (unlikely(!file)) {
383 static int sock_attach_fd(struct socket *sock, struct file *file)
388 this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino);
390 this.hash = SOCK_INODE(sock)->i_ino;
392 file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this);
393 if (unlikely(!file->f_dentry))
396 file->f_dentry->d_op = &sockfs_dentry_operations;
397 d_add(file->f_dentry, SOCK_INODE(sock));
398 file->f_vfsmnt = mntget(sock_mnt);
399 file->f_mapping = file->f_dentry->d_inode->i_mapping;
402 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
403 file->f_mode = FMODE_READ | FMODE_WRITE;
404 file->f_flags = O_RDWR;
406 file->private_data = sock;
411 int sock_map_fd(struct socket *sock)
413 struct file *newfile;
414 int fd = sock_alloc_fd(&newfile);
416 if (likely(fd >= 0)) {
417 int err = sock_attach_fd(sock, newfile);
419 if (unlikely(err < 0)) {
424 fd_install(fd, newfile);
430 * sockfd_lookup - Go from a file number to its socket slot
432 * @err: pointer to an error code return
434 * The file handle passed in is locked and the socket it is bound
435 * too is returned. If an error occurs the err pointer is overwritten
436 * with a negative errno code and NULL is returned. The function checks
437 * for both invalid handles and passing a handle which is not a socket.
439 * On a success the socket object pointer is returned.
442 struct socket *sockfd_lookup(int fd, int *err)
448 if (!(file = fget(fd)))
454 if (file->f_op == &socket_file_ops)
455 return file->private_data; /* set in sock_map_fd */
457 inode = file->f_dentry->d_inode;
458 if (!S_ISSOCK(inode->i_mode)) {
464 sock = SOCKET_I(inode);
465 if (sock->file != file) {
466 printk(KERN_ERR "socki_lookup: socket file changed!\n");
473 * sock_alloc - allocate a socket
475 * Allocate a new inode and socket object. The two are bound together
476 * and initialised. The socket is then returned. If we are out of inodes
480 static struct socket *sock_alloc(void)
482 struct inode * inode;
483 struct socket * sock;
485 inode = new_inode(sock_mnt->mnt_sb);
489 sock = SOCKET_I(inode);
491 inode->i_mode = S_IFSOCK|S_IRWXUGO;
492 inode->i_uid = current->fsuid;
493 inode->i_gid = current->fsgid;
495 get_cpu_var(sockets_in_use)++;
496 put_cpu_var(sockets_in_use);
501 * In theory you can't get an open on this inode, but /proc provides
502 * a back door. Remember to keep it shut otherwise you'll let the
503 * creepy crawlies in.
506 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
511 struct file_operations bad_sock_fops = {
512 .owner = THIS_MODULE,
513 .open = sock_no_open,
517 * sock_release - close a socket
518 * @sock: socket to close
520 * The socket is released from the protocol stack if it has a release
521 * callback, and the inode is then released if the socket is bound to
522 * an inode not a file.
525 void sock_release(struct socket *sock)
528 struct module *owner = sock->ops->owner;
530 sock->ops->release(sock);
535 if (sock->fasync_list)
536 printk(KERN_ERR "sock_release: fasync list not empty!\n");
538 get_cpu_var(sockets_in_use)--;
539 put_cpu_var(sockets_in_use);
541 iput(SOCK_INODE(sock));
547 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
548 struct msghdr *msg, size_t size)
550 struct sock_iocb *si = kiocb_to_siocb(iocb);
558 err = security_socket_sendmsg(sock, msg, size);
562 return sock->ops->sendmsg(iocb, sock, msg, size);
565 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
568 struct sock_iocb siocb;
571 init_sync_kiocb(&iocb, NULL);
572 iocb.private = &siocb;
573 ret = __sock_sendmsg(&iocb, sock, msg, size);
574 if (-EIOCBQUEUED == ret)
575 ret = wait_on_sync_kiocb(&iocb);
579 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
580 struct kvec *vec, size_t num, size_t size)
582 mm_segment_t oldfs = get_fs();
587 * the following is safe, since for compiler definitions of kvec and
588 * iovec are identical, yielding the same in-core layout and alignment
590 msg->msg_iov = (struct iovec *)vec,
591 msg->msg_iovlen = num;
592 result = sock_sendmsg(sock, msg, size);
597 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
598 struct msghdr *msg, size_t size, int flags)
601 struct sock_iocb *si = kiocb_to_siocb(iocb);
609 err = security_socket_recvmsg(sock, msg, size, flags);
613 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
616 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
617 size_t size, int flags)
620 struct sock_iocb siocb;
623 init_sync_kiocb(&iocb, NULL);
624 iocb.private = &siocb;
625 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
626 if (-EIOCBQUEUED == ret)
627 ret = wait_on_sync_kiocb(&iocb);
631 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
632 struct kvec *vec, size_t num,
633 size_t size, int flags)
635 mm_segment_t oldfs = get_fs();
640 * the following is safe, since for compiler definitions of kvec and
641 * iovec are identical, yielding the same in-core layout and alignment
643 msg->msg_iov = (struct iovec *)vec,
644 msg->msg_iovlen = num;
645 result = sock_recvmsg(sock, msg, size, flags);
650 static void sock_aio_dtor(struct kiocb *iocb)
652 kfree(iocb->private);
655 static ssize_t sock_sendpage(struct file *file, struct page *page,
656 int offset, size_t size, loff_t *ppos, int more)
661 sock = file->private_data;
663 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
667 return sock->ops->sendpage(sock, page, offset, size, flags);
670 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
671 char __user *ubuf, size_t size, struct sock_iocb *siocb)
673 if (!is_sync_kiocb(iocb)) {
674 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
677 iocb->ki_dtor = sock_aio_dtor;
681 siocb->async_iov.iov_base = ubuf;
682 siocb->async_iov.iov_len = size;
684 iocb->private = siocb;
688 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
689 struct file *file, struct iovec *iov, unsigned long nr_segs)
691 struct socket *sock = file->private_data;
695 for (i = 0 ; i < nr_segs ; i++)
696 size += iov[i].iov_len;
698 msg->msg_name = NULL;
699 msg->msg_namelen = 0;
700 msg->msg_control = NULL;
701 msg->msg_controllen = 0;
702 msg->msg_iov = (struct iovec *) iov;
703 msg->msg_iovlen = nr_segs;
704 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
706 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
709 static ssize_t sock_readv(struct file *file, const struct iovec *iov,
710 unsigned long nr_segs, loff_t *ppos)
713 struct sock_iocb siocb;
717 init_sync_kiocb(&iocb, NULL);
718 iocb.private = &siocb;
720 ret = do_sock_read(&msg, &iocb, file, (struct iovec *)iov, nr_segs);
721 if (-EIOCBQUEUED == ret)
722 ret = wait_on_sync_kiocb(&iocb);
726 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *ubuf,
727 size_t count, loff_t pos)
729 struct sock_iocb siocb, *x;
733 if (count == 0) /* Match SYS5 behaviour */
736 x = alloc_sock_iocb(iocb, ubuf, count, &siocb);
739 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp,
743 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
744 struct file *file, struct iovec *iov, unsigned long nr_segs)
746 struct socket *sock = file->private_data;
750 for (i = 0 ; i < nr_segs ; i++)
751 size += iov[i].iov_len;
753 msg->msg_name = NULL;
754 msg->msg_namelen = 0;
755 msg->msg_control = NULL;
756 msg->msg_controllen = 0;
757 msg->msg_iov = (struct iovec *) iov;
758 msg->msg_iovlen = nr_segs;
759 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
760 if (sock->type == SOCK_SEQPACKET)
761 msg->msg_flags |= MSG_EOR;
763 return __sock_sendmsg(iocb, sock, msg, size);
766 static ssize_t sock_writev(struct file *file, const struct iovec *iov,
767 unsigned long nr_segs, loff_t *ppos)
771 struct sock_iocb siocb;
774 init_sync_kiocb(&iocb, NULL);
775 iocb.private = &siocb;
777 ret = do_sock_write(&msg, &iocb, file, (struct iovec *)iov, nr_segs);
778 if (-EIOCBQUEUED == ret)
779 ret = wait_on_sync_kiocb(&iocb);
783 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *ubuf,
784 size_t count, loff_t pos)
786 struct sock_iocb siocb, *x;
790 if (count == 0) /* Match SYS5 behaviour */
793 x = alloc_sock_iocb(iocb, (void __user *)ubuf, count, &siocb);
797 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp,
803 * Atomic setting of ioctl hooks to avoid race
804 * with module unload.
807 static DECLARE_MUTEX(br_ioctl_mutex);
808 static int (*br_ioctl_hook)(unsigned int cmd, void __user *arg) = NULL;
810 void brioctl_set(int (*hook)(unsigned int, void __user *))
812 down(&br_ioctl_mutex);
813 br_ioctl_hook = hook;
816 EXPORT_SYMBOL(brioctl_set);
818 static DECLARE_MUTEX(vlan_ioctl_mutex);
819 static int (*vlan_ioctl_hook)(void __user *arg);
821 void vlan_ioctl_set(int (*hook)(void __user *))
823 down(&vlan_ioctl_mutex);
824 vlan_ioctl_hook = hook;
825 up(&vlan_ioctl_mutex);
827 EXPORT_SYMBOL(vlan_ioctl_set);
829 static DECLARE_MUTEX(dlci_ioctl_mutex);
830 static int (*dlci_ioctl_hook)(unsigned int, void __user *);
832 void dlci_ioctl_set(int (*hook)(unsigned int, void __user *))
834 down(&dlci_ioctl_mutex);
835 dlci_ioctl_hook = hook;
836 up(&dlci_ioctl_mutex);
838 EXPORT_SYMBOL(dlci_ioctl_set);
841 * With an ioctl, arg may well be a user mode pointer, but we don't know
842 * what to do with it - that's up to the protocol still.
845 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
848 void __user *argp = (void __user *)arg;
851 sock = file->private_data;
852 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
853 err = dev_ioctl(cmd, argp);
855 #ifdef CONFIG_WIRELESS_EXT
856 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
857 err = dev_ioctl(cmd, argp);
859 #endif /* CONFIG_WIRELESS_EXT */
864 if (get_user(pid, (int __user *)argp))
866 err = f_setown(sock->file, pid, 1);
870 err = put_user(sock->file->f_owner.pid, (int __user *)argp);
878 request_module("bridge");
880 down(&br_ioctl_mutex);
882 err = br_ioctl_hook(cmd, argp);
888 if (!vlan_ioctl_hook)
889 request_module("8021q");
891 down(&vlan_ioctl_mutex);
893 err = vlan_ioctl_hook(argp);
894 up(&vlan_ioctl_mutex);
898 /* Convert this to call through a hook */
899 err = divert_ioctl(cmd, argp);
904 if (!dlci_ioctl_hook)
905 request_module("dlci");
907 if (dlci_ioctl_hook) {
908 down(&dlci_ioctl_mutex);
909 err = dlci_ioctl_hook(cmd, argp);
910 up(&dlci_ioctl_mutex);
914 err = sock->ops->ioctl(sock, cmd, arg);
917 * If this ioctl is unknown try to hand it down
920 if (err == -ENOIOCTLCMD)
921 err = dev_ioctl(cmd, argp);
927 int sock_create_lite(int family, int type, int protocol, struct socket **res)
930 struct socket *sock = NULL;
932 err = security_socket_create(family, type, protocol, 1);
942 security_socket_post_create(sock, family, type, protocol, 1);
949 /* No kernel lock held - perfect */
950 static unsigned int sock_poll(struct file *file, poll_table * wait)
955 * We can't return errors to poll, so it's either yes or no.
957 sock = file->private_data;
958 return sock->ops->poll(file, sock, wait);
961 static int sock_mmap(struct file * file, struct vm_area_struct * vma)
963 struct socket *sock = file->private_data;
965 return sock->ops->mmap(file, sock, vma);
968 static int sock_close(struct inode *inode, struct file *filp)
971 * It was possible the inode is NULL we were
972 * closing an unfinished socket.
977 printk(KERN_DEBUG "sock_close: NULL inode\n");
980 sock_fasync(-1, filp, 0);
981 sock_release(SOCKET_I(inode));
986 * Update the socket async list
988 * Fasync_list locking strategy.
990 * 1. fasync_list is modified only under process context socket lock
991 * i.e. under semaphore.
992 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
993 * or under socket lock.
994 * 3. fasync_list can be used from softirq context, so that
995 * modification under socket lock have to be enhanced with
996 * write_lock_bh(&sk->sk_callback_lock).
1000 static int sock_fasync(int fd, struct file *filp, int on)
1002 struct fasync_struct *fa, *fna=NULL, **prev;
1003 struct socket *sock;
1008 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1013 sock = filp->private_data;
1015 if ((sk=sock->sk) == NULL) {
1022 prev=&(sock->fasync_list);
1024 for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev)
1025 if (fa->fa_file==filp)
1032 write_lock_bh(&sk->sk_callback_lock);
1034 write_unlock_bh(&sk->sk_callback_lock);
1041 fna->magic=FASYNC_MAGIC;
1042 fna->fa_next=sock->fasync_list;
1043 write_lock_bh(&sk->sk_callback_lock);
1044 sock->fasync_list=fna;
1045 write_unlock_bh(&sk->sk_callback_lock);
1051 write_lock_bh(&sk->sk_callback_lock);
1053 write_unlock_bh(&sk->sk_callback_lock);
1059 release_sock(sock->sk);
1063 /* This function may be called only under socket lock or callback_lock */
1065 int sock_wake_async(struct socket *sock, int how, int band)
1067 if (!sock || !sock->fasync_list)
1073 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1077 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1082 __kill_fasync(sock->fasync_list, SIGIO, band);
1085 __kill_fasync(sock->fasync_list, SIGURG, band);
1090 static int __sock_create(int family, int type, int protocol, struct socket **res, int kern)
1093 struct socket *sock;
1096 * Check protocol is in range
1098 if (family < 0 || family >= NPROTO)
1099 return -EAFNOSUPPORT;
1100 if (type < 0 || type >= SOCK_MAX)
1105 This uglymoron is moved from INET layer to here to avoid
1106 deadlock in module load.
1108 if (family == PF_INET && type == SOCK_PACKET) {
1112 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm);
1117 err = security_socket_create(family, type, protocol, kern);
1121 #if defined(CONFIG_KMOD)
1122 /* Attempt to load a protocol module if the find failed.
1124 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1125 * requested real, full-featured networking support upon configuration.
1126 * Otherwise module support will break!
1128 if (net_families[family]==NULL)
1130 request_module("net-pf-%d",family);
1134 net_family_read_lock();
1135 if (net_families[family] == NULL) {
1136 err = -EAFNOSUPPORT;
1141 * Allocate the socket and allow the family to set things up. if
1142 * the protocol is 0, the family is instructed to select an appropriate
1146 if (!(sock = sock_alloc())) {
1147 printk(KERN_WARNING "socket: no more sockets\n");
1148 err = -ENFILE; /* Not exactly a match, but its the
1149 closest posix thing */
1156 * We will call the ->create function, that possibly is in a loadable
1157 * module, so we have to bump that loadable module refcnt first.
1159 err = -EAFNOSUPPORT;
1160 if (!try_module_get(net_families[family]->owner))
1163 if ((err = net_families[family]->create(sock, protocol)) < 0) {
1165 goto out_module_put;
1169 * Now to bump the refcnt of the [loadable] module that owns this
1170 * socket at sock_release time we decrement its refcnt.
1172 if (!try_module_get(sock->ops->owner)) {
1174 goto out_module_put;
1177 * Now that we're done with the ->create function, the [loadable]
1178 * module can have its refcnt decremented
1180 module_put(net_families[family]->owner);
1182 security_socket_post_create(sock, family, type, protocol, kern);
1185 net_family_read_unlock();
1188 module_put(net_families[family]->owner);
1194 int sock_create(int family, int type, int protocol, struct socket **res)
1196 return __sock_create(family, type, protocol, res, 0);
1199 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1201 return __sock_create(family, type, protocol, res, 1);
1204 asmlinkage long sys_socket(int family, int type, int protocol)
1207 struct socket *sock;
1209 retval = sock_create(family, type, protocol, &sock);
1213 retval = sock_map_fd(sock);
1218 /* It may be already another descriptor 8) Not kernel problem. */
1227 * Create a pair of connected sockets.
1230 asmlinkage long sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1232 struct socket *sock1, *sock2;
1236 * Obtain the first socket and check if the underlying protocol
1237 * supports the socketpair call.
1240 err = sock_create(family, type, protocol, &sock1);
1244 err = sock_create(family, type, protocol, &sock2);
1248 err = sock1->ops->socketpair(sock1, sock2);
1250 goto out_release_both;
1254 err = sock_map_fd(sock1);
1256 goto out_release_both;
1259 err = sock_map_fd(sock2);
1264 /* fd1 and fd2 may be already another descriptors.
1265 * Not kernel problem.
1268 err = put_user(fd1, &usockvec[0]);
1270 err = put_user(fd2, &usockvec[1]);
1279 sock_release(sock2);
1284 sock_release(sock2);
1286 sock_release(sock1);
1293 * Bind a name to a socket. Nothing much to do here since it's
1294 * the protocol's responsibility to handle the local address.
1296 * We move the socket address to kernel space before we call
1297 * the protocol layer (having also checked the address is ok).
1300 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1302 struct socket *sock;
1303 char address[MAX_SOCK_ADDR];
1306 if((sock = sockfd_lookup(fd,&err))!=NULL)
1308 if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0) {
1309 err = security_socket_bind(sock, (struct sockaddr *)address, addrlen);
1314 err = sock->ops->bind(sock, (struct sockaddr *)address, addrlen);
1323 * Perform a listen. Basically, we allow the protocol to do anything
1324 * necessary for a listen, and if that works, we mark the socket as
1325 * ready for listening.
1328 int sysctl_somaxconn = SOMAXCONN;
1330 asmlinkage long sys_listen(int fd, int backlog)
1332 struct socket *sock;
1335 if ((sock = sockfd_lookup(fd, &err)) != NULL) {
1336 if ((unsigned) backlog > sysctl_somaxconn)
1337 backlog = sysctl_somaxconn;
1339 err = security_socket_listen(sock, backlog);
1345 err=sock->ops->listen(sock, backlog);
1353 * For accept, we attempt to create a new socket, set up the link
1354 * with the client, wake up the client, then return the new
1355 * connected fd. We collect the address of the connector in kernel
1356 * space and move it to user at the very end. This is unclean because
1357 * we open the socket then return an error.
1359 * 1003.1g adds the ability to recvmsg() to query connection pending
1360 * status to recvmsg. We need to add that support in a way thats
1361 * clean when we restucture accept also.
1364 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen)
1366 struct socket *sock, *newsock;
1367 struct file *newfile;
1368 int err, len, newfd;
1369 char address[MAX_SOCK_ADDR];
1371 sock = sockfd_lookup(fd, &err);
1376 if (!(newsock = sock_alloc()))
1379 newsock->type = sock->type;
1380 newsock->ops = sock->ops;
1383 * We don't need try_module_get here, as the listening socket (sock)
1384 * has the protocol module (sock->ops->owner) held.
1386 __module_get(newsock->ops->owner);
1388 newfd = sock_alloc_fd(&newfile);
1389 if (unlikely(newfd < 0)) {
1394 err = sock_attach_fd(newsock, newfile);
1398 err = security_socket_accept(sock, newsock);
1402 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1406 if (upeer_sockaddr) {
1407 if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) {
1408 err = -ECONNABORTED;
1411 err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen);
1416 /* File flags are not inherited via accept() unlike another OSes. */
1418 fd_install(newfd, newfile);
1421 security_socket_post_accept(sock, newsock);
1429 put_unused_fd(newfd);
1431 sock_release(newsock);
1437 * Attempt to connect to a socket with the server address. The address
1438 * is in user space so we verify it is OK and move it to kernel space.
1440 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1443 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1444 * other SEQPACKET protocols that take time to connect() as it doesn't
1445 * include the -EINPROGRESS status for such sockets.
1448 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1450 struct socket *sock;
1451 char address[MAX_SOCK_ADDR];
1454 sock = sockfd_lookup(fd, &err);
1457 err = move_addr_to_kernel(uservaddr, addrlen, address);
1461 err = security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1465 err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen,
1466 sock->file->f_flags);
1474 * Get the local address ('name') of a socket object. Move the obtained
1475 * name to user space.
1478 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)
1480 struct socket *sock;
1481 char address[MAX_SOCK_ADDR];
1484 sock = sockfd_lookup(fd, &err);
1488 err = security_socket_getsockname(sock);
1492 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1495 err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1504 * Get the remote address ('name') of a socket object. Move the obtained
1505 * name to user space.
1508 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)
1510 struct socket *sock;
1511 char address[MAX_SOCK_ADDR];
1514 if ((sock = sockfd_lookup(fd, &err))!=NULL)
1516 err = security_socket_getpeername(sock);
1522 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1);
1524 err=move_addr_to_user(address,len, usockaddr, usockaddr_len);
1531 * Send a datagram to a given address. We move the address into kernel
1532 * space and check the user space data area is readable before invoking
1536 asmlinkage long sys_sendto(int fd, void __user * buff, size_t len, unsigned flags,
1537 struct sockaddr __user *addr, int addr_len)
1539 struct socket *sock;
1540 char address[MAX_SOCK_ADDR];
1545 sock = sockfd_lookup(fd, &err);
1553 msg.msg_control=NULL;
1554 msg.msg_controllen=0;
1558 err = move_addr_to_kernel(addr, addr_len, address);
1561 msg.msg_name=address;
1562 msg.msg_namelen=addr_len;
1564 if (sock->file->f_flags & O_NONBLOCK)
1565 flags |= MSG_DONTWAIT;
1566 msg.msg_flags = flags;
1567 err = sock_sendmsg(sock, &msg, len);
1576 * Send a datagram down a socket.
1579 asmlinkage long sys_send(int fd, void __user * buff, size_t len, unsigned flags)
1581 return sys_sendto(fd, buff, len, flags, NULL, 0);
1585 * Receive a frame from the socket and optionally record the address of the
1586 * sender. We verify the buffers are writable and if needed move the
1587 * sender address from kernel to user space.
1590 asmlinkage long sys_recvfrom(int fd, void __user * ubuf, size_t size, unsigned flags,
1591 struct sockaddr __user *addr, int __user *addr_len)
1593 struct socket *sock;
1596 char address[MAX_SOCK_ADDR];
1599 sock = sockfd_lookup(fd, &err);
1603 msg.msg_control=NULL;
1604 msg.msg_controllen=0;
1609 msg.msg_name=address;
1610 msg.msg_namelen=MAX_SOCK_ADDR;
1611 if (sock->file->f_flags & O_NONBLOCK)
1612 flags |= MSG_DONTWAIT;
1613 err=sock_recvmsg(sock, &msg, size, flags);
1615 if(err >= 0 && addr != NULL)
1617 err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1627 * Receive a datagram from a socket.
1630 asmlinkage long sys_recv(int fd, void __user * ubuf, size_t size, unsigned flags)
1632 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1636 * Set a socket option. Because we don't know the option lengths we have
1637 * to pass the user mode parameter for the protocols to sort out.
1640 asmlinkage long sys_setsockopt(int fd, int level, int optname, char __user *optval, int optlen)
1643 struct socket *sock;
1648 if ((sock = sockfd_lookup(fd, &err))!=NULL)
1650 err = security_socket_setsockopt(sock,level,optname);
1656 if (level == SOL_SOCKET)
1657 err=sock_setsockopt(sock,level,optname,optval,optlen);
1659 err=sock->ops->setsockopt(sock, level, optname, optval, optlen);
1666 * Get a socket option. Because we don't know the option lengths we have
1667 * to pass a user mode parameter for the protocols to sort out.
1670 asmlinkage long sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen)
1673 struct socket *sock;
1675 if ((sock = sockfd_lookup(fd, &err))!=NULL)
1677 err = security_socket_getsockopt(sock, level,
1684 if (level == SOL_SOCKET)
1685 err=sock_getsockopt(sock,level,optname,optval,optlen);
1687 err=sock->ops->getsockopt(sock, level, optname, optval, optlen);
1695 * Shutdown a socket.
1698 asmlinkage long sys_shutdown(int fd, int how)
1701 struct socket *sock;
1703 if ((sock = sockfd_lookup(fd, &err))!=NULL)
1705 err = security_socket_shutdown(sock, how);
1711 err=sock->ops->shutdown(sock, how);
1717 /* A couple of helpful macros for getting the address of the 32/64 bit
1718 * fields which are the same type (int / unsigned) on our platforms.
1720 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1721 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1722 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1726 * BSD sendmsg interface
1729 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1731 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg;
1732 struct socket *sock;
1733 char address[MAX_SOCK_ADDR];
1734 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1735 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1736 __attribute__ ((aligned (sizeof(__kernel_size_t))));
1737 /* 20 is size of ipv6_pktinfo */
1738 unsigned char *ctl_buf = ctl;
1739 struct msghdr msg_sys;
1740 int err, ctl_len, iov_size, total_len;
1743 if (MSG_CMSG_COMPAT & flags) {
1744 if (get_compat_msghdr(&msg_sys, msg_compat))
1746 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1749 sock = sockfd_lookup(fd, &err);
1753 /* do not move before msg_sys is valid */
1755 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1758 /* Check whether to allocate the iovec area*/
1760 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1761 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1762 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1767 /* This will also move the address data into kernel space */
1768 if (MSG_CMSG_COMPAT & flags) {
1769 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1771 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1778 if (msg_sys.msg_controllen > INT_MAX)
1780 ctl_len = msg_sys.msg_controllen;
1781 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1782 err = cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, sizeof(ctl));
1785 ctl_buf = msg_sys.msg_control;
1786 ctl_len = msg_sys.msg_controllen;
1787 } else if (ctl_len) {
1788 if (ctl_len > sizeof(ctl))
1790 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1791 if (ctl_buf == NULL)
1796 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1797 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1798 * checking falls down on this.
1800 if (copy_from_user(ctl_buf, (void __user *) msg_sys.msg_control, ctl_len))
1802 msg_sys.msg_control = ctl_buf;
1804 msg_sys.msg_flags = flags;
1806 if (sock->file->f_flags & O_NONBLOCK)
1807 msg_sys.msg_flags |= MSG_DONTWAIT;
1808 err = sock_sendmsg(sock, &msg_sys, total_len);
1812 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1814 if (iov != iovstack)
1815 sock_kfree_s(sock->sk, iov, iov_size);
1823 * BSD recvmsg interface
1826 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, unsigned int flags)
1828 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg;
1829 struct socket *sock;
1830 struct iovec iovstack[UIO_FASTIOV];
1831 struct iovec *iov=iovstack;
1832 struct msghdr msg_sys;
1833 unsigned long cmsg_ptr;
1834 int err, iov_size, total_len, len;
1836 /* kernel mode address */
1837 char addr[MAX_SOCK_ADDR];
1839 /* user mode address pointers */
1840 struct sockaddr __user *uaddr;
1841 int __user *uaddr_len;
1843 if (MSG_CMSG_COMPAT & flags) {
1844 if (get_compat_msghdr(&msg_sys, msg_compat))
1847 if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr)))
1850 sock = sockfd_lookup(fd, &err);
1855 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1858 /* Check whether to allocate the iovec area*/
1860 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1861 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1862 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1868 * Save the user-mode address (verify_iovec will change the
1869 * kernel msghdr to use the kernel address space)
1872 uaddr = (void __user *) msg_sys.msg_name;
1873 uaddr_len = COMPAT_NAMELEN(msg);
1874 if (MSG_CMSG_COMPAT & flags) {
1875 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1877 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1882 cmsg_ptr = (unsigned long)msg_sys.msg_control;
1883 msg_sys.msg_flags = 0;
1884 if (MSG_CMSG_COMPAT & flags)
1885 msg_sys.msg_flags = MSG_CMSG_COMPAT;
1887 if (sock->file->f_flags & O_NONBLOCK)
1888 flags |= MSG_DONTWAIT;
1889 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1894 if (uaddr != NULL) {
1895 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len);
1899 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1903 if (MSG_CMSG_COMPAT & flags)
1904 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1905 &msg_compat->msg_controllen);
1907 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1908 &msg->msg_controllen);
1914 if (iov != iovstack)
1915 sock_kfree_s(sock->sk, iov, iov_size);
1922 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1924 /* Argument list sizes for sys_socketcall */
1925 #define AL(x) ((x) * sizeof(unsigned long))
1926 static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1927 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1928 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)};
1932 * System call vectors.
1934 * Argument checking cleaned up. Saved 20% in size.
1935 * This function doesn't need to set the kernel lock because
1936 * it is set by the callees.
1939 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
1942 unsigned long a0,a1;
1945 if(call<1||call>SYS_RECVMSG)
1948 /* copy_from_user should be SMP safe. */
1949 if (copy_from_user(a, args, nargs[call]))
1952 err = audit_socketcall(nargs[call]/sizeof(unsigned long), a);
1962 err = sys_socket(a0,a1,a[2]);
1965 err = sys_bind(a0,(struct sockaddr __user *)a1, a[2]);
1968 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
1971 err = sys_listen(a0,a1);
1974 err = sys_accept(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
1976 case SYS_GETSOCKNAME:
1977 err = sys_getsockname(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
1979 case SYS_GETPEERNAME:
1980 err = sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]);
1982 case SYS_SOCKETPAIR:
1983 err = sys_socketpair(a0,a1, a[2], (int __user *)a[3]);
1986 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
1989 err = sys_sendto(a0,(void __user *)a1, a[2], a[3],
1990 (struct sockaddr __user *)a[4], a[5]);
1993 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
1996 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
1997 (struct sockaddr __user *)a[4], (int __user *)a[5]);
2000 err = sys_shutdown(a0,a1);
2002 case SYS_SETSOCKOPT:
2003 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2005 case SYS_GETSOCKOPT:
2006 err = sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]);
2009 err = sys_sendmsg(a0, (struct msghdr __user *) a1, a[2]);
2012 err = sys_recvmsg(a0, (struct msghdr __user *) a1, a[2]);
2021 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2024 * This function is called by a protocol handler that wants to
2025 * advertise its address family, and have it linked into the
2029 int sock_register(struct net_proto_family *ops)
2033 if (ops->family >= NPROTO) {
2034 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2037 net_family_write_lock();
2039 if (net_families[ops->family] == NULL) {
2040 net_families[ops->family]=ops;
2043 net_family_write_unlock();
2044 printk(KERN_INFO "NET: Registered protocol family %d\n",
2050 * This function is called by a protocol handler that wants to
2051 * remove its address family, and have it unlinked from the
2055 int sock_unregister(int family)
2057 if (family < 0 || family >= NPROTO)
2060 net_family_write_lock();
2061 net_families[family]=NULL;
2062 net_family_write_unlock();
2063 printk(KERN_INFO "NET: Unregistered protocol family %d\n",
2068 static int __init sock_init(void)
2071 * Initialize sock SLAB cache.
2077 * Initialize skbuff SLAB cache
2082 * Initialize the protocols module.
2086 register_filesystem(&sock_fs_type);
2087 sock_mnt = kern_mount(&sock_fs_type);
2089 /* The real protocol initialization is performed in later initcalls.
2092 #ifdef CONFIG_NETFILTER
2099 core_initcall(sock_init); /* early initcall */
2101 #ifdef CONFIG_PROC_FS
2102 void socket_seq_show(struct seq_file *seq)
2108 counter += per_cpu(sockets_in_use, cpu);
2110 /* It can be negative, by the way. 8) */
2114 seq_printf(seq, "sockets: used %d\n", counter);
2116 #endif /* CONFIG_PROC_FS */
2118 /* ABI emulation layers need these two */
2119 EXPORT_SYMBOL(move_addr_to_kernel);
2120 EXPORT_SYMBOL(move_addr_to_user);
2121 EXPORT_SYMBOL(sock_create);
2122 EXPORT_SYMBOL(sock_create_kern);
2123 EXPORT_SYMBOL(sock_create_lite);
2124 EXPORT_SYMBOL(sock_map_fd);
2125 EXPORT_SYMBOL(sock_recvmsg);
2126 EXPORT_SYMBOL(sock_register);
2127 EXPORT_SYMBOL(sock_release);
2128 EXPORT_SYMBOL(sock_sendmsg);
2129 EXPORT_SYMBOL(sock_unregister);
2130 EXPORT_SYMBOL(sock_wake_async);
2131 EXPORT_SYMBOL(sockfd_lookup);
2132 EXPORT_SYMBOL(kernel_sendmsg);
2133 EXPORT_SYMBOL(kernel_recvmsg);