2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/bitops.h>
26 #include <linux/kthread.h>
27 #include <asm/atomic.h>
30 #include <linux/raid/bitmap.h>
36 #define NR_STRIPES 256
37 #define STRIPE_SIZE PAGE_SIZE
38 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
39 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
40 #define IO_THRESHOLD 1
41 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
42 #define HASH_MASK (NR_HASH - 1)
44 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
46 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
47 * order without overlap. There may be several bio's per stripe+device, and
48 * a bio could span several devices.
49 * When walking this list for a particular stripe+device, we must never proceed
50 * beyond a bio that extends past this device, as the next bio might no longer
52 * This macro is used to determine the 'next' bio in the list, given the sector
53 * of the current stripe+device
55 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
57 * The following can be used to debug the driver
60 #define RAID5_PARANOIA 1
61 #if RAID5_PARANOIA && defined(CONFIG_SMP)
62 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
64 # define CHECK_DEVLOCK()
67 #define PRINTK(x...) ((void)(RAID5_DEBUG && printk(x)))
73 #if !RAID6_USE_EMPTY_ZERO_PAGE
74 /* In .bss so it's zeroed */
75 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
78 static inline int raid6_next_disk(int disk, int raid_disks)
81 return (disk < raid_disks) ? disk : 0;
83 static void print_raid5_conf (raid5_conf_t *conf);
85 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
87 if (atomic_dec_and_test(&sh->count)) {
88 BUG_ON(!list_empty(&sh->lru));
89 BUG_ON(atomic_read(&conf->active_stripes)==0);
90 if (test_bit(STRIPE_HANDLE, &sh->state)) {
91 if (test_bit(STRIPE_DELAYED, &sh->state))
92 list_add_tail(&sh->lru, &conf->delayed_list);
93 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
94 conf->seq_write == sh->bm_seq)
95 list_add_tail(&sh->lru, &conf->bitmap_list);
97 clear_bit(STRIPE_BIT_DELAY, &sh->state);
98 list_add_tail(&sh->lru, &conf->handle_list);
100 md_wakeup_thread(conf->mddev->thread);
102 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
103 atomic_dec(&conf->preread_active_stripes);
104 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
105 md_wakeup_thread(conf->mddev->thread);
107 atomic_dec(&conf->active_stripes);
108 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
109 list_add_tail(&sh->lru, &conf->inactive_list);
110 wake_up(&conf->wait_for_stripe);
115 static void release_stripe(struct stripe_head *sh)
117 raid5_conf_t *conf = sh->raid_conf;
120 spin_lock_irqsave(&conf->device_lock, flags);
121 __release_stripe(conf, sh);
122 spin_unlock_irqrestore(&conf->device_lock, flags);
125 static inline void remove_hash(struct stripe_head *sh)
127 PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector);
129 hlist_del_init(&sh->hash);
132 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
134 struct hlist_head *hp = stripe_hash(conf, sh->sector);
136 PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector);
139 hlist_add_head(&sh->hash, hp);
143 /* find an idle stripe, make sure it is unhashed, and return it. */
144 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
146 struct stripe_head *sh = NULL;
147 struct list_head *first;
150 if (list_empty(&conf->inactive_list))
152 first = conf->inactive_list.next;
153 sh = list_entry(first, struct stripe_head, lru);
154 list_del_init(first);
156 atomic_inc(&conf->active_stripes);
161 static void shrink_buffers(struct stripe_head *sh, int num)
166 for (i=0; i<num ; i++) {
170 sh->dev[i].page = NULL;
175 static int grow_buffers(struct stripe_head *sh, int num)
179 for (i=0; i<num; i++) {
182 if (!(page = alloc_page(GFP_KERNEL))) {
185 sh->dev[i].page = page;
190 static void raid5_build_block (struct stripe_head *sh, int i);
192 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
194 raid5_conf_t *conf = sh->raid_conf;
197 BUG_ON(atomic_read(&sh->count) != 0);
198 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
201 PRINTK("init_stripe called, stripe %llu\n",
202 (unsigned long long)sh->sector);
212 for (i = sh->disks; i--; ) {
213 struct r5dev *dev = &sh->dev[i];
215 if (dev->toread || dev->towrite || dev->written ||
216 test_bit(R5_LOCKED, &dev->flags)) {
217 printk("sector=%llx i=%d %p %p %p %d\n",
218 (unsigned long long)sh->sector, i, dev->toread,
219 dev->towrite, dev->written,
220 test_bit(R5_LOCKED, &dev->flags));
224 raid5_build_block(sh, i);
226 insert_hash(conf, sh);
229 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
231 struct stripe_head *sh;
232 struct hlist_node *hn;
235 PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector);
236 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
237 if (sh->sector == sector && sh->disks == disks)
239 PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector);
243 static void unplug_slaves(mddev_t *mddev);
244 static void raid5_unplug_device(request_queue_t *q);
246 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
247 int pd_idx, int noblock)
249 struct stripe_head *sh;
251 PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector);
253 spin_lock_irq(&conf->device_lock);
256 wait_event_lock_irq(conf->wait_for_stripe,
258 conf->device_lock, /* nothing */);
259 sh = __find_stripe(conf, sector, disks);
261 if (!conf->inactive_blocked)
262 sh = get_free_stripe(conf);
263 if (noblock && sh == NULL)
266 conf->inactive_blocked = 1;
267 wait_event_lock_irq(conf->wait_for_stripe,
268 !list_empty(&conf->inactive_list) &&
269 (atomic_read(&conf->active_stripes)
270 < (conf->max_nr_stripes *3/4)
271 || !conf->inactive_blocked),
273 unplug_slaves(conf->mddev)
275 conf->inactive_blocked = 0;
277 init_stripe(sh, sector, pd_idx, disks);
279 if (atomic_read(&sh->count)) {
280 BUG_ON(!list_empty(&sh->lru));
282 if (!test_bit(STRIPE_HANDLE, &sh->state))
283 atomic_inc(&conf->active_stripes);
284 if (list_empty(&sh->lru))
286 list_del_init(&sh->lru);
289 } while (sh == NULL);
292 atomic_inc(&sh->count);
294 spin_unlock_irq(&conf->device_lock);
298 static int grow_one_stripe(raid5_conf_t *conf)
300 struct stripe_head *sh;
301 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
304 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
305 sh->raid_conf = conf;
306 spin_lock_init(&sh->lock);
308 if (grow_buffers(sh, conf->raid_disks)) {
309 shrink_buffers(sh, conf->raid_disks);
310 kmem_cache_free(conf->slab_cache, sh);
313 sh->disks = conf->raid_disks;
314 /* we just created an active stripe so... */
315 atomic_set(&sh->count, 1);
316 atomic_inc(&conf->active_stripes);
317 INIT_LIST_HEAD(&sh->lru);
322 static int grow_stripes(raid5_conf_t *conf, int num)
325 int devs = conf->raid_disks;
327 sprintf(conf->cache_name[0], "raid5/%s", mdname(conf->mddev));
328 sprintf(conf->cache_name[1], "raid5/%s-alt", mdname(conf->mddev));
329 conf->active_name = 0;
330 sc = kmem_cache_create(conf->cache_name[conf->active_name],
331 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
335 conf->slab_cache = sc;
336 conf->pool_size = devs;
338 if (!grow_one_stripe(conf))
343 #ifdef CONFIG_MD_RAID5_RESHAPE
344 static int resize_stripes(raid5_conf_t *conf, int newsize)
346 /* Make all the stripes able to hold 'newsize' devices.
347 * New slots in each stripe get 'page' set to a new page.
349 * This happens in stages:
350 * 1/ create a new kmem_cache and allocate the required number of
352 * 2/ gather all the old stripe_heads and tranfer the pages across
353 * to the new stripe_heads. This will have the side effect of
354 * freezing the array as once all stripe_heads have been collected,
355 * no IO will be possible. Old stripe heads are freed once their
356 * pages have been transferred over, and the old kmem_cache is
357 * freed when all stripes are done.
358 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
359 * we simple return a failre status - no need to clean anything up.
360 * 4/ allocate new pages for the new slots in the new stripe_heads.
361 * If this fails, we don't bother trying the shrink the
362 * stripe_heads down again, we just leave them as they are.
363 * As each stripe_head is processed the new one is released into
366 * Once step2 is started, we cannot afford to wait for a write,
367 * so we use GFP_NOIO allocations.
369 struct stripe_head *osh, *nsh;
370 LIST_HEAD(newstripes);
371 struct disk_info *ndisks;
376 if (newsize <= conf->pool_size)
377 return 0; /* never bother to shrink */
380 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
381 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
386 for (i = conf->max_nr_stripes; i; i--) {
387 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
391 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
393 nsh->raid_conf = conf;
394 spin_lock_init(&nsh->lock);
396 list_add(&nsh->lru, &newstripes);
399 /* didn't get enough, give up */
400 while (!list_empty(&newstripes)) {
401 nsh = list_entry(newstripes.next, struct stripe_head, lru);
403 kmem_cache_free(sc, nsh);
405 kmem_cache_destroy(sc);
408 /* Step 2 - Must use GFP_NOIO now.
409 * OK, we have enough stripes, start collecting inactive
410 * stripes and copying them over
412 list_for_each_entry(nsh, &newstripes, lru) {
413 spin_lock_irq(&conf->device_lock);
414 wait_event_lock_irq(conf->wait_for_stripe,
415 !list_empty(&conf->inactive_list),
417 unplug_slaves(conf->mddev)
419 osh = get_free_stripe(conf);
420 spin_unlock_irq(&conf->device_lock);
421 atomic_set(&nsh->count, 1);
422 for(i=0; i<conf->pool_size; i++)
423 nsh->dev[i].page = osh->dev[i].page;
424 for( ; i<newsize; i++)
425 nsh->dev[i].page = NULL;
426 kmem_cache_free(conf->slab_cache, osh);
428 kmem_cache_destroy(conf->slab_cache);
431 * At this point, we are holding all the stripes so the array
432 * is completely stalled, so now is a good time to resize
435 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
437 for (i=0; i<conf->raid_disks; i++)
438 ndisks[i] = conf->disks[i];
440 conf->disks = ndisks;
444 /* Step 4, return new stripes to service */
445 while(!list_empty(&newstripes)) {
446 nsh = list_entry(newstripes.next, struct stripe_head, lru);
447 list_del_init(&nsh->lru);
448 for (i=conf->raid_disks; i < newsize; i++)
449 if (nsh->dev[i].page == NULL) {
450 struct page *p = alloc_page(GFP_NOIO);
451 nsh->dev[i].page = p;
457 /* critical section pass, GFP_NOIO no longer needed */
459 conf->slab_cache = sc;
460 conf->active_name = 1-conf->active_name;
461 conf->pool_size = newsize;
466 static int drop_one_stripe(raid5_conf_t *conf)
468 struct stripe_head *sh;
470 spin_lock_irq(&conf->device_lock);
471 sh = get_free_stripe(conf);
472 spin_unlock_irq(&conf->device_lock);
475 BUG_ON(atomic_read(&sh->count));
476 shrink_buffers(sh, conf->pool_size);
477 kmem_cache_free(conf->slab_cache, sh);
478 atomic_dec(&conf->active_stripes);
482 static void shrink_stripes(raid5_conf_t *conf)
484 while (drop_one_stripe(conf))
487 if (conf->slab_cache)
488 kmem_cache_destroy(conf->slab_cache);
489 conf->slab_cache = NULL;
492 static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done,
495 struct stripe_head *sh = bi->bi_private;
496 raid5_conf_t *conf = sh->raid_conf;
497 int disks = sh->disks, i;
498 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
503 for (i=0 ; i<disks; i++)
504 if (bi == &sh->dev[i].req)
507 PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n",
508 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
519 spin_lock_irqsave(&conf->device_lock, flags);
520 /* we can return a buffer if we bypassed the cache or
521 * if the top buffer is not in highmem. If there are
522 * multiple buffers, leave the extra work to
525 buffer = sh->bh_read[i];
527 (!PageHighMem(buffer->b_page)
528 || buffer->b_page == bh->b_page )
530 sh->bh_read[i] = buffer->b_reqnext;
531 buffer->b_reqnext = NULL;
534 spin_unlock_irqrestore(&conf->device_lock, flags);
535 if (sh->bh_page[i]==bh->b_page)
536 set_buffer_uptodate(bh);
538 if (buffer->b_page != bh->b_page)
539 memcpy(buffer->b_data, bh->b_data, bh->b_size);
540 buffer->b_end_io(buffer, 1);
543 set_bit(R5_UPTODATE, &sh->dev[i].flags);
545 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
546 printk(KERN_INFO "raid5: read error corrected!!\n");
547 clear_bit(R5_ReadError, &sh->dev[i].flags);
548 clear_bit(R5_ReWrite, &sh->dev[i].flags);
550 if (atomic_read(&conf->disks[i].rdev->read_errors))
551 atomic_set(&conf->disks[i].rdev->read_errors, 0);
554 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
555 atomic_inc(&conf->disks[i].rdev->read_errors);
556 if (conf->mddev->degraded)
557 printk(KERN_WARNING "raid5: read error not correctable.\n");
558 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
560 printk(KERN_WARNING "raid5: read error NOT corrected!!\n");
561 else if (atomic_read(&conf->disks[i].rdev->read_errors)
562 > conf->max_nr_stripes)
564 "raid5: Too many read errors, failing device.\n");
568 set_bit(R5_ReadError, &sh->dev[i].flags);
570 clear_bit(R5_ReadError, &sh->dev[i].flags);
571 clear_bit(R5_ReWrite, &sh->dev[i].flags);
572 md_error(conf->mddev, conf->disks[i].rdev);
575 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
577 /* must restore b_page before unlocking buffer... */
578 if (sh->bh_page[i] != bh->b_page) {
579 bh->b_page = sh->bh_page[i];
580 bh->b_data = page_address(bh->b_page);
581 clear_buffer_uptodate(bh);
584 clear_bit(R5_LOCKED, &sh->dev[i].flags);
585 set_bit(STRIPE_HANDLE, &sh->state);
590 static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
593 struct stripe_head *sh = bi->bi_private;
594 raid5_conf_t *conf = sh->raid_conf;
595 int disks = sh->disks, i;
597 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
602 for (i=0 ; i<disks; i++)
603 if (bi == &sh->dev[i].req)
606 PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n",
607 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
614 spin_lock_irqsave(&conf->device_lock, flags);
616 md_error(conf->mddev, conf->disks[i].rdev);
618 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
620 clear_bit(R5_LOCKED, &sh->dev[i].flags);
621 set_bit(STRIPE_HANDLE, &sh->state);
622 __release_stripe(conf, sh);
623 spin_unlock_irqrestore(&conf->device_lock, flags);
628 static sector_t compute_blocknr(struct stripe_head *sh, int i);
630 static void raid5_build_block (struct stripe_head *sh, int i)
632 struct r5dev *dev = &sh->dev[i];
635 dev->req.bi_io_vec = &dev->vec;
637 dev->req.bi_max_vecs++;
638 dev->vec.bv_page = dev->page;
639 dev->vec.bv_len = STRIPE_SIZE;
640 dev->vec.bv_offset = 0;
642 dev->req.bi_sector = sh->sector;
643 dev->req.bi_private = sh;
646 dev->sector = compute_blocknr(sh, i);
649 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
651 char b[BDEVNAME_SIZE];
652 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
653 PRINTK("raid5: error called\n");
655 if (!test_bit(Faulty, &rdev->flags)) {
657 if (test_bit(In_sync, &rdev->flags)) {
658 conf->working_disks--;
660 conf->failed_disks++;
661 clear_bit(In_sync, &rdev->flags);
663 * if recovery was running, make sure it aborts.
665 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
667 set_bit(Faulty, &rdev->flags);
669 "raid5: Disk failure on %s, disabling device."
670 " Operation continuing on %d devices\n",
671 bdevname(rdev->bdev,b), conf->working_disks);
676 * Input: a 'big' sector number,
677 * Output: index of the data and parity disk, and the sector # in them.
679 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
680 unsigned int data_disks, unsigned int * dd_idx,
681 unsigned int * pd_idx, raid5_conf_t *conf)
684 unsigned long chunk_number;
685 unsigned int chunk_offset;
687 int sectors_per_chunk = conf->chunk_size >> 9;
689 /* First compute the information on this sector */
692 * Compute the chunk number and the sector offset inside the chunk
694 chunk_offset = sector_div(r_sector, sectors_per_chunk);
695 chunk_number = r_sector;
696 BUG_ON(r_sector != chunk_number);
699 * Compute the stripe number
701 stripe = chunk_number / data_disks;
704 * Compute the data disk and parity disk indexes inside the stripe
706 *dd_idx = chunk_number % data_disks;
709 * Select the parity disk based on the user selected algorithm.
711 switch(conf->level) {
713 *pd_idx = data_disks;
716 switch (conf->algorithm) {
717 case ALGORITHM_LEFT_ASYMMETRIC:
718 *pd_idx = data_disks - stripe % raid_disks;
719 if (*dd_idx >= *pd_idx)
722 case ALGORITHM_RIGHT_ASYMMETRIC:
723 *pd_idx = stripe % raid_disks;
724 if (*dd_idx >= *pd_idx)
727 case ALGORITHM_LEFT_SYMMETRIC:
728 *pd_idx = data_disks - stripe % raid_disks;
729 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
731 case ALGORITHM_RIGHT_SYMMETRIC:
732 *pd_idx = stripe % raid_disks;
733 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
736 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
743 switch (conf->algorithm) {
744 case ALGORITHM_LEFT_ASYMMETRIC:
745 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
746 if (*pd_idx == raid_disks-1)
747 (*dd_idx)++; /* Q D D D P */
748 else if (*dd_idx >= *pd_idx)
749 (*dd_idx) += 2; /* D D P Q D */
751 case ALGORITHM_RIGHT_ASYMMETRIC:
752 *pd_idx = stripe % raid_disks;
753 if (*pd_idx == raid_disks-1)
754 (*dd_idx)++; /* Q D D D P */
755 else if (*dd_idx >= *pd_idx)
756 (*dd_idx) += 2; /* D D P Q D */
758 case ALGORITHM_LEFT_SYMMETRIC:
759 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
760 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
762 case ALGORITHM_RIGHT_SYMMETRIC:
763 *pd_idx = stripe % raid_disks;
764 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
767 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
774 * Finally, compute the new sector number
776 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
781 static sector_t compute_blocknr(struct stripe_head *sh, int i)
783 raid5_conf_t *conf = sh->raid_conf;
784 int raid_disks = sh->disks, data_disks = raid_disks - 1;
785 sector_t new_sector = sh->sector, check;
786 int sectors_per_chunk = conf->chunk_size >> 9;
789 int chunk_number, dummy1, dummy2, dd_idx = i;
793 chunk_offset = sector_div(new_sector, sectors_per_chunk);
795 BUG_ON(new_sector != stripe);
799 switch(conf->level) {
802 switch (conf->algorithm) {
803 case ALGORITHM_LEFT_ASYMMETRIC:
804 case ALGORITHM_RIGHT_ASYMMETRIC:
808 case ALGORITHM_LEFT_SYMMETRIC:
809 case ALGORITHM_RIGHT_SYMMETRIC:
812 i -= (sh->pd_idx + 1);
815 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
820 data_disks = raid_disks - 2;
821 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
822 return 0; /* It is the Q disk */
823 switch (conf->algorithm) {
824 case ALGORITHM_LEFT_ASYMMETRIC:
825 case ALGORITHM_RIGHT_ASYMMETRIC:
826 if (sh->pd_idx == raid_disks-1)
828 else if (i > sh->pd_idx)
829 i -= 2; /* D D P Q D */
831 case ALGORITHM_LEFT_SYMMETRIC:
832 case ALGORITHM_RIGHT_SYMMETRIC:
833 if (sh->pd_idx == raid_disks-1)
839 i -= (sh->pd_idx + 2);
843 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
849 chunk_number = stripe * data_disks + i;
850 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
852 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
853 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
854 printk(KERN_ERR "compute_blocknr: map not correct\n");
863 * Copy data between a page in the stripe cache, and one or more bion
864 * The page could align with the middle of the bio, or there could be
865 * several bion, each with several bio_vecs, which cover part of the page
866 * Multiple bion are linked together on bi_next. There may be extras
867 * at the end of this list. We ignore them.
869 static void copy_data(int frombio, struct bio *bio,
873 char *pa = page_address(page);
878 if (bio->bi_sector >= sector)
879 page_offset = (signed)(bio->bi_sector - sector) * 512;
881 page_offset = (signed)(sector - bio->bi_sector) * -512;
882 bio_for_each_segment(bvl, bio, i) {
883 int len = bio_iovec_idx(bio,i)->bv_len;
887 if (page_offset < 0) {
888 b_offset = -page_offset;
889 page_offset += b_offset;
893 if (len > 0 && page_offset + len > STRIPE_SIZE)
894 clen = STRIPE_SIZE - page_offset;
898 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
900 memcpy(pa+page_offset, ba+b_offset, clen);
902 memcpy(ba+b_offset, pa+page_offset, clen);
903 __bio_kunmap_atomic(ba, KM_USER0);
905 if (clen < len) /* hit end of page */
911 #define check_xor() do { \
912 if (count == MAX_XOR_BLOCKS) { \
913 xor_block(count, STRIPE_SIZE, ptr); \
919 static void compute_block(struct stripe_head *sh, int dd_idx)
921 int i, count, disks = sh->disks;
922 void *ptr[MAX_XOR_BLOCKS], *p;
924 PRINTK("compute_block, stripe %llu, idx %d\n",
925 (unsigned long long)sh->sector, dd_idx);
927 ptr[0] = page_address(sh->dev[dd_idx].page);
928 memset(ptr[0], 0, STRIPE_SIZE);
930 for (i = disks ; i--; ) {
933 p = page_address(sh->dev[i].page);
934 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
937 printk(KERN_ERR "compute_block() %d, stripe %llu, %d"
938 " not present\n", dd_idx,
939 (unsigned long long)sh->sector, i);
944 xor_block(count, STRIPE_SIZE, ptr);
945 set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
948 static void compute_parity5(struct stripe_head *sh, int method)
950 raid5_conf_t *conf = sh->raid_conf;
951 int i, pd_idx = sh->pd_idx, disks = sh->disks, count;
952 void *ptr[MAX_XOR_BLOCKS];
955 PRINTK("compute_parity5, stripe %llu, method %d\n",
956 (unsigned long long)sh->sector, method);
959 ptr[0] = page_address(sh->dev[pd_idx].page);
961 case READ_MODIFY_WRITE:
962 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags));
963 for (i=disks ; i-- ;) {
966 if (sh->dev[i].towrite &&
967 test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
968 ptr[count++] = page_address(sh->dev[i].page);
969 chosen = sh->dev[i].towrite;
970 sh->dev[i].towrite = NULL;
972 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
973 wake_up(&conf->wait_for_overlap);
975 BUG_ON(sh->dev[i].written);
976 sh->dev[i].written = chosen;
981 case RECONSTRUCT_WRITE:
982 memset(ptr[0], 0, STRIPE_SIZE);
983 for (i= disks; i-- ;)
984 if (i!=pd_idx && sh->dev[i].towrite) {
985 chosen = sh->dev[i].towrite;
986 sh->dev[i].towrite = NULL;
988 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
989 wake_up(&conf->wait_for_overlap);
991 BUG_ON(sh->dev[i].written);
992 sh->dev[i].written = chosen;
999 xor_block(count, STRIPE_SIZE, ptr);
1003 for (i = disks; i--;)
1004 if (sh->dev[i].written) {
1005 sector_t sector = sh->dev[i].sector;
1006 struct bio *wbi = sh->dev[i].written;
1007 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1008 copy_data(1, wbi, sh->dev[i].page, sector);
1009 wbi = r5_next_bio(wbi, sector);
1012 set_bit(R5_LOCKED, &sh->dev[i].flags);
1013 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1017 case RECONSTRUCT_WRITE:
1021 ptr[count++] = page_address(sh->dev[i].page);
1025 case READ_MODIFY_WRITE:
1026 for (i = disks; i--;)
1027 if (sh->dev[i].written) {
1028 ptr[count++] = page_address(sh->dev[i].page);
1033 xor_block(count, STRIPE_SIZE, ptr);
1035 if (method != CHECK_PARITY) {
1036 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1037 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1039 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1042 static void compute_parity6(struct stripe_head *sh, int method)
1044 raid6_conf_t *conf = sh->raid_conf;
1045 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = conf->raid_disks, count;
1047 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1050 qd_idx = raid6_next_disk(pd_idx, disks);
1051 d0_idx = raid6_next_disk(qd_idx, disks);
1053 PRINTK("compute_parity, stripe %llu, method %d\n",
1054 (unsigned long long)sh->sector, method);
1057 case READ_MODIFY_WRITE:
1058 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1059 case RECONSTRUCT_WRITE:
1060 for (i= disks; i-- ;)
1061 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1062 chosen = sh->dev[i].towrite;
1063 sh->dev[i].towrite = NULL;
1065 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1066 wake_up(&conf->wait_for_overlap);
1068 if (sh->dev[i].written) BUG();
1069 sh->dev[i].written = chosen;
1073 BUG(); /* Not implemented yet */
1076 for (i = disks; i--;)
1077 if (sh->dev[i].written) {
1078 sector_t sector = sh->dev[i].sector;
1079 struct bio *wbi = sh->dev[i].written;
1080 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1081 copy_data(1, wbi, sh->dev[i].page, sector);
1082 wbi = r5_next_bio(wbi, sector);
1085 set_bit(R5_LOCKED, &sh->dev[i].flags);
1086 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1090 // case RECONSTRUCT_WRITE:
1091 // case CHECK_PARITY:
1092 // case UPDATE_PARITY:
1093 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1094 /* FIX: Is this ordering of drives even remotely optimal? */
1098 ptrs[count++] = page_address(sh->dev[i].page);
1099 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1100 printk("block %d/%d not uptodate on parity calc\n", i,count);
1101 i = raid6_next_disk(i, disks);
1102 } while ( i != d0_idx );
1106 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1109 case RECONSTRUCT_WRITE:
1110 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1111 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1112 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1113 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1116 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1117 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1123 /* Compute one missing block */
1124 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1126 raid6_conf_t *conf = sh->raid_conf;
1127 int i, count, disks = conf->raid_disks;
1128 void *ptr[MAX_XOR_BLOCKS], *p;
1129 int pd_idx = sh->pd_idx;
1130 int qd_idx = raid6_next_disk(pd_idx, disks);
1132 PRINTK("compute_block_1, stripe %llu, idx %d\n",
1133 (unsigned long long)sh->sector, dd_idx);
1135 if ( dd_idx == qd_idx ) {
1136 /* We're actually computing the Q drive */
1137 compute_parity6(sh, UPDATE_PARITY);
1139 ptr[0] = page_address(sh->dev[dd_idx].page);
1140 if (!nozero) memset(ptr[0], 0, STRIPE_SIZE);
1142 for (i = disks ; i--; ) {
1143 if (i == dd_idx || i == qd_idx)
1145 p = page_address(sh->dev[i].page);
1146 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1149 printk("compute_block() %d, stripe %llu, %d"
1150 " not present\n", dd_idx,
1151 (unsigned long long)sh->sector, i);
1156 xor_block(count, STRIPE_SIZE, ptr);
1157 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1158 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1162 /* Compute two missing blocks */
1163 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1165 raid6_conf_t *conf = sh->raid_conf;
1166 int i, count, disks = conf->raid_disks;
1167 int pd_idx = sh->pd_idx;
1168 int qd_idx = raid6_next_disk(pd_idx, disks);
1169 int d0_idx = raid6_next_disk(qd_idx, disks);
1172 /* faila and failb are disk numbers relative to d0_idx */
1173 /* pd_idx become disks-2 and qd_idx become disks-1 */
1174 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1175 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1177 BUG_ON(faila == failb);
1178 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1180 PRINTK("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1181 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1183 if ( failb == disks-1 ) {
1184 /* Q disk is one of the missing disks */
1185 if ( faila == disks-2 ) {
1186 /* Missing P+Q, just recompute */
1187 compute_parity6(sh, UPDATE_PARITY);
1190 /* We're missing D+Q; recompute D from P */
1191 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1192 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1197 /* We're missing D+P or D+D; build pointer table */
1199 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1205 ptrs[count++] = page_address(sh->dev[i].page);
1206 i = raid6_next_disk(i, disks);
1207 if (i != dd_idx1 && i != dd_idx2 &&
1208 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1209 printk("compute_2 with missing block %d/%d\n", count, i);
1210 } while ( i != d0_idx );
1212 if ( failb == disks-2 ) {
1213 /* We're missing D+P. */
1214 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1216 /* We're missing D+D. */
1217 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1220 /* Both the above update both missing blocks */
1221 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1222 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1229 * Each stripe/dev can have one or more bion attached.
1230 * toread/towrite point to the first in a chain.
1231 * The bi_next chain must be in order.
1233 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1236 raid5_conf_t *conf = sh->raid_conf;
1239 PRINTK("adding bh b#%llu to stripe s#%llu\n",
1240 (unsigned long long)bi->bi_sector,
1241 (unsigned long long)sh->sector);
1244 spin_lock(&sh->lock);
1245 spin_lock_irq(&conf->device_lock);
1247 bip = &sh->dev[dd_idx].towrite;
1248 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1251 bip = &sh->dev[dd_idx].toread;
1252 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1253 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1255 bip = & (*bip)->bi_next;
1257 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1260 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1264 bi->bi_phys_segments ++;
1265 spin_unlock_irq(&conf->device_lock);
1266 spin_unlock(&sh->lock);
1268 PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
1269 (unsigned long long)bi->bi_sector,
1270 (unsigned long long)sh->sector, dd_idx);
1272 if (conf->mddev->bitmap && firstwrite) {
1273 sh->bm_seq = conf->seq_write;
1274 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1276 set_bit(STRIPE_BIT_DELAY, &sh->state);
1280 /* check if page is covered */
1281 sector_t sector = sh->dev[dd_idx].sector;
1282 for (bi=sh->dev[dd_idx].towrite;
1283 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1284 bi && bi->bi_sector <= sector;
1285 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1286 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1287 sector = bi->bi_sector + (bi->bi_size>>9);
1289 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1290 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1295 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1296 spin_unlock_irq(&conf->device_lock);
1297 spin_unlock(&sh->lock);
1301 static void end_reshape(raid5_conf_t *conf);
1303 static int page_is_zero(struct page *p)
1305 char *a = page_address(p);
1306 return ((*(u32*)a) == 0 &&
1307 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1310 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1312 int sectors_per_chunk = conf->chunk_size >> 9;
1313 sector_t x = stripe;
1315 int chunk_offset = sector_div(x, sectors_per_chunk);
1317 raid5_compute_sector(stripe*(disks-1)*sectors_per_chunk
1318 + chunk_offset, disks, disks-1, &dd_idx, &pd_idx, conf);
1324 * handle_stripe - do things to a stripe.
1326 * We lock the stripe and then examine the state of various bits
1327 * to see what needs to be done.
1329 * return some read request which now have data
1330 * return some write requests which are safely on disc
1331 * schedule a read on some buffers
1332 * schedule a write of some buffers
1333 * return confirmation of parity correctness
1335 * Parity calculations are done inside the stripe lock
1336 * buffers are taken off read_list or write_list, and bh_cache buffers
1337 * get BH_Lock set before the stripe lock is released.
1341 static void handle_stripe5(struct stripe_head *sh)
1343 raid5_conf_t *conf = sh->raid_conf;
1344 int disks = sh->disks;
1345 struct bio *return_bi= NULL;
1348 int syncing, expanding, expanded;
1349 int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
1350 int non_overwrite = 0;
1354 PRINTK("handling stripe %llu, cnt=%d, pd_idx=%d\n",
1355 (unsigned long long)sh->sector, atomic_read(&sh->count),
1358 spin_lock(&sh->lock);
1359 clear_bit(STRIPE_HANDLE, &sh->state);
1360 clear_bit(STRIPE_DELAYED, &sh->state);
1362 syncing = test_bit(STRIPE_SYNCING, &sh->state);
1363 expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1364 expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
1365 /* Now to look around and see what can be done */
1368 for (i=disks; i--; ) {
1371 clear_bit(R5_Insync, &dev->flags);
1373 PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1374 i, dev->flags, dev->toread, dev->towrite, dev->written);
1375 /* maybe we can reply to a read */
1376 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1377 struct bio *rbi, *rbi2;
1378 PRINTK("Return read for disc %d\n", i);
1379 spin_lock_irq(&conf->device_lock);
1382 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1383 wake_up(&conf->wait_for_overlap);
1384 spin_unlock_irq(&conf->device_lock);
1385 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1386 copy_data(0, rbi, dev->page, dev->sector);
1387 rbi2 = r5_next_bio(rbi, dev->sector);
1388 spin_lock_irq(&conf->device_lock);
1389 if (--rbi->bi_phys_segments == 0) {
1390 rbi->bi_next = return_bi;
1393 spin_unlock_irq(&conf->device_lock);
1398 /* now count some things */
1399 if (test_bit(R5_LOCKED, &dev->flags)) locked++;
1400 if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
1403 if (dev->toread) to_read++;
1406 if (!test_bit(R5_OVERWRITE, &dev->flags))
1409 if (dev->written) written++;
1410 rdev = rcu_dereference(conf->disks[i].rdev);
1411 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
1412 /* The ReadError flag will just be confusing now */
1413 clear_bit(R5_ReadError, &dev->flags);
1414 clear_bit(R5_ReWrite, &dev->flags);
1416 if (!rdev || !test_bit(In_sync, &rdev->flags)
1417 || test_bit(R5_ReadError, &dev->flags)) {
1421 set_bit(R5_Insync, &dev->flags);
1424 PRINTK("locked=%d uptodate=%d to_read=%d"
1425 " to_write=%d failed=%d failed_num=%d\n",
1426 locked, uptodate, to_read, to_write, failed, failed_num);
1427 /* check if the array has lost two devices and, if so, some requests might
1430 if (failed > 1 && to_read+to_write+written) {
1431 for (i=disks; i--; ) {
1434 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1437 rdev = rcu_dereference(conf->disks[i].rdev);
1438 if (rdev && test_bit(In_sync, &rdev->flags))
1439 /* multiple read failures in one stripe */
1440 md_error(conf->mddev, rdev);
1444 spin_lock_irq(&conf->device_lock);
1445 /* fail all writes first */
1446 bi = sh->dev[i].towrite;
1447 sh->dev[i].towrite = NULL;
1448 if (bi) { to_write--; bitmap_end = 1; }
1450 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1451 wake_up(&conf->wait_for_overlap);
1453 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1454 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1455 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1456 if (--bi->bi_phys_segments == 0) {
1457 md_write_end(conf->mddev);
1458 bi->bi_next = return_bi;
1463 /* and fail all 'written' */
1464 bi = sh->dev[i].written;
1465 sh->dev[i].written = NULL;
1466 if (bi) bitmap_end = 1;
1467 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
1468 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1469 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1470 if (--bi->bi_phys_segments == 0) {
1471 md_write_end(conf->mddev);
1472 bi->bi_next = return_bi;
1478 /* fail any reads if this device is non-operational */
1479 if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1480 test_bit(R5_ReadError, &sh->dev[i].flags)) {
1481 bi = sh->dev[i].toread;
1482 sh->dev[i].toread = NULL;
1483 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1484 wake_up(&conf->wait_for_overlap);
1486 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1487 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1488 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1489 if (--bi->bi_phys_segments == 0) {
1490 bi->bi_next = return_bi;
1496 spin_unlock_irq(&conf->device_lock);
1498 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1499 STRIPE_SECTORS, 0, 0);
1502 if (failed > 1 && syncing) {
1503 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
1504 clear_bit(STRIPE_SYNCING, &sh->state);
1508 /* might be able to return some write requests if the parity block
1509 * is safe, or on a failed drive
1511 dev = &sh->dev[sh->pd_idx];
1513 ( (test_bit(R5_Insync, &dev->flags) && !test_bit(R5_LOCKED, &dev->flags) &&
1514 test_bit(R5_UPTODATE, &dev->flags))
1515 || (failed == 1 && failed_num == sh->pd_idx))
1517 /* any written block on an uptodate or failed drive can be returned.
1518 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
1519 * never LOCKED, so we don't need to test 'failed' directly.
1521 for (i=disks; i--; )
1522 if (sh->dev[i].written) {
1524 if (!test_bit(R5_LOCKED, &dev->flags) &&
1525 test_bit(R5_UPTODATE, &dev->flags) ) {
1526 /* We can return any write requests */
1527 struct bio *wbi, *wbi2;
1529 PRINTK("Return write for disc %d\n", i);
1530 spin_lock_irq(&conf->device_lock);
1532 dev->written = NULL;
1533 while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1534 wbi2 = r5_next_bio(wbi, dev->sector);
1535 if (--wbi->bi_phys_segments == 0) {
1536 md_write_end(conf->mddev);
1537 wbi->bi_next = return_bi;
1542 if (dev->towrite == NULL)
1544 spin_unlock_irq(&conf->device_lock);
1546 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1548 !test_bit(STRIPE_DEGRADED, &sh->state), 0);
1553 /* Now we might consider reading some blocks, either to check/generate
1554 * parity, or to satisfy requests
1555 * or to load a block that is being partially written.
1557 if (to_read || non_overwrite || (syncing && (uptodate < disks)) || expanding) {
1558 for (i=disks; i--;) {
1560 if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1562 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1565 (failed && (sh->dev[failed_num].toread ||
1566 (sh->dev[failed_num].towrite && !test_bit(R5_OVERWRITE, &sh->dev[failed_num].flags))))
1569 /* we would like to get this block, possibly
1570 * by computing it, but we might not be able to
1572 if (uptodate == disks-1) {
1573 PRINTK("Computing block %d\n", i);
1574 compute_block(sh, i);
1576 } else if (test_bit(R5_Insync, &dev->flags)) {
1577 set_bit(R5_LOCKED, &dev->flags);
1578 set_bit(R5_Wantread, &dev->flags);
1580 /* if I am just reading this block and we don't have
1581 a failed drive, or any pending writes then sidestep the cache */
1582 if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
1583 ! syncing && !failed && !to_write) {
1584 sh->bh_cache[i]->b_page = sh->bh_read[i]->b_page;
1585 sh->bh_cache[i]->b_data = sh->bh_read[i]->b_data;
1589 PRINTK("Reading block %d (sync=%d)\n",
1594 set_bit(STRIPE_HANDLE, &sh->state);
1597 /* now to consider writing and what else, if anything should be read */
1600 for (i=disks ; i--;) {
1601 /* would I have to read this buffer for read_modify_write */
1603 if ((dev->towrite || i == sh->pd_idx) &&
1604 (!test_bit(R5_LOCKED, &dev->flags)
1606 || sh->bh_page[i]!=bh->b_page
1609 !test_bit(R5_UPTODATE, &dev->flags)) {
1610 if (test_bit(R5_Insync, &dev->flags)
1611 /* && !(!mddev->insync && i == sh->pd_idx) */
1614 else rmw += 2*disks; /* cannot read it */
1616 /* Would I have to read this buffer for reconstruct_write */
1617 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1618 (!test_bit(R5_LOCKED, &dev->flags)
1620 || sh->bh_page[i] != bh->b_page
1623 !test_bit(R5_UPTODATE, &dev->flags)) {
1624 if (test_bit(R5_Insync, &dev->flags)) rcw++;
1625 else rcw += 2*disks;
1628 PRINTK("for sector %llu, rmw=%d rcw=%d\n",
1629 (unsigned long long)sh->sector, rmw, rcw);
1630 set_bit(STRIPE_HANDLE, &sh->state);
1631 if (rmw < rcw && rmw > 0)
1632 /* prefer read-modify-write, but need to get some data */
1633 for (i=disks; i--;) {
1635 if ((dev->towrite || i == sh->pd_idx) &&
1636 !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1637 test_bit(R5_Insync, &dev->flags)) {
1638 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1640 PRINTK("Read_old block %d for r-m-w\n", i);
1641 set_bit(R5_LOCKED, &dev->flags);
1642 set_bit(R5_Wantread, &dev->flags);
1645 set_bit(STRIPE_DELAYED, &sh->state);
1646 set_bit(STRIPE_HANDLE, &sh->state);
1650 if (rcw <= rmw && rcw > 0)
1651 /* want reconstruct write, but need to get some data */
1652 for (i=disks; i--;) {
1654 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1655 !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1656 test_bit(R5_Insync, &dev->flags)) {
1657 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1659 PRINTK("Read_old block %d for Reconstruct\n", i);
1660 set_bit(R5_LOCKED, &dev->flags);
1661 set_bit(R5_Wantread, &dev->flags);
1664 set_bit(STRIPE_DELAYED, &sh->state);
1665 set_bit(STRIPE_HANDLE, &sh->state);
1669 /* now if nothing is locked, and if we have enough data, we can start a write request */
1670 if (locked == 0 && (rcw == 0 ||rmw == 0) &&
1671 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
1672 PRINTK("Computing parity...\n");
1673 compute_parity5(sh, rcw==0 ? RECONSTRUCT_WRITE : READ_MODIFY_WRITE);
1674 /* now every locked buffer is ready to be written */
1676 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
1677 PRINTK("Writing block %d\n", i);
1679 set_bit(R5_Wantwrite, &sh->dev[i].flags);
1680 if (!test_bit(R5_Insync, &sh->dev[i].flags)
1681 || (i==sh->pd_idx && failed == 0))
1682 set_bit(STRIPE_INSYNC, &sh->state);
1684 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
1685 atomic_dec(&conf->preread_active_stripes);
1686 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
1687 md_wakeup_thread(conf->mddev->thread);
1692 /* maybe we need to check and possibly fix the parity for this stripe
1693 * Any reads will already have been scheduled, so we just see if enough data
1696 if (syncing && locked == 0 &&
1697 !test_bit(STRIPE_INSYNC, &sh->state)) {
1698 set_bit(STRIPE_HANDLE, &sh->state);
1700 BUG_ON(uptodate != disks);
1701 compute_parity5(sh, CHECK_PARITY);
1703 if (page_is_zero(sh->dev[sh->pd_idx].page)) {
1704 /* parity is correct (on disc, not in buffer any more) */
1705 set_bit(STRIPE_INSYNC, &sh->state);
1707 conf->mddev->resync_mismatches += STRIPE_SECTORS;
1708 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
1709 /* don't try to repair!! */
1710 set_bit(STRIPE_INSYNC, &sh->state);
1712 compute_block(sh, sh->pd_idx);
1717 if (!test_bit(STRIPE_INSYNC, &sh->state)) {
1718 /* either failed parity check, or recovery is happening */
1720 failed_num = sh->pd_idx;
1721 dev = &sh->dev[failed_num];
1722 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
1723 BUG_ON(uptodate != disks);
1725 set_bit(R5_LOCKED, &dev->flags);
1726 set_bit(R5_Wantwrite, &dev->flags);
1727 clear_bit(STRIPE_DEGRADED, &sh->state);
1729 set_bit(STRIPE_INSYNC, &sh->state);
1732 if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1733 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
1734 clear_bit(STRIPE_SYNCING, &sh->state);
1737 /* If the failed drive is just a ReadError, then we might need to progress
1738 * the repair/check process
1740 if (failed == 1 && ! conf->mddev->ro &&
1741 test_bit(R5_ReadError, &sh->dev[failed_num].flags)
1742 && !test_bit(R5_LOCKED, &sh->dev[failed_num].flags)
1743 && test_bit(R5_UPTODATE, &sh->dev[failed_num].flags)
1745 dev = &sh->dev[failed_num];
1746 if (!test_bit(R5_ReWrite, &dev->flags)) {
1747 set_bit(R5_Wantwrite, &dev->flags);
1748 set_bit(R5_ReWrite, &dev->flags);
1749 set_bit(R5_LOCKED, &dev->flags);
1752 /* let's read it back */
1753 set_bit(R5_Wantread, &dev->flags);
1754 set_bit(R5_LOCKED, &dev->flags);
1759 if (expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
1760 /* Need to write out all blocks after computing parity */
1761 sh->disks = conf->raid_disks;
1762 sh->pd_idx = stripe_to_pdidx(sh->sector, conf, conf->raid_disks);
1763 compute_parity5(sh, RECONSTRUCT_WRITE);
1764 for (i= conf->raid_disks; i--;) {
1765 set_bit(R5_LOCKED, &sh->dev[i].flags);
1767 set_bit(R5_Wantwrite, &sh->dev[i].flags);
1769 clear_bit(STRIPE_EXPANDING, &sh->state);
1770 } else if (expanded) {
1771 clear_bit(STRIPE_EXPAND_READY, &sh->state);
1772 atomic_dec(&conf->reshape_stripes);
1773 wake_up(&conf->wait_for_overlap);
1774 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
1777 if (expanding && locked == 0) {
1778 /* We have read all the blocks in this stripe and now we need to
1779 * copy some of them into a target stripe for expand.
1781 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1782 for (i=0; i< sh->disks; i++)
1783 if (i != sh->pd_idx) {
1784 int dd_idx, pd_idx, j;
1785 struct stripe_head *sh2;
1787 sector_t bn = compute_blocknr(sh, i);
1788 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
1790 &dd_idx, &pd_idx, conf);
1791 sh2 = get_active_stripe(conf, s, conf->raid_disks, pd_idx, 1);
1793 /* so far only the early blocks of this stripe
1794 * have been requested. When later blocks
1795 * get requested, we will try again
1798 if(!test_bit(STRIPE_EXPANDING, &sh2->state) ||
1799 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
1800 /* must have already done this block */
1801 release_stripe(sh2);
1804 memcpy(page_address(sh2->dev[dd_idx].page),
1805 page_address(sh->dev[i].page),
1807 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
1808 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
1809 for (j=0; j<conf->raid_disks; j++)
1810 if (j != sh2->pd_idx &&
1811 !test_bit(R5_Expanded, &sh2->dev[j].flags))
1813 if (j == conf->raid_disks) {
1814 set_bit(STRIPE_EXPAND_READY, &sh2->state);
1815 set_bit(STRIPE_HANDLE, &sh2->state);
1817 release_stripe(sh2);
1821 spin_unlock(&sh->lock);
1823 while ((bi=return_bi)) {
1824 int bytes = bi->bi_size;
1826 return_bi = bi->bi_next;
1829 bi->bi_end_io(bi, bytes, 0);
1831 for (i=disks; i-- ;) {
1835 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
1837 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1842 bi = &sh->dev[i].req;
1846 bi->bi_end_io = raid5_end_write_request;
1848 bi->bi_end_io = raid5_end_read_request;
1851 rdev = rcu_dereference(conf->disks[i].rdev);
1852 if (rdev && test_bit(Faulty, &rdev->flags))
1855 atomic_inc(&rdev->nr_pending);
1859 if (syncing || expanding || expanded)
1860 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1862 bi->bi_bdev = rdev->bdev;
1863 PRINTK("for %llu schedule op %ld on disc %d\n",
1864 (unsigned long long)sh->sector, bi->bi_rw, i);
1865 atomic_inc(&sh->count);
1866 bi->bi_sector = sh->sector + rdev->data_offset;
1867 bi->bi_flags = 1 << BIO_UPTODATE;
1869 bi->bi_max_vecs = 1;
1871 bi->bi_io_vec = &sh->dev[i].vec;
1872 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1873 bi->bi_io_vec[0].bv_offset = 0;
1874 bi->bi_size = STRIPE_SIZE;
1877 test_bit(R5_ReWrite, &sh->dev[i].flags))
1878 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1879 generic_make_request(bi);
1882 set_bit(STRIPE_DEGRADED, &sh->state);
1883 PRINTK("skip op %ld on disc %d for sector %llu\n",
1884 bi->bi_rw, i, (unsigned long long)sh->sector);
1885 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1886 set_bit(STRIPE_HANDLE, &sh->state);
1891 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
1893 raid6_conf_t *conf = sh->raid_conf;
1894 int disks = conf->raid_disks;
1895 struct bio *return_bi= NULL;
1899 int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
1900 int non_overwrite = 0;
1901 int failed_num[2] = {0, 0};
1902 struct r5dev *dev, *pdev, *qdev;
1903 int pd_idx = sh->pd_idx;
1904 int qd_idx = raid6_next_disk(pd_idx, disks);
1905 int p_failed, q_failed;
1907 PRINTK("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d, qd_idx=%d\n",
1908 (unsigned long long)sh->sector, sh->state, atomic_read(&sh->count),
1911 spin_lock(&sh->lock);
1912 clear_bit(STRIPE_HANDLE, &sh->state);
1913 clear_bit(STRIPE_DELAYED, &sh->state);
1915 syncing = test_bit(STRIPE_SYNCING, &sh->state);
1916 /* Now to look around and see what can be done */
1919 for (i=disks; i--; ) {
1922 clear_bit(R5_Insync, &dev->flags);
1924 PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1925 i, dev->flags, dev->toread, dev->towrite, dev->written);
1926 /* maybe we can reply to a read */
1927 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1928 struct bio *rbi, *rbi2;
1929 PRINTK("Return read for disc %d\n", i);
1930 spin_lock_irq(&conf->device_lock);
1933 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1934 wake_up(&conf->wait_for_overlap);
1935 spin_unlock_irq(&conf->device_lock);
1936 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1937 copy_data(0, rbi, dev->page, dev->sector);
1938 rbi2 = r5_next_bio(rbi, dev->sector);
1939 spin_lock_irq(&conf->device_lock);
1940 if (--rbi->bi_phys_segments == 0) {
1941 rbi->bi_next = return_bi;
1944 spin_unlock_irq(&conf->device_lock);
1949 /* now count some things */
1950 if (test_bit(R5_LOCKED, &dev->flags)) locked++;
1951 if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
1954 if (dev->toread) to_read++;
1957 if (!test_bit(R5_OVERWRITE, &dev->flags))
1960 if (dev->written) written++;
1961 rdev = rcu_dereference(conf->disks[i].rdev);
1962 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
1963 /* The ReadError flag will just be confusing now */
1964 clear_bit(R5_ReadError, &dev->flags);
1965 clear_bit(R5_ReWrite, &dev->flags);
1967 if (!rdev || !test_bit(In_sync, &rdev->flags)
1968 || test_bit(R5_ReadError, &dev->flags)) {
1970 failed_num[failed] = i;
1973 set_bit(R5_Insync, &dev->flags);
1976 PRINTK("locked=%d uptodate=%d to_read=%d"
1977 " to_write=%d failed=%d failed_num=%d,%d\n",
1978 locked, uptodate, to_read, to_write, failed,
1979 failed_num[0], failed_num[1]);
1980 /* check if the array has lost >2 devices and, if so, some requests might
1983 if (failed > 2 && to_read+to_write+written) {
1984 for (i=disks; i--; ) {
1987 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1990 rdev = rcu_dereference(conf->disks[i].rdev);
1991 if (rdev && test_bit(In_sync, &rdev->flags))
1992 /* multiple read failures in one stripe */
1993 md_error(conf->mddev, rdev);
1997 spin_lock_irq(&conf->device_lock);
1998 /* fail all writes first */
1999 bi = sh->dev[i].towrite;
2000 sh->dev[i].towrite = NULL;
2001 if (bi) { to_write--; bitmap_end = 1; }
2003 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2004 wake_up(&conf->wait_for_overlap);
2006 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
2007 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2008 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2009 if (--bi->bi_phys_segments == 0) {
2010 md_write_end(conf->mddev);
2011 bi->bi_next = return_bi;
2016 /* and fail all 'written' */
2017 bi = sh->dev[i].written;
2018 sh->dev[i].written = NULL;
2019 if (bi) bitmap_end = 1;
2020 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
2021 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2022 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2023 if (--bi->bi_phys_segments == 0) {
2024 md_write_end(conf->mddev);
2025 bi->bi_next = return_bi;
2031 /* fail any reads if this device is non-operational */
2032 if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2033 test_bit(R5_ReadError, &sh->dev[i].flags)) {
2034 bi = sh->dev[i].toread;
2035 sh->dev[i].toread = NULL;
2036 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2037 wake_up(&conf->wait_for_overlap);
2039 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
2040 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2041 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2042 if (--bi->bi_phys_segments == 0) {
2043 bi->bi_next = return_bi;
2049 spin_unlock_irq(&conf->device_lock);
2051 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2052 STRIPE_SECTORS, 0, 0);
2055 if (failed > 2 && syncing) {
2056 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2057 clear_bit(STRIPE_SYNCING, &sh->state);
2062 * might be able to return some write requests if the parity blocks
2063 * are safe, or on a failed drive
2065 pdev = &sh->dev[pd_idx];
2066 p_failed = (failed >= 1 && failed_num[0] == pd_idx)
2067 || (failed >= 2 && failed_num[1] == pd_idx);
2068 qdev = &sh->dev[qd_idx];
2069 q_failed = (failed >= 1 && failed_num[0] == qd_idx)
2070 || (failed >= 2 && failed_num[1] == qd_idx);
2073 ( p_failed || ((test_bit(R5_Insync, &pdev->flags)
2074 && !test_bit(R5_LOCKED, &pdev->flags)
2075 && test_bit(R5_UPTODATE, &pdev->flags))) ) &&
2076 ( q_failed || ((test_bit(R5_Insync, &qdev->flags)
2077 && !test_bit(R5_LOCKED, &qdev->flags)
2078 && test_bit(R5_UPTODATE, &qdev->flags))) ) ) {
2079 /* any written block on an uptodate or failed drive can be
2080 * returned. Note that if we 'wrote' to a failed drive,
2081 * it will be UPTODATE, but never LOCKED, so we don't need
2082 * to test 'failed' directly.
2084 for (i=disks; i--; )
2085 if (sh->dev[i].written) {
2087 if (!test_bit(R5_LOCKED, &dev->flags) &&
2088 test_bit(R5_UPTODATE, &dev->flags) ) {
2089 /* We can return any write requests */
2091 struct bio *wbi, *wbi2;
2092 PRINTK("Return write for stripe %llu disc %d\n",
2093 (unsigned long long)sh->sector, i);
2094 spin_lock_irq(&conf->device_lock);
2096 dev->written = NULL;
2097 while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2098 wbi2 = r5_next_bio(wbi, dev->sector);
2099 if (--wbi->bi_phys_segments == 0) {
2100 md_write_end(conf->mddev);
2101 wbi->bi_next = return_bi;
2106 if (dev->towrite == NULL)
2108 spin_unlock_irq(&conf->device_lock);
2110 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2112 !test_bit(STRIPE_DEGRADED, &sh->state), 0);
2117 /* Now we might consider reading some blocks, either to check/generate
2118 * parity, or to satisfy requests
2119 * or to load a block that is being partially written.
2121 if (to_read || non_overwrite || (to_write && failed) || (syncing && (uptodate < disks))) {
2122 for (i=disks; i--;) {
2124 if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
2126 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2128 (failed >= 1 && (sh->dev[failed_num[0]].toread || to_write)) ||
2129 (failed >= 2 && (sh->dev[failed_num[1]].toread || to_write))
2132 /* we would like to get this block, possibly
2133 * by computing it, but we might not be able to
2135 if (uptodate == disks-1) {
2136 PRINTK("Computing stripe %llu block %d\n",
2137 (unsigned long long)sh->sector, i);
2138 compute_block_1(sh, i, 0);
2140 } else if ( uptodate == disks-2 && failed >= 2 ) {
2141 /* Computing 2-failure is *very* expensive; only do it if failed >= 2 */
2143 for (other=disks; other--;) {
2146 if ( !test_bit(R5_UPTODATE, &sh->dev[other].flags) )
2150 PRINTK("Computing stripe %llu blocks %d,%d\n",
2151 (unsigned long long)sh->sector, i, other);
2152 compute_block_2(sh, i, other);
2154 } else if (test_bit(R5_Insync, &dev->flags)) {
2155 set_bit(R5_LOCKED, &dev->flags);
2156 set_bit(R5_Wantread, &dev->flags);
2158 /* if I am just reading this block and we don't have
2159 a failed drive, or any pending writes then sidestep the cache */
2160 if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
2161 ! syncing && !failed && !to_write) {
2162 sh->bh_cache[i]->b_page = sh->bh_read[i]->b_page;
2163 sh->bh_cache[i]->b_data = sh->bh_read[i]->b_data;
2167 PRINTK("Reading block %d (sync=%d)\n",
2172 set_bit(STRIPE_HANDLE, &sh->state);
2175 /* now to consider writing and what else, if anything should be read */
2177 int rcw=0, must_compute=0;
2178 for (i=disks ; i--;) {
2180 /* Would I have to read this buffer for reconstruct_write */
2181 if (!test_bit(R5_OVERWRITE, &dev->flags)
2182 && i != pd_idx && i != qd_idx
2183 && (!test_bit(R5_LOCKED, &dev->flags)
2185 || sh->bh_page[i] != bh->b_page
2188 !test_bit(R5_UPTODATE, &dev->flags)) {
2189 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2191 PRINTK("raid6: must_compute: disk %d flags=%#lx\n", i, dev->flags);
2196 PRINTK("for sector %llu, rcw=%d, must_compute=%d\n",
2197 (unsigned long long)sh->sector, rcw, must_compute);
2198 set_bit(STRIPE_HANDLE, &sh->state);
2201 /* want reconstruct write, but need to get some data */
2202 for (i=disks; i--;) {
2204 if (!test_bit(R5_OVERWRITE, &dev->flags)
2205 && !(failed == 0 && (i == pd_idx || i == qd_idx))
2206 && !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
2207 test_bit(R5_Insync, &dev->flags)) {
2208 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2210 PRINTK("Read_old stripe %llu block %d for Reconstruct\n",
2211 (unsigned long long)sh->sector, i);
2212 set_bit(R5_LOCKED, &dev->flags);
2213 set_bit(R5_Wantread, &dev->flags);
2216 PRINTK("Request delayed stripe %llu block %d for Reconstruct\n",
2217 (unsigned long long)sh->sector, i);
2218 set_bit(STRIPE_DELAYED, &sh->state);
2219 set_bit(STRIPE_HANDLE, &sh->state);
2223 /* now if nothing is locked, and if we have enough data, we can start a write request */
2224 if (locked == 0 && rcw == 0 &&
2225 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2226 if ( must_compute > 0 ) {
2227 /* We have failed blocks and need to compute them */
2230 case 1: compute_block_1(sh, failed_num[0], 0); break;
2231 case 2: compute_block_2(sh, failed_num[0], failed_num[1]); break;
2232 default: BUG(); /* This request should have been failed? */
2236 PRINTK("Computing parity for stripe %llu\n", (unsigned long long)sh->sector);
2237 compute_parity6(sh, RECONSTRUCT_WRITE);
2238 /* now every locked buffer is ready to be written */
2240 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2241 PRINTK("Writing stripe %llu block %d\n",
2242 (unsigned long long)sh->sector, i);
2244 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2246 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2247 set_bit(STRIPE_INSYNC, &sh->state);
2249 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2250 atomic_dec(&conf->preread_active_stripes);
2251 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
2252 md_wakeup_thread(conf->mddev->thread);
2257 /* maybe we need to check and possibly fix the parity for this stripe
2258 * Any reads will already have been scheduled, so we just see if enough data
2261 if (syncing && locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state)) {
2262 int update_p = 0, update_q = 0;
2265 set_bit(STRIPE_HANDLE, &sh->state);
2268 BUG_ON(uptodate < disks);
2269 /* Want to check and possibly repair P and Q.
2270 * However there could be one 'failed' device, in which
2271 * case we can only check one of them, possibly using the
2272 * other to generate missing data
2275 /* If !tmp_page, we cannot do the calculations,
2276 * but as we have set STRIPE_HANDLE, we will soon be called
2277 * by stripe_handle with a tmp_page - just wait until then.
2280 if (failed == q_failed) {
2281 /* The only possible failed device holds 'Q', so it makes
2282 * sense to check P (If anything else were failed, we would
2283 * have used P to recreate it).
2285 compute_block_1(sh, pd_idx, 1);
2286 if (!page_is_zero(sh->dev[pd_idx].page)) {
2287 compute_block_1(sh,pd_idx,0);
2291 if (!q_failed && failed < 2) {
2292 /* q is not failed, and we didn't use it to generate
2293 * anything, so it makes sense to check it
2295 memcpy(page_address(tmp_page),
2296 page_address(sh->dev[qd_idx].page),
2298 compute_parity6(sh, UPDATE_PARITY);
2299 if (memcmp(page_address(tmp_page),
2300 page_address(sh->dev[qd_idx].page),
2302 clear_bit(STRIPE_INSYNC, &sh->state);
2306 if (update_p || update_q) {
2307 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2308 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2309 /* don't try to repair!! */
2310 update_p = update_q = 0;
2313 /* now write out any block on a failed drive,
2314 * or P or Q if they need it
2318 dev = &sh->dev[failed_num[1]];
2320 set_bit(R5_LOCKED, &dev->flags);
2321 set_bit(R5_Wantwrite, &dev->flags);
2324 dev = &sh->dev[failed_num[0]];
2326 set_bit(R5_LOCKED, &dev->flags);
2327 set_bit(R5_Wantwrite, &dev->flags);
2331 dev = &sh->dev[pd_idx];
2333 set_bit(R5_LOCKED, &dev->flags);
2334 set_bit(R5_Wantwrite, &dev->flags);
2337 dev = &sh->dev[qd_idx];
2339 set_bit(R5_LOCKED, &dev->flags);
2340 set_bit(R5_Wantwrite, &dev->flags);
2342 clear_bit(STRIPE_DEGRADED, &sh->state);
2344 set_bit(STRIPE_INSYNC, &sh->state);
2348 if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2349 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2350 clear_bit(STRIPE_SYNCING, &sh->state);
2353 /* If the failed drives are just a ReadError, then we might need
2354 * to progress the repair/check process
2356 if (failed <= 2 && ! conf->mddev->ro)
2357 for (i=0; i<failed;i++) {
2358 dev = &sh->dev[failed_num[i]];
2359 if (test_bit(R5_ReadError, &dev->flags)
2360 && !test_bit(R5_LOCKED, &dev->flags)
2361 && test_bit(R5_UPTODATE, &dev->flags)
2363 if (!test_bit(R5_ReWrite, &dev->flags)) {
2364 set_bit(R5_Wantwrite, &dev->flags);
2365 set_bit(R5_ReWrite, &dev->flags);
2366 set_bit(R5_LOCKED, &dev->flags);
2368 /* let's read it back */
2369 set_bit(R5_Wantread, &dev->flags);
2370 set_bit(R5_LOCKED, &dev->flags);
2374 spin_unlock(&sh->lock);
2376 while ((bi=return_bi)) {
2377 int bytes = bi->bi_size;
2379 return_bi = bi->bi_next;
2382 bi->bi_end_io(bi, bytes, 0);
2384 for (i=disks; i-- ;) {
2388 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
2390 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
2395 bi = &sh->dev[i].req;
2399 bi->bi_end_io = raid5_end_write_request;
2401 bi->bi_end_io = raid5_end_read_request;
2404 rdev = rcu_dereference(conf->disks[i].rdev);
2405 if (rdev && test_bit(Faulty, &rdev->flags))
2408 atomic_inc(&rdev->nr_pending);
2413 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
2415 bi->bi_bdev = rdev->bdev;
2416 PRINTK("for %llu schedule op %ld on disc %d\n",
2417 (unsigned long long)sh->sector, bi->bi_rw, i);
2418 atomic_inc(&sh->count);
2419 bi->bi_sector = sh->sector + rdev->data_offset;
2420 bi->bi_flags = 1 << BIO_UPTODATE;
2422 bi->bi_max_vecs = 1;
2424 bi->bi_io_vec = &sh->dev[i].vec;
2425 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
2426 bi->bi_io_vec[0].bv_offset = 0;
2427 bi->bi_size = STRIPE_SIZE;
2430 test_bit(R5_ReWrite, &sh->dev[i].flags))
2431 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2432 generic_make_request(bi);
2435 set_bit(STRIPE_DEGRADED, &sh->state);
2436 PRINTK("skip op %ld on disc %d for sector %llu\n",
2437 bi->bi_rw, i, (unsigned long long)sh->sector);
2438 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2439 set_bit(STRIPE_HANDLE, &sh->state);
2444 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
2446 if (sh->raid_conf->level == 6)
2447 handle_stripe6(sh, tmp_page);
2454 static void raid5_activate_delayed(raid5_conf_t *conf)
2456 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
2457 while (!list_empty(&conf->delayed_list)) {
2458 struct list_head *l = conf->delayed_list.next;
2459 struct stripe_head *sh;
2460 sh = list_entry(l, struct stripe_head, lru);
2462 clear_bit(STRIPE_DELAYED, &sh->state);
2463 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2464 atomic_inc(&conf->preread_active_stripes);
2465 list_add_tail(&sh->lru, &conf->handle_list);
2470 static void activate_bit_delay(raid5_conf_t *conf)
2472 /* device_lock is held */
2473 struct list_head head;
2474 list_add(&head, &conf->bitmap_list);
2475 list_del_init(&conf->bitmap_list);
2476 while (!list_empty(&head)) {
2477 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
2478 list_del_init(&sh->lru);
2479 atomic_inc(&sh->count);
2480 __release_stripe(conf, sh);
2484 static void unplug_slaves(mddev_t *mddev)
2486 raid5_conf_t *conf = mddev_to_conf(mddev);
2490 for (i=0; i<mddev->raid_disks; i++) {
2491 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
2492 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
2493 request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
2495 atomic_inc(&rdev->nr_pending);
2498 if (r_queue->unplug_fn)
2499 r_queue->unplug_fn(r_queue);
2501 rdev_dec_pending(rdev, mddev);
2508 static void raid5_unplug_device(request_queue_t *q)
2510 mddev_t *mddev = q->queuedata;
2511 raid5_conf_t *conf = mddev_to_conf(mddev);
2512 unsigned long flags;
2514 spin_lock_irqsave(&conf->device_lock, flags);
2516 if (blk_remove_plug(q)) {
2518 raid5_activate_delayed(conf);
2520 md_wakeup_thread(mddev->thread);
2522 spin_unlock_irqrestore(&conf->device_lock, flags);
2524 unplug_slaves(mddev);
2527 static int raid5_issue_flush(request_queue_t *q, struct gendisk *disk,
2528 sector_t *error_sector)
2530 mddev_t *mddev = q->queuedata;
2531 raid5_conf_t *conf = mddev_to_conf(mddev);
2535 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
2536 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
2537 if (rdev && !test_bit(Faulty, &rdev->flags)) {
2538 struct block_device *bdev = rdev->bdev;
2539 request_queue_t *r_queue = bdev_get_queue(bdev);
2541 if (!r_queue->issue_flush_fn)
2544 atomic_inc(&rdev->nr_pending);
2546 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
2548 rdev_dec_pending(rdev, mddev);
2557 static inline void raid5_plug_device(raid5_conf_t *conf)
2559 spin_lock_irq(&conf->device_lock);
2560 blk_plug_device(conf->mddev->queue);
2561 spin_unlock_irq(&conf->device_lock);
2564 static int make_request(request_queue_t *q, struct bio * bi)
2566 mddev_t *mddev = q->queuedata;
2567 raid5_conf_t *conf = mddev_to_conf(mddev);
2568 unsigned int dd_idx, pd_idx;
2569 sector_t new_sector;
2570 sector_t logical_sector, last_sector;
2571 struct stripe_head *sh;
2572 const int rw = bio_data_dir(bi);
2575 if (unlikely(bio_barrier(bi))) {
2576 bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
2580 md_write_start(mddev, bi);
2582 disk_stat_inc(mddev->gendisk, ios[rw]);
2583 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
2585 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
2586 last_sector = bi->bi_sector + (bi->bi_size>>9);
2588 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
2590 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
2592 int disks, data_disks;
2595 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
2596 if (likely(conf->expand_progress == MaxSector))
2597 disks = conf->raid_disks;
2599 /* spinlock is needed as expand_progress may be
2600 * 64bit on a 32bit platform, and so it might be
2601 * possible to see a half-updated value
2602 * Ofcourse expand_progress could change after
2603 * the lock is dropped, so once we get a reference
2604 * to the stripe that we think it is, we will have
2607 spin_lock_irq(&conf->device_lock);
2608 disks = conf->raid_disks;
2609 if (logical_sector >= conf->expand_progress)
2610 disks = conf->previous_raid_disks;
2612 if (logical_sector >= conf->expand_lo) {
2613 spin_unlock_irq(&conf->device_lock);
2618 spin_unlock_irq(&conf->device_lock);
2620 data_disks = disks - conf->max_degraded;
2622 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
2623 &dd_idx, &pd_idx, conf);
2624 PRINTK("raid5: make_request, sector %llu logical %llu\n",
2625 (unsigned long long)new_sector,
2626 (unsigned long long)logical_sector);
2628 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
2630 if (unlikely(conf->expand_progress != MaxSector)) {
2631 /* expansion might have moved on while waiting for a
2632 * stripe, so we must do the range check again.
2633 * Expansion could still move past after this
2634 * test, but as we are holding a reference to
2635 * 'sh', we know that if that happens,
2636 * STRIPE_EXPANDING will get set and the expansion
2637 * won't proceed until we finish with the stripe.
2640 spin_lock_irq(&conf->device_lock);
2641 if (logical_sector < conf->expand_progress &&
2642 disks == conf->previous_raid_disks)
2643 /* mismatch, need to try again */
2645 spin_unlock_irq(&conf->device_lock);
2651 /* FIXME what if we get a false positive because these
2652 * are being updated.
2654 if (logical_sector >= mddev->suspend_lo &&
2655 logical_sector < mddev->suspend_hi) {
2661 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
2662 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
2663 /* Stripe is busy expanding or
2664 * add failed due to overlap. Flush everything
2667 raid5_unplug_device(mddev->queue);
2672 finish_wait(&conf->wait_for_overlap, &w);
2673 raid5_plug_device(conf);
2674 handle_stripe(sh, NULL);
2677 /* cannot get stripe for read-ahead, just give-up */
2678 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2679 finish_wait(&conf->wait_for_overlap, &w);
2684 spin_lock_irq(&conf->device_lock);
2685 remaining = --bi->bi_phys_segments;
2686 spin_unlock_irq(&conf->device_lock);
2687 if (remaining == 0) {
2688 int bytes = bi->bi_size;
2691 md_write_end(mddev);
2693 bi->bi_end_io(bi, bytes, 0);
2698 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
2700 /* reshaping is quite different to recovery/resync so it is
2701 * handled quite separately ... here.
2703 * On each call to sync_request, we gather one chunk worth of
2704 * destination stripes and flag them as expanding.
2705 * Then we find all the source stripes and request reads.
2706 * As the reads complete, handle_stripe will copy the data
2707 * into the destination stripe and release that stripe.
2709 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2710 struct stripe_head *sh;
2712 sector_t first_sector, last_sector;
2717 sector_t writepos, safepos, gap;
2719 if (sector_nr == 0 &&
2720 conf->expand_progress != 0) {
2721 /* restarting in the middle, skip the initial sectors */
2722 sector_nr = conf->expand_progress;
2723 sector_div(sector_nr, conf->raid_disks-1);
2728 /* we update the metadata when there is more than 3Meg
2729 * in the block range (that is rather arbitrary, should
2730 * probably be time based) or when the data about to be
2731 * copied would over-write the source of the data at
2732 * the front of the range.
2733 * i.e. one new_stripe forward from expand_progress new_maps
2734 * to after where expand_lo old_maps to
2736 writepos = conf->expand_progress +
2737 conf->chunk_size/512*(conf->raid_disks-1);
2738 sector_div(writepos, conf->raid_disks-1);
2739 safepos = conf->expand_lo;
2740 sector_div(safepos, conf->previous_raid_disks-1);
2741 gap = conf->expand_progress - conf->expand_lo;
2743 if (writepos >= safepos ||
2744 gap > (conf->raid_disks-1)*3000*2 /*3Meg*/) {
2745 /* Cannot proceed until we've updated the superblock... */
2746 wait_event(conf->wait_for_overlap,
2747 atomic_read(&conf->reshape_stripes)==0);
2748 mddev->reshape_position = conf->expand_progress;
2749 mddev->sb_dirty = 1;
2750 md_wakeup_thread(mddev->thread);
2751 wait_event(mddev->sb_wait, mddev->sb_dirty == 0 ||
2752 kthread_should_stop());
2753 spin_lock_irq(&conf->device_lock);
2754 conf->expand_lo = mddev->reshape_position;
2755 spin_unlock_irq(&conf->device_lock);
2756 wake_up(&conf->wait_for_overlap);
2759 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
2762 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
2763 sh = get_active_stripe(conf, sector_nr+i,
2764 conf->raid_disks, pd_idx, 0);
2765 set_bit(STRIPE_EXPANDING, &sh->state);
2766 atomic_inc(&conf->reshape_stripes);
2767 /* If any of this stripe is beyond the end of the old
2768 * array, then we need to zero those blocks
2770 for (j=sh->disks; j--;) {
2772 if (j == sh->pd_idx)
2774 s = compute_blocknr(sh, j);
2775 if (s < (mddev->array_size<<1)) {
2779 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
2780 set_bit(R5_Expanded, &sh->dev[j].flags);
2781 set_bit(R5_UPTODATE, &sh->dev[j].flags);
2784 set_bit(STRIPE_EXPAND_READY, &sh->state);
2785 set_bit(STRIPE_HANDLE, &sh->state);
2789 spin_lock_irq(&conf->device_lock);
2790 conf->expand_progress = (sector_nr + i)*(conf->raid_disks-1);
2791 spin_unlock_irq(&conf->device_lock);
2792 /* Ok, those stripe are ready. We can start scheduling
2793 * reads on the source stripes.
2794 * The source stripes are determined by mapping the first and last
2795 * block on the destination stripes.
2797 raid_disks = conf->previous_raid_disks;
2798 data_disks = raid_disks - 1;
2800 raid5_compute_sector(sector_nr*(conf->raid_disks-1),
2801 raid_disks, data_disks,
2802 &dd_idx, &pd_idx, conf);
2804 raid5_compute_sector((sector_nr+conf->chunk_size/512)
2805 *(conf->raid_disks-1) -1,
2806 raid_disks, data_disks,
2807 &dd_idx, &pd_idx, conf);
2808 if (last_sector >= (mddev->size<<1))
2809 last_sector = (mddev->size<<1)-1;
2810 while (first_sector <= last_sector) {
2811 pd_idx = stripe_to_pdidx(first_sector, conf, conf->previous_raid_disks);
2812 sh = get_active_stripe(conf, first_sector,
2813 conf->previous_raid_disks, pd_idx, 0);
2814 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2815 set_bit(STRIPE_HANDLE, &sh->state);
2817 first_sector += STRIPE_SECTORS;
2819 return conf->chunk_size>>9;
2822 /* FIXME go_faster isn't used */
2823 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
2825 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2826 struct stripe_head *sh;
2828 int raid_disks = conf->raid_disks;
2829 sector_t max_sector = mddev->size << 1;
2831 int still_degraded = 0;
2834 if (sector_nr >= max_sector) {
2835 /* just being told to finish up .. nothing much to do */
2836 unplug_slaves(mddev);
2837 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2842 if (mddev->curr_resync < max_sector) /* aborted */
2843 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2845 else /* completed sync */
2847 bitmap_close_sync(mddev->bitmap);
2852 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2853 return reshape_request(mddev, sector_nr, skipped);
2855 /* if there is too many failed drives and we are trying
2856 * to resync, then assert that we are finished, because there is
2857 * nothing we can do.
2859 if (mddev->degraded >= conf->max_degraded &&
2860 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2861 sector_t rv = (mddev->size << 1) - sector_nr;
2865 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2866 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2867 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
2868 /* we can skip this block, and probably more */
2869 sync_blocks /= STRIPE_SECTORS;
2871 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
2874 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
2875 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
2877 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
2878 /* make sure we don't swamp the stripe cache if someone else
2879 * is trying to get access
2881 schedule_timeout_uninterruptible(1);
2883 /* Need to check if array will still be degraded after recovery/resync
2884 * We don't need to check the 'failed' flag as when that gets set,
2887 for (i=0; i<mddev->raid_disks; i++)
2888 if (conf->disks[i].rdev == NULL)
2891 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
2893 spin_lock(&sh->lock);
2894 set_bit(STRIPE_SYNCING, &sh->state);
2895 clear_bit(STRIPE_INSYNC, &sh->state);
2896 spin_unlock(&sh->lock);
2898 handle_stripe(sh, NULL);
2901 return STRIPE_SECTORS;
2905 * This is our raid5 kernel thread.
2907 * We scan the hash table for stripes which can be handled now.
2908 * During the scan, completed stripes are saved for us by the interrupt
2909 * handler, so that they will not have to wait for our next wakeup.
2911 static void raid5d (mddev_t *mddev)
2913 struct stripe_head *sh;
2914 raid5_conf_t *conf = mddev_to_conf(mddev);
2917 PRINTK("+++ raid5d active\n");
2919 md_check_recovery(mddev);
2922 spin_lock_irq(&conf->device_lock);
2924 struct list_head *first;
2926 if (conf->seq_flush - conf->seq_write > 0) {
2927 int seq = conf->seq_flush;
2928 spin_unlock_irq(&conf->device_lock);
2929 bitmap_unplug(mddev->bitmap);
2930 spin_lock_irq(&conf->device_lock);
2931 conf->seq_write = seq;
2932 activate_bit_delay(conf);
2935 if (list_empty(&conf->handle_list) &&
2936 atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
2937 !blk_queue_plugged(mddev->queue) &&
2938 !list_empty(&conf->delayed_list))
2939 raid5_activate_delayed(conf);
2941 if (list_empty(&conf->handle_list))
2944 first = conf->handle_list.next;
2945 sh = list_entry(first, struct stripe_head, lru);
2947 list_del_init(first);
2948 atomic_inc(&sh->count);
2949 BUG_ON(atomic_read(&sh->count)!= 1);
2950 spin_unlock_irq(&conf->device_lock);
2953 handle_stripe(sh, conf->spare_page);
2956 spin_lock_irq(&conf->device_lock);
2958 PRINTK("%d stripes handled\n", handled);
2960 spin_unlock_irq(&conf->device_lock);
2962 unplug_slaves(mddev);
2964 PRINTK("--- raid5d inactive\n");
2968 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
2970 raid5_conf_t *conf = mddev_to_conf(mddev);
2972 return sprintf(page, "%d\n", conf->max_nr_stripes);
2978 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
2980 raid5_conf_t *conf = mddev_to_conf(mddev);
2983 if (len >= PAGE_SIZE)
2988 new = simple_strtoul(page, &end, 10);
2989 if (!*page || (*end && *end != '\n') )
2991 if (new <= 16 || new > 32768)
2993 while (new < conf->max_nr_stripes) {
2994 if (drop_one_stripe(conf))
2995 conf->max_nr_stripes--;
2999 while (new > conf->max_nr_stripes) {
3000 if (grow_one_stripe(conf))
3001 conf->max_nr_stripes++;
3007 static struct md_sysfs_entry
3008 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3009 raid5_show_stripe_cache_size,
3010 raid5_store_stripe_cache_size);
3013 stripe_cache_active_show(mddev_t *mddev, char *page)
3015 raid5_conf_t *conf = mddev_to_conf(mddev);
3017 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
3022 static struct md_sysfs_entry
3023 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3025 static struct attribute *raid5_attrs[] = {
3026 &raid5_stripecache_size.attr,
3027 &raid5_stripecache_active.attr,
3030 static struct attribute_group raid5_attrs_group = {
3032 .attrs = raid5_attrs,
3035 static int run(mddev_t *mddev)
3038 int raid_disk, memory;
3040 struct disk_info *disk;
3041 struct list_head *tmp;
3043 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
3044 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
3045 mdname(mddev), mddev->level);
3049 if (mddev->reshape_position != MaxSector) {
3050 /* Check that we can continue the reshape.
3051 * Currently only disks can change, it must
3052 * increase, and we must be past the point where
3053 * a stripe over-writes itself
3055 sector_t here_new, here_old;
3058 if (mddev->new_level != mddev->level ||
3059 mddev->new_layout != mddev->layout ||
3060 mddev->new_chunk != mddev->chunk_size) {
3061 printk(KERN_ERR "raid5: %s: unsupported reshape required - aborting.\n",
3065 if (mddev->delta_disks <= 0) {
3066 printk(KERN_ERR "raid5: %s: unsupported reshape (reduce disks) required - aborting.\n",
3070 old_disks = mddev->raid_disks - mddev->delta_disks;
3071 /* reshape_position must be on a new-stripe boundary, and one
3072 * further up in new geometry must map after here in old geometry.
3074 here_new = mddev->reshape_position;
3075 if (sector_div(here_new, (mddev->chunk_size>>9)*(mddev->raid_disks-1))) {
3076 printk(KERN_ERR "raid5: reshape_position not on a stripe boundary\n");
3079 /* here_new is the stripe we will write to */
3080 here_old = mddev->reshape_position;
3081 sector_div(here_old, (mddev->chunk_size>>9)*(old_disks-1));
3082 /* here_old is the first stripe that we might need to read from */
3083 if (here_new >= here_old) {
3084 /* Reading from the same stripe as writing to - bad */
3085 printk(KERN_ERR "raid5: reshape_position too early for auto-recovery - aborting.\n");
3088 printk(KERN_INFO "raid5: reshape will continue\n");
3089 /* OK, we should be able to continue; */
3093 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
3094 if ((conf = mddev->private) == NULL)
3096 if (mddev->reshape_position == MaxSector) {
3097 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
3099 conf->raid_disks = mddev->raid_disks;
3100 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
3103 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
3108 conf->mddev = mddev;
3110 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
3113 if (mddev->level == 6) {
3114 conf->spare_page = alloc_page(GFP_KERNEL);
3115 if (!conf->spare_page)
3118 spin_lock_init(&conf->device_lock);
3119 init_waitqueue_head(&conf->wait_for_stripe);
3120 init_waitqueue_head(&conf->wait_for_overlap);
3121 INIT_LIST_HEAD(&conf->handle_list);
3122 INIT_LIST_HEAD(&conf->delayed_list);
3123 INIT_LIST_HEAD(&conf->bitmap_list);
3124 INIT_LIST_HEAD(&conf->inactive_list);
3125 atomic_set(&conf->active_stripes, 0);
3126 atomic_set(&conf->preread_active_stripes, 0);
3128 PRINTK("raid5: run(%s) called.\n", mdname(mddev));
3130 ITERATE_RDEV(mddev,rdev,tmp) {
3131 raid_disk = rdev->raid_disk;
3132 if (raid_disk >= conf->raid_disks
3135 disk = conf->disks + raid_disk;
3139 if (test_bit(In_sync, &rdev->flags)) {
3140 char b[BDEVNAME_SIZE];
3141 printk(KERN_INFO "raid5: device %s operational as raid"
3142 " disk %d\n", bdevname(rdev->bdev,b),
3144 conf->working_disks++;
3149 * 0 for a fully functional array, 1 or 2 for a degraded array.
3151 mddev->degraded = conf->failed_disks = conf->raid_disks - conf->working_disks;
3152 conf->mddev = mddev;
3153 conf->chunk_size = mddev->chunk_size;
3154 conf->level = mddev->level;
3155 if (conf->level == 6)
3156 conf->max_degraded = 2;
3158 conf->max_degraded = 1;
3159 conf->algorithm = mddev->layout;
3160 conf->max_nr_stripes = NR_STRIPES;
3161 conf->expand_progress = mddev->reshape_position;
3163 /* device size must be a multiple of chunk size */
3164 mddev->size &= ~(mddev->chunk_size/1024 -1);
3165 mddev->resync_max_sectors = mddev->size << 1;
3167 if (conf->level == 6 && conf->raid_disks < 4) {
3168 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
3169 mdname(mddev), conf->raid_disks);
3172 if (!conf->chunk_size || conf->chunk_size % 4) {
3173 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
3174 conf->chunk_size, mdname(mddev));
3177 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
3179 "raid5: unsupported parity algorithm %d for %s\n",
3180 conf->algorithm, mdname(mddev));
3183 if (mddev->degraded > conf->max_degraded) {
3184 printk(KERN_ERR "raid5: not enough operational devices for %s"
3185 " (%d/%d failed)\n",
3186 mdname(mddev), conf->failed_disks, conf->raid_disks);
3190 if (mddev->degraded > 0 &&
3191 mddev->recovery_cp != MaxSector) {
3192 if (mddev->ok_start_degraded)
3194 "raid5: starting dirty degraded array: %s"
3195 "- data corruption possible.\n",
3199 "raid5: cannot start dirty degraded array for %s\n",
3206 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
3207 if (!mddev->thread) {
3209 "raid5: couldn't allocate thread for %s\n",
3214 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
3215 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
3216 if (grow_stripes(conf, conf->max_nr_stripes)) {
3218 "raid5: couldn't allocate %dkB for buffers\n", memory);
3219 shrink_stripes(conf);
3220 md_unregister_thread(mddev->thread);
3223 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
3224 memory, mdname(mddev));
3226 if (mddev->degraded == 0)
3227 printk("raid5: raid level %d set %s active with %d out of %d"
3228 " devices, algorithm %d\n", conf->level, mdname(mddev),
3229 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
3232 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
3233 " out of %d devices, algorithm %d\n", conf->level,
3234 mdname(mddev), mddev->raid_disks - mddev->degraded,
3235 mddev->raid_disks, conf->algorithm);
3237 print_raid5_conf(conf);
3239 if (conf->expand_progress != MaxSector) {
3240 printk("...ok start reshape thread\n");
3241 conf->expand_lo = conf->expand_progress;
3242 atomic_set(&conf->reshape_stripes, 0);
3243 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3244 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3245 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3246 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3247 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3249 /* FIXME if md_register_thread fails?? */
3250 md_wakeup_thread(mddev->sync_thread);
3254 /* read-ahead size must cover two whole stripes, which is
3255 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
3258 int data_disks = conf->previous_raid_disks - conf->max_degraded;
3259 int stripe = data_disks *
3260 (mddev->chunk_size / PAGE_SIZE);
3261 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3262 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3265 /* Ok, everything is just fine now */
3266 sysfs_create_group(&mddev->kobj, &raid5_attrs_group);
3268 mddev->queue->unplug_fn = raid5_unplug_device;
3269 mddev->queue->issue_flush_fn = raid5_issue_flush;
3270 mddev->array_size = mddev->size * (conf->previous_raid_disks -
3271 conf->max_degraded);
3276 print_raid5_conf(conf);
3277 safe_put_page(conf->spare_page);
3279 kfree(conf->stripe_hashtbl);
3282 mddev->private = NULL;
3283 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
3289 static int stop(mddev_t *mddev)
3291 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3293 md_unregister_thread(mddev->thread);
3294 mddev->thread = NULL;
3295 shrink_stripes(conf);
3296 kfree(conf->stripe_hashtbl);
3297 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3298 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
3301 mddev->private = NULL;
3306 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
3310 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
3311 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
3312 seq_printf(seq, "sh %llu, count %d.\n",
3313 (unsigned long long)sh->sector, atomic_read(&sh->count));
3314 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
3315 for (i = 0; i < sh->disks; i++) {
3316 seq_printf(seq, "(cache%d: %p %ld) ",
3317 i, sh->dev[i].page, sh->dev[i].flags);
3319 seq_printf(seq, "\n");
3322 static void printall (struct seq_file *seq, raid5_conf_t *conf)
3324 struct stripe_head *sh;
3325 struct hlist_node *hn;
3328 spin_lock_irq(&conf->device_lock);
3329 for (i = 0; i < NR_HASH; i++) {
3330 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
3331 if (sh->raid_conf != conf)
3336 spin_unlock_irq(&conf->device_lock);
3340 static void status (struct seq_file *seq, mddev_t *mddev)
3342 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3345 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
3346 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->working_disks);
3347 for (i = 0; i < conf->raid_disks; i++)
3348 seq_printf (seq, "%s",
3349 conf->disks[i].rdev &&
3350 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
3351 seq_printf (seq, "]");
3353 seq_printf (seq, "\n");
3354 printall(seq, conf);
3358 static void print_raid5_conf (raid5_conf_t *conf)
3361 struct disk_info *tmp;
3363 printk("RAID5 conf printout:\n");
3365 printk("(conf==NULL)\n");
3368 printk(" --- rd:%d wd:%d fd:%d\n", conf->raid_disks,
3369 conf->working_disks, conf->failed_disks);
3371 for (i = 0; i < conf->raid_disks; i++) {
3372 char b[BDEVNAME_SIZE];
3373 tmp = conf->disks + i;
3375 printk(" disk %d, o:%d, dev:%s\n",
3376 i, !test_bit(Faulty, &tmp->rdev->flags),
3377 bdevname(tmp->rdev->bdev,b));
3381 static int raid5_spare_active(mddev_t *mddev)
3384 raid5_conf_t *conf = mddev->private;
3385 struct disk_info *tmp;
3387 for (i = 0; i < conf->raid_disks; i++) {
3388 tmp = conf->disks + i;
3390 && !test_bit(Faulty, &tmp->rdev->flags)
3391 && !test_bit(In_sync, &tmp->rdev->flags)) {
3393 conf->failed_disks--;
3394 conf->working_disks++;
3395 set_bit(In_sync, &tmp->rdev->flags);
3398 print_raid5_conf(conf);
3402 static int raid5_remove_disk(mddev_t *mddev, int number)
3404 raid5_conf_t *conf = mddev->private;
3407 struct disk_info *p = conf->disks + number;
3409 print_raid5_conf(conf);
3412 if (test_bit(In_sync, &rdev->flags) ||
3413 atomic_read(&rdev->nr_pending)) {
3419 if (atomic_read(&rdev->nr_pending)) {
3420 /* lost the race, try later */
3427 print_raid5_conf(conf);
3431 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
3433 raid5_conf_t *conf = mddev->private;
3436 struct disk_info *p;
3438 if (mddev->degraded > conf->max_degraded)
3439 /* no point adding a device */
3443 * find the disk ... but prefer rdev->saved_raid_disk
3446 if (rdev->saved_raid_disk >= 0 &&
3447 conf->disks[rdev->saved_raid_disk].rdev == NULL)
3448 disk = rdev->saved_raid_disk;
3451 for ( ; disk < conf->raid_disks; disk++)
3452 if ((p=conf->disks + disk)->rdev == NULL) {
3453 clear_bit(In_sync, &rdev->flags);
3454 rdev->raid_disk = disk;
3456 if (rdev->saved_raid_disk != disk)
3458 rcu_assign_pointer(p->rdev, rdev);
3461 print_raid5_conf(conf);
3465 static int raid5_resize(mddev_t *mddev, sector_t sectors)
3467 /* no resync is happening, and there is enough space
3468 * on all devices, so we can resize.
3469 * We need to make sure resync covers any new space.
3470 * If the array is shrinking we should possibly wait until
3471 * any io in the removed space completes, but it hardly seems
3474 raid5_conf_t *conf = mddev_to_conf(mddev);
3476 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
3477 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
3478 set_capacity(mddev->gendisk, mddev->array_size << 1);
3480 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
3481 mddev->recovery_cp = mddev->size << 1;
3482 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3484 mddev->size = sectors /2;
3485 mddev->resync_max_sectors = sectors;
3489 #ifdef CONFIG_MD_RAID5_RESHAPE
3490 static int raid5_check_reshape(mddev_t *mddev)
3492 raid5_conf_t *conf = mddev_to_conf(mddev);
3495 if (mddev->delta_disks < 0 ||
3496 mddev->new_level != mddev->level)
3497 return -EINVAL; /* Cannot shrink array or change level yet */
3498 if (mddev->delta_disks == 0)
3499 return 0; /* nothing to do */
3501 /* Can only proceed if there are plenty of stripe_heads.
3502 * We need a minimum of one full stripe,, and for sensible progress
3503 * it is best to have about 4 times that.
3504 * If we require 4 times, then the default 256 4K stripe_heads will
3505 * allow for chunk sizes up to 256K, which is probably OK.
3506 * If the chunk size is greater, user-space should request more
3507 * stripe_heads first.
3509 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
3510 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
3511 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
3512 (mddev->chunk_size / STRIPE_SIZE)*4);
3516 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
3520 /* looks like we might be able to manage this */
3524 static int raid5_start_reshape(mddev_t *mddev)
3526 raid5_conf_t *conf = mddev_to_conf(mddev);
3528 struct list_head *rtmp;
3530 int added_devices = 0;
3532 if (mddev->degraded ||
3533 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3536 ITERATE_RDEV(mddev, rdev, rtmp)
3537 if (rdev->raid_disk < 0 &&
3538 !test_bit(Faulty, &rdev->flags))
3541 if (spares < mddev->delta_disks-1)
3542 /* Not enough devices even to make a degraded array
3547 atomic_set(&conf->reshape_stripes, 0);
3548 spin_lock_irq(&conf->device_lock);
3549 conf->previous_raid_disks = conf->raid_disks;
3550 conf->raid_disks += mddev->delta_disks;
3551 conf->expand_progress = 0;
3552 conf->expand_lo = 0;
3553 spin_unlock_irq(&conf->device_lock);
3555 /* Add some new drives, as many as will fit.
3556 * We know there are enough to make the newly sized array work.
3558 ITERATE_RDEV(mddev, rdev, rtmp)
3559 if (rdev->raid_disk < 0 &&
3560 !test_bit(Faulty, &rdev->flags)) {
3561 if (raid5_add_disk(mddev, rdev)) {
3563 set_bit(In_sync, &rdev->flags);
3564 conf->working_disks++;
3566 rdev->recovery_offset = 0;
3567 sprintf(nm, "rd%d", rdev->raid_disk);
3568 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
3573 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
3574 mddev->raid_disks = conf->raid_disks;
3575 mddev->reshape_position = 0;
3576 mddev->sb_dirty = 1;
3578 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3579 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3580 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3581 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3582 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3584 if (!mddev->sync_thread) {
3585 mddev->recovery = 0;
3586 spin_lock_irq(&conf->device_lock);
3587 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
3588 conf->expand_progress = MaxSector;
3589 spin_unlock_irq(&conf->device_lock);
3592 md_wakeup_thread(mddev->sync_thread);
3593 md_new_event(mddev);
3598 static void end_reshape(raid5_conf_t *conf)
3600 struct block_device *bdev;
3602 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
3603 conf->mddev->array_size = conf->mddev->size * (conf->raid_disks-1);
3604 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
3605 conf->mddev->changed = 1;
3607 bdev = bdget_disk(conf->mddev->gendisk, 0);
3609 mutex_lock(&bdev->bd_inode->i_mutex);
3610 i_size_write(bdev->bd_inode, conf->mddev->array_size << 10);
3611 mutex_unlock(&bdev->bd_inode->i_mutex);
3614 spin_lock_irq(&conf->device_lock);
3615 conf->expand_progress = MaxSector;
3616 spin_unlock_irq(&conf->device_lock);
3617 conf->mddev->reshape_position = MaxSector;
3619 /* read-ahead size must cover two whole stripes, which is
3620 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
3623 int data_disks = conf->previous_raid_disks - conf->max_degraded;
3624 int stripe = data_disks *
3625 (conf->mddev->chunk_size / PAGE_SIZE);
3626 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3627 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3632 static void raid5_quiesce(mddev_t *mddev, int state)
3634 raid5_conf_t *conf = mddev_to_conf(mddev);
3637 case 2: /* resume for a suspend */
3638 wake_up(&conf->wait_for_overlap);
3641 case 1: /* stop all writes */
3642 spin_lock_irq(&conf->device_lock);
3644 wait_event_lock_irq(conf->wait_for_stripe,
3645 atomic_read(&conf->active_stripes) == 0,
3646 conf->device_lock, /* nothing */);
3647 spin_unlock_irq(&conf->device_lock);
3650 case 0: /* re-enable writes */
3651 spin_lock_irq(&conf->device_lock);
3653 wake_up(&conf->wait_for_stripe);
3654 wake_up(&conf->wait_for_overlap);
3655 spin_unlock_irq(&conf->device_lock);
3660 static struct mdk_personality raid6_personality =
3664 .owner = THIS_MODULE,
3665 .make_request = make_request,
3669 .error_handler = error,
3670 .hot_add_disk = raid5_add_disk,
3671 .hot_remove_disk= raid5_remove_disk,
3672 .spare_active = raid5_spare_active,
3673 .sync_request = sync_request,
3674 .resize = raid5_resize,
3675 .quiesce = raid5_quiesce,
3677 static struct mdk_personality raid5_personality =
3681 .owner = THIS_MODULE,
3682 .make_request = make_request,
3686 .error_handler = error,
3687 .hot_add_disk = raid5_add_disk,
3688 .hot_remove_disk= raid5_remove_disk,
3689 .spare_active = raid5_spare_active,
3690 .sync_request = sync_request,
3691 .resize = raid5_resize,
3692 #ifdef CONFIG_MD_RAID5_RESHAPE
3693 .check_reshape = raid5_check_reshape,
3694 .start_reshape = raid5_start_reshape,
3696 .quiesce = raid5_quiesce,
3699 static struct mdk_personality raid4_personality =
3703 .owner = THIS_MODULE,
3704 .make_request = make_request,
3708 .error_handler = error,
3709 .hot_add_disk = raid5_add_disk,
3710 .hot_remove_disk= raid5_remove_disk,
3711 .spare_active = raid5_spare_active,
3712 .sync_request = sync_request,
3713 .resize = raid5_resize,
3714 .quiesce = raid5_quiesce,
3717 static int __init raid5_init(void)
3721 e = raid6_select_algo();
3724 register_md_personality(&raid6_personality);
3725 register_md_personality(&raid5_personality);
3726 register_md_personality(&raid4_personality);
3730 static void raid5_exit(void)
3732 unregister_md_personality(&raid6_personality);
3733 unregister_md_personality(&raid5_personality);
3734 unregister_md_personality(&raid4_personality);
3737 module_init(raid5_init);
3738 module_exit(raid5_exit);
3739 MODULE_LICENSE("GPL");
3740 MODULE_ALIAS("md-personality-4"); /* RAID5 */
3741 MODULE_ALIAS("md-raid5");
3742 MODULE_ALIAS("md-raid4");
3743 MODULE_ALIAS("md-level-5");
3744 MODULE_ALIAS("md-level-4");
3745 MODULE_ALIAS("md-personality-8"); /* RAID6 */
3746 MODULE_ALIAS("md-raid6");
3747 MODULE_ALIAS("md-level-6");
3749 /* This used to be two separate modules, they were: */
3750 MODULE_ALIAS("raid5");
3751 MODULE_ALIAS("raid6");