4 * (C) 1997 Linus Torvalds
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/inotify.h>
24 #include <linux/mount.h>
27 * This is needed for the following functions:
29 * - invalidate_inode_buffers
32 * FIXME: remove all knowledge of the buffer layer from this file
34 #include <linux/buffer_head.h>
37 * New inode.c implementation.
39 * This implementation has the basic premise of trying
40 * to be extremely low-overhead and SMP-safe, yet be
41 * simple enough to be "obviously correct".
46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
48 /* #define INODE_PARANOIA 1 */
49 /* #define INODE_DEBUG 1 */
52 * Inode lookup is no longer as critical as it used to be:
53 * most of the lookups are going to be through the dcache.
55 #define I_HASHBITS i_hash_shift
56 #define I_HASHMASK i_hash_mask
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
62 * Each inode can be on two separate lists. One is
63 * the hash list of the inode, used for lookups. The
64 * other linked list is the "type" list:
65 * "in_use" - valid inode, i_count > 0, i_nlink > 0
66 * "dirty" - as "in_use" but also dirty
67 * "unused" - valid inode, i_count = 0
69 * A "dirty" list is maintained for each super block,
70 * allowing for low-overhead inode sync() operations.
73 LIST_HEAD(inode_in_use);
74 LIST_HEAD(inode_unused);
75 static struct hlist_head *inode_hashtable __read_mostly;
78 * A simple spinlock to protect the list manipulations.
80 * NOTE! You also have to own the lock if you change
81 * the i_state of an inode while it is in use..
83 DEFINE_SPINLOCK(inode_lock);
86 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
87 * icache shrinking path, and the umount path. Without this exclusion,
88 * by the time prune_icache calls iput for the inode whose pages it has
89 * been invalidating, or by the time it calls clear_inode & destroy_inode
90 * from its final dispose_list, the struct super_block they refer to
91 * (for inode->i_sb->s_op) may already have been freed and reused.
93 static DEFINE_MUTEX(iprune_mutex);
96 * Statistics gathering..
98 struct inodes_stat_t inodes_stat;
100 static struct kmem_cache * inode_cachep __read_mostly;
102 static struct inode *alloc_inode(struct super_block *sb)
104 static const struct address_space_operations empty_aops;
105 static struct inode_operations empty_iops;
106 static const struct file_operations empty_fops;
109 if (sb->s_op->alloc_inode)
110 inode = sb->s_op->alloc_inode(sb);
112 inode = (struct inode *) kmem_cache_alloc(inode_cachep, GFP_KERNEL);
115 struct address_space * const mapping = &inode->i_data;
118 inode->i_blkbits = sb->s_blocksize_bits;
120 atomic_set(&inode->i_count, 1);
121 inode->i_op = &empty_iops;
122 inode->i_fop = &empty_fops;
124 atomic_set(&inode->i_writecount, 0);
128 inode->i_generation = 0;
130 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
132 inode->i_pipe = NULL;
133 inode->i_bdev = NULL;
134 inode->i_cdev = NULL;
136 inode->dirtied_when = 0;
137 if (security_inode_alloc(inode)) {
138 if (inode->i_sb->s_op->destroy_inode)
139 inode->i_sb->s_op->destroy_inode(inode);
141 kmem_cache_free(inode_cachep, (inode));
145 spin_lock_init(&inode->i_lock);
146 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
148 mutex_init(&inode->i_mutex);
149 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
151 init_rwsem(&inode->i_alloc_sem);
152 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
154 mapping->a_ops = &empty_aops;
155 mapping->host = inode;
157 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_PAGECACHE);
158 mapping->assoc_mapping = NULL;
159 mapping->backing_dev_info = &default_backing_dev_info;
162 * If the block_device provides a backing_dev_info for client
163 * inodes then use that. Otherwise the inode share the bdev's
167 struct backing_dev_info *bdi;
169 bdi = sb->s_bdev->bd_inode_backing_dev_info;
171 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
172 mapping->backing_dev_info = bdi;
174 inode->i_private = NULL;
175 inode->i_mapping = mapping;
180 void destroy_inode(struct inode *inode)
182 BUG_ON(inode_has_buffers(inode));
183 security_inode_free(inode);
184 if (inode->i_sb->s_op->destroy_inode)
185 inode->i_sb->s_op->destroy_inode(inode);
187 kmem_cache_free(inode_cachep, (inode));
192 * These are initializations that only need to be done
193 * once, because the fields are idempotent across use
194 * of the inode, so let the slab aware of that.
196 void inode_init_once(struct inode *inode)
198 memset(inode, 0, sizeof(*inode));
199 INIT_HLIST_NODE(&inode->i_hash);
200 INIT_LIST_HEAD(&inode->i_dentry);
201 INIT_LIST_HEAD(&inode->i_devices);
202 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
203 rwlock_init(&inode->i_data.tree_lock);
204 spin_lock_init(&inode->i_data.i_mmap_lock);
205 INIT_LIST_HEAD(&inode->i_data.private_list);
206 spin_lock_init(&inode->i_data.private_lock);
207 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
208 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
209 i_size_ordered_init(inode);
210 #ifdef CONFIG_INOTIFY
211 INIT_LIST_HEAD(&inode->inotify_watches);
212 mutex_init(&inode->inotify_mutex);
216 EXPORT_SYMBOL(inode_init_once);
218 static void init_once(void * foo, struct kmem_cache * cachep, unsigned long flags)
220 struct inode * inode = (struct inode *) foo;
222 inode_init_once(inode);
226 * inode_lock must be held
228 void __iget(struct inode * inode)
230 if (atomic_read(&inode->i_count)) {
231 atomic_inc(&inode->i_count);
234 atomic_inc(&inode->i_count);
235 if (!(inode->i_state & (I_DIRTY|I_LOCK)))
236 list_move(&inode->i_list, &inode_in_use);
237 inodes_stat.nr_unused--;
241 * clear_inode - clear an inode
242 * @inode: inode to clear
244 * This is called by the filesystem to tell us
245 * that the inode is no longer useful. We just
246 * terminate it with extreme prejudice.
248 void clear_inode(struct inode *inode)
251 invalidate_inode_buffers(inode);
253 BUG_ON(inode->i_data.nrpages);
254 BUG_ON(!(inode->i_state & I_FREEING));
255 BUG_ON(inode->i_state & I_CLEAR);
256 wait_on_inode(inode);
258 if (inode->i_sb->s_op->clear_inode)
259 inode->i_sb->s_op->clear_inode(inode);
260 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
262 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
264 inode->i_state = I_CLEAR;
267 EXPORT_SYMBOL(clear_inode);
270 * dispose_list - dispose of the contents of a local list
271 * @head: the head of the list to free
273 * Dispose-list gets a local list with local inodes in it, so it doesn't
274 * need to worry about list corruption and SMP locks.
276 static void dispose_list(struct list_head *head)
280 while (!list_empty(head)) {
283 inode = list_first_entry(head, struct inode, i_list);
284 list_del(&inode->i_list);
286 if (inode->i_data.nrpages)
287 truncate_inode_pages(&inode->i_data, 0);
290 spin_lock(&inode_lock);
291 hlist_del_init(&inode->i_hash);
292 list_del_init(&inode->i_sb_list);
293 spin_unlock(&inode_lock);
295 wake_up_inode(inode);
296 destroy_inode(inode);
299 spin_lock(&inode_lock);
300 inodes_stat.nr_inodes -= nr_disposed;
301 spin_unlock(&inode_lock);
305 * Invalidate all inodes for a device.
307 static int invalidate_list(struct list_head *head, struct list_head *dispose)
309 struct list_head *next;
310 int busy = 0, count = 0;
314 struct list_head * tmp = next;
315 struct inode * inode;
318 * We can reschedule here without worrying about the list's
319 * consistency because the per-sb list of inodes must not
320 * change during umount anymore, and because iprune_mutex keeps
321 * shrink_icache_memory() away.
323 cond_resched_lock(&inode_lock);
328 inode = list_entry(tmp, struct inode, i_sb_list);
329 invalidate_inode_buffers(inode);
330 if (!atomic_read(&inode->i_count)) {
331 list_move(&inode->i_list, dispose);
332 inode->i_state |= I_FREEING;
338 /* only unused inodes may be cached with i_count zero */
339 inodes_stat.nr_unused -= count;
344 * invalidate_inodes - discard the inodes on a device
347 * Discard all of the inodes for a given superblock. If the discard
348 * fails because there are busy inodes then a non zero value is returned.
349 * If the discard is successful all the inodes have been discarded.
351 int invalidate_inodes(struct super_block * sb)
354 LIST_HEAD(throw_away);
356 mutex_lock(&iprune_mutex);
357 spin_lock(&inode_lock);
358 inotify_unmount_inodes(&sb->s_inodes);
359 busy = invalidate_list(&sb->s_inodes, &throw_away);
360 spin_unlock(&inode_lock);
362 dispose_list(&throw_away);
363 mutex_unlock(&iprune_mutex);
368 EXPORT_SYMBOL(invalidate_inodes);
370 static int can_unuse(struct inode *inode)
374 if (inode_has_buffers(inode))
376 if (atomic_read(&inode->i_count))
378 if (inode->i_data.nrpages)
384 * Scan `goal' inodes on the unused list for freeable ones. They are moved to
385 * a temporary list and then are freed outside inode_lock by dispose_list().
387 * Any inodes which are pinned purely because of attached pagecache have their
388 * pagecache removed. We expect the final iput() on that inode to add it to
389 * the front of the inode_unused list. So look for it there and if the
390 * inode is still freeable, proceed. The right inode is found 99.9% of the
391 * time in testing on a 4-way.
393 * If the inode has metadata buffers attached to mapping->private_list then
394 * try to remove them.
396 static void prune_icache(int nr_to_scan)
401 unsigned long reap = 0;
403 mutex_lock(&iprune_mutex);
404 spin_lock(&inode_lock);
405 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
408 if (list_empty(&inode_unused))
411 inode = list_entry(inode_unused.prev, struct inode, i_list);
413 if (inode->i_state || atomic_read(&inode->i_count)) {
414 list_move(&inode->i_list, &inode_unused);
417 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
419 spin_unlock(&inode_lock);
420 if (remove_inode_buffers(inode))
421 reap += invalidate_mapping_pages(&inode->i_data,
424 spin_lock(&inode_lock);
426 if (inode != list_entry(inode_unused.next,
427 struct inode, i_list))
428 continue; /* wrong inode or list_empty */
429 if (!can_unuse(inode))
432 list_move(&inode->i_list, &freeable);
433 inode->i_state |= I_FREEING;
436 inodes_stat.nr_unused -= nr_pruned;
437 if (current_is_kswapd())
438 __count_vm_events(KSWAPD_INODESTEAL, reap);
440 __count_vm_events(PGINODESTEAL, reap);
441 spin_unlock(&inode_lock);
443 dispose_list(&freeable);
444 mutex_unlock(&iprune_mutex);
448 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
449 * "unused" means that no dentries are referring to the inodes: the files are
450 * not open and the dcache references to those inodes have already been
453 * This function is passed the number of inodes to scan, and it returns the
454 * total number of remaining possibly-reclaimable inodes.
456 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
460 * Nasty deadlock avoidance. We may hold various FS locks,
461 * and we don't want to recurse into the FS that called us
462 * in clear_inode() and friends..
464 if (!(gfp_mask & __GFP_FS))
468 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
471 static struct shrinker icache_shrinker = {
472 .shrink = shrink_icache_memory,
473 .seeks = DEFAULT_SEEKS,
476 static void __wait_on_freeing_inode(struct inode *inode);
478 * Called with the inode lock held.
479 * NOTE: we are not increasing the inode-refcount, you must call __iget()
480 * by hand after calling find_inode now! This simplifies iunique and won't
481 * add any additional branch in the common code.
483 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
485 struct hlist_node *node;
486 struct inode * inode = NULL;
489 hlist_for_each (node, head) {
490 inode = hlist_entry(node, struct inode, i_hash);
491 if (inode->i_sb != sb)
493 if (!test(inode, data))
495 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
496 __wait_on_freeing_inode(inode);
501 return node ? inode : NULL;
505 * find_inode_fast is the fast path version of find_inode, see the comment at
506 * iget_locked for details.
508 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
510 struct hlist_node *node;
511 struct inode * inode = NULL;
514 hlist_for_each (node, head) {
515 inode = hlist_entry(node, struct inode, i_hash);
516 if (inode->i_ino != ino)
518 if (inode->i_sb != sb)
520 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
521 __wait_on_freeing_inode(inode);
526 return node ? inode : NULL;
530 * new_inode - obtain an inode
533 * Allocates a new inode for given superblock. The default gfp_mask
534 * for allocations related to inode->i_mapping is GFP_HIGHUSER_PAGECACHE.
535 * If HIGHMEM pages are unsuitable or it is known that pages allocated
536 * for the page cache are not reclaimable or migratable,
537 * mapping_set_gfp_mask() must be called with suitable flags on the
538 * newly created inode's mapping
541 struct inode *new_inode(struct super_block *sb)
544 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
545 * error if st_ino won't fit in target struct field. Use 32bit counter
546 * here to attempt to avoid that.
548 static unsigned int last_ino;
549 struct inode * inode;
551 spin_lock_prefetch(&inode_lock);
553 inode = alloc_inode(sb);
555 spin_lock(&inode_lock);
556 inodes_stat.nr_inodes++;
557 list_add(&inode->i_list, &inode_in_use);
558 list_add(&inode->i_sb_list, &sb->s_inodes);
559 inode->i_ino = ++last_ino;
561 spin_unlock(&inode_lock);
566 EXPORT_SYMBOL(new_inode);
568 void unlock_new_inode(struct inode *inode)
570 #ifdef CONFIG_DEBUG_LOCK_ALLOC
571 if (inode->i_mode & S_IFDIR) {
572 struct file_system_type *type = inode->i_sb->s_type;
575 * ensure nobody is actually holding i_mutex
577 mutex_destroy(&inode->i_mutex);
578 mutex_init(&inode->i_mutex);
579 lockdep_set_class(&inode->i_mutex, &type->i_mutex_dir_key);
583 * This is special! We do not need the spinlock
584 * when clearing I_LOCK, because we're guaranteed
585 * that nobody else tries to do anything about the
586 * state of the inode when it is locked, as we
587 * just created it (so there can be no old holders
588 * that haven't tested I_LOCK).
590 inode->i_state &= ~(I_LOCK|I_NEW);
591 wake_up_inode(inode);
594 EXPORT_SYMBOL(unlock_new_inode);
597 * This is called without the inode lock held.. Be careful.
599 * We no longer cache the sb_flags in i_flags - see fs.h
600 * -- rmk@arm.uk.linux.org
602 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
604 struct inode * inode;
606 inode = alloc_inode(sb);
610 spin_lock(&inode_lock);
611 /* We released the lock, so.. */
612 old = find_inode(sb, head, test, data);
614 if (set(inode, data))
617 inodes_stat.nr_inodes++;
618 list_add(&inode->i_list, &inode_in_use);
619 list_add(&inode->i_sb_list, &sb->s_inodes);
620 hlist_add_head(&inode->i_hash, head);
621 inode->i_state = I_LOCK|I_NEW;
622 spin_unlock(&inode_lock);
624 /* Return the locked inode with I_NEW set, the
625 * caller is responsible for filling in the contents
631 * Uhhuh, somebody else created the same inode under
632 * us. Use the old inode instead of the one we just
636 spin_unlock(&inode_lock);
637 destroy_inode(inode);
639 wait_on_inode(inode);
644 spin_unlock(&inode_lock);
645 destroy_inode(inode);
650 * get_new_inode_fast is the fast path version of get_new_inode, see the
651 * comment at iget_locked for details.
653 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
655 struct inode * inode;
657 inode = alloc_inode(sb);
661 spin_lock(&inode_lock);
662 /* We released the lock, so.. */
663 old = find_inode_fast(sb, head, ino);
666 inodes_stat.nr_inodes++;
667 list_add(&inode->i_list, &inode_in_use);
668 list_add(&inode->i_sb_list, &sb->s_inodes);
669 hlist_add_head(&inode->i_hash, head);
670 inode->i_state = I_LOCK|I_NEW;
671 spin_unlock(&inode_lock);
673 /* Return the locked inode with I_NEW set, the
674 * caller is responsible for filling in the contents
680 * Uhhuh, somebody else created the same inode under
681 * us. Use the old inode instead of the one we just
685 spin_unlock(&inode_lock);
686 destroy_inode(inode);
688 wait_on_inode(inode);
693 static unsigned long hash(struct super_block *sb, unsigned long hashval)
697 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
699 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
700 return tmp & I_HASHMASK;
704 * iunique - get a unique inode number
706 * @max_reserved: highest reserved inode number
708 * Obtain an inode number that is unique on the system for a given
709 * superblock. This is used by file systems that have no natural
710 * permanent inode numbering system. An inode number is returned that
711 * is higher than the reserved limit but unique.
714 * With a large number of inodes live on the file system this function
715 * currently becomes quite slow.
717 ino_t iunique(struct super_block *sb, ino_t max_reserved)
720 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
721 * error if st_ino won't fit in target struct field. Use 32bit counter
722 * here to attempt to avoid that.
724 static unsigned int counter;
726 struct hlist_head *head;
729 spin_lock(&inode_lock);
731 if (counter <= max_reserved)
732 counter = max_reserved + 1;
734 head = inode_hashtable + hash(sb, res);
735 inode = find_inode_fast(sb, head, res);
736 } while (inode != NULL);
737 spin_unlock(&inode_lock);
741 EXPORT_SYMBOL(iunique);
743 struct inode *igrab(struct inode *inode)
745 spin_lock(&inode_lock);
746 if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
750 * Handle the case where s_op->clear_inode is not been
751 * called yet, and somebody is calling igrab
752 * while the inode is getting freed.
755 spin_unlock(&inode_lock);
759 EXPORT_SYMBOL(igrab);
762 * ifind - internal function, you want ilookup5() or iget5().
763 * @sb: super block of file system to search
764 * @head: the head of the list to search
765 * @test: callback used for comparisons between inodes
766 * @data: opaque data pointer to pass to @test
767 * @wait: if true wait for the inode to be unlocked, if false do not
769 * ifind() searches for the inode specified by @data in the inode
770 * cache. This is a generalized version of ifind_fast() for file systems where
771 * the inode number is not sufficient for unique identification of an inode.
773 * If the inode is in the cache, the inode is returned with an incremented
776 * Otherwise NULL is returned.
778 * Note, @test is called with the inode_lock held, so can't sleep.
780 static struct inode *ifind(struct super_block *sb,
781 struct hlist_head *head, int (*test)(struct inode *, void *),
782 void *data, const int wait)
786 spin_lock(&inode_lock);
787 inode = find_inode(sb, head, test, data);
790 spin_unlock(&inode_lock);
792 wait_on_inode(inode);
795 spin_unlock(&inode_lock);
800 * ifind_fast - internal function, you want ilookup() or iget().
801 * @sb: super block of file system to search
802 * @head: head of the list to search
803 * @ino: inode number to search for
805 * ifind_fast() searches for the inode @ino in the inode cache. This is for
806 * file systems where the inode number is sufficient for unique identification
809 * If the inode is in the cache, the inode is returned with an incremented
812 * Otherwise NULL is returned.
814 static struct inode *ifind_fast(struct super_block *sb,
815 struct hlist_head *head, unsigned long ino)
819 spin_lock(&inode_lock);
820 inode = find_inode_fast(sb, head, ino);
823 spin_unlock(&inode_lock);
824 wait_on_inode(inode);
827 spin_unlock(&inode_lock);
832 * ilookup5_nowait - search for an inode in the inode cache
833 * @sb: super block of file system to search
834 * @hashval: hash value (usually inode number) to search for
835 * @test: callback used for comparisons between inodes
836 * @data: opaque data pointer to pass to @test
838 * ilookup5() uses ifind() to search for the inode specified by @hashval and
839 * @data in the inode cache. This is a generalized version of ilookup() for
840 * file systems where the inode number is not sufficient for unique
841 * identification of an inode.
843 * If the inode is in the cache, the inode is returned with an incremented
844 * reference count. Note, the inode lock is not waited upon so you have to be
845 * very careful what you do with the returned inode. You probably should be
846 * using ilookup5() instead.
848 * Otherwise NULL is returned.
850 * Note, @test is called with the inode_lock held, so can't sleep.
852 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
853 int (*test)(struct inode *, void *), void *data)
855 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
857 return ifind(sb, head, test, data, 0);
860 EXPORT_SYMBOL(ilookup5_nowait);
863 * ilookup5 - search for an inode in the inode cache
864 * @sb: super block of file system to search
865 * @hashval: hash value (usually inode number) to search for
866 * @test: callback used for comparisons between inodes
867 * @data: opaque data pointer to pass to @test
869 * ilookup5() uses ifind() to search for the inode specified by @hashval and
870 * @data in the inode cache. This is a generalized version of ilookup() for
871 * file systems where the inode number is not sufficient for unique
872 * identification of an inode.
874 * If the inode is in the cache, the inode lock is waited upon and the inode is
875 * returned with an incremented reference count.
877 * Otherwise NULL is returned.
879 * Note, @test is called with the inode_lock held, so can't sleep.
881 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
882 int (*test)(struct inode *, void *), void *data)
884 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
886 return ifind(sb, head, test, data, 1);
889 EXPORT_SYMBOL(ilookup5);
892 * ilookup - search for an inode in the inode cache
893 * @sb: super block of file system to search
894 * @ino: inode number to search for
896 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
897 * This is for file systems where the inode number is sufficient for unique
898 * identification of an inode.
900 * If the inode is in the cache, the inode is returned with an incremented
903 * Otherwise NULL is returned.
905 struct inode *ilookup(struct super_block *sb, unsigned long ino)
907 struct hlist_head *head = inode_hashtable + hash(sb, ino);
909 return ifind_fast(sb, head, ino);
912 EXPORT_SYMBOL(ilookup);
915 * iget5_locked - obtain an inode from a mounted file system
916 * @sb: super block of file system
917 * @hashval: hash value (usually inode number) to get
918 * @test: callback used for comparisons between inodes
919 * @set: callback used to initialize a new struct inode
920 * @data: opaque data pointer to pass to @test and @set
922 * This is iget() without the read_inode() portion of get_new_inode().
924 * iget5_locked() uses ifind() to search for the inode specified by @hashval
925 * and @data in the inode cache and if present it is returned with an increased
926 * reference count. This is a generalized version of iget_locked() for file
927 * systems where the inode number is not sufficient for unique identification
930 * If the inode is not in cache, get_new_inode() is called to allocate a new
931 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
932 * file system gets to fill it in before unlocking it via unlock_new_inode().
934 * Note both @test and @set are called with the inode_lock held, so can't sleep.
936 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
937 int (*test)(struct inode *, void *),
938 int (*set)(struct inode *, void *), void *data)
940 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
943 inode = ifind(sb, head, test, data, 1);
947 * get_new_inode() will do the right thing, re-trying the search
948 * in case it had to block at any point.
950 return get_new_inode(sb, head, test, set, data);
953 EXPORT_SYMBOL(iget5_locked);
956 * iget_locked - obtain an inode from a mounted file system
957 * @sb: super block of file system
958 * @ino: inode number to get
960 * This is iget() without the read_inode() portion of get_new_inode_fast().
962 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
963 * the inode cache and if present it is returned with an increased reference
964 * count. This is for file systems where the inode number is sufficient for
965 * unique identification of an inode.
967 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
968 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
969 * The file system gets to fill it in before unlocking it via
970 * unlock_new_inode().
972 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
974 struct hlist_head *head = inode_hashtable + hash(sb, ino);
977 inode = ifind_fast(sb, head, ino);
981 * get_new_inode_fast() will do the right thing, re-trying the search
982 * in case it had to block at any point.
984 return get_new_inode_fast(sb, head, ino);
987 EXPORT_SYMBOL(iget_locked);
990 * __insert_inode_hash - hash an inode
991 * @inode: unhashed inode
992 * @hashval: unsigned long value used to locate this object in the
995 * Add an inode to the inode hash for this superblock.
997 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
999 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1000 spin_lock(&inode_lock);
1001 hlist_add_head(&inode->i_hash, head);
1002 spin_unlock(&inode_lock);
1005 EXPORT_SYMBOL(__insert_inode_hash);
1008 * remove_inode_hash - remove an inode from the hash
1009 * @inode: inode to unhash
1011 * Remove an inode from the superblock.
1013 void remove_inode_hash(struct inode *inode)
1015 spin_lock(&inode_lock);
1016 hlist_del_init(&inode->i_hash);
1017 spin_unlock(&inode_lock);
1020 EXPORT_SYMBOL(remove_inode_hash);
1023 * Tell the filesystem that this inode is no longer of any interest and should
1024 * be completely destroyed.
1026 * We leave the inode in the inode hash table until *after* the filesystem's
1027 * ->delete_inode completes. This ensures that an iget (such as nfsd might
1028 * instigate) will always find up-to-date information either in the hash or on
1031 * I_FREEING is set so that no-one will take a new reference to the inode while
1032 * it is being deleted.
1034 void generic_delete_inode(struct inode *inode)
1036 const struct super_operations *op = inode->i_sb->s_op;
1038 list_del_init(&inode->i_list);
1039 list_del_init(&inode->i_sb_list);
1040 inode->i_state |= I_FREEING;
1041 inodes_stat.nr_inodes--;
1042 spin_unlock(&inode_lock);
1044 security_inode_delete(inode);
1046 if (op->delete_inode) {
1047 void (*delete)(struct inode *) = op->delete_inode;
1048 if (!is_bad_inode(inode))
1050 /* Filesystems implementing their own
1051 * s_op->delete_inode are required to call
1052 * truncate_inode_pages and clear_inode()
1056 truncate_inode_pages(&inode->i_data, 0);
1059 spin_lock(&inode_lock);
1060 hlist_del_init(&inode->i_hash);
1061 spin_unlock(&inode_lock);
1062 wake_up_inode(inode);
1063 BUG_ON(inode->i_state != I_CLEAR);
1064 destroy_inode(inode);
1067 EXPORT_SYMBOL(generic_delete_inode);
1069 static void generic_forget_inode(struct inode *inode)
1071 struct super_block *sb = inode->i_sb;
1073 if (!hlist_unhashed(&inode->i_hash)) {
1074 if (!(inode->i_state & (I_DIRTY|I_LOCK)))
1075 list_move(&inode->i_list, &inode_unused);
1076 inodes_stat.nr_unused++;
1077 if (sb->s_flags & MS_ACTIVE) {
1078 spin_unlock(&inode_lock);
1081 inode->i_state |= I_WILL_FREE;
1082 spin_unlock(&inode_lock);
1083 write_inode_now(inode, 1);
1084 spin_lock(&inode_lock);
1085 inode->i_state &= ~I_WILL_FREE;
1086 inodes_stat.nr_unused--;
1087 hlist_del_init(&inode->i_hash);
1089 list_del_init(&inode->i_list);
1090 list_del_init(&inode->i_sb_list);
1091 inode->i_state |= I_FREEING;
1092 inodes_stat.nr_inodes--;
1093 spin_unlock(&inode_lock);
1094 if (inode->i_data.nrpages)
1095 truncate_inode_pages(&inode->i_data, 0);
1097 wake_up_inode(inode);
1098 destroy_inode(inode);
1102 * Normal UNIX filesystem behaviour: delete the
1103 * inode when the usage count drops to zero, and
1106 void generic_drop_inode(struct inode *inode)
1108 if (!inode->i_nlink)
1109 generic_delete_inode(inode);
1111 generic_forget_inode(inode);
1114 EXPORT_SYMBOL_GPL(generic_drop_inode);
1117 * Called when we're dropping the last reference
1120 * Call the FS "drop()" function, defaulting to
1121 * the legacy UNIX filesystem behaviour..
1123 * NOTE! NOTE! NOTE! We're called with the inode lock
1124 * held, and the drop function is supposed to release
1127 static inline void iput_final(struct inode *inode)
1129 const struct super_operations *op = inode->i_sb->s_op;
1130 void (*drop)(struct inode *) = generic_drop_inode;
1132 if (op && op->drop_inode)
1133 drop = op->drop_inode;
1138 * iput - put an inode
1139 * @inode: inode to put
1141 * Puts an inode, dropping its usage count. If the inode use count hits
1142 * zero, the inode is then freed and may also be destroyed.
1144 * Consequently, iput() can sleep.
1146 void iput(struct inode *inode)
1149 const struct super_operations *op = inode->i_sb->s_op;
1151 BUG_ON(inode->i_state == I_CLEAR);
1153 if (op && op->put_inode)
1154 op->put_inode(inode);
1156 if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1161 EXPORT_SYMBOL(iput);
1164 * bmap - find a block number in a file
1165 * @inode: inode of file
1166 * @block: block to find
1168 * Returns the block number on the device holding the inode that
1169 * is the disk block number for the block of the file requested.
1170 * That is, asked for block 4 of inode 1 the function will return the
1171 * disk block relative to the disk start that holds that block of the
1174 sector_t bmap(struct inode * inode, sector_t block)
1177 if (inode->i_mapping->a_ops->bmap)
1178 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1181 EXPORT_SYMBOL(bmap);
1184 * touch_atime - update the access time
1185 * @mnt: mount the inode is accessed on
1186 * @dentry: dentry accessed
1188 * Update the accessed time on an inode and mark it for writeback.
1189 * This function automatically handles read only file systems and media,
1190 * as well as the "noatime" flag and inode specific "noatime" markers.
1192 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1194 struct inode *inode = dentry->d_inode;
1195 struct timespec now;
1197 if (inode->i_flags & S_NOATIME)
1199 if (IS_NOATIME(inode))
1201 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1205 * We may have a NULL vfsmount when coming from NFSD
1208 if (mnt->mnt_flags & MNT_NOATIME)
1210 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1213 if (mnt->mnt_flags & MNT_RELATIME) {
1215 * With relative atime, only update atime if the
1216 * previous atime is earlier than either the ctime or
1219 if (timespec_compare(&inode->i_mtime,
1220 &inode->i_atime) < 0 &&
1221 timespec_compare(&inode->i_ctime,
1222 &inode->i_atime) < 0)
1227 now = current_fs_time(inode->i_sb);
1228 if (timespec_equal(&inode->i_atime, &now))
1231 inode->i_atime = now;
1232 mark_inode_dirty_sync(inode);
1234 EXPORT_SYMBOL(touch_atime);
1237 * file_update_time - update mtime and ctime time
1238 * @file: file accessed
1240 * Update the mtime and ctime members of an inode and mark the inode
1241 * for writeback. Note that this function is meant exclusively for
1242 * usage in the file write path of filesystems, and filesystems may
1243 * choose to explicitly ignore update via this function with the
1244 * S_NOCTIME inode flag, e.g. for network filesystem where these
1245 * timestamps are handled by the server.
1248 void file_update_time(struct file *file)
1250 struct inode *inode = file->f_path.dentry->d_inode;
1251 struct timespec now;
1254 if (IS_NOCMTIME(inode))
1256 if (IS_RDONLY(inode))
1259 now = current_fs_time(inode->i_sb);
1260 if (!timespec_equal(&inode->i_mtime, &now)) {
1261 inode->i_mtime = now;
1265 if (!timespec_equal(&inode->i_ctime, &now)) {
1266 inode->i_ctime = now;
1271 mark_inode_dirty_sync(inode);
1274 EXPORT_SYMBOL(file_update_time);
1276 int inode_needs_sync(struct inode *inode)
1280 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1285 EXPORT_SYMBOL(inode_needs_sync);
1287 int inode_wait(void *word)
1294 * If we try to find an inode in the inode hash while it is being
1295 * deleted, we have to wait until the filesystem completes its
1296 * deletion before reporting that it isn't found. This function waits
1297 * until the deletion _might_ have completed. Callers are responsible
1298 * to recheck inode state.
1300 * It doesn't matter if I_LOCK is not set initially, a call to
1301 * wake_up_inode() after removing from the hash list will DTRT.
1303 * This is called with inode_lock held.
1305 static void __wait_on_freeing_inode(struct inode *inode)
1307 wait_queue_head_t *wq;
1308 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1309 wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1310 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1311 spin_unlock(&inode_lock);
1313 finish_wait(wq, &wait.wait);
1314 spin_lock(&inode_lock);
1317 void wake_up_inode(struct inode *inode)
1320 * Prevent speculative execution through spin_unlock(&inode_lock);
1323 wake_up_bit(&inode->i_state, __I_LOCK);
1327 * We rarely want to lock two inodes that do not have a parent/child
1328 * relationship (such as directory, child inode) simultaneously. The
1329 * vast majority of file systems should be able to get along fine
1330 * without this. Do not use these functions except as a last resort.
1332 void inode_double_lock(struct inode *inode1, struct inode *inode2)
1334 if (inode1 == NULL || inode2 == NULL || inode1 == inode2) {
1336 mutex_lock(&inode1->i_mutex);
1338 mutex_lock(&inode2->i_mutex);
1342 if (inode1 < inode2) {
1343 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
1344 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
1346 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT);
1347 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD);
1350 EXPORT_SYMBOL(inode_double_lock);
1352 void inode_double_unlock(struct inode *inode1, struct inode *inode2)
1355 mutex_unlock(&inode1->i_mutex);
1357 if (inode2 && inode2 != inode1)
1358 mutex_unlock(&inode2->i_mutex);
1360 EXPORT_SYMBOL(inode_double_unlock);
1362 static __initdata unsigned long ihash_entries;
1363 static int __init set_ihash_entries(char *str)
1367 ihash_entries = simple_strtoul(str, &str, 0);
1370 __setup("ihash_entries=", set_ihash_entries);
1373 * Initialize the waitqueues and inode hash table.
1375 void __init inode_init_early(void)
1379 /* If hashes are distributed across NUMA nodes, defer
1380 * hash allocation until vmalloc space is available.
1386 alloc_large_system_hash("Inode-cache",
1387 sizeof(struct hlist_head),
1395 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1396 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1399 void __init inode_init(unsigned long mempages)
1403 /* inode slab cache */
1404 inode_cachep = kmem_cache_create("inode_cache",
1405 sizeof(struct inode),
1407 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1410 register_shrinker(&icache_shrinker);
1412 /* Hash may have been set up in inode_init_early */
1417 alloc_large_system_hash("Inode-cache",
1418 sizeof(struct hlist_head),
1426 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1427 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1430 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1432 inode->i_mode = mode;
1433 if (S_ISCHR(mode)) {
1434 inode->i_fop = &def_chr_fops;
1435 inode->i_rdev = rdev;
1436 } else if (S_ISBLK(mode)) {
1437 inode->i_fop = &def_blk_fops;
1438 inode->i_rdev = rdev;
1439 } else if (S_ISFIFO(mode))
1440 inode->i_fop = &def_fifo_fops;
1441 else if (S_ISSOCK(mode))
1442 inode->i_fop = &bad_sock_fops;
1444 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1447 EXPORT_SYMBOL(init_special_inode);