2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/config.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/posix-timers.h>
26 #include <linux/signal.h>
27 #include <linux/audit.h>
28 #include <asm/param.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/siginfo.h>
34 * SLAB caches for signal bits.
37 static kmem_cache_t *sigqueue_cachep;
40 * In POSIX a signal is sent either to a specific thread (Linux task)
41 * or to the process as a whole (Linux thread group). How the signal
42 * is sent determines whether it's to one thread or the whole group,
43 * which determines which signal mask(s) are involved in blocking it
44 * from being delivered until later. When the signal is delivered,
45 * either it's caught or ignored by a user handler or it has a default
46 * effect that applies to the whole thread group (POSIX process).
48 * The possible effects an unblocked signal set to SIG_DFL can have are:
49 * ignore - Nothing Happens
50 * terminate - kill the process, i.e. all threads in the group,
51 * similar to exit_group. The group leader (only) reports
52 * WIFSIGNALED status to its parent.
53 * coredump - write a core dump file describing all threads using
54 * the same mm and then kill all those threads
55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58 * Other signals when not blocked and set to SIG_DFL behaves as follows.
59 * The job control signals also have other special effects.
61 * +--------------------+------------------+
62 * | POSIX signal | default action |
63 * +--------------------+------------------+
64 * | SIGHUP | terminate |
65 * | SIGINT | terminate |
66 * | SIGQUIT | coredump |
67 * | SIGILL | coredump |
68 * | SIGTRAP | coredump |
69 * | SIGABRT/SIGIOT | coredump |
70 * | SIGBUS | coredump |
71 * | SIGFPE | coredump |
72 * | SIGKILL | terminate(+) |
73 * | SIGUSR1 | terminate |
74 * | SIGSEGV | coredump |
75 * | SIGUSR2 | terminate |
76 * | SIGPIPE | terminate |
77 * | SIGALRM | terminate |
78 * | SIGTERM | terminate |
79 * | SIGCHLD | ignore |
80 * | SIGCONT | ignore(*) |
81 * | SIGSTOP | stop(*)(+) |
82 * | SIGTSTP | stop(*) |
83 * | SIGTTIN | stop(*) |
84 * | SIGTTOU | stop(*) |
86 * | SIGXCPU | coredump |
87 * | SIGXFSZ | coredump |
88 * | SIGVTALRM | terminate |
89 * | SIGPROF | terminate |
90 * | SIGPOLL/SIGIO | terminate |
91 * | SIGSYS/SIGUNUSED | coredump |
92 * | SIGSTKFLT | terminate |
93 * | SIGWINCH | ignore |
94 * | SIGPWR | terminate |
95 * | SIGRTMIN-SIGRTMAX | terminate |
96 * +--------------------+------------------+
97 * | non-POSIX signal | default action |
98 * +--------------------+------------------+
99 * | SIGEMT | coredump |
100 * +--------------------+------------------+
102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103 * (*) Special job control effects:
104 * When SIGCONT is sent, it resumes the process (all threads in the group)
105 * from TASK_STOPPED state and also clears any pending/queued stop signals
106 * (any of those marked with "stop(*)"). This happens regardless of blocking,
107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
108 * any pending/queued SIGCONT signals; this happens regardless of blocking,
109 * catching, or ignored the stop signal, though (except for SIGSTOP) the
110 * default action of stopping the process may happen later or never.
114 #define M_SIGEMT M(SIGEMT)
119 #if SIGRTMIN > BITS_PER_LONG
120 #define M(sig) (1ULL << ((sig)-1))
122 #define M(sig) (1UL << ((sig)-1))
124 #define T(sig, mask) (M(sig) & (mask))
126 #define SIG_KERNEL_ONLY_MASK (\
127 M(SIGKILL) | M(SIGSTOP) )
129 #define SIG_KERNEL_STOP_MASK (\
130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
132 #define SIG_KERNEL_COREDUMP_MASK (\
133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
137 #define SIG_KERNEL_IGNORE_MASK (\
138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
140 #define sig_kernel_only(sig) \
141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
142 #define sig_kernel_coredump(sig) \
143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
144 #define sig_kernel_ignore(sig) \
145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
146 #define sig_kernel_stop(sig) \
147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
149 #define sig_user_defined(t, signr) \
150 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
151 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
153 #define sig_fatal(t, signr) \
154 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
155 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
157 static int sig_ignored(struct task_struct *t, int sig)
159 void __user * handler;
162 * Tracers always want to know about signals..
164 if (t->ptrace & PT_PTRACED)
168 * Blocked signals are never ignored, since the
169 * signal handler may change by the time it is
172 if (sigismember(&t->blocked, sig))
175 /* Is it explicitly or implicitly ignored? */
176 handler = t->sighand->action[sig-1].sa.sa_handler;
177 return handler == SIG_IGN ||
178 (handler == SIG_DFL && sig_kernel_ignore(sig));
182 * Re-calculate pending state from the set of locally pending
183 * signals, globally pending signals, and blocked signals.
185 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
190 switch (_NSIG_WORDS) {
192 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
193 ready |= signal->sig[i] &~ blocked->sig[i];
196 case 4: ready = signal->sig[3] &~ blocked->sig[3];
197 ready |= signal->sig[2] &~ blocked->sig[2];
198 ready |= signal->sig[1] &~ blocked->sig[1];
199 ready |= signal->sig[0] &~ blocked->sig[0];
202 case 2: ready = signal->sig[1] &~ blocked->sig[1];
203 ready |= signal->sig[0] &~ blocked->sig[0];
206 case 1: ready = signal->sig[0] &~ blocked->sig[0];
211 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
213 fastcall void recalc_sigpending_tsk(struct task_struct *t)
215 if (t->signal->group_stop_count > 0 ||
217 PENDING(&t->pending, &t->blocked) ||
218 PENDING(&t->signal->shared_pending, &t->blocked))
219 set_tsk_thread_flag(t, TIF_SIGPENDING);
221 clear_tsk_thread_flag(t, TIF_SIGPENDING);
224 void recalc_sigpending(void)
226 recalc_sigpending_tsk(current);
229 /* Given the mask, find the first available signal that should be serviced. */
232 next_signal(struct sigpending *pending, sigset_t *mask)
234 unsigned long i, *s, *m, x;
237 s = pending->signal.sig;
239 switch (_NSIG_WORDS) {
241 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
242 if ((x = *s &~ *m) != 0) {
243 sig = ffz(~x) + i*_NSIG_BPW + 1;
248 case 2: if ((x = s[0] &~ m[0]) != 0)
250 else if ((x = s[1] &~ m[1]) != 0)
257 case 1: if ((x = *s &~ *m) != 0)
265 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
268 struct sigqueue *q = NULL;
270 atomic_inc(&t->user->sigpending);
271 if (override_rlimit ||
272 atomic_read(&t->user->sigpending) <=
273 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
274 q = kmem_cache_alloc(sigqueue_cachep, flags);
275 if (unlikely(q == NULL)) {
276 atomic_dec(&t->user->sigpending);
278 INIT_LIST_HEAD(&q->list);
280 q->user = get_uid(t->user);
285 static inline void __sigqueue_free(struct sigqueue *q)
287 if (q->flags & SIGQUEUE_PREALLOC)
289 atomic_dec(&q->user->sigpending);
291 kmem_cache_free(sigqueue_cachep, q);
294 static void flush_sigqueue(struct sigpending *queue)
298 sigemptyset(&queue->signal);
299 while (!list_empty(&queue->list)) {
300 q = list_entry(queue->list.next, struct sigqueue , list);
301 list_del_init(&q->list);
307 * Flush all pending signals for a task.
311 flush_signals(struct task_struct *t)
315 spin_lock_irqsave(&t->sighand->siglock, flags);
316 clear_tsk_thread_flag(t,TIF_SIGPENDING);
317 flush_sigqueue(&t->pending);
318 flush_sigqueue(&t->signal->shared_pending);
319 spin_unlock_irqrestore(&t->sighand->siglock, flags);
323 * This function expects the tasklist_lock write-locked.
325 void __exit_sighand(struct task_struct *tsk)
327 struct sighand_struct * sighand = tsk->sighand;
329 /* Ok, we're done with the signal handlers */
331 if (atomic_dec_and_test(&sighand->count))
332 kmem_cache_free(sighand_cachep, sighand);
335 void exit_sighand(struct task_struct *tsk)
337 write_lock_irq(&tasklist_lock);
339 write_unlock_irq(&tasklist_lock);
343 * This function expects the tasklist_lock write-locked.
345 void __exit_signal(struct task_struct *tsk)
347 struct signal_struct * sig = tsk->signal;
348 struct sighand_struct * sighand = tsk->sighand;
352 if (!atomic_read(&sig->count))
354 spin_lock(&sighand->siglock);
355 posix_cpu_timers_exit(tsk);
356 if (atomic_dec_and_test(&sig->count)) {
357 posix_cpu_timers_exit_group(tsk);
358 if (tsk == sig->curr_target)
359 sig->curr_target = next_thread(tsk);
361 spin_unlock(&sighand->siglock);
362 flush_sigqueue(&sig->shared_pending);
365 * If there is any task waiting for the group exit
368 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
369 wake_up_process(sig->group_exit_task);
370 sig->group_exit_task = NULL;
372 if (tsk == sig->curr_target)
373 sig->curr_target = next_thread(tsk);
376 * Accumulate here the counters for all threads but the
377 * group leader as they die, so they can be added into
378 * the process-wide totals when those are taken.
379 * The group leader stays around as a zombie as long
380 * as there are other threads. When it gets reaped,
381 * the exit.c code will add its counts into these totals.
382 * We won't ever get here for the group leader, since it
383 * will have been the last reference on the signal_struct.
385 sig->utime = cputime_add(sig->utime, tsk->utime);
386 sig->stime = cputime_add(sig->stime, tsk->stime);
387 sig->min_flt += tsk->min_flt;
388 sig->maj_flt += tsk->maj_flt;
389 sig->nvcsw += tsk->nvcsw;
390 sig->nivcsw += tsk->nivcsw;
391 sig->sched_time += tsk->sched_time;
392 spin_unlock(&sighand->siglock);
393 sig = NULL; /* Marker for below. */
395 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
396 flush_sigqueue(&tsk->pending);
399 * We are cleaning up the signal_struct here.
401 exit_thread_group_keys(sig);
402 kmem_cache_free(signal_cachep, sig);
406 void exit_signal(struct task_struct *tsk)
408 atomic_dec(&tsk->signal->live);
410 write_lock_irq(&tasklist_lock);
412 write_unlock_irq(&tasklist_lock);
416 * Flush all handlers for a task.
420 flush_signal_handlers(struct task_struct *t, int force_default)
423 struct k_sigaction *ka = &t->sighand->action[0];
424 for (i = _NSIG ; i != 0 ; i--) {
425 if (force_default || ka->sa.sa_handler != SIG_IGN)
426 ka->sa.sa_handler = SIG_DFL;
428 sigemptyset(&ka->sa.sa_mask);
434 /* Notify the system that a driver wants to block all signals for this
435 * process, and wants to be notified if any signals at all were to be
436 * sent/acted upon. If the notifier routine returns non-zero, then the
437 * signal will be acted upon after all. If the notifier routine returns 0,
438 * then then signal will be blocked. Only one block per process is
439 * allowed. priv is a pointer to private data that the notifier routine
440 * can use to determine if the signal should be blocked or not. */
443 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
447 spin_lock_irqsave(¤t->sighand->siglock, flags);
448 current->notifier_mask = mask;
449 current->notifier_data = priv;
450 current->notifier = notifier;
451 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
454 /* Notify the system that blocking has ended. */
457 unblock_all_signals(void)
461 spin_lock_irqsave(¤t->sighand->siglock, flags);
462 current->notifier = NULL;
463 current->notifier_data = NULL;
465 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
468 static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
470 struct sigqueue *q, *first = NULL;
471 int still_pending = 0;
473 if (unlikely(!sigismember(&list->signal, sig)))
477 * Collect the siginfo appropriate to this signal. Check if
478 * there is another siginfo for the same signal.
480 list_for_each_entry(q, &list->list, list) {
481 if (q->info.si_signo == sig) {
490 list_del_init(&first->list);
491 copy_siginfo(info, &first->info);
492 __sigqueue_free(first);
494 sigdelset(&list->signal, sig);
497 /* Ok, it wasn't in the queue. This must be
498 a fast-pathed signal or we must have been
499 out of queue space. So zero out the info.
501 sigdelset(&list->signal, sig);
502 info->si_signo = sig;
511 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
516 sig = next_signal(pending, mask);
518 if (current->notifier) {
519 if (sigismember(current->notifier_mask, sig)) {
520 if (!(current->notifier)(current->notifier_data)) {
521 clear_thread_flag(TIF_SIGPENDING);
527 if (!collect_signal(sig, pending, info))
537 * Dequeue a signal and return the element to the caller, which is
538 * expected to free it.
540 * All callers have to hold the siglock.
542 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
544 int signr = __dequeue_signal(&tsk->pending, mask, info);
546 signr = __dequeue_signal(&tsk->signal->shared_pending,
548 if (signr && unlikely(sig_kernel_stop(signr))) {
550 * Set a marker that we have dequeued a stop signal. Our
551 * caller might release the siglock and then the pending
552 * stop signal it is about to process is no longer in the
553 * pending bitmasks, but must still be cleared by a SIGCONT
554 * (and overruled by a SIGKILL). So those cases clear this
555 * shared flag after we've set it. Note that this flag may
556 * remain set after the signal we return is ignored or
557 * handled. That doesn't matter because its only purpose
558 * is to alert stop-signal processing code when another
559 * processor has come along and cleared the flag.
561 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
562 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
565 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
566 info->si_sys_private){
568 * Release the siglock to ensure proper locking order
569 * of timer locks outside of siglocks. Note, we leave
570 * irqs disabled here, since the posix-timers code is
571 * about to disable them again anyway.
573 spin_unlock(&tsk->sighand->siglock);
574 do_schedule_next_timer(info);
575 spin_lock(&tsk->sighand->siglock);
581 * Tell a process that it has a new active signal..
583 * NOTE! we rely on the previous spin_lock to
584 * lock interrupts for us! We can only be called with
585 * "siglock" held, and the local interrupt must
586 * have been disabled when that got acquired!
588 * No need to set need_resched since signal event passing
589 * goes through ->blocked
591 void signal_wake_up(struct task_struct *t, int resume)
595 set_tsk_thread_flag(t, TIF_SIGPENDING);
598 * For SIGKILL, we want to wake it up in the stopped/traced case.
599 * We don't check t->state here because there is a race with it
600 * executing another processor and just now entering stopped state.
601 * By using wake_up_state, we ensure the process will wake up and
602 * handle its death signal.
604 mask = TASK_INTERRUPTIBLE;
606 mask |= TASK_STOPPED | TASK_TRACED;
607 if (!wake_up_state(t, mask))
612 * Remove signals in mask from the pending set and queue.
613 * Returns 1 if any signals were found.
615 * All callers must be holding the siglock.
617 static int rm_from_queue(unsigned long mask, struct sigpending *s)
619 struct sigqueue *q, *n;
621 if (!sigtestsetmask(&s->signal, mask))
624 sigdelsetmask(&s->signal, mask);
625 list_for_each_entry_safe(q, n, &s->list, list) {
626 if (q->info.si_signo < SIGRTMIN &&
627 (mask & sigmask(q->info.si_signo))) {
628 list_del_init(&q->list);
636 * Bad permissions for sending the signal
638 static int check_kill_permission(int sig, struct siginfo *info,
639 struct task_struct *t)
642 if (!valid_signal(sig))
645 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
646 && ((sig != SIGCONT) ||
647 (current->signal->session != t->signal->session))
648 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
649 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
650 && !capable(CAP_KILL))
653 error = security_task_kill(t, info, sig);
655 audit_signal_info(sig, t); /* Let audit system see the signal */
660 static void do_notify_parent_cldstop(struct task_struct *tsk,
665 * Handle magic process-wide effects of stop/continue signals.
666 * Unlike the signal actions, these happen immediately at signal-generation
667 * time regardless of blocking, ignoring, or handling. This does the
668 * actual continuing for SIGCONT, but not the actual stopping for stop
669 * signals. The process stop is done as a signal action for SIG_DFL.
671 static void handle_stop_signal(int sig, struct task_struct *p)
673 struct task_struct *t;
675 if (p->signal->flags & SIGNAL_GROUP_EXIT)
677 * The process is in the middle of dying already.
681 if (sig_kernel_stop(sig)) {
683 * This is a stop signal. Remove SIGCONT from all queues.
685 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
688 rm_from_queue(sigmask(SIGCONT), &t->pending);
691 } else if (sig == SIGCONT) {
693 * Remove all stop signals from all queues,
694 * and wake all threads.
696 if (unlikely(p->signal->group_stop_count > 0)) {
698 * There was a group stop in progress. We'll
699 * pretend it finished before we got here. We are
700 * obliged to report it to the parent: if the
701 * SIGSTOP happened "after" this SIGCONT, then it
702 * would have cleared this pending SIGCONT. If it
703 * happened "before" this SIGCONT, then the parent
704 * got the SIGCHLD about the stop finishing before
705 * the continue happened. We do the notification
706 * now, and it's as if the stop had finished and
707 * the SIGCHLD was pending on entry to this kill.
709 p->signal->group_stop_count = 0;
710 p->signal->flags = SIGNAL_STOP_CONTINUED;
711 spin_unlock(&p->sighand->siglock);
712 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED);
713 spin_lock(&p->sighand->siglock);
715 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
719 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
722 * If there is a handler for SIGCONT, we must make
723 * sure that no thread returns to user mode before
724 * we post the signal, in case it was the only
725 * thread eligible to run the signal handler--then
726 * it must not do anything between resuming and
727 * running the handler. With the TIF_SIGPENDING
728 * flag set, the thread will pause and acquire the
729 * siglock that we hold now and until we've queued
730 * the pending signal.
732 * Wake up the stopped thread _after_ setting
735 state = TASK_STOPPED;
736 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
737 set_tsk_thread_flag(t, TIF_SIGPENDING);
738 state |= TASK_INTERRUPTIBLE;
740 wake_up_state(t, state);
745 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
747 * We were in fact stopped, and are now continued.
748 * Notify the parent with CLD_CONTINUED.
750 p->signal->flags = SIGNAL_STOP_CONTINUED;
751 p->signal->group_exit_code = 0;
752 spin_unlock(&p->sighand->siglock);
753 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED);
754 spin_lock(&p->sighand->siglock);
757 * We are not stopped, but there could be a stop
758 * signal in the middle of being processed after
759 * being removed from the queue. Clear that too.
761 p->signal->flags = 0;
763 } else if (sig == SIGKILL) {
765 * Make sure that any pending stop signal already dequeued
766 * is undone by the wakeup for SIGKILL.
768 p->signal->flags = 0;
772 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
773 struct sigpending *signals)
775 struct sigqueue * q = NULL;
779 * fast-pathed signals for kernel-internal things like SIGSTOP
782 if (info == SEND_SIG_FORCED)
785 /* Real-time signals must be queued if sent by sigqueue, or
786 some other real-time mechanism. It is implementation
787 defined whether kill() does so. We attempt to do so, on
788 the principle of least surprise, but since kill is not
789 allowed to fail with EAGAIN when low on memory we just
790 make sure at least one signal gets delivered and don't
791 pass on the info struct. */
793 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
794 (is_si_special(info) ||
795 info->si_code >= 0)));
797 list_add_tail(&q->list, &signals->list);
798 switch ((unsigned long) info) {
799 case (unsigned long) SEND_SIG_NOINFO:
800 q->info.si_signo = sig;
801 q->info.si_errno = 0;
802 q->info.si_code = SI_USER;
803 q->info.si_pid = current->pid;
804 q->info.si_uid = current->uid;
806 case (unsigned long) SEND_SIG_PRIV:
807 q->info.si_signo = sig;
808 q->info.si_errno = 0;
809 q->info.si_code = SI_KERNEL;
814 copy_siginfo(&q->info, info);
817 } else if (!is_si_special(info)) {
818 if (sig >= SIGRTMIN && info->si_code != SI_USER)
820 * Queue overflow, abort. We may abort if the signal was rt
821 * and sent by user using something other than kill().
827 sigaddset(&signals->signal, sig);
831 #define LEGACY_QUEUE(sigptr, sig) \
832 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
836 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
840 if (!irqs_disabled())
842 assert_spin_locked(&t->sighand->siglock);
844 /* Short-circuit ignored signals. */
845 if (sig_ignored(t, sig))
848 /* Support queueing exactly one non-rt signal, so that we
849 can get more detailed information about the cause of
851 if (LEGACY_QUEUE(&t->pending, sig))
854 ret = send_signal(sig, info, t, &t->pending);
855 if (!ret && !sigismember(&t->blocked, sig))
856 signal_wake_up(t, sig == SIGKILL);
862 * Force a signal that the process can't ignore: if necessary
863 * we unblock the signal and change any SIG_IGN to SIG_DFL.
867 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
869 unsigned long int flags;
872 spin_lock_irqsave(&t->sighand->siglock, flags);
873 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
874 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
876 if (sigismember(&t->blocked, sig)) {
877 sigdelset(&t->blocked, sig);
879 recalc_sigpending_tsk(t);
880 ret = specific_send_sig_info(sig, info, t);
881 spin_unlock_irqrestore(&t->sighand->siglock, flags);
887 force_sig_specific(int sig, struct task_struct *t)
889 force_sig_info(sig, SEND_SIG_FORCED, t);
893 * Test if P wants to take SIG. After we've checked all threads with this,
894 * it's equivalent to finding no threads not blocking SIG. Any threads not
895 * blocking SIG were ruled out because they are not running and already
896 * have pending signals. Such threads will dequeue from the shared queue
897 * as soon as they're available, so putting the signal on the shared queue
898 * will be equivalent to sending it to one such thread.
900 static inline int wants_signal(int sig, struct task_struct *p)
902 if (sigismember(&p->blocked, sig))
904 if (p->flags & PF_EXITING)
908 if (p->state & (TASK_STOPPED | TASK_TRACED))
910 return task_curr(p) || !signal_pending(p);
914 __group_complete_signal(int sig, struct task_struct *p)
916 struct task_struct *t;
919 * Now find a thread we can wake up to take the signal off the queue.
921 * If the main thread wants the signal, it gets first crack.
922 * Probably the least surprising to the average bear.
924 if (wants_signal(sig, p))
926 else if (thread_group_empty(p))
928 * There is just one thread and it does not need to be woken.
929 * It will dequeue unblocked signals before it runs again.
934 * Otherwise try to find a suitable thread.
936 t = p->signal->curr_target;
938 /* restart balancing at this thread */
939 t = p->signal->curr_target = p;
940 BUG_ON(t->tgid != p->tgid);
942 while (!wants_signal(sig, t)) {
944 if (t == p->signal->curr_target)
946 * No thread needs to be woken.
947 * Any eligible threads will see
948 * the signal in the queue soon.
952 p->signal->curr_target = t;
956 * Found a killable thread. If the signal will be fatal,
957 * then start taking the whole group down immediately.
959 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
960 !sigismember(&t->real_blocked, sig) &&
961 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
963 * This signal will be fatal to the whole group.
965 if (!sig_kernel_coredump(sig)) {
967 * Start a group exit and wake everybody up.
968 * This way we don't have other threads
969 * running and doing things after a slower
970 * thread has the fatal signal pending.
972 p->signal->flags = SIGNAL_GROUP_EXIT;
973 p->signal->group_exit_code = sig;
974 p->signal->group_stop_count = 0;
977 sigaddset(&t->pending.signal, SIGKILL);
978 signal_wake_up(t, 1);
985 * There will be a core dump. We make all threads other
986 * than the chosen one go into a group stop so that nothing
987 * happens until it gets scheduled, takes the signal off
988 * the shared queue, and does the core dump. This is a
989 * little more complicated than strictly necessary, but it
990 * keeps the signal state that winds up in the core dump
991 * unchanged from the death state, e.g. which thread had
992 * the core-dump signal unblocked.
994 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
995 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
996 p->signal->group_stop_count = 0;
997 p->signal->group_exit_task = t;
1000 p->signal->group_stop_count++;
1001 signal_wake_up(t, 0);
1004 wake_up_process(p->signal->group_exit_task);
1009 * The signal is already in the shared-pending queue.
1010 * Tell the chosen thread to wake up and dequeue it.
1012 signal_wake_up(t, sig == SIGKILL);
1017 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1021 assert_spin_locked(&p->sighand->siglock);
1022 handle_stop_signal(sig, p);
1024 /* Short-circuit ignored signals. */
1025 if (sig_ignored(p, sig))
1028 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1029 /* This is a non-RT signal and we already have one queued. */
1033 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1034 * We always use the shared queue for process-wide signals,
1035 * to avoid several races.
1037 ret = send_signal(sig, info, p, &p->signal->shared_pending);
1041 __group_complete_signal(sig, p);
1046 * Nuke all other threads in the group.
1048 void zap_other_threads(struct task_struct *p)
1050 struct task_struct *t;
1052 p->signal->flags = SIGNAL_GROUP_EXIT;
1053 p->signal->group_stop_count = 0;
1055 if (thread_group_empty(p))
1058 for (t = next_thread(p); t != p; t = next_thread(t)) {
1060 * Don't bother with already dead threads
1066 * We don't want to notify the parent, since we are
1067 * killed as part of a thread group due to another
1068 * thread doing an execve() or similar. So set the
1069 * exit signal to -1 to allow immediate reaping of
1070 * the process. But don't detach the thread group
1073 if (t != p->group_leader)
1074 t->exit_signal = -1;
1076 /* SIGKILL will be handled before any pending SIGSTOP */
1077 sigaddset(&t->pending.signal, SIGKILL);
1078 signal_wake_up(t, 1);
1083 * Must be called with the tasklist_lock held for reading!
1085 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1087 unsigned long flags;
1090 ret = check_kill_permission(sig, info, p);
1091 if (!ret && sig && p->sighand) {
1092 spin_lock_irqsave(&p->sighand->siglock, flags);
1093 ret = __group_send_sig_info(sig, info, p);
1094 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1101 * kill_pg_info() sends a signal to a process group: this is what the tty
1102 * control characters do (^C, ^Z etc)
1105 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1107 struct task_struct *p = NULL;
1108 int retval, success;
1115 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1116 int err = group_send_sig_info(sig, info, p);
1119 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1120 return success ? 0 : retval;
1124 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1128 read_lock(&tasklist_lock);
1129 retval = __kill_pg_info(sig, info, pgrp);
1130 read_unlock(&tasklist_lock);
1136 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1139 struct task_struct *p;
1141 read_lock(&tasklist_lock);
1142 p = find_task_by_pid(pid);
1145 error = group_send_sig_info(sig, info, p);
1146 read_unlock(&tasklist_lock);
1150 /* like kill_proc_info(), but doesn't use uid/euid of "current" */
1151 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1152 uid_t uid, uid_t euid)
1155 struct task_struct *p;
1157 if (!valid_signal(sig))
1160 read_lock(&tasklist_lock);
1161 p = find_task_by_pid(pid);
1166 if ((!info || ((unsigned long)info != 1 &&
1167 (unsigned long)info != 2 && SI_FROMUSER(info)))
1168 && (euid != p->suid) && (euid != p->uid)
1169 && (uid != p->suid) && (uid != p->uid)) {
1173 if (sig && p->sighand) {
1174 unsigned long flags;
1175 spin_lock_irqsave(&p->sighand->siglock, flags);
1176 ret = __group_send_sig_info(sig, info, p);
1177 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1180 read_unlock(&tasklist_lock);
1183 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1186 * kill_something_info() interprets pid in interesting ways just like kill(2).
1188 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1189 * is probably wrong. Should make it like BSD or SYSV.
1192 static int kill_something_info(int sig, struct siginfo *info, int pid)
1195 return kill_pg_info(sig, info, process_group(current));
1196 } else if (pid == -1) {
1197 int retval = 0, count = 0;
1198 struct task_struct * p;
1200 read_lock(&tasklist_lock);
1201 for_each_process(p) {
1202 if (p->pid > 1 && p->tgid != current->tgid) {
1203 int err = group_send_sig_info(sig, info, p);
1209 read_unlock(&tasklist_lock);
1210 return count ? retval : -ESRCH;
1211 } else if (pid < 0) {
1212 return kill_pg_info(sig, info, -pid);
1214 return kill_proc_info(sig, info, pid);
1219 * These are for backward compatibility with the rest of the kernel source.
1223 * These two are the most common entry points. They send a signal
1224 * just to the specific thread.
1227 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1230 unsigned long flags;
1233 * Make sure legacy kernel users don't send in bad values
1234 * (normal paths check this in check_kill_permission).
1236 if (!valid_signal(sig))
1240 * We need the tasklist lock even for the specific
1241 * thread case (when we don't need to follow the group
1242 * lists) in order to avoid races with "p->sighand"
1243 * going away or changing from under us.
1245 read_lock(&tasklist_lock);
1246 spin_lock_irqsave(&p->sighand->siglock, flags);
1247 ret = specific_send_sig_info(sig, info, p);
1248 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1249 read_unlock(&tasklist_lock);
1253 #define __si_special(priv) \
1254 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1257 send_sig(int sig, struct task_struct *p, int priv)
1259 return send_sig_info(sig, __si_special(priv), p);
1263 * This is the entry point for "process-wide" signals.
1264 * They will go to an appropriate thread in the thread group.
1267 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1270 read_lock(&tasklist_lock);
1271 ret = group_send_sig_info(sig, info, p);
1272 read_unlock(&tasklist_lock);
1277 force_sig(int sig, struct task_struct *p)
1279 force_sig_info(sig, SEND_SIG_PRIV, p);
1283 * When things go south during signal handling, we
1284 * will force a SIGSEGV. And if the signal that caused
1285 * the problem was already a SIGSEGV, we'll want to
1286 * make sure we don't even try to deliver the signal..
1289 force_sigsegv(int sig, struct task_struct *p)
1291 if (sig == SIGSEGV) {
1292 unsigned long flags;
1293 spin_lock_irqsave(&p->sighand->siglock, flags);
1294 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1295 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1297 force_sig(SIGSEGV, p);
1302 kill_pg(pid_t pgrp, int sig, int priv)
1304 return kill_pg_info(sig, __si_special(priv), pgrp);
1308 kill_proc(pid_t pid, int sig, int priv)
1310 return kill_proc_info(sig, __si_special(priv), pid);
1314 * These functions support sending signals using preallocated sigqueue
1315 * structures. This is needed "because realtime applications cannot
1316 * afford to lose notifications of asynchronous events, like timer
1317 * expirations or I/O completions". In the case of Posix Timers
1318 * we allocate the sigqueue structure from the timer_create. If this
1319 * allocation fails we are able to report the failure to the application
1320 * with an EAGAIN error.
1323 struct sigqueue *sigqueue_alloc(void)
1327 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1328 q->flags |= SIGQUEUE_PREALLOC;
1332 void sigqueue_free(struct sigqueue *q)
1334 unsigned long flags;
1335 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1337 * If the signal is still pending remove it from the
1340 if (unlikely(!list_empty(&q->list))) {
1341 spinlock_t *lock = ¤t->sighand->siglock;
1342 read_lock(&tasklist_lock);
1343 spin_lock_irqsave(lock, flags);
1344 if (!list_empty(&q->list))
1345 list_del_init(&q->list);
1346 spin_unlock_irqrestore(lock, flags);
1347 read_unlock(&tasklist_lock);
1349 q->flags &= ~SIGQUEUE_PREALLOC;
1354 send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1356 unsigned long flags;
1359 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1360 read_lock(&tasklist_lock);
1362 if (unlikely(p->flags & PF_EXITING)) {
1367 spin_lock_irqsave(&p->sighand->siglock, flags);
1369 if (unlikely(!list_empty(&q->list))) {
1371 * If an SI_TIMER entry is already queue just increment
1372 * the overrun count.
1374 if (q->info.si_code != SI_TIMER)
1376 q->info.si_overrun++;
1379 /* Short-circuit ignored signals. */
1380 if (sig_ignored(p, sig)) {
1385 list_add_tail(&q->list, &p->pending.list);
1386 sigaddset(&p->pending.signal, sig);
1387 if (!sigismember(&p->blocked, sig))
1388 signal_wake_up(p, sig == SIGKILL);
1391 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1393 read_unlock(&tasklist_lock);
1399 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1401 unsigned long flags;
1404 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1405 read_lock(&tasklist_lock);
1406 spin_lock_irqsave(&p->sighand->siglock, flags);
1407 handle_stop_signal(sig, p);
1409 /* Short-circuit ignored signals. */
1410 if (sig_ignored(p, sig)) {
1415 if (unlikely(!list_empty(&q->list))) {
1417 * If an SI_TIMER entry is already queue just increment
1418 * the overrun count. Other uses should not try to
1419 * send the signal multiple times.
1421 if (q->info.si_code != SI_TIMER)
1423 q->info.si_overrun++;
1428 * Put this signal on the shared-pending queue.
1429 * We always use the shared queue for process-wide signals,
1430 * to avoid several races.
1432 list_add_tail(&q->list, &p->signal->shared_pending.list);
1433 sigaddset(&p->signal->shared_pending.signal, sig);
1435 __group_complete_signal(sig, p);
1437 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1438 read_unlock(&tasklist_lock);
1443 * Wake up any threads in the parent blocked in wait* syscalls.
1445 static inline void __wake_up_parent(struct task_struct *p,
1446 struct task_struct *parent)
1448 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1452 * Let a parent know about the death of a child.
1453 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1456 void do_notify_parent(struct task_struct *tsk, int sig)
1458 struct siginfo info;
1459 unsigned long flags;
1460 struct sighand_struct *psig;
1464 /* do_notify_parent_cldstop should have been called instead. */
1465 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1467 BUG_ON(!tsk->ptrace &&
1468 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1470 info.si_signo = sig;
1472 info.si_pid = tsk->pid;
1473 info.si_uid = tsk->uid;
1475 /* FIXME: find out whether or not this is supposed to be c*time. */
1476 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1477 tsk->signal->utime));
1478 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1479 tsk->signal->stime));
1481 info.si_status = tsk->exit_code & 0x7f;
1482 if (tsk->exit_code & 0x80)
1483 info.si_code = CLD_DUMPED;
1484 else if (tsk->exit_code & 0x7f)
1485 info.si_code = CLD_KILLED;
1487 info.si_code = CLD_EXITED;
1488 info.si_status = tsk->exit_code >> 8;
1491 psig = tsk->parent->sighand;
1492 spin_lock_irqsave(&psig->siglock, flags);
1493 if (!tsk->ptrace && sig == SIGCHLD &&
1494 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1495 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1497 * We are exiting and our parent doesn't care. POSIX.1
1498 * defines special semantics for setting SIGCHLD to SIG_IGN
1499 * or setting the SA_NOCLDWAIT flag: we should be reaped
1500 * automatically and not left for our parent's wait4 call.
1501 * Rather than having the parent do it as a magic kind of
1502 * signal handler, we just set this to tell do_exit that we
1503 * can be cleaned up without becoming a zombie. Note that
1504 * we still call __wake_up_parent in this case, because a
1505 * blocked sys_wait4 might now return -ECHILD.
1507 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1508 * is implementation-defined: we do (if you don't want
1509 * it, just use SIG_IGN instead).
1511 tsk->exit_signal = -1;
1512 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1515 if (valid_signal(sig) && sig > 0)
1516 __group_send_sig_info(sig, &info, tsk->parent);
1517 __wake_up_parent(tsk, tsk->parent);
1518 spin_unlock_irqrestore(&psig->siglock, flags);
1521 static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why)
1523 struct siginfo info;
1524 unsigned long flags;
1525 struct task_struct *parent;
1526 struct sighand_struct *sighand;
1529 parent = tsk->parent;
1531 tsk = tsk->group_leader;
1532 parent = tsk->real_parent;
1535 info.si_signo = SIGCHLD;
1537 info.si_pid = tsk->pid;
1538 info.si_uid = tsk->uid;
1540 /* FIXME: find out whether or not this is supposed to be c*time. */
1541 info.si_utime = cputime_to_jiffies(tsk->utime);
1542 info.si_stime = cputime_to_jiffies(tsk->stime);
1547 info.si_status = SIGCONT;
1550 info.si_status = tsk->signal->group_exit_code & 0x7f;
1553 info.si_status = tsk->exit_code & 0x7f;
1559 sighand = parent->sighand;
1560 spin_lock_irqsave(&sighand->siglock, flags);
1561 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1562 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1563 __group_send_sig_info(SIGCHLD, &info, parent);
1565 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1567 __wake_up_parent(tsk, parent);
1568 spin_unlock_irqrestore(&sighand->siglock, flags);
1572 * This must be called with current->sighand->siglock held.
1574 * This should be the path for all ptrace stops.
1575 * We always set current->last_siginfo while stopped here.
1576 * That makes it a way to test a stopped process for
1577 * being ptrace-stopped vs being job-control-stopped.
1579 * If we actually decide not to stop at all because the tracer is gone,
1580 * we leave nostop_code in current->exit_code.
1582 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1585 * If there is a group stop in progress,
1586 * we must participate in the bookkeeping.
1588 if (current->signal->group_stop_count > 0)
1589 --current->signal->group_stop_count;
1591 current->last_siginfo = info;
1592 current->exit_code = exit_code;
1594 /* Let the debugger run. */
1595 set_current_state(TASK_TRACED);
1596 spin_unlock_irq(¤t->sighand->siglock);
1597 read_lock(&tasklist_lock);
1598 if (likely(current->ptrace & PT_PTRACED) &&
1599 likely(current->parent != current->real_parent ||
1600 !(current->ptrace & PT_ATTACHED)) &&
1601 (likely(current->parent->signal != current->signal) ||
1602 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
1603 do_notify_parent_cldstop(current, 1, CLD_TRAPPED);
1604 read_unlock(&tasklist_lock);
1608 * By the time we got the lock, our tracer went away.
1611 read_unlock(&tasklist_lock);
1612 set_current_state(TASK_RUNNING);
1613 current->exit_code = nostop_code;
1617 * We are back. Now reacquire the siglock before touching
1618 * last_siginfo, so that we are sure to have synchronized with
1619 * any signal-sending on another CPU that wants to examine it.
1621 spin_lock_irq(¤t->sighand->siglock);
1622 current->last_siginfo = NULL;
1625 * Queued signals ignored us while we were stopped for tracing.
1626 * So check for any that we should take before resuming user mode.
1628 recalc_sigpending();
1631 void ptrace_notify(int exit_code)
1635 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1637 memset(&info, 0, sizeof info);
1638 info.si_signo = SIGTRAP;
1639 info.si_code = exit_code;
1640 info.si_pid = current->pid;
1641 info.si_uid = current->uid;
1643 /* Let the debugger run. */
1644 spin_lock_irq(¤t->sighand->siglock);
1645 ptrace_stop(exit_code, 0, &info);
1646 spin_unlock_irq(¤t->sighand->siglock);
1650 finish_stop(int stop_count)
1655 * If there are no other threads in the group, or if there is
1656 * a group stop in progress and we are the last to stop,
1657 * report to the parent. When ptraced, every thread reports itself.
1659 if (stop_count < 0 || (current->ptrace & PT_PTRACED))
1661 else if (stop_count == 0)
1666 read_lock(&tasklist_lock);
1667 do_notify_parent_cldstop(current, to_self, CLD_STOPPED);
1668 read_unlock(&tasklist_lock);
1673 * Now we don't run again until continued.
1675 current->exit_code = 0;
1679 * This performs the stopping for SIGSTOP and other stop signals.
1680 * We have to stop all threads in the thread group.
1681 * Returns nonzero if we've actually stopped and released the siglock.
1682 * Returns zero if we didn't stop and still hold the siglock.
1685 do_signal_stop(int signr)
1687 struct signal_struct *sig = current->signal;
1688 struct sighand_struct *sighand = current->sighand;
1689 int stop_count = -1;
1691 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1694 if (sig->group_stop_count > 0) {
1696 * There is a group stop in progress. We don't need to
1697 * start another one.
1699 signr = sig->group_exit_code;
1700 stop_count = --sig->group_stop_count;
1701 current->exit_code = signr;
1702 set_current_state(TASK_STOPPED);
1703 if (stop_count == 0)
1704 sig->flags = SIGNAL_STOP_STOPPED;
1705 spin_unlock_irq(&sighand->siglock);
1707 else if (thread_group_empty(current)) {
1709 * Lock must be held through transition to stopped state.
1711 current->exit_code = current->signal->group_exit_code = signr;
1712 set_current_state(TASK_STOPPED);
1713 sig->flags = SIGNAL_STOP_STOPPED;
1714 spin_unlock_irq(&sighand->siglock);
1718 * There is no group stop already in progress.
1719 * We must initiate one now, but that requires
1720 * dropping siglock to get both the tasklist lock
1721 * and siglock again in the proper order. Note that
1722 * this allows an intervening SIGCONT to be posted.
1723 * We need to check for that and bail out if necessary.
1725 struct task_struct *t;
1727 spin_unlock_irq(&sighand->siglock);
1729 /* signals can be posted during this window */
1731 read_lock(&tasklist_lock);
1732 spin_lock_irq(&sighand->siglock);
1734 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1736 * Another stop or continue happened while we
1737 * didn't have the lock. We can just swallow this
1738 * signal now. If we raced with a SIGCONT, that
1739 * should have just cleared it now. If we raced
1740 * with another processor delivering a stop signal,
1741 * then the SIGCONT that wakes us up should clear it.
1743 read_unlock(&tasklist_lock);
1747 if (sig->group_stop_count == 0) {
1748 sig->group_exit_code = signr;
1750 for (t = next_thread(current); t != current;
1753 * Setting state to TASK_STOPPED for a group
1754 * stop is always done with the siglock held,
1755 * so this check has no races.
1757 if (!t->exit_state &&
1758 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1760 signal_wake_up(t, 0);
1762 sig->group_stop_count = stop_count;
1765 /* A race with another thread while unlocked. */
1766 signr = sig->group_exit_code;
1767 stop_count = --sig->group_stop_count;
1770 current->exit_code = signr;
1771 set_current_state(TASK_STOPPED);
1772 if (stop_count == 0)
1773 sig->flags = SIGNAL_STOP_STOPPED;
1775 spin_unlock_irq(&sighand->siglock);
1776 read_unlock(&tasklist_lock);
1779 finish_stop(stop_count);
1784 * Do appropriate magic when group_stop_count > 0.
1785 * We return nonzero if we stopped, after releasing the siglock.
1786 * We return zero if we still hold the siglock and should look
1787 * for another signal without checking group_stop_count again.
1789 static inline int handle_group_stop(void)
1793 if (current->signal->group_exit_task == current) {
1795 * Group stop is so we can do a core dump,
1796 * We are the initiating thread, so get on with it.
1798 current->signal->group_exit_task = NULL;
1802 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1804 * Group stop is so another thread can do a core dump,
1805 * or else we are racing against a death signal.
1806 * Just punt the stop so we can get the next signal.
1811 * There is a group stop in progress. We stop
1812 * without any associated signal being in our queue.
1814 stop_count = --current->signal->group_stop_count;
1815 if (stop_count == 0)
1816 current->signal->flags = SIGNAL_STOP_STOPPED;
1817 current->exit_code = current->signal->group_exit_code;
1818 set_current_state(TASK_STOPPED);
1819 spin_unlock_irq(¤t->sighand->siglock);
1820 finish_stop(stop_count);
1824 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1825 struct pt_regs *regs, void *cookie)
1827 sigset_t *mask = ¤t->blocked;
1831 spin_lock_irq(¤t->sighand->siglock);
1833 struct k_sigaction *ka;
1835 if (unlikely(current->signal->group_stop_count > 0) &&
1836 handle_group_stop())
1839 signr = dequeue_signal(current, mask, info);
1842 break; /* will return 0 */
1844 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1845 ptrace_signal_deliver(regs, cookie);
1847 /* Let the debugger run. */
1848 ptrace_stop(signr, signr, info);
1850 /* We're back. Did the debugger cancel the sig or group_exit? */
1851 signr = current->exit_code;
1852 if (signr == 0 || current->signal->flags & SIGNAL_GROUP_EXIT)
1855 current->exit_code = 0;
1857 /* Update the siginfo structure if the signal has
1858 changed. If the debugger wanted something
1859 specific in the siginfo structure then it should
1860 have updated *info via PTRACE_SETSIGINFO. */
1861 if (signr != info->si_signo) {
1862 info->si_signo = signr;
1864 info->si_code = SI_USER;
1865 info->si_pid = current->parent->pid;
1866 info->si_uid = current->parent->uid;
1869 /* If the (new) signal is now blocked, requeue it. */
1870 if (sigismember(¤t->blocked, signr)) {
1871 specific_send_sig_info(signr, info, current);
1876 ka = ¤t->sighand->action[signr-1];
1877 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1879 if (ka->sa.sa_handler != SIG_DFL) {
1880 /* Run the handler. */
1883 if (ka->sa.sa_flags & SA_ONESHOT)
1884 ka->sa.sa_handler = SIG_DFL;
1886 break; /* will return non-zero "signr" value */
1890 * Now we are doing the default action for this signal.
1892 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1895 /* Init gets no signals it doesn't want. */
1896 if (current->pid == 1)
1899 if (sig_kernel_stop(signr)) {
1901 * The default action is to stop all threads in
1902 * the thread group. The job control signals
1903 * do nothing in an orphaned pgrp, but SIGSTOP
1904 * always works. Note that siglock needs to be
1905 * dropped during the call to is_orphaned_pgrp()
1906 * because of lock ordering with tasklist_lock.
1907 * This allows an intervening SIGCONT to be posted.
1908 * We need to check for that and bail out if necessary.
1910 if (signr != SIGSTOP) {
1911 spin_unlock_irq(¤t->sighand->siglock);
1913 /* signals can be posted during this window */
1915 if (is_orphaned_pgrp(process_group(current)))
1918 spin_lock_irq(¤t->sighand->siglock);
1921 if (likely(do_signal_stop(signr))) {
1922 /* It released the siglock. */
1927 * We didn't actually stop, due to a race
1928 * with SIGCONT or something like that.
1933 spin_unlock_irq(¤t->sighand->siglock);
1936 * Anything else is fatal, maybe with a core dump.
1938 current->flags |= PF_SIGNALED;
1939 if (sig_kernel_coredump(signr)) {
1941 * If it was able to dump core, this kills all
1942 * other threads in the group and synchronizes with
1943 * their demise. If we lost the race with another
1944 * thread getting here, it set group_exit_code
1945 * first and our do_group_exit call below will use
1946 * that value and ignore the one we pass it.
1948 do_coredump((long)signr, signr, regs);
1952 * Death signals, no core dump.
1954 do_group_exit(signr);
1957 spin_unlock_irq(¤t->sighand->siglock);
1961 EXPORT_SYMBOL(recalc_sigpending);
1962 EXPORT_SYMBOL_GPL(dequeue_signal);
1963 EXPORT_SYMBOL(flush_signals);
1964 EXPORT_SYMBOL(force_sig);
1965 EXPORT_SYMBOL(kill_pg);
1966 EXPORT_SYMBOL(kill_proc);
1967 EXPORT_SYMBOL(ptrace_notify);
1968 EXPORT_SYMBOL(send_sig);
1969 EXPORT_SYMBOL(send_sig_info);
1970 EXPORT_SYMBOL(sigprocmask);
1971 EXPORT_SYMBOL(block_all_signals);
1972 EXPORT_SYMBOL(unblock_all_signals);
1976 * System call entry points.
1979 asmlinkage long sys_restart_syscall(void)
1981 struct restart_block *restart = ¤t_thread_info()->restart_block;
1982 return restart->fn(restart);
1985 long do_no_restart_syscall(struct restart_block *param)
1991 * We don't need to get the kernel lock - this is all local to this
1992 * particular thread.. (and that's good, because this is _heavily_
1993 * used by various programs)
1997 * This is also useful for kernel threads that want to temporarily
1998 * (or permanently) block certain signals.
2000 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2001 * interface happily blocks "unblockable" signals like SIGKILL
2004 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2009 spin_lock_irq(¤t->sighand->siglock);
2010 old_block = current->blocked;
2014 sigorsets(¤t->blocked, ¤t->blocked, set);
2017 signandsets(¤t->blocked, ¤t->blocked, set);
2020 current->blocked = *set;
2025 recalc_sigpending();
2026 spin_unlock_irq(¤t->sighand->siglock);
2028 *oldset = old_block;
2033 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2035 int error = -EINVAL;
2036 sigset_t old_set, new_set;
2038 /* XXX: Don't preclude handling different sized sigset_t's. */
2039 if (sigsetsize != sizeof(sigset_t))
2044 if (copy_from_user(&new_set, set, sizeof(*set)))
2046 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2048 error = sigprocmask(how, &new_set, &old_set);
2054 spin_lock_irq(¤t->sighand->siglock);
2055 old_set = current->blocked;
2056 spin_unlock_irq(¤t->sighand->siglock);
2060 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2068 long do_sigpending(void __user *set, unsigned long sigsetsize)
2070 long error = -EINVAL;
2073 if (sigsetsize > sizeof(sigset_t))
2076 spin_lock_irq(¤t->sighand->siglock);
2077 sigorsets(&pending, ¤t->pending.signal,
2078 ¤t->signal->shared_pending.signal);
2079 spin_unlock_irq(¤t->sighand->siglock);
2081 /* Outside the lock because only this thread touches it. */
2082 sigandsets(&pending, ¤t->blocked, &pending);
2085 if (!copy_to_user(set, &pending, sigsetsize))
2093 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2095 return do_sigpending(set, sigsetsize);
2098 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2100 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2104 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2106 if (from->si_code < 0)
2107 return __copy_to_user(to, from, sizeof(siginfo_t))
2110 * If you change siginfo_t structure, please be sure
2111 * this code is fixed accordingly.
2112 * It should never copy any pad contained in the structure
2113 * to avoid security leaks, but must copy the generic
2114 * 3 ints plus the relevant union member.
2116 err = __put_user(from->si_signo, &to->si_signo);
2117 err |= __put_user(from->si_errno, &to->si_errno);
2118 err |= __put_user((short)from->si_code, &to->si_code);
2119 switch (from->si_code & __SI_MASK) {
2121 err |= __put_user(from->si_pid, &to->si_pid);
2122 err |= __put_user(from->si_uid, &to->si_uid);
2125 err |= __put_user(from->si_tid, &to->si_tid);
2126 err |= __put_user(from->si_overrun, &to->si_overrun);
2127 err |= __put_user(from->si_ptr, &to->si_ptr);
2130 err |= __put_user(from->si_band, &to->si_band);
2131 err |= __put_user(from->si_fd, &to->si_fd);
2134 err |= __put_user(from->si_addr, &to->si_addr);
2135 #ifdef __ARCH_SI_TRAPNO
2136 err |= __put_user(from->si_trapno, &to->si_trapno);
2140 err |= __put_user(from->si_pid, &to->si_pid);
2141 err |= __put_user(from->si_uid, &to->si_uid);
2142 err |= __put_user(from->si_status, &to->si_status);
2143 err |= __put_user(from->si_utime, &to->si_utime);
2144 err |= __put_user(from->si_stime, &to->si_stime);
2146 case __SI_RT: /* This is not generated by the kernel as of now. */
2147 case __SI_MESGQ: /* But this is */
2148 err |= __put_user(from->si_pid, &to->si_pid);
2149 err |= __put_user(from->si_uid, &to->si_uid);
2150 err |= __put_user(from->si_ptr, &to->si_ptr);
2152 default: /* this is just in case for now ... */
2153 err |= __put_user(from->si_pid, &to->si_pid);
2154 err |= __put_user(from->si_uid, &to->si_uid);
2163 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2164 siginfo_t __user *uinfo,
2165 const struct timespec __user *uts,
2174 /* XXX: Don't preclude handling different sized sigset_t's. */
2175 if (sigsetsize != sizeof(sigset_t))
2178 if (copy_from_user(&these, uthese, sizeof(these)))
2182 * Invert the set of allowed signals to get those we
2185 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2189 if (copy_from_user(&ts, uts, sizeof(ts)))
2191 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2196 spin_lock_irq(¤t->sighand->siglock);
2197 sig = dequeue_signal(current, &these, &info);
2199 timeout = MAX_SCHEDULE_TIMEOUT;
2201 timeout = (timespec_to_jiffies(&ts)
2202 + (ts.tv_sec || ts.tv_nsec));
2205 /* None ready -- temporarily unblock those we're
2206 * interested while we are sleeping in so that we'll
2207 * be awakened when they arrive. */
2208 current->real_blocked = current->blocked;
2209 sigandsets(¤t->blocked, ¤t->blocked, &these);
2210 recalc_sigpending();
2211 spin_unlock_irq(¤t->sighand->siglock);
2213 timeout = schedule_timeout_interruptible(timeout);
2216 spin_lock_irq(¤t->sighand->siglock);
2217 sig = dequeue_signal(current, &these, &info);
2218 current->blocked = current->real_blocked;
2219 siginitset(¤t->real_blocked, 0);
2220 recalc_sigpending();
2223 spin_unlock_irq(¤t->sighand->siglock);
2228 if (copy_siginfo_to_user(uinfo, &info))
2241 sys_kill(int pid, int sig)
2243 struct siginfo info;
2245 info.si_signo = sig;
2247 info.si_code = SI_USER;
2248 info.si_pid = current->tgid;
2249 info.si_uid = current->uid;
2251 return kill_something_info(sig, &info, pid);
2254 static int do_tkill(int tgid, int pid, int sig)
2257 struct siginfo info;
2258 struct task_struct *p;
2261 info.si_signo = sig;
2263 info.si_code = SI_TKILL;
2264 info.si_pid = current->tgid;
2265 info.si_uid = current->uid;
2267 read_lock(&tasklist_lock);
2268 p = find_task_by_pid(pid);
2269 if (p && (tgid <= 0 || p->tgid == tgid)) {
2270 error = check_kill_permission(sig, &info, p);
2272 * The null signal is a permissions and process existence
2273 * probe. No signal is actually delivered.
2275 if (!error && sig && p->sighand) {
2276 spin_lock_irq(&p->sighand->siglock);
2277 handle_stop_signal(sig, p);
2278 error = specific_send_sig_info(sig, &info, p);
2279 spin_unlock_irq(&p->sighand->siglock);
2282 read_unlock(&tasklist_lock);
2288 * sys_tgkill - send signal to one specific thread
2289 * @tgid: the thread group ID of the thread
2290 * @pid: the PID of the thread
2291 * @sig: signal to be sent
2293 * This syscall also checks the tgid and returns -ESRCH even if the PID
2294 * exists but it's not belonging to the target process anymore. This
2295 * method solves the problem of threads exiting and PIDs getting reused.
2297 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2299 /* This is only valid for single tasks */
2300 if (pid <= 0 || tgid <= 0)
2303 return do_tkill(tgid, pid, sig);
2307 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2310 sys_tkill(int pid, int sig)
2312 /* This is only valid for single tasks */
2316 return do_tkill(0, pid, sig);
2320 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2324 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2327 /* Not even root can pretend to send signals from the kernel.
2328 Nor can they impersonate a kill(), which adds source info. */
2329 if (info.si_code >= 0)
2331 info.si_signo = sig;
2333 /* POSIX.1b doesn't mention process groups. */
2334 return kill_proc_info(sig, &info, pid);
2338 do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
2340 struct k_sigaction *k;
2342 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2345 k = ¤t->sighand->action[sig-1];
2347 spin_lock_irq(¤t->sighand->siglock);
2348 if (signal_pending(current)) {
2350 * If there might be a fatal signal pending on multiple
2351 * threads, make sure we take it before changing the action.
2353 spin_unlock_irq(¤t->sighand->siglock);
2354 return -ERESTARTNOINTR;
2363 * "Setting a signal action to SIG_IGN for a signal that is
2364 * pending shall cause the pending signal to be discarded,
2365 * whether or not it is blocked."
2367 * "Setting a signal action to SIG_DFL for a signal that is
2368 * pending and whose default action is to ignore the signal
2369 * (for example, SIGCHLD), shall cause the pending signal to
2370 * be discarded, whether or not it is blocked"
2372 if (act->sa.sa_handler == SIG_IGN ||
2373 (act->sa.sa_handler == SIG_DFL &&
2374 sig_kernel_ignore(sig))) {
2376 * This is a fairly rare case, so we only take the
2377 * tasklist_lock once we're sure we'll need it.
2378 * Now we must do this little unlock and relock
2379 * dance to maintain the lock hierarchy.
2381 struct task_struct *t = current;
2382 spin_unlock_irq(&t->sighand->siglock);
2383 read_lock(&tasklist_lock);
2384 spin_lock_irq(&t->sighand->siglock);
2386 sigdelsetmask(&k->sa.sa_mask,
2387 sigmask(SIGKILL) | sigmask(SIGSTOP));
2388 rm_from_queue(sigmask(sig), &t->signal->shared_pending);
2390 rm_from_queue(sigmask(sig), &t->pending);
2391 recalc_sigpending_tsk(t);
2393 } while (t != current);
2394 spin_unlock_irq(¤t->sighand->siglock);
2395 read_unlock(&tasklist_lock);
2400 sigdelsetmask(&k->sa.sa_mask,
2401 sigmask(SIGKILL) | sigmask(SIGSTOP));
2404 spin_unlock_irq(¤t->sighand->siglock);
2409 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2415 oss.ss_sp = (void __user *) current->sas_ss_sp;
2416 oss.ss_size = current->sas_ss_size;
2417 oss.ss_flags = sas_ss_flags(sp);
2426 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2427 || __get_user(ss_sp, &uss->ss_sp)
2428 || __get_user(ss_flags, &uss->ss_flags)
2429 || __get_user(ss_size, &uss->ss_size))
2433 if (on_sig_stack(sp))
2439 * Note - this code used to test ss_flags incorrectly
2440 * old code may have been written using ss_flags==0
2441 * to mean ss_flags==SS_ONSTACK (as this was the only
2442 * way that worked) - this fix preserves that older
2445 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2448 if (ss_flags == SS_DISABLE) {
2453 if (ss_size < MINSIGSTKSZ)
2457 current->sas_ss_sp = (unsigned long) ss_sp;
2458 current->sas_ss_size = ss_size;
2463 if (copy_to_user(uoss, &oss, sizeof(oss)))
2472 #ifdef __ARCH_WANT_SYS_SIGPENDING
2475 sys_sigpending(old_sigset_t __user *set)
2477 return do_sigpending(set, sizeof(*set));
2482 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2483 /* Some platforms have their own version with special arguments others
2484 support only sys_rt_sigprocmask. */
2487 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2490 old_sigset_t old_set, new_set;
2494 if (copy_from_user(&new_set, set, sizeof(*set)))
2496 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2498 spin_lock_irq(¤t->sighand->siglock);
2499 old_set = current->blocked.sig[0];
2507 sigaddsetmask(¤t->blocked, new_set);
2510 sigdelsetmask(¤t->blocked, new_set);
2513 current->blocked.sig[0] = new_set;
2517 recalc_sigpending();
2518 spin_unlock_irq(¤t->sighand->siglock);
2524 old_set = current->blocked.sig[0];
2527 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2534 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2536 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2538 sys_rt_sigaction(int sig,
2539 const struct sigaction __user *act,
2540 struct sigaction __user *oact,
2543 struct k_sigaction new_sa, old_sa;
2546 /* XXX: Don't preclude handling different sized sigset_t's. */
2547 if (sigsetsize != sizeof(sigset_t))
2551 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2555 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2558 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2564 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2566 #ifdef __ARCH_WANT_SYS_SGETMASK
2569 * For backwards compatibility. Functionality superseded by sigprocmask.
2575 return current->blocked.sig[0];
2579 sys_ssetmask(int newmask)
2583 spin_lock_irq(¤t->sighand->siglock);
2584 old = current->blocked.sig[0];
2586 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)|
2588 recalc_sigpending();
2589 spin_unlock_irq(¤t->sighand->siglock);
2593 #endif /* __ARCH_WANT_SGETMASK */
2595 #ifdef __ARCH_WANT_SYS_SIGNAL
2597 * For backwards compatibility. Functionality superseded by sigaction.
2599 asmlinkage unsigned long
2600 sys_signal(int sig, __sighandler_t handler)
2602 struct k_sigaction new_sa, old_sa;
2605 new_sa.sa.sa_handler = handler;
2606 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2608 ret = do_sigaction(sig, &new_sa, &old_sa);
2610 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2612 #endif /* __ARCH_WANT_SYS_SIGNAL */
2614 #ifdef __ARCH_WANT_SYS_PAUSE
2619 current->state = TASK_INTERRUPTIBLE;
2621 return -ERESTARTNOHAND;
2626 void __init signals_init(void)
2629 kmem_cache_create("sigqueue",
2630 sizeof(struct sigqueue),
2631 __alignof__(struct sigqueue),
2632 SLAB_PANIC, NULL, NULL);