Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rric/oprofile
[linux-2.6] / drivers / net / wireless / p54 / p54common.c
1
2 /*
3  * Common code for mac80211 Prism54 drivers
4  *
5  * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
6  * Copyright (c) 2007, Christian Lamparter <chunkeey@web.de>
7  *
8  * Based on the islsm (softmac prism54) driver, which is:
9  * Copyright 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  */
15
16 #include <linux/init.h>
17 #include <linux/firmware.h>
18 #include <linux/etherdevice.h>
19
20 #include <net/mac80211.h>
21
22 #include "p54.h"
23 #include "p54common.h"
24
25 MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>");
26 MODULE_DESCRIPTION("Softmac Prism54 common code");
27 MODULE_LICENSE("GPL");
28 MODULE_ALIAS("prism54common");
29
30 static struct ieee80211_rate p54_bgrates[] = {
31         { .bitrate = 10, .hw_value = 0, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
32         { .bitrate = 20, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
33         { .bitrate = 55, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
34         { .bitrate = 110, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
35         { .bitrate = 60, .hw_value = 4, },
36         { .bitrate = 90, .hw_value = 5, },
37         { .bitrate = 120, .hw_value = 6, },
38         { .bitrate = 180, .hw_value = 7, },
39         { .bitrate = 240, .hw_value = 8, },
40         { .bitrate = 360, .hw_value = 9, },
41         { .bitrate = 480, .hw_value = 10, },
42         { .bitrate = 540, .hw_value = 11, },
43 };
44
45 static struct ieee80211_channel p54_bgchannels[] = {
46         { .center_freq = 2412, .hw_value = 1, },
47         { .center_freq = 2417, .hw_value = 2, },
48         { .center_freq = 2422, .hw_value = 3, },
49         { .center_freq = 2427, .hw_value = 4, },
50         { .center_freq = 2432, .hw_value = 5, },
51         { .center_freq = 2437, .hw_value = 6, },
52         { .center_freq = 2442, .hw_value = 7, },
53         { .center_freq = 2447, .hw_value = 8, },
54         { .center_freq = 2452, .hw_value = 9, },
55         { .center_freq = 2457, .hw_value = 10, },
56         { .center_freq = 2462, .hw_value = 11, },
57         { .center_freq = 2467, .hw_value = 12, },
58         { .center_freq = 2472, .hw_value = 13, },
59         { .center_freq = 2484, .hw_value = 14, },
60 };
61
62 static struct ieee80211_supported_band band_2GHz = {
63         .channels = p54_bgchannels,
64         .n_channels = ARRAY_SIZE(p54_bgchannels),
65         .bitrates = p54_bgrates,
66         .n_bitrates = ARRAY_SIZE(p54_bgrates),
67 };
68
69 static struct ieee80211_rate p54_arates[] = {
70         { .bitrate = 60, .hw_value = 4, },
71         { .bitrate = 90, .hw_value = 5, },
72         { .bitrate = 120, .hw_value = 6, },
73         { .bitrate = 180, .hw_value = 7, },
74         { .bitrate = 240, .hw_value = 8, },
75         { .bitrate = 360, .hw_value = 9, },
76         { .bitrate = 480, .hw_value = 10, },
77         { .bitrate = 540, .hw_value = 11, },
78 };
79
80 static struct ieee80211_channel p54_achannels[] = {
81         { .center_freq = 4920 },
82         { .center_freq = 4940 },
83         { .center_freq = 4960 },
84         { .center_freq = 4980 },
85         { .center_freq = 5040 },
86         { .center_freq = 5060 },
87         { .center_freq = 5080 },
88         { .center_freq = 5170 },
89         { .center_freq = 5180 },
90         { .center_freq = 5190 },
91         { .center_freq = 5200 },
92         { .center_freq = 5210 },
93         { .center_freq = 5220 },
94         { .center_freq = 5230 },
95         { .center_freq = 5240 },
96         { .center_freq = 5260 },
97         { .center_freq = 5280 },
98         { .center_freq = 5300 },
99         { .center_freq = 5320 },
100         { .center_freq = 5500 },
101         { .center_freq = 5520 },
102         { .center_freq = 5540 },
103         { .center_freq = 5560 },
104         { .center_freq = 5580 },
105         { .center_freq = 5600 },
106         { .center_freq = 5620 },
107         { .center_freq = 5640 },
108         { .center_freq = 5660 },
109         { .center_freq = 5680 },
110         { .center_freq = 5700 },
111         { .center_freq = 5745 },
112         { .center_freq = 5765 },
113         { .center_freq = 5785 },
114         { .center_freq = 5805 },
115         { .center_freq = 5825 },
116 };
117
118 static struct ieee80211_supported_band band_5GHz = {
119         .channels = p54_achannels,
120         .n_channels = ARRAY_SIZE(p54_achannels),
121         .bitrates = p54_arates,
122         .n_bitrates = ARRAY_SIZE(p54_arates),
123 };
124
125 int p54_parse_firmware(struct ieee80211_hw *dev, const struct firmware *fw)
126 {
127         struct p54_common *priv = dev->priv;
128         struct bootrec_exp_if *exp_if;
129         struct bootrec *bootrec;
130         u32 *data = (u32 *)fw->data;
131         u32 *end_data = (u32 *)fw->data + (fw->size >> 2);
132         u8 *fw_version = NULL;
133         size_t len;
134         int i;
135
136         if (priv->rx_start)
137                 return 0;
138
139         while (data < end_data && *data)
140                 data++;
141
142         while (data < end_data && !*data)
143                 data++;
144
145         bootrec = (struct bootrec *) data;
146
147         while (bootrec->data <= end_data &&
148                (bootrec->data + (len = le32_to_cpu(bootrec->len))) <= end_data) {
149                 u32 code = le32_to_cpu(bootrec->code);
150                 switch (code) {
151                 case BR_CODE_COMPONENT_ID:
152                         priv->fw_interface = be32_to_cpup((__be32 *)
153                                              bootrec->data);
154                         switch (priv->fw_interface) {
155                         case FW_FMAC:
156                                 printk(KERN_INFO "p54: FreeMAC firmware\n");
157                                 break;
158                         case FW_LM20:
159                                 printk(KERN_INFO "p54: LM20 firmware\n");
160                                 break;
161                         case FW_LM86:
162                                 printk(KERN_INFO "p54: LM86 firmware\n");
163                                 break;
164                         case FW_LM87:
165                                 printk(KERN_INFO "p54: LM87 firmware\n");
166                                 break;
167                         default:
168                                 printk(KERN_INFO "p54: unknown firmware\n");
169                                 break;
170                         }
171                         break;
172                 case BR_CODE_COMPONENT_VERSION:
173                         /* 24 bytes should be enough for all firmwares */
174                         if (strnlen((unsigned char*)bootrec->data, 24) < 24)
175                                 fw_version = (unsigned char*)bootrec->data;
176                         break;
177                 case BR_CODE_DESCR: {
178                         struct bootrec_desc *desc =
179                                 (struct bootrec_desc *)bootrec->data;
180                         priv->rx_start = le32_to_cpu(desc->rx_start);
181                         /* FIXME add sanity checking */
182                         priv->rx_end = le32_to_cpu(desc->rx_end) - 0x3500;
183                         priv->headroom = desc->headroom;
184                         priv->tailroom = desc->tailroom;
185                         if (le32_to_cpu(bootrec->len) == 11)
186                                 priv->rx_mtu = le16_to_cpu(bootrec->rx_mtu);
187                         else
188                                 priv->rx_mtu = (size_t)
189                                         0x620 - priv->tx_hdr_len;
190                         break;
191                         }
192                 case BR_CODE_EXPOSED_IF:
193                         exp_if = (struct bootrec_exp_if *) bootrec->data;
194                         for (i = 0; i < (len * sizeof(*exp_if) / 4); i++)
195                                 if (exp_if[i].if_id == cpu_to_le16(0x1a))
196                                         priv->fw_var = le16_to_cpu(exp_if[i].variant);
197                         break;
198                 case BR_CODE_DEPENDENT_IF:
199                         break;
200                 case BR_CODE_END_OF_BRA:
201                 case LEGACY_BR_CODE_END_OF_BRA:
202                         end_data = NULL;
203                         break;
204                 default:
205                         break;
206                 }
207                 bootrec = (struct bootrec *)&bootrec->data[len];
208         }
209
210         if (fw_version)
211                 printk(KERN_INFO "p54: FW rev %s - Softmac protocol %x.%x\n",
212                         fw_version, priv->fw_var >> 8, priv->fw_var & 0xff);
213
214         if (priv->fw_var >= 0x300) {
215                 /* Firmware supports QoS, use it! */
216                 priv->tx_stats[4].limit = 3;
217                 priv->tx_stats[5].limit = 4;
218                 priv->tx_stats[6].limit = 3;
219                 priv->tx_stats[7].limit = 1;
220                 dev->queues = 4;
221         }
222
223         return 0;
224 }
225 EXPORT_SYMBOL_GPL(p54_parse_firmware);
226
227 static int p54_convert_rev0(struct ieee80211_hw *dev,
228                             struct pda_pa_curve_data *curve_data)
229 {
230         struct p54_common *priv = dev->priv;
231         struct p54_pa_curve_data_sample *dst;
232         struct pda_pa_curve_data_sample_rev0 *src;
233         size_t cd_len = sizeof(*curve_data) +
234                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
235                  curve_data->channels;
236         unsigned int i, j;
237         void *source, *target;
238
239         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
240         if (!priv->curve_data)
241                 return -ENOMEM;
242
243         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
244         source = curve_data->data;
245         target = priv->curve_data->data;
246         for (i = 0; i < curve_data->channels; i++) {
247                 __le16 *freq = source;
248                 source += sizeof(__le16);
249                 *((__le16 *)target) = *freq;
250                 target += sizeof(__le16);
251                 for (j = 0; j < curve_data->points_per_channel; j++) {
252                         dst = target;
253                         src = source;
254
255                         dst->rf_power = src->rf_power;
256                         dst->pa_detector = src->pa_detector;
257                         dst->data_64qam = src->pcv;
258                         /* "invent" the points for the other modulations */
259 #define SUB(x,y) (u8)((x) - (y)) > (x) ? 0 : (x) - (y)
260                         dst->data_16qam = SUB(src->pcv, 12);
261                         dst->data_qpsk = SUB(dst->data_16qam, 12);
262                         dst->data_bpsk = SUB(dst->data_qpsk, 12);
263                         dst->data_barker = SUB(dst->data_bpsk, 14);
264 #undef SUB
265                         target += sizeof(*dst);
266                         source += sizeof(*src);
267                 }
268         }
269
270         return 0;
271 }
272
273 static int p54_convert_rev1(struct ieee80211_hw *dev,
274                             struct pda_pa_curve_data *curve_data)
275 {
276         struct p54_common *priv = dev->priv;
277         struct p54_pa_curve_data_sample *dst;
278         struct pda_pa_curve_data_sample_rev1 *src;
279         size_t cd_len = sizeof(*curve_data) +
280                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
281                  curve_data->channels;
282         unsigned int i, j;
283         void *source, *target;
284
285         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
286         if (!priv->curve_data)
287                 return -ENOMEM;
288
289         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
290         source = curve_data->data;
291         target = priv->curve_data->data;
292         for (i = 0; i < curve_data->channels; i++) {
293                 __le16 *freq = source;
294                 source += sizeof(__le16);
295                 *((__le16 *)target) = *freq;
296                 target += sizeof(__le16);
297                 for (j = 0; j < curve_data->points_per_channel; j++) {
298                         memcpy(target, source, sizeof(*src));
299
300                         target += sizeof(*dst);
301                         source += sizeof(*src);
302                 }
303                 source++;
304         }
305
306         return 0;
307 }
308
309 static const char *p54_rf_chips[] = { "NULL", "Indigo?", "Duette",
310                               "Frisbee", "Xbow", "Longbow" };
311 static int p54_init_xbow_synth(struct ieee80211_hw *dev);
312
313 static int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len)
314 {
315         struct p54_common *priv = dev->priv;
316         struct eeprom_pda_wrap *wrap = NULL;
317         struct pda_entry *entry;
318         unsigned int data_len, entry_len;
319         void *tmp;
320         int err;
321         u8 *end = (u8 *)eeprom + len;
322         DECLARE_MAC_BUF(mac);
323
324         wrap = (struct eeprom_pda_wrap *) eeprom;
325         entry = (void *)wrap->data + le16_to_cpu(wrap->len);
326
327         /* verify that at least the entry length/code fits */
328         while ((u8 *)entry <= end - sizeof(*entry)) {
329                 entry_len = le16_to_cpu(entry->len);
330                 data_len = ((entry_len - 1) << 1);
331
332                 /* abort if entry exceeds whole structure */
333                 if ((u8 *)entry + sizeof(*entry) + data_len > end)
334                         break;
335
336                 switch (le16_to_cpu(entry->code)) {
337                 case PDR_MAC_ADDRESS:
338                         SET_IEEE80211_PERM_ADDR(dev, entry->data);
339                         break;
340                 case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS:
341                         if (data_len < 2) {
342                                 err = -EINVAL;
343                                 goto err;
344                         }
345
346                         if (2 + entry->data[1]*sizeof(*priv->output_limit) > data_len) {
347                                 err = -EINVAL;
348                                 goto err;
349                         }
350
351                         priv->output_limit = kmalloc(entry->data[1] *
352                                 sizeof(*priv->output_limit), GFP_KERNEL);
353
354                         if (!priv->output_limit) {
355                                 err = -ENOMEM;
356                                 goto err;
357                         }
358
359                         memcpy(priv->output_limit, &entry->data[2],
360                                entry->data[1]*sizeof(*priv->output_limit));
361                         priv->output_limit_len = entry->data[1];
362                         break;
363                 case PDR_PRISM_PA_CAL_CURVE_DATA: {
364                         struct pda_pa_curve_data *curve_data =
365                                 (struct pda_pa_curve_data *)entry->data;
366                         if (data_len < sizeof(*curve_data)) {
367                                 err = -EINVAL;
368                                 goto err;
369                         }
370
371                         switch (curve_data->cal_method_rev) {
372                         case 0:
373                                 err = p54_convert_rev0(dev, curve_data);
374                                 break;
375                         case 1:
376                                 err = p54_convert_rev1(dev, curve_data);
377                                 break;
378                         default:
379                                 printk(KERN_ERR "p54: unknown curve data "
380                                                 "revision %d\n",
381                                                 curve_data->cal_method_rev);
382                                 err = -ENODEV;
383                                 break;
384                         }
385                         if (err)
386                                 goto err;
387
388                 }
389                 case PDR_PRISM_ZIF_TX_IQ_CALIBRATION:
390                         priv->iq_autocal = kmalloc(data_len, GFP_KERNEL);
391                         if (!priv->iq_autocal) {
392                                 err = -ENOMEM;
393                                 goto err;
394                         }
395
396                         memcpy(priv->iq_autocal, entry->data, data_len);
397                         priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry);
398                         break;
399                 case PDR_INTERFACE_LIST:
400                         tmp = entry->data;
401                         while ((u8 *)tmp < entry->data + data_len) {
402                                 struct bootrec_exp_if *exp_if = tmp;
403                                 if (le16_to_cpu(exp_if->if_id) == 0xF)
404                                         priv->rxhw = le16_to_cpu(exp_if->variant) & 0x07;
405                                 tmp += sizeof(struct bootrec_exp_if);
406                         }
407                         break;
408                 case PDR_HARDWARE_PLATFORM_COMPONENT_ID:
409                         priv->version = *(u8 *)(entry->data + 1);
410                         break;
411                 case PDR_END:
412                         /* make it overrun */
413                         entry_len = len;
414                         break;
415                 default:
416                         printk(KERN_INFO "p54: unknown eeprom code : 0x%x\n",
417                                 le16_to_cpu(entry->code));
418                         break;
419                 }
420
421                 entry = (void *)entry + (entry_len + 1)*2;
422         }
423
424         if (!priv->iq_autocal || !priv->output_limit || !priv->curve_data) {
425                 printk(KERN_ERR "p54: not all required entries found in eeprom!\n");
426                 err = -EINVAL;
427                 goto err;
428         }
429
430         switch (priv->rxhw) {
431         case 4: /* XBow */
432                 p54_init_xbow_synth(dev);
433         case 1: /* Indigo? */
434         case 2: /* Duette */
435                 dev->wiphy->bands[IEEE80211_BAND_5GHZ] = &band_5GHz;
436         case 3: /* Frisbee */
437         case 5: /* Longbow */
438                 dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &band_2GHz;
439                 break;
440         default:
441                 printk(KERN_ERR "%s: unsupported RF-Chip\n",
442                         wiphy_name(dev->wiphy));
443                 err = -EINVAL;
444                 goto err;
445         }
446
447         if (!is_valid_ether_addr(dev->wiphy->perm_addr)) {
448                 u8 perm_addr[ETH_ALEN];
449
450                 printk(KERN_WARNING "%s: Invalid hwaddr! Using randomly generated MAC addr\n",
451                         wiphy_name(dev->wiphy));
452                 random_ether_addr(perm_addr);
453                 SET_IEEE80211_PERM_ADDR(dev, perm_addr);
454         }
455
456         printk(KERN_INFO "%s: hwaddr %s, MAC:isl38%02x RF:%s\n",
457                 wiphy_name(dev->wiphy),
458                 print_mac(mac, dev->wiphy->perm_addr),
459                 priv->version, p54_rf_chips[priv->rxhw]);
460
461         return 0;
462
463   err:
464         if (priv->iq_autocal) {
465                 kfree(priv->iq_autocal);
466                 priv->iq_autocal = NULL;
467         }
468
469         if (priv->output_limit) {
470                 kfree(priv->output_limit);
471                 priv->output_limit = NULL;
472         }
473
474         if (priv->curve_data) {
475                 kfree(priv->curve_data);
476                 priv->curve_data = NULL;
477         }
478
479         printk(KERN_ERR "p54: eeprom parse failed!\n");
480         return err;
481 }
482
483 static int p54_rssi_to_dbm(struct ieee80211_hw *dev, int rssi)
484 {
485         /* TODO: get the rssi_add & rssi_mul data from the eeprom */
486         return ((rssi * 0x83) / 64 - 400) / 4;
487 }
488
489 static int p54_rx_data(struct ieee80211_hw *dev, struct sk_buff *skb)
490 {
491         struct p54_common *priv = dev->priv;
492         struct p54_rx_hdr *hdr = (struct p54_rx_hdr *) skb->data;
493         struct ieee80211_rx_status rx_status = {0};
494         u16 freq = le16_to_cpu(hdr->freq);
495         size_t header_len = sizeof(*hdr);
496         u32 tsf32;
497
498         if (!(hdr->magic & cpu_to_le16(0x0001))) {
499                 if (priv->filter_flags & FIF_FCSFAIL)
500                         rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
501                 else
502                         return 0;
503         }
504
505         rx_status.signal = p54_rssi_to_dbm(dev, hdr->rssi);
506         rx_status.noise = priv->noise;
507         /* XX correct? */
508         rx_status.qual = (100 * hdr->rssi) / 127;
509         rx_status.rate_idx = (dev->conf.channel->band == IEEE80211_BAND_2GHZ ?
510                         hdr->rate : (hdr->rate - 4)) & 0xf;
511         rx_status.freq = freq;
512         rx_status.band =  dev->conf.channel->band;
513         rx_status.antenna = hdr->antenna;
514
515         tsf32 = le32_to_cpu(hdr->tsf32);
516         if (tsf32 < priv->tsf_low32)
517                 priv->tsf_high32++;
518         rx_status.mactime = ((u64)priv->tsf_high32) << 32 | tsf32;
519         priv->tsf_low32 = tsf32;
520
521         rx_status.flag |= RX_FLAG_TSFT;
522
523         if (hdr->magic & cpu_to_le16(0x4000))
524                 header_len += hdr->align[0];
525
526         skb_pull(skb, header_len);
527         skb_trim(skb, le16_to_cpu(hdr->len));
528
529         ieee80211_rx_irqsafe(dev, skb, &rx_status);
530
531         return -1;
532 }
533
534 static void inline p54_wake_free_queues(struct ieee80211_hw *dev)
535 {
536         struct p54_common *priv = dev->priv;
537         int i;
538
539         for (i = 0; i < dev->queues; i++)
540                 if (priv->tx_stats[i + 4].len < priv->tx_stats[i + 4].limit)
541                         ieee80211_wake_queue(dev, i);
542 }
543
544 static void p54_rx_frame_sent(struct ieee80211_hw *dev, struct sk_buff *skb)
545 {
546         struct p54_common *priv = dev->priv;
547         struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data;
548         struct p54_frame_sent_hdr *payload = (struct p54_frame_sent_hdr *) hdr->data;
549         struct sk_buff *entry = (struct sk_buff *) priv->tx_queue.next;
550         u32 addr = le32_to_cpu(hdr->req_id) - priv->headroom;
551         struct memrecord *range = NULL;
552         u32 freed = 0;
553         u32 last_addr = priv->rx_start;
554         unsigned long flags;
555
556         spin_lock_irqsave(&priv->tx_queue.lock, flags);
557         while (entry != (struct sk_buff *)&priv->tx_queue) {
558                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
559                 range = (void *)info->driver_data;
560                 if (range->start_addr == addr) {
561                         struct p54_control_hdr *entry_hdr;
562                         struct p54_tx_control_allocdata *entry_data;
563                         int pad = 0;
564
565                         if (entry->next != (struct sk_buff *)&priv->tx_queue) {
566                                 struct ieee80211_tx_info *ni;
567                                 struct memrecord *mr;
568
569                                 ni = IEEE80211_SKB_CB(entry->next);
570                                 mr = (struct memrecord *)ni->driver_data;
571                                 freed = mr->start_addr - last_addr;
572                         } else
573                                 freed = priv->rx_end - last_addr;
574
575                         last_addr = range->end_addr;
576                         __skb_unlink(entry, &priv->tx_queue);
577                         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
578
579                         memset(&info->status, 0, sizeof(info->status));
580                         entry_hdr = (struct p54_control_hdr *) entry->data;
581                         entry_data = (struct p54_tx_control_allocdata *) entry_hdr->data;
582                         if ((entry_hdr->magic1 & cpu_to_le16(0x4000)) != 0)
583                                 pad = entry_data->align[0];
584
585                         priv->tx_stats[entry_data->hw_queue].len--;
586                         if (!(info->flags & IEEE80211_TX_CTL_NO_ACK)) {
587                                 if (!(payload->status & 0x01))
588                                         info->flags |= IEEE80211_TX_STAT_ACK;
589                                 else
590                                         info->status.excessive_retries = 1;
591                         }
592                         info->status.retry_count = payload->retries - 1;
593                         info->status.ack_signal = p54_rssi_to_dbm(dev,
594                                         le16_to_cpu(payload->ack_rssi));
595                         skb_pull(entry, sizeof(*hdr) + pad + sizeof(*entry_data));
596                         ieee80211_tx_status_irqsafe(dev, entry);
597                         goto out;
598                 } else
599                         last_addr = range->end_addr;
600                 entry = entry->next;
601         }
602         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
603
604 out:
605         if (freed >= IEEE80211_MAX_RTS_THRESHOLD + 0x170 +
606             sizeof(struct p54_control_hdr))
607                 p54_wake_free_queues(dev);
608 }
609
610 static void p54_rx_eeprom_readback(struct ieee80211_hw *dev,
611                                    struct sk_buff *skb)
612 {
613         struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data;
614         struct p54_eeprom_lm86 *eeprom = (struct p54_eeprom_lm86 *) hdr->data;
615         struct p54_common *priv = dev->priv;
616
617         if (!priv->eeprom)
618                 return ;
619
620         memcpy(priv->eeprom, eeprom->data, le16_to_cpu(eeprom->len));
621
622         complete(&priv->eeprom_comp);
623 }
624
625 static void p54_rx_stats(struct ieee80211_hw *dev, struct sk_buff *skb)
626 {
627         struct p54_common *priv = dev->priv;
628         struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data;
629         struct p54_statistics *stats = (struct p54_statistics *) hdr->data;
630         u32 tsf32 = le32_to_cpu(stats->tsf32);
631
632         if (tsf32 < priv->tsf_low32)
633                 priv->tsf_high32++;
634         priv->tsf_low32 = tsf32;
635
636         priv->stats.dot11RTSFailureCount = le32_to_cpu(stats->rts_fail);
637         priv->stats.dot11RTSSuccessCount = le32_to_cpu(stats->rts_success);
638         priv->stats.dot11FCSErrorCount = le32_to_cpu(stats->rx_bad_fcs);
639
640         priv->noise = p54_rssi_to_dbm(dev, le32_to_cpu(stats->noise));
641         complete(&priv->stats_comp);
642
643         mod_timer(&priv->stats_timer, jiffies + 5 * HZ);
644 }
645
646 static int p54_rx_control(struct ieee80211_hw *dev, struct sk_buff *skb)
647 {
648         struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data;
649
650         switch (le16_to_cpu(hdr->type)) {
651         case P54_CONTROL_TYPE_TXDONE:
652                 p54_rx_frame_sent(dev, skb);
653                 break;
654         case P54_CONTROL_TYPE_BBP:
655                 break;
656         case P54_CONTROL_TYPE_STAT_READBACK:
657                 p54_rx_stats(dev, skb);
658                 break;
659         case P54_CONTROL_TYPE_EEPROM_READBACK:
660                 p54_rx_eeprom_readback(dev, skb);
661                 break;
662         default:
663                 printk(KERN_DEBUG "%s: not handling 0x%02x type control frame\n",
664                        wiphy_name(dev->wiphy), le16_to_cpu(hdr->type));
665                 break;
666         }
667
668         return 0;
669 }
670
671 /* returns zero if skb can be reused */
672 int p54_rx(struct ieee80211_hw *dev, struct sk_buff *skb)
673 {
674         u8 type = le16_to_cpu(*((__le16 *)skb->data)) >> 8;
675
676         if (type == 0x80)
677                 return p54_rx_control(dev, skb);
678         else
679                 return p54_rx_data(dev, skb);
680 }
681 EXPORT_SYMBOL_GPL(p54_rx);
682
683 /*
684  * So, the firmware is somewhat stupid and doesn't know what places in its
685  * memory incoming data should go to. By poking around in the firmware, we
686  * can find some unused memory to upload our packets to. However, data that we
687  * want the card to TX needs to stay intact until the card has told us that
688  * it is done with it. This function finds empty places we can upload to and
689  * marks allocated areas as reserved if necessary. p54_rx_frame_sent frees
690  * allocated areas.
691  */
692 static void p54_assign_address(struct ieee80211_hw *dev, struct sk_buff *skb,
693                                struct p54_control_hdr *data, u32 len)
694 {
695         struct p54_common *priv = dev->priv;
696         struct sk_buff *entry = priv->tx_queue.next;
697         struct sk_buff *target_skb = NULL;
698         u32 last_addr = priv->rx_start;
699         u32 largest_hole = 0;
700         u32 target_addr = priv->rx_start;
701         unsigned long flags;
702         unsigned int left;
703         len = (len + priv->headroom + priv->tailroom + 3) & ~0x3;
704
705         spin_lock_irqsave(&priv->tx_queue.lock, flags);
706         left = skb_queue_len(&priv->tx_queue);
707         while (left--) {
708                 u32 hole_size;
709                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
710                 struct memrecord *range = (void *)info->driver_data;
711                 hole_size = range->start_addr - last_addr;
712                 if (!target_skb && hole_size >= len) {
713                         target_skb = entry->prev;
714                         hole_size -= len;
715                         target_addr = last_addr;
716                 }
717                 largest_hole = max(largest_hole, hole_size);
718                 last_addr = range->end_addr;
719                 entry = entry->next;
720         }
721         if (!target_skb && priv->rx_end - last_addr >= len) {
722                 target_skb = priv->tx_queue.prev;
723                 largest_hole = max(largest_hole, priv->rx_end - last_addr - len);
724                 if (!skb_queue_empty(&priv->tx_queue)) {
725                         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(target_skb);
726                         struct memrecord *range = (void *)info->driver_data;
727                         target_addr = range->end_addr;
728                 }
729         } else
730                 largest_hole = max(largest_hole, priv->rx_end - last_addr);
731
732         if (skb) {
733                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
734                 struct memrecord *range = (void *)info->driver_data;
735                 range->start_addr = target_addr;
736                 range->end_addr = target_addr + len;
737                 __skb_queue_after(&priv->tx_queue, target_skb, skb);
738                 if (largest_hole < priv->rx_mtu + priv->headroom +
739                                    priv->tailroom +
740                                    sizeof(struct p54_control_hdr))
741                         ieee80211_stop_queues(dev);
742         }
743         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
744
745         data->req_id = cpu_to_le32(target_addr + priv->headroom);
746 }
747
748 int p54_read_eeprom(struct ieee80211_hw *dev)
749 {
750         struct p54_common *priv = dev->priv;
751         struct p54_control_hdr *hdr = NULL;
752         struct p54_eeprom_lm86 *eeprom_hdr;
753         size_t eeprom_size = 0x2020, offset = 0, blocksize;
754         int ret = -ENOMEM;
755         void *eeprom = NULL;
756
757         hdr = (struct p54_control_hdr *)kzalloc(sizeof(*hdr) +
758                 sizeof(*eeprom_hdr) + EEPROM_READBACK_LEN, GFP_KERNEL);
759         if (!hdr)
760                 goto free;
761
762         priv->eeprom = kzalloc(EEPROM_READBACK_LEN, GFP_KERNEL);
763         if (!priv->eeprom)
764                 goto free;
765
766         eeprom = kzalloc(eeprom_size, GFP_KERNEL);
767         if (!eeprom)
768                 goto free;
769
770         hdr->magic1 = cpu_to_le16(0x8000);
771         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_EEPROM_READBACK);
772         hdr->retry1 = hdr->retry2 = 0;
773         eeprom_hdr = (struct p54_eeprom_lm86 *) hdr->data;
774
775         while (eeprom_size) {
776                 blocksize = min(eeprom_size, (size_t)EEPROM_READBACK_LEN);
777                 hdr->len = cpu_to_le16(blocksize + sizeof(*eeprom_hdr));
778                 eeprom_hdr->offset = cpu_to_le16(offset);
779                 eeprom_hdr->len = cpu_to_le16(blocksize);
780                 p54_assign_address(dev, NULL, hdr, le16_to_cpu(hdr->len) +
781                                    sizeof(*hdr));
782                 priv->tx(dev, hdr, le16_to_cpu(hdr->len) + sizeof(*hdr), 0);
783
784                 if (!wait_for_completion_interruptible_timeout(&priv->eeprom_comp, HZ)) {
785                         printk(KERN_ERR "%s: device does not respond!\n",
786                                 wiphy_name(dev->wiphy));
787                         ret = -EBUSY;
788                         goto free;
789                 }
790
791                 memcpy(eeprom + offset, priv->eeprom, blocksize);
792                 offset += blocksize;
793                 eeprom_size -= blocksize;
794         }
795
796         ret = p54_parse_eeprom(dev, eeprom, offset);
797 free:
798         kfree(priv->eeprom);
799         priv->eeprom = NULL;
800         kfree(hdr);
801         kfree(eeprom);
802
803         return ret;
804 }
805 EXPORT_SYMBOL_GPL(p54_read_eeprom);
806
807 static int p54_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
808 {
809         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
810         struct ieee80211_tx_queue_stats *current_queue;
811         struct p54_common *priv = dev->priv;
812         struct p54_control_hdr *hdr;
813         struct ieee80211_hdr *ieee80211hdr = (struct ieee80211_hdr *)skb->data;
814         struct p54_tx_control_allocdata *txhdr;
815         size_t padding, len;
816         u8 rate;
817         u8 cts_rate = 0x20;
818
819         current_queue = &priv->tx_stats[skb_get_queue_mapping(skb) + 4];
820         if (unlikely(current_queue->len > current_queue->limit))
821                 return NETDEV_TX_BUSY;
822         current_queue->len++;
823         current_queue->count++;
824         if (current_queue->len == current_queue->limit)
825                 ieee80211_stop_queue(dev, skb_get_queue_mapping(skb));
826
827         padding = (unsigned long)(skb->data - (sizeof(*hdr) + sizeof(*txhdr))) & 3;
828         len = skb->len;
829
830         txhdr = (struct p54_tx_control_allocdata *)
831                         skb_push(skb, sizeof(*txhdr) + padding);
832         hdr = (struct p54_control_hdr *) skb_push(skb, sizeof(*hdr));
833
834         if (padding)
835                 hdr->magic1 = cpu_to_le16(0x4010);
836         else
837                 hdr->magic1 = cpu_to_le16(0x0010);
838         hdr->len = cpu_to_le16(len);
839         hdr->type = (info->flags & IEEE80211_TX_CTL_NO_ACK) ? 0 : cpu_to_le16(1);
840         hdr->retry1 = hdr->retry2 = info->control.retry_limit;
841
842         /* TODO: add support for alternate retry TX rates */
843         rate = ieee80211_get_tx_rate(dev, info)->hw_value;
844         if (info->flags & IEEE80211_TX_CTL_SHORT_PREAMBLE) {
845                 rate |= 0x10;
846                 cts_rate |= 0x10;
847         }
848         if (info->flags & IEEE80211_TX_CTL_USE_RTS_CTS) {
849                 rate |= 0x40;
850                 cts_rate |= ieee80211_get_rts_cts_rate(dev, info)->hw_value;
851         } else if (info->flags & IEEE80211_TX_CTL_USE_CTS_PROTECT) {
852                 rate |= 0x20;
853                 cts_rate |= ieee80211_get_rts_cts_rate(dev, info)->hw_value;
854         }
855         memset(txhdr->rateset, rate, 8);
856         txhdr->key_type = 0;
857         txhdr->key_len = 0;
858         txhdr->hw_queue = skb_get_queue_mapping(skb) + 4;
859         txhdr->tx_antenna = (info->antenna_sel_tx == 0) ?
860                 2 : info->antenna_sel_tx - 1;
861         txhdr->output_power = priv->output_power;
862         txhdr->cts_rate = (info->flags & IEEE80211_TX_CTL_NO_ACK) ?
863                           0 : cts_rate;
864         if (padding)
865                 txhdr->align[0] = padding;
866
867         /* FIXME: The sequence that follows is needed for this driver to
868          * work with mac80211 since "mac80211: fix TX sequence numbers".
869          * As with the temporary code in rt2x00, changes will be needed
870          * to get proper sequence numbers on beacons. In addition, this
871          * patch places the sequence number in the hardware state, which
872          * limits us to a single virtual state.
873          */
874         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
875                 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
876                         priv->seqno += 0x10;
877                 ieee80211hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
878                 ieee80211hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
879         }
880         /* modifies skb->cb and with it info, so must be last! */
881         p54_assign_address(dev, skb, hdr, skb->len);
882
883         priv->tx(dev, hdr, skb->len, 0);
884         return 0;
885 }
886
887 static int p54_set_filter(struct ieee80211_hw *dev, u16 filter_type,
888                           const u8 *bssid)
889 {
890         struct p54_common *priv = dev->priv;
891         struct p54_control_hdr *hdr;
892         struct p54_tx_control_filter *filter;
893         size_t data_len;
894
895         hdr = kzalloc(sizeof(*hdr) + sizeof(*filter) +
896                       priv->tx_hdr_len, GFP_ATOMIC);
897         if (!hdr)
898                 return -ENOMEM;
899
900         hdr = (void *)hdr + priv->tx_hdr_len;
901
902         filter = (struct p54_tx_control_filter *) hdr->data;
903         hdr->magic1 = cpu_to_le16(0x8001);
904         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_FILTER_SET);
905
906         priv->filter_type = filter->filter_type = cpu_to_le16(filter_type);
907         memcpy(filter->mac_addr, priv->mac_addr, ETH_ALEN);
908         if (!bssid)
909                 memset(filter->bssid, ~0, ETH_ALEN);
910         else
911                 memcpy(filter->bssid, bssid, ETH_ALEN);
912
913         filter->rx_antenna = priv->rx_antenna;
914
915         if (priv->fw_var < 0x500) {
916                 data_len = P54_TX_CONTROL_FILTER_V1_LEN;
917                 filter->v1.basic_rate_mask = cpu_to_le32(0x15F);
918                 filter->v1.rx_addr = cpu_to_le32(priv->rx_end);
919                 filter->v1.max_rx = cpu_to_le16(priv->rx_mtu);
920                 filter->v1.rxhw = cpu_to_le16(priv->rxhw);
921                 filter->v1.wakeup_timer = cpu_to_le16(500);
922         } else {
923                 data_len = P54_TX_CONTROL_FILTER_V2_LEN;
924                 filter->v2.rx_addr = cpu_to_le32(priv->rx_end);
925                 filter->v2.max_rx = cpu_to_le16(priv->rx_mtu);
926                 filter->v2.rxhw = cpu_to_le16(priv->rxhw);
927                 filter->v2.timer = cpu_to_le16(1000);
928         }
929
930         hdr->len = cpu_to_le16(data_len);
931         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + data_len);
932         priv->tx(dev, hdr, sizeof(*hdr) + data_len, 1);
933         return 0;
934 }
935
936 static int p54_set_freq(struct ieee80211_hw *dev, __le16 freq)
937 {
938         struct p54_common *priv = dev->priv;
939         struct p54_control_hdr *hdr;
940         struct p54_tx_control_channel *chan;
941         unsigned int i;
942         size_t data_len;
943         void *entry;
944
945         hdr = kzalloc(sizeof(*hdr) + sizeof(*chan) +
946                       priv->tx_hdr_len, GFP_KERNEL);
947         if (!hdr)
948                 return -ENOMEM;
949
950         hdr = (void *)hdr + priv->tx_hdr_len;
951
952         chan = (struct p54_tx_control_channel *) hdr->data;
953
954         hdr->magic1 = cpu_to_le16(0x8001);
955
956         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_CHANNEL_CHANGE);
957
958         chan->flags = cpu_to_le16(0x1);
959         chan->dwell = cpu_to_le16(0x0);
960
961         for (i = 0; i < priv->iq_autocal_len; i++) {
962                 if (priv->iq_autocal[i].freq != freq)
963                         continue;
964
965                 memcpy(&chan->iq_autocal, &priv->iq_autocal[i],
966                        sizeof(*priv->iq_autocal));
967                 break;
968         }
969         if (i == priv->iq_autocal_len)
970                 goto err;
971
972         for (i = 0; i < priv->output_limit_len; i++) {
973                 if (priv->output_limit[i].freq != freq)
974                         continue;
975
976                 chan->val_barker = 0x38;
977                 chan->val_bpsk = chan->dup_bpsk =
978                         priv->output_limit[i].val_bpsk;
979                 chan->val_qpsk = chan->dup_qpsk =
980                         priv->output_limit[i].val_qpsk;
981                 chan->val_16qam = chan->dup_16qam =
982                         priv->output_limit[i].val_16qam;
983                 chan->val_64qam = chan->dup_64qam =
984                         priv->output_limit[i].val_64qam;
985                 break;
986         }
987         if (i == priv->output_limit_len)
988                 goto err;
989
990         entry = priv->curve_data->data;
991         for (i = 0; i < priv->curve_data->channels; i++) {
992                 if (*((__le16 *)entry) != freq) {
993                         entry += sizeof(__le16);
994                         entry += sizeof(struct p54_pa_curve_data_sample) *
995                                  priv->curve_data->points_per_channel;
996                         continue;
997                 }
998
999                 entry += sizeof(__le16);
1000                 chan->pa_points_per_curve =
1001                         min(priv->curve_data->points_per_channel, (u8) 8);
1002
1003                 memcpy(chan->curve_data, entry, sizeof(*chan->curve_data) *
1004                        chan->pa_points_per_curve);
1005                 break;
1006         }
1007
1008         if (priv->fw_var < 0x500) {
1009                 data_len = P54_TX_CONTROL_CHANNEL_V1_LEN;
1010                 chan->v1.rssical_mul = cpu_to_le16(130);
1011                 chan->v1.rssical_add = cpu_to_le16(0xfe70);
1012         } else {
1013                 data_len = P54_TX_CONTROL_CHANNEL_V2_LEN;
1014                 chan->v2.rssical_mul = cpu_to_le16(130);
1015                 chan->v2.rssical_add = cpu_to_le16(0xfe70);
1016                 chan->v2.basic_rate_mask = cpu_to_le32(0x15f);
1017         }
1018
1019         hdr->len = cpu_to_le16(data_len);
1020         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + data_len);
1021         priv->tx(dev, hdr, sizeof(*hdr) + data_len, 1);
1022         return 0;
1023
1024  err:
1025         printk(KERN_ERR "%s: frequency change failed\n", wiphy_name(dev->wiphy));
1026         kfree(hdr);
1027         return -EINVAL;
1028 }
1029
1030 static int p54_set_leds(struct ieee80211_hw *dev, int mode, int link, int act)
1031 {
1032         struct p54_common *priv = dev->priv;
1033         struct p54_control_hdr *hdr;
1034         struct p54_tx_control_led *led;
1035
1036         hdr = kzalloc(sizeof(*hdr) + sizeof(*led) +
1037                       priv->tx_hdr_len, GFP_KERNEL);
1038         if (!hdr)
1039                 return -ENOMEM;
1040
1041         hdr = (void *)hdr + priv->tx_hdr_len;
1042         hdr->magic1 = cpu_to_le16(0x8001);
1043         hdr->len = cpu_to_le16(sizeof(*led));
1044         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_LED);
1045         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*led));
1046
1047         led = (struct p54_tx_control_led *) hdr->data;
1048         led->mode = cpu_to_le16(mode);
1049         led->led_permanent = cpu_to_le16(link);
1050         led->led_temporary = cpu_to_le16(act);
1051         led->duration = cpu_to_le16(1000);
1052
1053         priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*led), 1);
1054
1055         return 0;
1056 }
1057
1058 #define P54_SET_QUEUE(queue, ai_fs, cw_min, cw_max, _txop)      \
1059 do {                                                            \
1060         queue.aifs = cpu_to_le16(ai_fs);                        \
1061         queue.cwmin = cpu_to_le16(cw_min);                      \
1062         queue.cwmax = cpu_to_le16(cw_max);                      \
1063         queue.txop = cpu_to_le16(_txop);                        \
1064 } while(0)
1065
1066 static void p54_init_vdcf(struct ieee80211_hw *dev)
1067 {
1068         struct p54_common *priv = dev->priv;
1069         struct p54_control_hdr *hdr;
1070         struct p54_tx_control_vdcf *vdcf;
1071
1072         /* all USB V1 adapters need a extra headroom */
1073         hdr = (void *)priv->cached_vdcf + priv->tx_hdr_len;
1074         hdr->magic1 = cpu_to_le16(0x8001);
1075         hdr->len = cpu_to_le16(sizeof(*vdcf));
1076         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_DCFINIT);
1077         hdr->req_id = cpu_to_le32(priv->rx_start);
1078
1079         vdcf = (struct p54_tx_control_vdcf *) hdr->data;
1080
1081         P54_SET_QUEUE(vdcf->queue[0], 0x0002, 0x0003, 0x0007, 47);
1082         P54_SET_QUEUE(vdcf->queue[1], 0x0002, 0x0007, 0x000f, 94);
1083         P54_SET_QUEUE(vdcf->queue[2], 0x0003, 0x000f, 0x03ff, 0);
1084         P54_SET_QUEUE(vdcf->queue[3], 0x0007, 0x000f, 0x03ff, 0);
1085 }
1086
1087 static void p54_set_vdcf(struct ieee80211_hw *dev)
1088 {
1089         struct p54_common *priv = dev->priv;
1090         struct p54_control_hdr *hdr;
1091         struct p54_tx_control_vdcf *vdcf;
1092
1093         hdr = (void *)priv->cached_vdcf + priv->tx_hdr_len;
1094
1095         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*vdcf));
1096
1097         vdcf = (struct p54_tx_control_vdcf *) hdr->data;
1098
1099         if (dev->conf.flags & IEEE80211_CONF_SHORT_SLOT_TIME) {
1100                 vdcf->slottime = 9;
1101                 vdcf->magic1 = 0x10;
1102                 vdcf->magic2 = 0x00;
1103         } else {
1104                 vdcf->slottime = 20;
1105                 vdcf->magic1 = 0x0a;
1106                 vdcf->magic2 = 0x06;
1107         }
1108
1109         /* (see prism54/isl_oid.h for further details) */
1110         vdcf->frameburst = cpu_to_le16(0);
1111
1112         priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*vdcf), 0);
1113 }
1114
1115 static int p54_start(struct ieee80211_hw *dev)
1116 {
1117         struct p54_common *priv = dev->priv;
1118         int err;
1119
1120         if (!priv->cached_vdcf) {
1121                 priv->cached_vdcf = kzalloc(sizeof(struct p54_tx_control_vdcf)+
1122                         priv->tx_hdr_len + sizeof(struct p54_control_hdr),
1123                         GFP_KERNEL);
1124
1125                 if (!priv->cached_vdcf)
1126                         return -ENOMEM;
1127         }
1128
1129         if (!priv->cached_stats) {
1130                 priv->cached_stats = kzalloc(sizeof(struct p54_statistics) +
1131                         priv->tx_hdr_len + sizeof(struct p54_control_hdr),
1132                         GFP_KERNEL);
1133
1134                 if (!priv->cached_stats) {
1135                         kfree(priv->cached_vdcf);
1136                         priv->cached_vdcf = NULL;
1137                         return -ENOMEM;
1138                 }
1139         }
1140
1141         err = priv->open(dev);
1142         if (!err)
1143                 priv->mode = NL80211_IFTYPE_MONITOR;
1144
1145         p54_init_vdcf(dev);
1146
1147         mod_timer(&priv->stats_timer, jiffies + HZ);
1148         return err;
1149 }
1150
1151 static void p54_stop(struct ieee80211_hw *dev)
1152 {
1153         struct p54_common *priv = dev->priv;
1154         struct sk_buff *skb;
1155
1156         del_timer(&priv->stats_timer);
1157         while ((skb = skb_dequeue(&priv->tx_queue)))
1158                 kfree_skb(skb);
1159         priv->stop(dev);
1160         priv->tsf_high32 = priv->tsf_low32 = 0;
1161         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1162 }
1163
1164 static int p54_add_interface(struct ieee80211_hw *dev,
1165                              struct ieee80211_if_init_conf *conf)
1166 {
1167         struct p54_common *priv = dev->priv;
1168
1169         if (priv->mode != NL80211_IFTYPE_MONITOR)
1170                 return -EOPNOTSUPP;
1171
1172         switch (conf->type) {
1173         case NL80211_IFTYPE_STATION:
1174                 priv->mode = conf->type;
1175                 break;
1176         default:
1177                 return -EOPNOTSUPP;
1178         }
1179
1180         memcpy(priv->mac_addr, conf->mac_addr, ETH_ALEN);
1181
1182         p54_set_filter(dev, 0, NULL);
1183
1184         switch (conf->type) {
1185         case NL80211_IFTYPE_STATION:
1186                 p54_set_filter(dev, 1, NULL);
1187                 break;
1188         default:
1189                 BUG();  /* impossible */
1190                 break;
1191         }
1192
1193         p54_set_leds(dev, 1, 0, 0);
1194
1195         return 0;
1196 }
1197
1198 static void p54_remove_interface(struct ieee80211_hw *dev,
1199                                  struct ieee80211_if_init_conf *conf)
1200 {
1201         struct p54_common *priv = dev->priv;
1202         priv->mode = NL80211_IFTYPE_MONITOR;
1203         memset(priv->mac_addr, 0, ETH_ALEN);
1204         p54_set_filter(dev, 0, NULL);
1205 }
1206
1207 static int p54_config(struct ieee80211_hw *dev, struct ieee80211_conf *conf)
1208 {
1209         int ret;
1210         struct p54_common *priv = dev->priv;
1211
1212         mutex_lock(&priv->conf_mutex);
1213         priv->rx_antenna = (conf->antenna_sel_rx == 0) ?
1214                 2 : conf->antenna_sel_tx - 1;
1215         priv->output_power = conf->power_level << 2;
1216         ret = p54_set_freq(dev, cpu_to_le16(conf->channel->center_freq));
1217         p54_set_vdcf(dev);
1218         mutex_unlock(&priv->conf_mutex);
1219         return ret;
1220 }
1221
1222 static int p54_config_interface(struct ieee80211_hw *dev,
1223                                 struct ieee80211_vif *vif,
1224                                 struct ieee80211_if_conf *conf)
1225 {
1226         struct p54_common *priv = dev->priv;
1227
1228         mutex_lock(&priv->conf_mutex);
1229         p54_set_filter(dev, 0, conf->bssid);
1230         p54_set_leds(dev, 1, !is_multicast_ether_addr(conf->bssid), 0);
1231         memcpy(priv->bssid, conf->bssid, ETH_ALEN);
1232         mutex_unlock(&priv->conf_mutex);
1233         return 0;
1234 }
1235
1236 static void p54_configure_filter(struct ieee80211_hw *dev,
1237                                  unsigned int changed_flags,
1238                                  unsigned int *total_flags,
1239                                  int mc_count, struct dev_mc_list *mclist)
1240 {
1241         struct p54_common *priv = dev->priv;
1242
1243         *total_flags &= FIF_BCN_PRBRESP_PROMISC |
1244                         FIF_PROMISC_IN_BSS |
1245                         FIF_FCSFAIL;
1246
1247         priv->filter_flags = *total_flags;
1248
1249         if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
1250                 if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
1251                         p54_set_filter(dev, le16_to_cpu(priv->filter_type),
1252                                  NULL);
1253                 else
1254                         p54_set_filter(dev, le16_to_cpu(priv->filter_type),
1255                                  priv->bssid);
1256         }
1257
1258         if (changed_flags & FIF_PROMISC_IN_BSS) {
1259                 if (*total_flags & FIF_PROMISC_IN_BSS)
1260                         p54_set_filter(dev, le16_to_cpu(priv->filter_type) |
1261                                 0x8, NULL);
1262                 else
1263                         p54_set_filter(dev, le16_to_cpu(priv->filter_type) &
1264                                 ~0x8, priv->bssid);
1265         }
1266 }
1267
1268 static int p54_conf_tx(struct ieee80211_hw *dev, u16 queue,
1269                        const struct ieee80211_tx_queue_params *params)
1270 {
1271         struct p54_common *priv = dev->priv;
1272         struct p54_tx_control_vdcf *vdcf;
1273
1274         vdcf = (struct p54_tx_control_vdcf *)(((struct p54_control_hdr *)
1275                 ((void *)priv->cached_vdcf + priv->tx_hdr_len))->data);
1276
1277         if ((params) && !(queue > 4)) {
1278                 P54_SET_QUEUE(vdcf->queue[queue], params->aifs,
1279                         params->cw_min, params->cw_max, params->txop);
1280         } else
1281                 return -EINVAL;
1282
1283         p54_set_vdcf(dev);
1284
1285         return 0;
1286 }
1287
1288 static int p54_init_xbow_synth(struct ieee80211_hw *dev)
1289 {
1290         struct p54_common *priv = dev->priv;
1291         struct p54_control_hdr *hdr;
1292         struct p54_tx_control_xbow_synth *xbow;
1293
1294         hdr = kzalloc(sizeof(*hdr) + sizeof(*xbow) +
1295                       priv->tx_hdr_len, GFP_KERNEL);
1296         if (!hdr)
1297                 return -ENOMEM;
1298
1299         hdr = (void *)hdr + priv->tx_hdr_len;
1300         hdr->magic1 = cpu_to_le16(0x8001);
1301         hdr->len = cpu_to_le16(sizeof(*xbow));
1302         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_XBOW_SYNTH_CFG);
1303         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*xbow));
1304
1305         xbow = (struct p54_tx_control_xbow_synth *) hdr->data;
1306         xbow->magic1 = cpu_to_le16(0x1);
1307         xbow->magic2 = cpu_to_le16(0x2);
1308         xbow->freq = cpu_to_le16(5390);
1309
1310         priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*xbow), 1);
1311
1312         return 0;
1313 }
1314
1315 static void p54_statistics_timer(unsigned long data)
1316 {
1317         struct ieee80211_hw *dev = (struct ieee80211_hw *) data;
1318         struct p54_common *priv = dev->priv;
1319         struct p54_control_hdr *hdr;
1320         struct p54_statistics *stats;
1321
1322         BUG_ON(!priv->cached_stats);
1323
1324         hdr = (void *)priv->cached_stats + priv->tx_hdr_len;
1325         hdr->magic1 = cpu_to_le16(0x8000);
1326         hdr->len = cpu_to_le16(sizeof(*stats));
1327         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_STAT_READBACK);
1328         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*stats));
1329
1330         priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*stats), 0);
1331 }
1332
1333 static int p54_get_stats(struct ieee80211_hw *dev,
1334                          struct ieee80211_low_level_stats *stats)
1335 {
1336         struct p54_common *priv = dev->priv;
1337
1338         del_timer(&priv->stats_timer);
1339         p54_statistics_timer((unsigned long)dev);
1340
1341         if (!wait_for_completion_interruptible_timeout(&priv->stats_comp, HZ)) {
1342                 printk(KERN_ERR "%s: device does not respond!\n",
1343                         wiphy_name(dev->wiphy));
1344                 return -EBUSY;
1345         }
1346
1347         memcpy(stats, &priv->stats, sizeof(*stats));
1348
1349         return 0;
1350 }
1351
1352 static int p54_get_tx_stats(struct ieee80211_hw *dev,
1353                             struct ieee80211_tx_queue_stats *stats)
1354 {
1355         struct p54_common *priv = dev->priv;
1356
1357         memcpy(stats, &priv->tx_stats[4], sizeof(stats[0]) * dev->queues);
1358
1359         return 0;
1360 }
1361
1362 static const struct ieee80211_ops p54_ops = {
1363         .tx                     = p54_tx,
1364         .start                  = p54_start,
1365         .stop                   = p54_stop,
1366         .add_interface          = p54_add_interface,
1367         .remove_interface       = p54_remove_interface,
1368         .config                 = p54_config,
1369         .config_interface       = p54_config_interface,
1370         .configure_filter       = p54_configure_filter,
1371         .conf_tx                = p54_conf_tx,
1372         .get_stats              = p54_get_stats,
1373         .get_tx_stats           = p54_get_tx_stats
1374 };
1375
1376 struct ieee80211_hw *p54_init_common(size_t priv_data_len)
1377 {
1378         struct ieee80211_hw *dev;
1379         struct p54_common *priv;
1380
1381         dev = ieee80211_alloc_hw(priv_data_len, &p54_ops);
1382         if (!dev)
1383                 return NULL;
1384
1385         priv = dev->priv;
1386         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1387         skb_queue_head_init(&priv->tx_queue);
1388         dev->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | /* not sure */
1389                      IEEE80211_HW_RX_INCLUDES_FCS |
1390                      IEEE80211_HW_SIGNAL_DBM |
1391                      IEEE80211_HW_NOISE_DBM;
1392
1393         dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1394
1395         dev->channel_change_time = 1000;        /* TODO: find actual value */
1396
1397         priv->tx_stats[0].limit = 1;
1398         priv->tx_stats[1].limit = 1;
1399         priv->tx_stats[2].limit = 1;
1400         priv->tx_stats[3].limit = 1;
1401         priv->tx_stats[4].limit = 5;
1402         dev->queues = 1;
1403         priv->noise = -94;
1404         dev->extra_tx_headroom = sizeof(struct p54_control_hdr) + 4 +
1405                                  sizeof(struct p54_tx_control_allocdata);
1406
1407         mutex_init(&priv->conf_mutex);
1408         init_completion(&priv->eeprom_comp);
1409         init_completion(&priv->stats_comp);
1410         setup_timer(&priv->stats_timer, p54_statistics_timer,
1411                 (unsigned long)dev);
1412
1413         return dev;
1414 }
1415 EXPORT_SYMBOL_GPL(p54_init_common);
1416
1417 void p54_free_common(struct ieee80211_hw *dev)
1418 {
1419         struct p54_common *priv = dev->priv;
1420         kfree(priv->cached_stats);
1421         kfree(priv->iq_autocal);
1422         kfree(priv->output_limit);
1423         kfree(priv->curve_data);
1424         kfree(priv->cached_vdcf);
1425 }
1426 EXPORT_SYMBOL_GPL(p54_free_common);
1427
1428 static int __init p54_init(void)
1429 {
1430         return 0;
1431 }
1432
1433 static void __exit p54_exit(void)
1434 {
1435 }
1436
1437 module_init(p54_init);
1438 module_exit(p54_exit);