2 * linux/arch/ia64/kernel/time.c
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * Stephane Eranian <eranian@hpl.hp.com>
6 * David Mosberger <davidm@hpl.hp.com>
7 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8 * Copyright (C) 1999-2000 VA Linux Systems
9 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/timex.h>
22 #include <linux/clocksource.h>
24 #include <asm/machvec.h>
25 #include <asm/delay.h>
26 #include <asm/hw_irq.h>
27 #include <asm/ptrace.h>
29 #include <asm/sections.h>
30 #include <asm/system.h>
32 #include "fsyscall_gtod_data.h"
34 static cycle_t itc_get_cycles(void);
36 struct fsyscall_gtod_data_t fsyscall_gtod_data = {
37 .lock = SEQLOCK_UNLOCKED,
40 struct itc_jitter_data_t itc_jitter_data;
42 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
44 #ifdef CONFIG_IA64_DEBUG_IRQ
46 unsigned long last_cli_ip;
47 EXPORT_SYMBOL(last_cli_ip);
51 static struct clocksource clocksource_itc = {
54 .read = itc_get_cycles,
55 .mask = CLOCKSOURCE_MASK(64),
56 .mult = 0, /*to be calculated*/
58 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
60 static struct clocksource *itc_clocksource;
62 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
64 #include <linux/kernel_stat.h>
66 extern cputime_t cycle_to_cputime(u64 cyc);
69 * Called from the context switch with interrupts disabled, to charge all
70 * accumulated times to the current process, and to prepare accounting on
73 void ia64_account_on_switch(struct task_struct *prev, struct task_struct *next)
75 struct thread_info *pi = task_thread_info(prev);
76 struct thread_info *ni = task_thread_info(next);
77 cputime_t delta_stime, delta_utime;
82 delta_stime = cycle_to_cputime(pi->ac_stime + (now - pi->ac_stamp));
83 account_system_time(prev, 0, delta_stime);
84 account_system_time_scaled(prev, delta_stime);
87 delta_utime = cycle_to_cputime(pi->ac_utime);
88 account_user_time(prev, delta_utime);
89 account_user_time_scaled(prev, delta_utime);
92 pi->ac_stamp = ni->ac_stamp = now;
93 ni->ac_stime = ni->ac_utime = 0;
97 * Account time for a transition between system, hard irq or soft irq state.
98 * Note that this function is called with interrupts enabled.
100 void account_system_vtime(struct task_struct *tsk)
102 struct thread_info *ti = task_thread_info(tsk);
104 cputime_t delta_stime;
107 local_irq_save(flags);
109 now = ia64_get_itc();
111 delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
112 account_system_time(tsk, 0, delta_stime);
113 account_system_time_scaled(tsk, delta_stime);
118 local_irq_restore(flags);
120 EXPORT_SYMBOL_GPL(account_system_vtime);
123 * Called from the timer interrupt handler to charge accumulated user time
124 * to the current process. Must be called with interrupts disabled.
126 void account_process_tick(struct task_struct *p, int user_tick)
128 struct thread_info *ti = task_thread_info(p);
129 cputime_t delta_utime;
132 delta_utime = cycle_to_cputime(ti->ac_utime);
133 account_user_time(p, delta_utime);
134 account_user_time_scaled(p, delta_utime);
139 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
142 timer_interrupt (int irq, void *dev_id)
144 unsigned long new_itm;
146 if (unlikely(cpu_is_offline(smp_processor_id()))) {
150 platform_timer_interrupt(irq, dev_id);
152 new_itm = local_cpu_data->itm_next;
154 if (!time_after(ia64_get_itc(), new_itm))
155 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
156 ia64_get_itc(), new_itm);
158 profile_tick(CPU_PROFILING);
161 update_process_times(user_mode(get_irq_regs()));
163 new_itm += local_cpu_data->itm_delta;
165 if (smp_processor_id() == time_keeper_id) {
167 * Here we are in the timer irq handler. We have irqs locally
168 * disabled, but we don't know if the timer_bh is running on
169 * another CPU. We need to avoid to SMP race by acquiring the
172 write_seqlock(&xtime_lock);
174 local_cpu_data->itm_next = new_itm;
175 write_sequnlock(&xtime_lock);
177 local_cpu_data->itm_next = new_itm;
179 if (time_after(new_itm, ia64_get_itc()))
183 * Allow IPIs to interrupt the timer loop.
191 * If we're too close to the next clock tick for
192 * comfort, we increase the safety margin by
193 * intentionally dropping the next tick(s). We do NOT
194 * update itm.next because that would force us to call
195 * do_timer() which in turn would let our clock run
196 * too fast (with the potentially devastating effect
197 * of losing monotony of time).
199 while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
200 new_itm += local_cpu_data->itm_delta;
201 ia64_set_itm(new_itm);
202 /* double check, in case we got hit by a (slow) PMI: */
203 } while (time_after_eq(ia64_get_itc(), new_itm));
208 * Encapsulate access to the itm structure for SMP.
211 ia64_cpu_local_tick (void)
213 int cpu = smp_processor_id();
214 unsigned long shift = 0, delta;
216 /* arrange for the cycle counter to generate a timer interrupt: */
217 ia64_set_itv(IA64_TIMER_VECTOR);
219 delta = local_cpu_data->itm_delta;
221 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
225 unsigned long hi = 1UL << ia64_fls(cpu);
226 shift = (2*(cpu - hi) + 1) * delta/hi/2;
228 local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
229 ia64_set_itm(local_cpu_data->itm_next);
234 static int __init nojitter_setup(char *str)
237 printk("Jitter checking for ITC timers disabled\n");
241 __setup("nojitter", nojitter_setup);
247 unsigned long platform_base_freq, itc_freq;
248 struct pal_freq_ratio itc_ratio, proc_ratio;
249 long status, platform_base_drift, itc_drift;
252 * According to SAL v2.6, we need to use a SAL call to determine the platform base
253 * frequency and then a PAL call to determine the frequency ratio between the ITC
254 * and the base frequency.
256 status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
257 &platform_base_freq, &platform_base_drift);
259 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
261 status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
263 printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
266 /* invent "random" values */
268 "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
269 platform_base_freq = 100000000;
270 platform_base_drift = -1; /* no drift info */
274 if (platform_base_freq < 40000000) {
275 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
277 platform_base_freq = 75000000;
278 platform_base_drift = -1;
281 proc_ratio.den = 1; /* avoid division by zero */
283 itc_ratio.den = 1; /* avoid division by zero */
285 itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
287 local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
288 printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
289 "ITC freq=%lu.%03luMHz", smp_processor_id(),
290 platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
291 itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
293 if (platform_base_drift != -1) {
294 itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
295 printk("+/-%ldppm\n", itc_drift);
301 local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
302 local_cpu_data->itc_freq = itc_freq;
303 local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
304 local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
305 + itc_freq/2)/itc_freq;
307 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
309 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
310 * Jitter compensation requires a cmpxchg which may limit
311 * the scalability of the syscalls for retrieving time.
312 * The ITC synchronization is usually successful to within a few
313 * ITC ticks but this is not a sure thing. If you need to improve
314 * timer performance in SMP situations then boot the kernel with the
315 * "nojitter" option. However, doing so may result in time fluctuating (maybe
316 * even going backward) if the ITC offsets between the individual CPUs
320 itc_jitter_data.itc_jitter = 1;
324 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
325 * ITC values may fluctuate significantly between processors.
326 * Clock should not be used for hrtimers. Mark itc as only
327 * useful for boot and testing.
329 * Note that jitter compensation is off! There is no point of
330 * synchronizing ITCs since they may be large differentials
331 * that change over time.
333 * The only way to fix this would be to repeatedly sync the
334 * ITCs. Until that time we have to avoid ITC.
336 clocksource_itc.rating = 50;
338 /* Setup the CPU local timer tick */
339 ia64_cpu_local_tick();
341 if (!itc_clocksource) {
342 /* Sort out mult/shift values: */
343 clocksource_itc.mult =
344 clocksource_hz2mult(local_cpu_data->itc_freq,
345 clocksource_itc.shift);
346 clocksource_register(&clocksource_itc);
347 itc_clocksource = &clocksource_itc;
351 static cycle_t itc_get_cycles(void)
353 u64 lcycle, now, ret;
355 if (!itc_jitter_data.itc_jitter)
358 lcycle = itc_jitter_data.itc_lastcycle;
360 if (lcycle && time_after(lcycle, now))
364 * Keep track of the last timer value returned.
365 * In an SMP environment, you could lose out in contention of
366 * cmpxchg. If so, your cmpxchg returns new value which the
367 * winner of contention updated to. Use the new value instead.
369 ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
370 if (unlikely(ret != lcycle))
377 static struct irqaction timer_irqaction = {
378 .handler = timer_interrupt,
379 .flags = IRQF_DISABLED | IRQF_IRQPOLL,
386 register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
387 efi_gettimeofday(&xtime);
391 * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
392 * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
394 set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
398 * Generic udelay assumes that if preemption is allowed and the thread
399 * migrates to another CPU, that the ITC values are synchronized across
403 ia64_itc_udelay (unsigned long usecs)
405 unsigned long start = ia64_get_itc();
406 unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
408 while (time_before(ia64_get_itc(), end))
412 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
415 udelay (unsigned long usecs)
417 (*ia64_udelay)(usecs);
419 EXPORT_SYMBOL(udelay);
421 /* IA64 doesn't cache the timezone */
422 void update_vsyscall_tz(void)
426 void update_vsyscall(struct timespec *wall, struct clocksource *c)
430 write_seqlock_irqsave(&fsyscall_gtod_data.lock, flags);
432 /* copy fsyscall clock data */
433 fsyscall_gtod_data.clk_mask = c->mask;
434 fsyscall_gtod_data.clk_mult = c->mult;
435 fsyscall_gtod_data.clk_shift = c->shift;
436 fsyscall_gtod_data.clk_fsys_mmio = c->fsys_mmio;
437 fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
439 /* copy kernel time structures */
440 fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
441 fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
442 fsyscall_gtod_data.monotonic_time.tv_sec = wall_to_monotonic.tv_sec
444 fsyscall_gtod_data.monotonic_time.tv_nsec = wall_to_monotonic.tv_nsec
448 while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
449 fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
450 fsyscall_gtod_data.monotonic_time.tv_sec++;
453 write_sequnlock_irqrestore(&fsyscall_gtod_data.lock, flags);