2 * Support for IDE interfaces on PowerMacs.
4 * These IDE interfaces are memory-mapped and have a DBDMA channel
7 * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
8 * Copyright (C) 2007 Bartlomiej Zolnierkiewicz
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * Some code taken from drivers/ide/ide-dma.c:
17 * Copyright (c) 1995-1998 Mark Lord
19 * TODO: - Use pre-calculated (kauai) timing tables all the time and
20 * get rid of the "rounded" tables used previously, so we have the
21 * same table format for all controllers and can then just have one
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/ide.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/pci.h>
33 #include <linux/adb.h>
34 #include <linux/pmu.h>
35 #include <linux/scatterlist.h>
39 #include <asm/dbdma.h>
41 #include <asm/pci-bridge.h>
42 #include <asm/machdep.h>
43 #include <asm/pmac_feature.h>
44 #include <asm/sections.h>
48 #include <asm/mediabay.h>
51 #include "../ide-timing.h"
55 #define DMA_WAIT_TIMEOUT 50
57 typedef struct pmac_ide_hwif {
58 unsigned long regbase;
62 unsigned mediabay : 1;
63 unsigned broken_dma : 1;
64 unsigned broken_dma_warn : 1;
65 struct device_node* node;
66 struct macio_dev *mdev;
68 volatile u32 __iomem * *kauai_fcr;
69 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
70 /* Those fields are duplicating what is in hwif. We currently
71 * can't use the hwif ones because of some assumptions that are
72 * beeing done by the generic code about the kind of dma controller
73 * and format of the dma table. This will have to be fixed though.
75 volatile struct dbdma_regs __iomem * dma_regs;
76 struct dbdma_cmd* dma_table_cpu;
82 controller_ohare, /* OHare based */
83 controller_heathrow, /* Heathrow/Paddington */
84 controller_kl_ata3, /* KeyLargo ATA-3 */
85 controller_kl_ata4, /* KeyLargo ATA-4 */
86 controller_un_ata6, /* UniNorth2 ATA-6 */
87 controller_k2_ata6, /* K2 ATA-6 */
88 controller_sh_ata6, /* Shasta ATA-6 */
91 static const char* model_name[] = {
92 "OHare ATA", /* OHare based */
93 "Heathrow ATA", /* Heathrow/Paddington */
94 "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
95 "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
96 "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
97 "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
98 "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
102 * Extra registers, both 32-bit little-endian
104 #define IDE_TIMING_CONFIG 0x200
105 #define IDE_INTERRUPT 0x300
107 /* Kauai (U2) ATA has different register setup */
108 #define IDE_KAUAI_PIO_CONFIG 0x200
109 #define IDE_KAUAI_ULTRA_CONFIG 0x210
110 #define IDE_KAUAI_POLL_CONFIG 0x220
113 * Timing configuration register definitions
116 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
117 #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
118 #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
119 #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
120 #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
122 /* 133Mhz cell, found in shasta.
123 * See comments about 100 Mhz Uninorth 2...
124 * Note that PIO_MASK and MDMA_MASK seem to overlap
126 #define TR_133_PIOREG_PIO_MASK 0xff000fff
127 #define TR_133_PIOREG_MDMA_MASK 0x00fff800
128 #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
129 #define TR_133_UDMAREG_UDMA_EN 0x00000001
131 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
132 * this one yet, it appears as a pci device (106b/0033) on uninorth
133 * internal PCI bus and it's clock is controlled like gem or fw. It
134 * appears to be an evolution of keylargo ATA4 with a timing register
135 * extended to 2 32bits registers and a similar DBDMA channel. Other
136 * registers seem to exist but I can't tell much about them.
138 * So far, I'm using pre-calculated tables for this extracted from
139 * the values used by the MacOS X driver.
141 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
142 * register controls the UDMA timings. At least, it seems bit 0
143 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
144 * cycle time in units of 10ns. Bits 8..15 are used by I don't
145 * know their meaning yet
147 #define TR_100_PIOREG_PIO_MASK 0xff000fff
148 #define TR_100_PIOREG_MDMA_MASK 0x00fff000
149 #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
150 #define TR_100_UDMAREG_UDMA_EN 0x00000001
153 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
154 * 40 connector cable and to 4 on 80 connector one.
155 * Clock unit is 15ns (66Mhz)
157 * 3 Values can be programmed:
158 * - Write data setup, which appears to match the cycle time. They
159 * also call it DIOW setup.
160 * - Ready to pause time (from spec)
161 * - Address setup. That one is weird. I don't see where exactly
162 * it fits in UDMA cycles, I got it's name from an obscure piece
163 * of commented out code in Darwin. They leave it to 0, we do as
164 * well, despite a comment that would lead to think it has a
166 * Apple also add 60ns to the write data setup (or cycle time ?) on
169 #define TR_66_UDMA_MASK 0xfff00000
170 #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
171 #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
172 #define TR_66_UDMA_ADDRSETUP_SHIFT 29
173 #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
174 #define TR_66_UDMA_RDY2PAUS_SHIFT 25
175 #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
176 #define TR_66_UDMA_WRDATASETUP_SHIFT 21
177 #define TR_66_MDMA_MASK 0x000ffc00
178 #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
179 #define TR_66_MDMA_RECOVERY_SHIFT 15
180 #define TR_66_MDMA_ACCESS_MASK 0x00007c00
181 #define TR_66_MDMA_ACCESS_SHIFT 10
182 #define TR_66_PIO_MASK 0x000003ff
183 #define TR_66_PIO_RECOVERY_MASK 0x000003e0
184 #define TR_66_PIO_RECOVERY_SHIFT 5
185 #define TR_66_PIO_ACCESS_MASK 0x0000001f
186 #define TR_66_PIO_ACCESS_SHIFT 0
188 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
189 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
191 * The access time and recovery time can be programmed. Some older
192 * Darwin code base limit OHare to 150ns cycle time. I decided to do
193 * the same here fore safety against broken old hardware ;)
194 * The HalfTick bit, when set, adds half a clock (15ns) to the access
195 * time and removes one from recovery. It's not supported on KeyLargo
196 * implementation afaik. The E bit appears to be set for PIO mode 0 and
197 * is used to reach long timings used in this mode.
199 #define TR_33_MDMA_MASK 0x003ff800
200 #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
201 #define TR_33_MDMA_RECOVERY_SHIFT 16
202 #define TR_33_MDMA_ACCESS_MASK 0x0000f800
203 #define TR_33_MDMA_ACCESS_SHIFT 11
204 #define TR_33_MDMA_HALFTICK 0x00200000
205 #define TR_33_PIO_MASK 0x000007ff
206 #define TR_33_PIO_E 0x00000400
207 #define TR_33_PIO_RECOVERY_MASK 0x000003e0
208 #define TR_33_PIO_RECOVERY_SHIFT 5
209 #define TR_33_PIO_ACCESS_MASK 0x0000001f
210 #define TR_33_PIO_ACCESS_SHIFT 0
213 * Interrupt register definitions
215 #define IDE_INTR_DMA 0x80000000
216 #define IDE_INTR_DEVICE 0x40000000
219 * FCR Register on Kauai. Not sure what bit 0x4 is ...
221 #define KAUAI_FCR_UATA_MAGIC 0x00000004
222 #define KAUAI_FCR_UATA_RESET_N 0x00000002
223 #define KAUAI_FCR_UATA_ENABLE 0x00000001
225 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
227 /* Rounded Multiword DMA timings
229 * I gave up finding a generic formula for all controller
230 * types and instead, built tables based on timing values
231 * used by Apple in Darwin's implementation.
233 struct mdma_timings_t {
239 struct mdma_timings_t mdma_timings_33[] =
252 struct mdma_timings_t mdma_timings_33k[] =
265 struct mdma_timings_t mdma_timings_66[] =
278 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
280 int addrSetup; /* ??? */
283 } kl66_udma_timings[] =
285 { 0, 180, 120 }, /* Mode 0 */
286 { 0, 150, 90 }, /* 1 */
287 { 0, 120, 60 }, /* 2 */
288 { 0, 90, 45 }, /* 3 */
289 { 0, 90, 30 } /* 4 */
292 /* UniNorth 2 ATA/100 timings */
293 struct kauai_timing {
298 static struct kauai_timing kauai_pio_timings[] =
300 { 930 , 0x08000fff },
301 { 600 , 0x08000a92 },
302 { 383 , 0x0800060f },
303 { 360 , 0x08000492 },
304 { 330 , 0x0800048f },
305 { 300 , 0x080003cf },
306 { 270 , 0x080003cc },
307 { 240 , 0x0800038b },
308 { 239 , 0x0800030c },
309 { 180 , 0x05000249 },
310 { 120 , 0x04000148 },
314 static struct kauai_timing kauai_mdma_timings[] =
316 { 1260 , 0x00fff000 },
317 { 480 , 0x00618000 },
318 { 360 , 0x00492000 },
319 { 270 , 0x0038e000 },
320 { 240 , 0x0030c000 },
321 { 210 , 0x002cb000 },
322 { 180 , 0x00249000 },
323 { 150 , 0x00209000 },
324 { 120 , 0x00148000 },
328 static struct kauai_timing kauai_udma_timings[] =
330 { 120 , 0x000070c0 },
339 static struct kauai_timing shasta_pio_timings[] =
341 { 930 , 0x08000fff },
342 { 600 , 0x0A000c97 },
343 { 383 , 0x07000712 },
344 { 360 , 0x040003cd },
345 { 330 , 0x040003cd },
346 { 300 , 0x040003cd },
347 { 270 , 0x040003cd },
348 { 240 , 0x040003cd },
349 { 239 , 0x040003cd },
350 { 180 , 0x0400028b },
351 { 120 , 0x0400010a },
355 static struct kauai_timing shasta_mdma_timings[] =
357 { 1260 , 0x00fff000 },
358 { 480 , 0x00820800 },
359 { 360 , 0x00820800 },
360 { 270 , 0x00820800 },
361 { 240 , 0x00820800 },
362 { 210 , 0x00820800 },
363 { 180 , 0x00820800 },
364 { 150 , 0x0028b000 },
365 { 120 , 0x001ca000 },
369 static struct kauai_timing shasta_udma133_timings[] =
371 { 120 , 0x00035901, },
372 { 90 , 0x000348b1, },
373 { 60 , 0x00033881, },
374 { 45 , 0x00033861, },
375 { 30 , 0x00033841, },
376 { 20 , 0x00033031, },
377 { 15 , 0x00033021, },
383 kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
387 for (i=0; table[i].cycle_time; i++)
388 if (cycle_time > table[i+1].cycle_time)
389 return table[i].timing_reg;
394 /* allow up to 256 DBDMA commands per xfer */
395 #define MAX_DCMDS 256
398 * Wait 1s for disk to answer on IDE bus after a hard reset
399 * of the device (via GPIO/FCR).
401 * Some devices seem to "pollute" the bus even after dropping
402 * the BSY bit (typically some combo drives slave on the UDMA
403 * bus) after a hard reset. Since we hard reset all drives on
404 * KeyLargo ATA66, we have to keep that delay around. I may end
405 * up not hard resetting anymore on these and keep the delay only
406 * for older interfaces instead (we have to reset when coming
407 * from MacOS...) --BenH.
409 #define IDE_WAKEUP_DELAY (1*HZ)
411 static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *);
412 static int pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq);
413 static void pmac_ide_selectproc(ide_drive_t *drive);
414 static void pmac_ide_kauai_selectproc(ide_drive_t *drive);
416 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
418 #define PMAC_IDE_REG(x) \
419 ((void __iomem *)((drive)->hwif->io_ports.data_addr + (x)))
422 * Apply the timings of the proper unit (master/slave) to the shared
423 * timing register when selecting that unit. This version is for
424 * ASICs with a single timing register
427 pmac_ide_selectproc(ide_drive_t *drive)
429 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
434 if (drive->select.b.unit & 0x01)
435 writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
437 writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
438 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
442 * Apply the timings of the proper unit (master/slave) to the shared
443 * timing register when selecting that unit. This version is for
444 * ASICs with a dual timing register (Kauai)
447 pmac_ide_kauai_selectproc(ide_drive_t *drive)
449 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
454 if (drive->select.b.unit & 0x01) {
455 writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
456 writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
458 writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
459 writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
461 (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
465 * Force an update of controller timing values for a given drive
468 pmac_ide_do_update_timings(ide_drive_t *drive)
470 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
475 if (pmif->kind == controller_sh_ata6 ||
476 pmif->kind == controller_un_ata6 ||
477 pmif->kind == controller_k2_ata6)
478 pmac_ide_kauai_selectproc(drive);
480 pmac_ide_selectproc(drive);
484 pmac_outbsync(ide_drive_t *drive, u8 value, unsigned long port)
488 writeb(value, (void __iomem *) port);
489 tmp = readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
493 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
496 pmac_ide_set_pio_mode(ide_drive_t *drive, const u8 pio)
499 unsigned accessTicks, recTicks;
500 unsigned accessTime, recTime;
501 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
502 unsigned int cycle_time;
507 /* which drive is it ? */
508 timings = &pmif->timings[drive->select.b.unit & 0x01];
511 cycle_time = ide_pio_cycle_time(drive, pio);
513 switch (pmif->kind) {
514 case controller_sh_ata6: {
516 u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
517 t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
520 case controller_un_ata6:
521 case controller_k2_ata6: {
523 u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
524 t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
527 case controller_kl_ata4:
529 recTime = cycle_time - ide_pio_timings[pio].active_time
530 - ide_pio_timings[pio].setup_time;
531 recTime = max(recTime, 150U);
532 accessTime = ide_pio_timings[pio].active_time;
533 accessTime = max(accessTime, 150U);
534 accessTicks = SYSCLK_TICKS_66(accessTime);
535 accessTicks = min(accessTicks, 0x1fU);
536 recTicks = SYSCLK_TICKS_66(recTime);
537 recTicks = min(recTicks, 0x1fU);
538 t = (t & ~TR_66_PIO_MASK) |
539 (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
540 (recTicks << TR_66_PIO_RECOVERY_SHIFT);
545 recTime = cycle_time - ide_pio_timings[pio].active_time
546 - ide_pio_timings[pio].setup_time;
547 recTime = max(recTime, 150U);
548 accessTime = ide_pio_timings[pio].active_time;
549 accessTime = max(accessTime, 150U);
550 accessTicks = SYSCLK_TICKS(accessTime);
551 accessTicks = min(accessTicks, 0x1fU);
552 accessTicks = max(accessTicks, 4U);
553 recTicks = SYSCLK_TICKS(recTime);
554 recTicks = min(recTicks, 0x1fU);
555 recTicks = max(recTicks, 5U) - 4;
557 recTicks--; /* guess, but it's only for PIO0, so... */
560 t = (t & ~TR_33_PIO_MASK) |
561 (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
562 (recTicks << TR_33_PIO_RECOVERY_SHIFT);
569 #ifdef IDE_PMAC_DEBUG
570 printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
571 drive->name, pio, *timings);
575 pmac_ide_do_update_timings(drive);
578 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
581 * Calculate KeyLargo ATA/66 UDMA timings
584 set_timings_udma_ata4(u32 *timings, u8 speed)
586 unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
588 if (speed > XFER_UDMA_4)
591 rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
592 wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
593 addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
595 *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
596 (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
597 (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
598 (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
600 #ifdef IDE_PMAC_DEBUG
601 printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
602 speed & 0xf, *timings);
609 * Calculate Kauai ATA/100 UDMA timings
612 set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
614 struct ide_timing *t = ide_timing_find_mode(speed);
617 if (speed > XFER_UDMA_5 || t == NULL)
619 tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
620 *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
621 *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
627 * Calculate Shasta ATA/133 UDMA timings
630 set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
632 struct ide_timing *t = ide_timing_find_mode(speed);
635 if (speed > XFER_UDMA_6 || t == NULL)
637 tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
638 *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
639 *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
645 * Calculate MDMA timings for all cells
648 set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
651 int cycleTime, accessTime = 0, recTime = 0;
652 unsigned accessTicks, recTicks;
653 struct hd_driveid *id = drive->id;
654 struct mdma_timings_t* tm = NULL;
657 /* Get default cycle time for mode */
658 switch(speed & 0xf) {
659 case 0: cycleTime = 480; break;
660 case 1: cycleTime = 150; break;
661 case 2: cycleTime = 120; break;
667 /* Check if drive provides explicit DMA cycle time */
668 if ((id->field_valid & 2) && id->eide_dma_time)
669 cycleTime = max_t(int, id->eide_dma_time, cycleTime);
671 /* OHare limits according to some old Apple sources */
672 if ((intf_type == controller_ohare) && (cycleTime < 150))
674 /* Get the proper timing array for this controller */
676 case controller_sh_ata6:
677 case controller_un_ata6:
678 case controller_k2_ata6:
680 case controller_kl_ata4:
681 tm = mdma_timings_66;
683 case controller_kl_ata3:
684 tm = mdma_timings_33k;
687 tm = mdma_timings_33;
691 /* Lookup matching access & recovery times */
694 if (tm[i+1].cycleTime < cycleTime)
698 cycleTime = tm[i].cycleTime;
699 accessTime = tm[i].accessTime;
700 recTime = tm[i].recoveryTime;
702 #ifdef IDE_PMAC_DEBUG
703 printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
704 drive->name, cycleTime, accessTime, recTime);
708 case controller_sh_ata6: {
710 u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
711 *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
712 *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
714 case controller_un_ata6:
715 case controller_k2_ata6: {
717 u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
718 *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
719 *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
722 case controller_kl_ata4:
724 accessTicks = SYSCLK_TICKS_66(accessTime);
725 accessTicks = min(accessTicks, 0x1fU);
726 accessTicks = max(accessTicks, 0x1U);
727 recTicks = SYSCLK_TICKS_66(recTime);
728 recTicks = min(recTicks, 0x1fU);
729 recTicks = max(recTicks, 0x3U);
730 /* Clear out mdma bits and disable udma */
731 *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
732 (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
733 (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
735 case controller_kl_ata3:
736 /* 33Mhz cell on KeyLargo */
737 accessTicks = SYSCLK_TICKS(accessTime);
738 accessTicks = max(accessTicks, 1U);
739 accessTicks = min(accessTicks, 0x1fU);
740 accessTime = accessTicks * IDE_SYSCLK_NS;
741 recTicks = SYSCLK_TICKS(recTime);
742 recTicks = max(recTicks, 1U);
743 recTicks = min(recTicks, 0x1fU);
744 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
745 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
746 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
749 /* 33Mhz cell on others */
751 int origAccessTime = accessTime;
752 int origRecTime = recTime;
754 accessTicks = SYSCLK_TICKS(accessTime);
755 accessTicks = max(accessTicks, 1U);
756 accessTicks = min(accessTicks, 0x1fU);
757 accessTime = accessTicks * IDE_SYSCLK_NS;
758 recTicks = SYSCLK_TICKS(recTime);
759 recTicks = max(recTicks, 2U) - 1;
760 recTicks = min(recTicks, 0x1fU);
761 recTime = (recTicks + 1) * IDE_SYSCLK_NS;
762 if ((accessTicks > 1) &&
763 ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
764 ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
768 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
769 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
770 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
772 *timings |= TR_33_MDMA_HALFTICK;
775 #ifdef IDE_PMAC_DEBUG
776 printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
777 drive->name, speed & 0xf, *timings);
780 #endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */
782 static void pmac_ide_set_dma_mode(ide_drive_t *drive, const u8 speed)
784 int unit = (drive->select.b.unit & 0x01);
786 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
787 u32 *timings, *timings2, tl[2];
789 timings = &pmif->timings[unit];
790 timings2 = &pmif->timings[unit+2];
792 /* Copy timings to local image */
796 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
797 if (speed >= XFER_UDMA_0) {
798 if (pmif->kind == controller_kl_ata4)
799 ret = set_timings_udma_ata4(&tl[0], speed);
800 else if (pmif->kind == controller_un_ata6
801 || pmif->kind == controller_k2_ata6)
802 ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
803 else if (pmif->kind == controller_sh_ata6)
804 ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
808 set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
809 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
813 /* Apply timings to controller */
817 pmac_ide_do_update_timings(drive);
821 * Blast some well known "safe" values to the timing registers at init or
822 * wakeup from sleep time, before we do real calculation
825 sanitize_timings(pmac_ide_hwif_t *pmif)
827 unsigned int value, value2 = 0;
830 case controller_sh_ata6:
834 case controller_un_ata6:
835 case controller_k2_ata6:
839 case controller_kl_ata4:
842 case controller_kl_ata3:
845 case controller_heathrow:
846 case controller_ohare:
851 pmif->timings[0] = pmif->timings[1] = value;
852 pmif->timings[2] = pmif->timings[3] = value2;
855 /* Suspend call back, should be called after the child devices
856 * have actually been suspended
859 pmac_ide_do_suspend(ide_hwif_t *hwif)
861 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
863 /* We clear the timings */
864 pmif->timings[0] = 0;
865 pmif->timings[1] = 0;
867 disable_irq(pmif->irq);
869 /* The media bay will handle itself just fine */
873 /* Kauai has bus control FCRs directly here */
874 if (pmif->kauai_fcr) {
875 u32 fcr = readl(pmif->kauai_fcr);
876 fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
877 writel(fcr, pmif->kauai_fcr);
880 /* Disable the bus on older machines and the cell on kauai */
881 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
887 /* Resume call back, should be called before the child devices
891 pmac_ide_do_resume(ide_hwif_t *hwif)
893 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
895 /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
896 if (!pmif->mediabay) {
897 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
898 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
900 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
902 /* Kauai has it different */
903 if (pmif->kauai_fcr) {
904 u32 fcr = readl(pmif->kauai_fcr);
905 fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
906 writel(fcr, pmif->kauai_fcr);
909 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
912 /* Sanitize drive timings */
913 sanitize_timings(pmif);
915 enable_irq(pmif->irq);
920 static u8 pmac_ide_cable_detect(ide_hwif_t *hwif)
922 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)ide_get_hwifdata(hwif);
923 struct device_node *np = pmif->node;
924 const char *cable = of_get_property(np, "cable-type", NULL);
926 /* Get cable type from device-tree. */
927 if (cable && !strncmp(cable, "80-", 3))
928 return ATA_CBL_PATA80;
931 * G5's seem to have incorrect cable type in device-tree.
932 * Let's assume they have a 80 conductor cable, this seem
933 * to be always the case unless the user mucked around.
935 if (of_device_is_compatible(np, "K2-UATA") ||
936 of_device_is_compatible(np, "shasta-ata"))
937 return ATA_CBL_PATA80;
939 return ATA_CBL_PATA40;
942 static const struct ide_port_ops pmac_ide_ata6_port_ops = {
943 .set_pio_mode = pmac_ide_set_pio_mode,
944 .set_dma_mode = pmac_ide_set_dma_mode,
945 .selectproc = pmac_ide_kauai_selectproc,
946 .cable_detect = pmac_ide_cable_detect,
949 static const struct ide_port_ops pmac_ide_ata4_port_ops = {
950 .set_pio_mode = pmac_ide_set_pio_mode,
951 .set_dma_mode = pmac_ide_set_dma_mode,
952 .selectproc = pmac_ide_selectproc,
953 .cable_detect = pmac_ide_cable_detect,
956 static const struct ide_port_ops pmac_ide_port_ops = {
957 .set_pio_mode = pmac_ide_set_pio_mode,
958 .set_dma_mode = pmac_ide_set_dma_mode,
959 .selectproc = pmac_ide_selectproc,
962 static const struct ide_dma_ops pmac_dma_ops;
964 static const struct ide_port_info pmac_port_info = {
965 .init_dma = pmac_ide_init_dma,
967 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
968 .dma_ops = &pmac_dma_ops,
970 .port_ops = &pmac_ide_port_ops,
971 .host_flags = IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
972 IDE_HFLAG_POST_SET_MODE |
974 IDE_HFLAG_UNMASK_IRQS,
975 .pio_mask = ATA_PIO4,
976 .mwdma_mask = ATA_MWDMA2,
980 * Setup, register & probe an IDE channel driven by this driver, this is
981 * called by one of the 2 probe functions (macio or PCI).
984 pmac_ide_setup_device(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif, hw_regs_t *hw)
986 struct device_node *np = pmif->node;
988 u8 idx[4] = { 0xff, 0xff, 0xff, 0xff };
989 struct ide_port_info d = pmac_port_info;
991 pmif->broken_dma = pmif->broken_dma_warn = 0;
992 if (of_device_is_compatible(np, "shasta-ata")) {
993 pmif->kind = controller_sh_ata6;
994 d.port_ops = &pmac_ide_ata6_port_ops;
995 d.udma_mask = ATA_UDMA6;
996 } else if (of_device_is_compatible(np, "kauai-ata")) {
997 pmif->kind = controller_un_ata6;
998 d.port_ops = &pmac_ide_ata6_port_ops;
999 d.udma_mask = ATA_UDMA5;
1000 } else if (of_device_is_compatible(np, "K2-UATA")) {
1001 pmif->kind = controller_k2_ata6;
1002 d.port_ops = &pmac_ide_ata6_port_ops;
1003 d.udma_mask = ATA_UDMA5;
1004 } else if (of_device_is_compatible(np, "keylargo-ata")) {
1005 if (strcmp(np->name, "ata-4") == 0) {
1006 pmif->kind = controller_kl_ata4;
1007 d.port_ops = &pmac_ide_ata4_port_ops;
1008 d.udma_mask = ATA_UDMA4;
1010 pmif->kind = controller_kl_ata3;
1011 } else if (of_device_is_compatible(np, "heathrow-ata")) {
1012 pmif->kind = controller_heathrow;
1014 pmif->kind = controller_ohare;
1015 pmif->broken_dma = 1;
1018 bidp = of_get_property(np, "AAPL,bus-id", NULL);
1019 pmif->aapl_bus_id = bidp ? *bidp : 0;
1021 /* On Kauai-type controllers, we make sure the FCR is correct */
1022 if (pmif->kauai_fcr)
1023 writel(KAUAI_FCR_UATA_MAGIC |
1024 KAUAI_FCR_UATA_RESET_N |
1025 KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
1029 /* Make sure we have sane timings */
1030 sanitize_timings(pmif);
1032 #ifndef CONFIG_PPC64
1033 /* XXX FIXME: Media bay stuff need re-organizing */
1034 if (np->parent && np->parent->name
1035 && strcasecmp(np->parent->name, "media-bay") == 0) {
1036 #ifdef CONFIG_PMAC_MEDIABAY
1037 media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq,
1039 #endif /* CONFIG_PMAC_MEDIABAY */
1042 pmif->aapl_bus_id = 1;
1043 } else if (pmif->kind == controller_ohare) {
1044 /* The code below is having trouble on some ohare machines
1045 * (timing related ?). Until I can put my hand on one of these
1046 * units, I keep the old way
1048 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1052 /* This is necessary to enable IDE when net-booting */
1053 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1054 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1056 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1057 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1060 /* Setup MMIO ops */
1061 default_hwif_mmiops(hwif);
1062 hwif->OUTBSYNC = pmac_outbsync;
1064 hwif->hwif_data = pmif;
1065 ide_init_port_hw(hwif, hw);
1067 printk(KERN_INFO "ide%d: Found Apple %s controller, bus ID %d%s, irq %d\n",
1068 hwif->index, model_name[pmif->kind], pmif->aapl_bus_id,
1069 pmif->mediabay ? " (mediabay)" : "", hwif->irq);
1071 if (pmif->mediabay) {
1072 #ifdef CONFIG_PMAC_MEDIABAY
1073 if (check_media_bay_by_base(pmif->regbase, MB_CD)) {
1077 hwif->drives[0].noprobe = 1;
1078 hwif->drives[1].noprobe = 1;
1082 idx[0] = hwif->index;
1084 ide_device_add(idx, &d);
1089 static void __devinit pmac_ide_init_ports(hw_regs_t *hw, unsigned long base)
1093 for (i = 0; i < 8; ++i)
1094 hw->io_ports_array[i] = base + i * 0x10;
1096 hw->io_ports.ctl_addr = base + 0x160;
1100 * Attach to a macio probed interface
1102 static int __devinit
1103 pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
1106 unsigned long regbase;
1108 pmac_ide_hwif_t *pmif;
1112 pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1116 hwif = ide_find_port();
1118 printk(KERN_ERR "ide-pmac: MacIO interface attach with no slot\n");
1119 printk(KERN_ERR " %s\n", mdev->ofdev.node->full_name);
1124 if (macio_resource_count(mdev) == 0) {
1125 printk(KERN_WARNING "ide-pmac: no address for %s\n",
1126 mdev->ofdev.node->full_name);
1131 /* Request memory resource for IO ports */
1132 if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1133 printk(KERN_ERR "ide-pmac: can't request MMIO resource for "
1134 "%s!\n", mdev->ofdev.node->full_name);
1139 /* XXX This is bogus. Should be fixed in the registry by checking
1140 * the kind of host interrupt controller, a bit like gatwick
1141 * fixes in irq.c. That works well enough for the single case
1142 * where that happens though...
1144 if (macio_irq_count(mdev) == 0) {
1145 printk(KERN_WARNING "ide-pmac: no intrs for device %s, using "
1146 "13\n", mdev->ofdev.node->full_name);
1147 irq = irq_create_mapping(NULL, 13);
1149 irq = macio_irq(mdev, 0);
1151 base = ioremap(macio_resource_start(mdev, 0), 0x400);
1152 regbase = (unsigned long) base;
1154 hwif->dev = &mdev->bus->pdev->dev;
1157 pmif->node = mdev->ofdev.node;
1158 pmif->regbase = regbase;
1160 pmif->kauai_fcr = NULL;
1161 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1162 if (macio_resource_count(mdev) >= 2) {
1163 if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1164 printk(KERN_WARNING "ide-pmac: can't request DMA "
1165 "resource for %s!\n",
1166 mdev->ofdev.node->full_name);
1168 pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1170 pmif->dma_regs = NULL;
1171 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1172 dev_set_drvdata(&mdev->ofdev.dev, hwif);
1174 memset(&hw, 0, sizeof(hw));
1175 pmac_ide_init_ports(&hw, pmif->regbase);
1177 hw.dev = &mdev->ofdev.dev;
1179 rc = pmac_ide_setup_device(pmif, hwif, &hw);
1181 /* The inteface is released to the common IDE layer */
1182 dev_set_drvdata(&mdev->ofdev.dev, NULL);
1184 if (pmif->dma_regs) {
1185 iounmap(pmif->dma_regs);
1186 macio_release_resource(mdev, 1);
1188 macio_release_resource(mdev, 0);
1200 pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1202 ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1205 if (mesg.event != mdev->ofdev.dev.power.power_state.event
1206 && (mesg.event & PM_EVENT_SLEEP)) {
1207 rc = pmac_ide_do_suspend(hwif);
1209 mdev->ofdev.dev.power.power_state = mesg;
1216 pmac_ide_macio_resume(struct macio_dev *mdev)
1218 ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1221 if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1222 rc = pmac_ide_do_resume(hwif);
1224 mdev->ofdev.dev.power.power_state = PMSG_ON;
1231 * Attach to a PCI probed interface
1233 static int __devinit
1234 pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
1237 struct device_node *np;
1238 pmac_ide_hwif_t *pmif;
1240 unsigned long rbase, rlen;
1244 np = pci_device_to_OF_node(pdev);
1246 printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1250 pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1254 hwif = ide_find_port();
1256 printk(KERN_ERR "ide-pmac: PCI interface attach with no slot\n");
1257 printk(KERN_ERR " %s\n", np->full_name);
1262 if (pci_enable_device(pdev)) {
1263 printk(KERN_WARNING "ide-pmac: Can't enable PCI device for "
1264 "%s\n", np->full_name);
1268 pci_set_master(pdev);
1270 if (pci_request_regions(pdev, "Kauai ATA")) {
1271 printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for "
1272 "%s\n", np->full_name);
1277 hwif->dev = &pdev->dev;
1281 rbase = pci_resource_start(pdev, 0);
1282 rlen = pci_resource_len(pdev, 0);
1284 base = ioremap(rbase, rlen);
1285 pmif->regbase = (unsigned long) base + 0x2000;
1286 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1287 pmif->dma_regs = base + 0x1000;
1288 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1289 pmif->kauai_fcr = base;
1290 pmif->irq = pdev->irq;
1292 pci_set_drvdata(pdev, hwif);
1294 memset(&hw, 0, sizeof(hw));
1295 pmac_ide_init_ports(&hw, pmif->regbase);
1297 hw.dev = &pdev->dev;
1299 rc = pmac_ide_setup_device(pmif, hwif, &hw);
1301 /* The inteface is released to the common IDE layer */
1302 pci_set_drvdata(pdev, NULL);
1304 pci_release_regions(pdev);
1316 pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1318 ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
1321 if (mesg.event != pdev->dev.power.power_state.event
1322 && (mesg.event & PM_EVENT_SLEEP)) {
1323 rc = pmac_ide_do_suspend(hwif);
1325 pdev->dev.power.power_state = mesg;
1332 pmac_ide_pci_resume(struct pci_dev *pdev)
1334 ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
1337 if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1338 rc = pmac_ide_do_resume(hwif);
1340 pdev->dev.power.power_state = PMSG_ON;
1346 static struct of_device_id pmac_ide_macio_match[] =
1363 static struct macio_driver pmac_ide_macio_driver =
1366 .match_table = pmac_ide_macio_match,
1367 .probe = pmac_ide_macio_attach,
1368 .suspend = pmac_ide_macio_suspend,
1369 .resume = pmac_ide_macio_resume,
1372 static const struct pci_device_id pmac_ide_pci_match[] = {
1373 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA), 0 },
1374 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100), 0 },
1375 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100), 0 },
1376 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA), 0 },
1377 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA), 0 },
1381 static struct pci_driver pmac_ide_pci_driver = {
1383 .id_table = pmac_ide_pci_match,
1384 .probe = pmac_ide_pci_attach,
1385 .suspend = pmac_ide_pci_suspend,
1386 .resume = pmac_ide_pci_resume,
1388 MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1390 int __init pmac_ide_probe(void)
1394 if (!machine_is(powermac))
1397 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1398 error = pci_register_driver(&pmac_ide_pci_driver);
1401 error = macio_register_driver(&pmac_ide_macio_driver);
1403 pci_unregister_driver(&pmac_ide_pci_driver);
1407 error = macio_register_driver(&pmac_ide_macio_driver);
1410 error = pci_register_driver(&pmac_ide_pci_driver);
1412 macio_unregister_driver(&pmac_ide_macio_driver);
1420 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1423 * pmac_ide_build_dmatable builds the DBDMA command list
1424 * for a transfer and sets the DBDMA channel to point to it.
1427 pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq)
1429 struct dbdma_cmd *table;
1431 ide_hwif_t *hwif = HWIF(drive);
1432 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1433 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1434 struct scatterlist *sg;
1435 int wr = (rq_data_dir(rq) == WRITE);
1437 /* DMA table is already aligned */
1438 table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1440 /* Make sure DMA controller is stopped (necessary ?) */
1441 writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1442 while (readl(&dma->status) & RUN)
1445 hwif->sg_nents = i = ide_build_sglist(drive, rq);
1450 /* Build DBDMA commands list */
1451 sg = hwif->sg_table;
1452 while (i && sg_dma_len(sg)) {
1456 cur_addr = sg_dma_address(sg);
1457 cur_len = sg_dma_len(sg);
1459 if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1460 if (pmif->broken_dma_warn == 0) {
1461 printk(KERN_WARNING "%s: DMA on non aligned address, "
1462 "switching to PIO on Ohare chipset\n", drive->name);
1463 pmif->broken_dma_warn = 1;
1465 goto use_pio_instead;
1468 unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1470 if (count++ >= MAX_DCMDS) {
1471 printk(KERN_WARNING "%s: DMA table too small\n",
1473 goto use_pio_instead;
1475 st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
1476 st_le16(&table->req_count, tc);
1477 st_le32(&table->phy_addr, cur_addr);
1479 table->xfer_status = 0;
1480 table->res_count = 0;
1489 /* convert the last command to an input/output last command */
1491 st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
1492 /* add the stop command to the end of the list */
1493 memset(table, 0, sizeof(struct dbdma_cmd));
1494 st_le16(&table->command, DBDMA_STOP);
1496 writel(hwif->dmatable_dma, &dma->cmdptr);
1500 printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1503 ide_destroy_dmatable(drive);
1505 return 0; /* revert to PIO for this request */
1508 /* Teardown mappings after DMA has completed. */
1510 pmac_ide_destroy_dmatable (ide_drive_t *drive)
1512 ide_hwif_t *hwif = drive->hwif;
1514 if (hwif->sg_nents) {
1515 ide_destroy_dmatable(drive);
1521 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1522 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1525 pmac_ide_dma_setup(ide_drive_t *drive)
1527 ide_hwif_t *hwif = HWIF(drive);
1528 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1529 struct request *rq = HWGROUP(drive)->rq;
1530 u8 unit = (drive->select.b.unit & 0x01);
1535 ata4 = (pmif->kind == controller_kl_ata4);
1537 if (!pmac_ide_build_dmatable(drive, rq)) {
1538 ide_map_sg(drive, rq);
1542 /* Apple adds 60ns to wrDataSetup on reads */
1543 if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1544 writel(pmif->timings[unit] + (!rq_data_dir(rq) ? 0x00800000UL : 0),
1545 PMAC_IDE_REG(IDE_TIMING_CONFIG));
1546 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1549 drive->waiting_for_dma = 1;
1555 pmac_ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
1557 /* issue cmd to drive */
1558 ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL);
1562 * Kick the DMA controller into life after the DMA command has been issued
1566 pmac_ide_dma_start(ide_drive_t *drive)
1568 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1569 volatile struct dbdma_regs __iomem *dma;
1571 dma = pmif->dma_regs;
1573 writel((RUN << 16) | RUN, &dma->control);
1574 /* Make sure it gets to the controller right now */
1575 (void)readl(&dma->control);
1579 * After a DMA transfer, make sure the controller is stopped
1582 pmac_ide_dma_end (ide_drive_t *drive)
1584 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1585 volatile struct dbdma_regs __iomem *dma;
1590 dma = pmif->dma_regs;
1592 drive->waiting_for_dma = 0;
1593 dstat = readl(&dma->status);
1594 writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1595 pmac_ide_destroy_dmatable(drive);
1596 /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1597 * in theory, but with ATAPI decices doing buffer underruns, that would
1598 * cause us to disable DMA, which isn't what we want
1600 return (dstat & (RUN|DEAD)) != RUN;
1604 * Check out that the interrupt we got was for us. We can't always know this
1605 * for sure with those Apple interfaces (well, we could on the recent ones but
1606 * that's not implemented yet), on the other hand, we don't have shared interrupts
1607 * so it's not really a problem
1610 pmac_ide_dma_test_irq (ide_drive_t *drive)
1612 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1613 volatile struct dbdma_regs __iomem *dma;
1614 unsigned long status, timeout;
1618 dma = pmif->dma_regs;
1620 /* We have to things to deal with here:
1622 * - The dbdma won't stop if the command was started
1623 * but completed with an error without transferring all
1624 * datas. This happens when bad blocks are met during
1625 * a multi-block transfer.
1627 * - The dbdma fifo hasn't yet finished flushing to
1628 * to system memory when the disk interrupt occurs.
1632 /* If ACTIVE is cleared, the STOP command have passed and
1633 * transfer is complete.
1635 status = readl(&dma->status);
1636 if (!(status & ACTIVE))
1638 if (!drive->waiting_for_dma)
1639 printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1640 called while not waiting\n", HWIF(drive)->index);
1642 /* If dbdma didn't execute the STOP command yet, the
1643 * active bit is still set. We consider that we aren't
1644 * sharing interrupts (which is hopefully the case with
1645 * those controllers) and so we just try to flush the
1646 * channel for pending data in the fifo
1649 writel((FLUSH << 16) | FLUSH, &dma->control);
1653 status = readl(&dma->status);
1654 if ((status & FLUSH) == 0)
1656 if (++timeout > 100) {
1657 printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1658 timeout flushing channel\n", HWIF(drive)->index);
1665 static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
1670 pmac_ide_dma_lost_irq (ide_drive_t *drive)
1672 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1673 volatile struct dbdma_regs __iomem *dma;
1674 unsigned long status;
1678 dma = pmif->dma_regs;
1680 status = readl(&dma->status);
1681 printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1684 static const struct ide_dma_ops pmac_dma_ops = {
1685 .dma_host_set = pmac_ide_dma_host_set,
1686 .dma_setup = pmac_ide_dma_setup,
1687 .dma_exec_cmd = pmac_ide_dma_exec_cmd,
1688 .dma_start = pmac_ide_dma_start,
1689 .dma_end = pmac_ide_dma_end,
1690 .dma_test_irq = pmac_ide_dma_test_irq,
1691 .dma_timeout = ide_dma_timeout,
1692 .dma_lost_irq = pmac_ide_dma_lost_irq,
1696 * Allocate the data structures needed for using DMA with an interface
1697 * and fill the proper list of functions pointers
1699 static int __devinit pmac_ide_init_dma(ide_hwif_t *hwif,
1700 const struct ide_port_info *d)
1702 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1703 struct pci_dev *dev = to_pci_dev(hwif->dev);
1705 /* We won't need pci_dev if we switch to generic consistent
1708 if (dev == NULL || pmif->dma_regs == 0)
1711 * Allocate space for the DBDMA commands.
1712 * The +2 is +1 for the stop command and +1 to allow for
1713 * aligning the start address to a multiple of 16 bytes.
1715 pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent(
1717 (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
1718 &hwif->dmatable_dma);
1719 if (pmif->dma_table_cpu == NULL) {
1720 printk(KERN_ERR "%s: unable to allocate DMA command list\n",
1725 hwif->sg_max_nents = MAX_DCMDS;
1730 static int __devinit pmac_ide_init_dma(ide_hwif_t *hwif,
1731 const struct ide_port_info *d)
1735 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1737 module_init(pmac_ide_probe);
1739 MODULE_LICENSE("GPL");