1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
53 #include <linux/netdevice.h>
54 #include <linux/ethtool.h>
55 #include <linux/delay.h>
56 #include <linux/pci.h>
60 #define ICH_FLASH_GFPREG 0x0000
61 #define ICH_FLASH_HSFSTS 0x0004
62 #define ICH_FLASH_HSFCTL 0x0006
63 #define ICH_FLASH_FADDR 0x0008
64 #define ICH_FLASH_FDATA0 0x0010
65 #define ICH_FLASH_PR0 0x0074
67 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
68 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
69 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
70 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
71 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
73 #define ICH_CYCLE_READ 0
74 #define ICH_CYCLE_WRITE 2
75 #define ICH_CYCLE_ERASE 3
77 #define FLASH_GFPREG_BASE_MASK 0x1FFF
78 #define FLASH_SECTOR_ADDR_SHIFT 12
80 #define ICH_FLASH_SEG_SIZE_256 256
81 #define ICH_FLASH_SEG_SIZE_4K 4096
82 #define ICH_FLASH_SEG_SIZE_8K 8192
83 #define ICH_FLASH_SEG_SIZE_64K 65536
86 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
88 #define E1000_ICH_MNG_IAMT_MODE 0x2
90 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
91 (ID_LED_DEF1_OFF2 << 8) | \
92 (ID_LED_DEF1_ON2 << 4) | \
95 #define E1000_ICH_NVM_SIG_WORD 0x13
96 #define E1000_ICH_NVM_SIG_MASK 0xC000
97 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
98 #define E1000_ICH_NVM_SIG_VALUE 0x80
100 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
102 #define E1000_FEXTNVM_SW_CONFIG 1
103 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
105 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
107 #define E1000_ICH_RAR_ENTRIES 7
109 #define PHY_PAGE_SHIFT 5
110 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
111 ((reg) & MAX_PHY_REG_ADDRESS))
112 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
113 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
115 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
116 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
117 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
119 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
120 /* Offset 04h HSFSTS */
121 union ich8_hws_flash_status {
123 u16 flcdone :1; /* bit 0 Flash Cycle Done */
124 u16 flcerr :1; /* bit 1 Flash Cycle Error */
125 u16 dael :1; /* bit 2 Direct Access error Log */
126 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
127 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
128 u16 reserved1 :2; /* bit 13:6 Reserved */
129 u16 reserved2 :6; /* bit 13:6 Reserved */
130 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
131 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
136 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
137 /* Offset 06h FLCTL */
138 union ich8_hws_flash_ctrl {
139 struct ich8_hsflctl {
140 u16 flcgo :1; /* 0 Flash Cycle Go */
141 u16 flcycle :2; /* 2:1 Flash Cycle */
142 u16 reserved :5; /* 7:3 Reserved */
143 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
144 u16 flockdn :6; /* 15:10 Reserved */
149 /* ICH Flash Region Access Permissions */
150 union ich8_hws_flash_regacc {
152 u32 grra :8; /* 0:7 GbE region Read Access */
153 u32 grwa :8; /* 8:15 GbE region Write Access */
154 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
155 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
160 /* ICH Flash Protected Region */
161 union ich8_flash_protected_range {
163 u32 base:13; /* 0:12 Protected Range Base */
164 u32 reserved1:2; /* 13:14 Reserved */
165 u32 rpe:1; /* 15 Read Protection Enable */
166 u32 limit:13; /* 16:28 Protected Range Limit */
167 u32 reserved2:2; /* 29:30 Reserved */
168 u32 wpe:1; /* 31 Write Protection Enable */
173 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
174 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
175 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
176 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
177 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
178 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
179 u32 offset, u8 byte);
180 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
182 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
184 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
186 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
187 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
188 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
190 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
192 return readw(hw->flash_address + reg);
195 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
197 return readl(hw->flash_address + reg);
200 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
202 writew(val, hw->flash_address + reg);
205 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
207 writel(val, hw->flash_address + reg);
210 #define er16flash(reg) __er16flash(hw, (reg))
211 #define er32flash(reg) __er32flash(hw, (reg))
212 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
213 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
216 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
217 * @hw: pointer to the HW structure
219 * Initialize family-specific PHY parameters and function pointers.
221 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
223 struct e1000_phy_info *phy = &hw->phy;
228 phy->reset_delay_us = 100;
231 * We may need to do this twice - once for IGP and if that fails,
232 * we'll set BM func pointers and try again
234 ret_val = e1000e_determine_phy_address(hw);
236 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
237 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
238 ret_val = e1000e_determine_phy_address(hw);
244 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
247 ret_val = e1000e_get_phy_id(hw);
254 case IGP03E1000_E_PHY_ID:
255 phy->type = e1000_phy_igp_3;
256 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
259 case IFE_PLUS_E_PHY_ID:
261 phy->type = e1000_phy_ife;
262 phy->autoneg_mask = E1000_ALL_NOT_GIG;
264 case BME1000_E_PHY_ID:
265 phy->type = e1000_phy_bm;
266 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
267 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
268 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
269 hw->phy.ops.commit_phy = e1000e_phy_sw_reset;
272 return -E1000_ERR_PHY;
280 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
281 * @hw: pointer to the HW structure
283 * Initialize family-specific NVM parameters and function
286 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
288 struct e1000_nvm_info *nvm = &hw->nvm;
289 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
291 u32 sector_base_addr;
295 /* Can't read flash registers if the register set isn't mapped. */
296 if (!hw->flash_address) {
297 hw_dbg(hw, "ERROR: Flash registers not mapped\n");
298 return -E1000_ERR_CONFIG;
301 nvm->type = e1000_nvm_flash_sw;
303 gfpreg = er32flash(ICH_FLASH_GFPREG);
306 * sector_X_addr is a "sector"-aligned address (4096 bytes)
307 * Add 1 to sector_end_addr since this sector is included in
310 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
311 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
313 /* flash_base_addr is byte-aligned */
314 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
317 * find total size of the NVM, then cut in half since the total
318 * size represents two separate NVM banks.
320 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
321 << FLASH_SECTOR_ADDR_SHIFT;
322 nvm->flash_bank_size /= 2;
323 /* Adjust to word count */
324 nvm->flash_bank_size /= sizeof(u16);
326 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
328 /* Clear shadow ram */
329 for (i = 0; i < nvm->word_size; i++) {
330 dev_spec->shadow_ram[i].modified = 0;
331 dev_spec->shadow_ram[i].value = 0xFFFF;
338 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
339 * @hw: pointer to the HW structure
341 * Initialize family-specific MAC parameters and function
344 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
346 struct e1000_hw *hw = &adapter->hw;
347 struct e1000_mac_info *mac = &hw->mac;
349 /* Set media type function pointer */
350 hw->phy.media_type = e1000_media_type_copper;
352 /* Set mta register count */
353 mac->mta_reg_count = 32;
354 /* Set rar entry count */
355 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
356 if (mac->type == e1000_ich8lan)
357 mac->rar_entry_count--;
358 /* Set if manageability features are enabled. */
359 mac->arc_subsystem_valid = 1;
361 /* Enable PCS Lock-loss workaround for ICH8 */
362 if (mac->type == e1000_ich8lan)
363 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
368 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
370 struct e1000_hw *hw = &adapter->hw;
373 rc = e1000_init_mac_params_ich8lan(adapter);
377 rc = e1000_init_nvm_params_ich8lan(hw);
381 rc = e1000_init_phy_params_ich8lan(hw);
385 if ((adapter->hw.mac.type == e1000_ich8lan) &&
386 (adapter->hw.phy.type == e1000_phy_igp_3))
387 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
392 static DEFINE_MUTEX(nvm_mutex);
395 * e1000_acquire_swflag_ich8lan - Acquire software control flag
396 * @hw: pointer to the HW structure
398 * Acquires the software control flag for performing NVM and PHY
399 * operations. This is a function pointer entry point only called by
400 * read/write routines for the PHY and NVM parts.
402 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
405 u32 timeout = PHY_CFG_TIMEOUT;
409 mutex_lock(&nvm_mutex);
412 extcnf_ctrl = er32(EXTCNF_CTRL);
413 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
414 ew32(EXTCNF_CTRL, extcnf_ctrl);
416 extcnf_ctrl = er32(EXTCNF_CTRL);
417 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
424 hw_dbg(hw, "FW or HW has locked the resource for too long.\n");
425 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
426 ew32(EXTCNF_CTRL, extcnf_ctrl);
427 mutex_unlock(&nvm_mutex);
428 return -E1000_ERR_CONFIG;
435 * e1000_release_swflag_ich8lan - Release software control flag
436 * @hw: pointer to the HW structure
438 * Releases the software control flag for performing NVM and PHY operations.
439 * This is a function pointer entry point only called by read/write
440 * routines for the PHY and NVM parts.
442 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
446 extcnf_ctrl = er32(EXTCNF_CTRL);
447 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
448 ew32(EXTCNF_CTRL, extcnf_ctrl);
450 mutex_unlock(&nvm_mutex);
454 * e1000_check_mng_mode_ich8lan - Checks management mode
455 * @hw: pointer to the HW structure
457 * This checks if the adapter has manageability enabled.
458 * This is a function pointer entry point only called by read/write
459 * routines for the PHY and NVM parts.
461 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
463 u32 fwsm = er32(FWSM);
465 return (fwsm & E1000_FWSM_MODE_MASK) ==
466 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
470 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
471 * @hw: pointer to the HW structure
473 * Checks if firmware is blocking the reset of the PHY.
474 * This is a function pointer entry point only called by
477 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
483 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
487 * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
488 * @hw: pointer to the HW structure
490 * Forces the speed and duplex settings of the PHY.
491 * This is a function pointer entry point only called by
492 * PHY setup routines.
494 static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
496 struct e1000_phy_info *phy = &hw->phy;
501 if (phy->type != e1000_phy_ife) {
502 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
506 ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
510 e1000e_phy_force_speed_duplex_setup(hw, &data);
512 ret_val = e1e_wphy(hw, PHY_CONTROL, data);
516 /* Disable MDI-X support for 10/100 */
517 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
521 data &= ~IFE_PMC_AUTO_MDIX;
522 data &= ~IFE_PMC_FORCE_MDIX;
524 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
528 hw_dbg(hw, "IFE PMC: %X\n", data);
532 if (phy->autoneg_wait_to_complete) {
533 hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
535 ret_val = e1000e_phy_has_link_generic(hw,
543 hw_dbg(hw, "Link taking longer than expected.\n");
546 ret_val = e1000e_phy_has_link_generic(hw,
558 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
559 * @hw: pointer to the HW structure
562 * This is a function pointer entry point called by drivers
563 * or other shared routines.
565 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
567 struct e1000_phy_info *phy = &hw->phy;
569 u32 data, cnf_size, cnf_base_addr, sw_cfg_mask;
571 u16 loop = E1000_ICH8_LAN_INIT_TIMEOUT;
572 u16 word_addr, reg_data, reg_addr, phy_page = 0;
574 ret_val = e1000e_phy_hw_reset_generic(hw);
579 * Initialize the PHY from the NVM on ICH platforms. This
580 * is needed due to an issue where the NVM configuration is
581 * not properly autoloaded after power transitions.
582 * Therefore, after each PHY reset, we will load the
583 * configuration data out of the NVM manually.
585 if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
586 struct e1000_adapter *adapter = hw->adapter;
588 /* Check if SW needs configure the PHY */
589 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
590 (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M))
591 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
593 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
595 data = er32(FEXTNVM);
596 if (!(data & sw_cfg_mask))
599 /* Wait for basic configuration completes before proceeding*/
602 data &= E1000_STATUS_LAN_INIT_DONE;
604 } while ((!data) && --loop);
607 * If basic configuration is incomplete before the above loop
608 * count reaches 0, loading the configuration from NVM will
609 * leave the PHY in a bad state possibly resulting in no link.
612 hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
615 /* Clear the Init Done bit for the next init event */
617 data &= ~E1000_STATUS_LAN_INIT_DONE;
621 * Make sure HW does not configure LCD from PHY
622 * extended configuration before SW configuration
624 data = er32(EXTCNF_CTRL);
625 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
628 cnf_size = er32(EXTCNF_SIZE);
629 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
630 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
634 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
635 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
637 /* Configure LCD from extended configuration region. */
639 /* cnf_base_addr is in DWORD */
640 word_addr = (u16)(cnf_base_addr << 1);
642 for (i = 0; i < cnf_size; i++) {
643 ret_val = e1000_read_nvm(hw,
650 ret_val = e1000_read_nvm(hw,
651 (word_addr + i * 2 + 1),
657 /* Save off the PHY page for future writes. */
658 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
663 reg_addr |= phy_page;
665 ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data);
675 * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
676 * @hw: pointer to the HW structure
678 * Populates "phy" structure with various feature states.
679 * This function is only called by other family-specific
682 static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
684 struct e1000_phy_info *phy = &hw->phy;
689 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
694 hw_dbg(hw, "Phy info is only valid if link is up\n");
695 return -E1000_ERR_CONFIG;
698 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
701 phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
703 if (phy->polarity_correction) {
704 ret_val = e1000_check_polarity_ife_ich8lan(hw);
708 /* Polarity is forced */
709 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
710 ? e1000_rev_polarity_reversed
711 : e1000_rev_polarity_normal;
714 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
718 phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
720 /* The following parameters are undefined for 10/100 operation. */
721 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
722 phy->local_rx = e1000_1000t_rx_status_undefined;
723 phy->remote_rx = e1000_1000t_rx_status_undefined;
729 * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
730 * @hw: pointer to the HW structure
732 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
733 * This is a function pointer entry point called by drivers
734 * or other shared routines.
736 static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
738 switch (hw->phy.type) {
740 return e1000_get_phy_info_ife_ich8lan(hw);
742 case e1000_phy_igp_3:
744 return e1000e_get_phy_info_igp(hw);
750 return -E1000_ERR_PHY_TYPE;
754 * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
755 * @hw: pointer to the HW structure
757 * Polarity is determined on the polarity reversal feature being enabled.
758 * This function is only called by other family-specific
761 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
763 struct e1000_phy_info *phy = &hw->phy;
765 u16 phy_data, offset, mask;
768 * Polarity is determined based on the reversal feature being enabled.
770 if (phy->polarity_correction) {
771 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
772 mask = IFE_PESC_POLARITY_REVERSED;
774 offset = IFE_PHY_SPECIAL_CONTROL;
775 mask = IFE_PSC_FORCE_POLARITY;
778 ret_val = e1e_rphy(hw, offset, &phy_data);
781 phy->cable_polarity = (phy_data & mask)
782 ? e1000_rev_polarity_reversed
783 : e1000_rev_polarity_normal;
789 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
790 * @hw: pointer to the HW structure
791 * @active: TRUE to enable LPLU, FALSE to disable
793 * Sets the LPLU D0 state according to the active flag. When
794 * activating LPLU this function also disables smart speed
795 * and vice versa. LPLU will not be activated unless the
796 * device autonegotiation advertisement meets standards of
797 * either 10 or 10/100 or 10/100/1000 at all duplexes.
798 * This is a function pointer entry point only called by
799 * PHY setup routines.
801 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
803 struct e1000_phy_info *phy = &hw->phy;
808 if (phy->type == e1000_phy_ife)
811 phy_ctrl = er32(PHY_CTRL);
814 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
815 ew32(PHY_CTRL, phy_ctrl);
818 * Call gig speed drop workaround on LPLU before accessing
821 if ((hw->mac.type == e1000_ich8lan) &&
822 (hw->phy.type == e1000_phy_igp_3))
823 e1000e_gig_downshift_workaround_ich8lan(hw);
825 /* When LPLU is enabled, we should disable SmartSpeed */
826 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
827 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
828 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
832 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
833 ew32(PHY_CTRL, phy_ctrl);
836 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
837 * during Dx states where the power conservation is most
838 * important. During driver activity we should enable
839 * SmartSpeed, so performance is maintained.
841 if (phy->smart_speed == e1000_smart_speed_on) {
842 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
847 data |= IGP01E1000_PSCFR_SMART_SPEED;
848 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
852 } else if (phy->smart_speed == e1000_smart_speed_off) {
853 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
858 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
859 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
870 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
871 * @hw: pointer to the HW structure
872 * @active: TRUE to enable LPLU, FALSE to disable
874 * Sets the LPLU D3 state according to the active flag. When
875 * activating LPLU this function also disables smart speed
876 * and vice versa. LPLU will not be activated unless the
877 * device autonegotiation advertisement meets standards of
878 * either 10 or 10/100 or 10/100/1000 at all duplexes.
879 * This is a function pointer entry point only called by
880 * PHY setup routines.
882 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
884 struct e1000_phy_info *phy = &hw->phy;
889 phy_ctrl = er32(PHY_CTRL);
892 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
893 ew32(PHY_CTRL, phy_ctrl);
895 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
896 * during Dx states where the power conservation is most
897 * important. During driver activity we should enable
898 * SmartSpeed, so performance is maintained.
900 if (phy->smart_speed == e1000_smart_speed_on) {
901 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
906 data |= IGP01E1000_PSCFR_SMART_SPEED;
907 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
911 } else if (phy->smart_speed == e1000_smart_speed_off) {
912 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
917 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
918 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
923 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
924 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
925 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
926 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
927 ew32(PHY_CTRL, phy_ctrl);
930 * Call gig speed drop workaround on LPLU before accessing
933 if ((hw->mac.type == e1000_ich8lan) &&
934 (hw->phy.type == e1000_phy_igp_3))
935 e1000e_gig_downshift_workaround_ich8lan(hw);
937 /* When LPLU is enabled, we should disable SmartSpeed */
938 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
942 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
943 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
950 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
951 * @hw: pointer to the HW structure
952 * @bank: pointer to the variable that returns the active bank
954 * Reads signature byte from the NVM using the flash access registers.
955 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
957 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
960 struct e1000_nvm_info *nvm = &hw->nvm;
961 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
962 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
966 switch (hw->mac.type) {
970 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
971 E1000_EECD_SEC1VAL_VALID_MASK) {
972 if (eecd & E1000_EECD_SEC1VAL)
979 hw_dbg(hw, "Unable to determine valid NVM bank via EEC - "
980 "reading flash signature\n");
983 /* set bank to 0 in case flash read fails */
987 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
991 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
992 E1000_ICH_NVM_SIG_VALUE) {
998 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
1003 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1004 E1000_ICH_NVM_SIG_VALUE) {
1009 hw_dbg(hw, "ERROR: No valid NVM bank present\n");
1010 return -E1000_ERR_NVM;
1017 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
1018 * @hw: pointer to the HW structure
1019 * @offset: The offset (in bytes) of the word(s) to read.
1020 * @words: Size of data to read in words
1021 * @data: Pointer to the word(s) to read at offset.
1023 * Reads a word(s) from the NVM using the flash access registers.
1025 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1028 struct e1000_nvm_info *nvm = &hw->nvm;
1029 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1035 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1037 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1038 return -E1000_ERR_NVM;
1041 ret_val = e1000_acquire_swflag_ich8lan(hw);
1045 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1049 act_offset = (bank) ? nvm->flash_bank_size : 0;
1050 act_offset += offset;
1052 for (i = 0; i < words; i++) {
1053 if ((dev_spec->shadow_ram) &&
1054 (dev_spec->shadow_ram[offset+i].modified)) {
1055 data[i] = dev_spec->shadow_ram[offset+i].value;
1057 ret_val = e1000_read_flash_word_ich8lan(hw,
1067 e1000_release_swflag_ich8lan(hw);
1071 hw_dbg(hw, "NVM read error: %d\n", ret_val);
1077 * e1000_flash_cycle_init_ich8lan - Initialize flash
1078 * @hw: pointer to the HW structure
1080 * This function does initial flash setup so that a new read/write/erase cycle
1083 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1085 union ich8_hws_flash_status hsfsts;
1086 s32 ret_val = -E1000_ERR_NVM;
1089 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1091 /* Check if the flash descriptor is valid */
1092 if (hsfsts.hsf_status.fldesvalid == 0) {
1093 hw_dbg(hw, "Flash descriptor invalid. "
1094 "SW Sequencing must be used.");
1095 return -E1000_ERR_NVM;
1098 /* Clear FCERR and DAEL in hw status by writing 1 */
1099 hsfsts.hsf_status.flcerr = 1;
1100 hsfsts.hsf_status.dael = 1;
1102 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1105 * Either we should have a hardware SPI cycle in progress
1106 * bit to check against, in order to start a new cycle or
1107 * FDONE bit should be changed in the hardware so that it
1108 * is 1 after hardware reset, which can then be used as an
1109 * indication whether a cycle is in progress or has been
1113 if (hsfsts.hsf_status.flcinprog == 0) {
1115 * There is no cycle running at present,
1116 * so we can start a cycle
1117 * Begin by setting Flash Cycle Done.
1119 hsfsts.hsf_status.flcdone = 1;
1120 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1124 * otherwise poll for sometime so the current
1125 * cycle has a chance to end before giving up.
1127 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1128 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1129 if (hsfsts.hsf_status.flcinprog == 0) {
1137 * Successful in waiting for previous cycle to timeout,
1138 * now set the Flash Cycle Done.
1140 hsfsts.hsf_status.flcdone = 1;
1141 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1143 hw_dbg(hw, "Flash controller busy, cannot get access");
1151 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1152 * @hw: pointer to the HW structure
1153 * @timeout: maximum time to wait for completion
1155 * This function starts a flash cycle and waits for its completion.
1157 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1159 union ich8_hws_flash_ctrl hsflctl;
1160 union ich8_hws_flash_status hsfsts;
1161 s32 ret_val = -E1000_ERR_NVM;
1164 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1165 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1166 hsflctl.hsf_ctrl.flcgo = 1;
1167 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1169 /* wait till FDONE bit is set to 1 */
1171 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1172 if (hsfsts.hsf_status.flcdone == 1)
1175 } while (i++ < timeout);
1177 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1184 * e1000_read_flash_word_ich8lan - Read word from flash
1185 * @hw: pointer to the HW structure
1186 * @offset: offset to data location
1187 * @data: pointer to the location for storing the data
1189 * Reads the flash word at offset into data. Offset is converted
1190 * to bytes before read.
1192 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1195 /* Must convert offset into bytes. */
1198 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1202 * e1000_read_flash_byte_ich8lan - Read byte from flash
1203 * @hw: pointer to the HW structure
1204 * @offset: The offset of the byte to read.
1205 * @data: Pointer to a byte to store the value read.
1207 * Reads a single byte from the NVM using the flash access registers.
1209 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1215 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1225 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1226 * @hw: pointer to the HW structure
1227 * @offset: The offset (in bytes) of the byte or word to read.
1228 * @size: Size of data to read, 1=byte 2=word
1229 * @data: Pointer to the word to store the value read.
1231 * Reads a byte or word from the NVM using the flash access registers.
1233 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1236 union ich8_hws_flash_status hsfsts;
1237 union ich8_hws_flash_ctrl hsflctl;
1238 u32 flash_linear_addr;
1240 s32 ret_val = -E1000_ERR_NVM;
1243 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1244 return -E1000_ERR_NVM;
1246 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1247 hw->nvm.flash_base_addr;
1252 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1256 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1257 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1258 hsflctl.hsf_ctrl.fldbcount = size - 1;
1259 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1260 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1262 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1264 ret_val = e1000_flash_cycle_ich8lan(hw,
1265 ICH_FLASH_READ_COMMAND_TIMEOUT);
1268 * Check if FCERR is set to 1, if set to 1, clear it
1269 * and try the whole sequence a few more times, else
1270 * read in (shift in) the Flash Data0, the order is
1271 * least significant byte first msb to lsb
1274 flash_data = er32flash(ICH_FLASH_FDATA0);
1276 *data = (u8)(flash_data & 0x000000FF);
1277 } else if (size == 2) {
1278 *data = (u16)(flash_data & 0x0000FFFF);
1283 * If we've gotten here, then things are probably
1284 * completely hosed, but if the error condition is
1285 * detected, it won't hurt to give it another try...
1286 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1288 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1289 if (hsfsts.hsf_status.flcerr == 1) {
1290 /* Repeat for some time before giving up. */
1292 } else if (hsfsts.hsf_status.flcdone == 0) {
1293 hw_dbg(hw, "Timeout error - flash cycle "
1294 "did not complete.");
1298 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1304 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1305 * @hw: pointer to the HW structure
1306 * @offset: The offset (in bytes) of the word(s) to write.
1307 * @words: Size of data to write in words
1308 * @data: Pointer to the word(s) to write at offset.
1310 * Writes a byte or word to the NVM using the flash access registers.
1312 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1315 struct e1000_nvm_info *nvm = &hw->nvm;
1316 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1320 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1322 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1323 return -E1000_ERR_NVM;
1326 ret_val = e1000_acquire_swflag_ich8lan(hw);
1330 for (i = 0; i < words; i++) {
1331 dev_spec->shadow_ram[offset+i].modified = 1;
1332 dev_spec->shadow_ram[offset+i].value = data[i];
1335 e1000_release_swflag_ich8lan(hw);
1341 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1342 * @hw: pointer to the HW structure
1344 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1345 * which writes the checksum to the shadow ram. The changes in the shadow
1346 * ram are then committed to the EEPROM by processing each bank at a time
1347 * checking for the modified bit and writing only the pending changes.
1348 * After a successful commit, the shadow ram is cleared and is ready for
1351 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1353 struct e1000_nvm_info *nvm = &hw->nvm;
1354 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1355 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
1359 ret_val = e1000e_update_nvm_checksum_generic(hw);
1363 if (nvm->type != e1000_nvm_flash_sw)
1366 ret_val = e1000_acquire_swflag_ich8lan(hw);
1371 * We're writing to the opposite bank so if we're on bank 1,
1372 * write to bank 0 etc. We also need to erase the segment that
1373 * is going to be written
1375 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1377 e1000_release_swflag_ich8lan(hw);
1382 new_bank_offset = nvm->flash_bank_size;
1383 old_bank_offset = 0;
1384 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
1386 e1000_release_swflag_ich8lan(hw);
1390 old_bank_offset = nvm->flash_bank_size;
1391 new_bank_offset = 0;
1392 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
1394 e1000_release_swflag_ich8lan(hw);
1399 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1401 * Determine whether to write the value stored
1402 * in the other NVM bank or a modified value stored
1405 if (dev_spec->shadow_ram[i].modified) {
1406 data = dev_spec->shadow_ram[i].value;
1408 ret_val = e1000_read_flash_word_ich8lan(hw, i +
1416 * If the word is 0x13, then make sure the signature bits
1417 * (15:14) are 11b until the commit has completed.
1418 * This will allow us to write 10b which indicates the
1419 * signature is valid. We want to do this after the write
1420 * has completed so that we don't mark the segment valid
1421 * while the write is still in progress
1423 if (i == E1000_ICH_NVM_SIG_WORD)
1424 data |= E1000_ICH_NVM_SIG_MASK;
1426 /* Convert offset to bytes. */
1427 act_offset = (i + new_bank_offset) << 1;
1430 /* Write the bytes to the new bank. */
1431 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1438 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1446 * Don't bother writing the segment valid bits if sector
1447 * programming failed.
1450 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
1451 hw_dbg(hw, "Flash commit failed.\n");
1452 e1000_release_swflag_ich8lan(hw);
1457 * Finally validate the new segment by setting bit 15:14
1458 * to 10b in word 0x13 , this can be done without an
1459 * erase as well since these bits are 11 to start with
1460 * and we need to change bit 14 to 0b
1462 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
1463 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
1465 e1000_release_swflag_ich8lan(hw);
1469 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1473 e1000_release_swflag_ich8lan(hw);
1478 * And invalidate the previously valid segment by setting
1479 * its signature word (0x13) high_byte to 0b. This can be
1480 * done without an erase because flash erase sets all bits
1481 * to 1's. We can write 1's to 0's without an erase
1483 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
1484 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
1486 e1000_release_swflag_ich8lan(hw);
1490 /* Great! Everything worked, we can now clear the cached entries. */
1491 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1492 dev_spec->shadow_ram[i].modified = 0;
1493 dev_spec->shadow_ram[i].value = 0xFFFF;
1496 e1000_release_swflag_ich8lan(hw);
1499 * Reload the EEPROM, or else modifications will not appear
1500 * until after the next adapter reset.
1502 e1000e_reload_nvm(hw);
1507 hw_dbg(hw, "NVM update error: %d\n", ret_val);
1513 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1514 * @hw: pointer to the HW structure
1516 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1517 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
1518 * calculated, in which case we need to calculate the checksum and set bit 6.
1520 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
1526 * Read 0x19 and check bit 6. If this bit is 0, the checksum
1527 * needs to be fixed. This bit is an indication that the NVM
1528 * was prepared by OEM software and did not calculate the
1529 * checksum...a likely scenario.
1531 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
1535 if ((data & 0x40) == 0) {
1537 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
1540 ret_val = e1000e_update_nvm_checksum(hw);
1545 return e1000e_validate_nvm_checksum_generic(hw);
1549 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
1550 * @hw: pointer to the HW structure
1552 * To prevent malicious write/erase of the NVM, set it to be read-only
1553 * so that the hardware ignores all write/erase cycles of the NVM via
1554 * the flash control registers. The shadow-ram copy of the NVM will
1555 * still be updated, however any updates to this copy will not stick
1556 * across driver reloads.
1558 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
1560 union ich8_flash_protected_range pr0;
1561 union ich8_hws_flash_status hsfsts;
1565 ret_val = e1000_acquire_swflag_ich8lan(hw);
1569 gfpreg = er32flash(ICH_FLASH_GFPREG);
1571 /* Write-protect GbE Sector of NVM */
1572 pr0.regval = er32flash(ICH_FLASH_PR0);
1573 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
1574 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
1575 pr0.range.wpe = true;
1576 ew32flash(ICH_FLASH_PR0, pr0.regval);
1579 * Lock down a subset of GbE Flash Control Registers, e.g.
1580 * PR0 to prevent the write-protection from being lifted.
1581 * Once FLOCKDN is set, the registers protected by it cannot
1582 * be written until FLOCKDN is cleared by a hardware reset.
1584 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1585 hsfsts.hsf_status.flockdn = true;
1586 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1588 e1000_release_swflag_ich8lan(hw);
1592 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
1593 * @hw: pointer to the HW structure
1594 * @offset: The offset (in bytes) of the byte/word to read.
1595 * @size: Size of data to read, 1=byte 2=word
1596 * @data: The byte(s) to write to the NVM.
1598 * Writes one/two bytes to the NVM using the flash access registers.
1600 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1603 union ich8_hws_flash_status hsfsts;
1604 union ich8_hws_flash_ctrl hsflctl;
1605 u32 flash_linear_addr;
1610 if (size < 1 || size > 2 || data > size * 0xff ||
1611 offset > ICH_FLASH_LINEAR_ADDR_MASK)
1612 return -E1000_ERR_NVM;
1614 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1615 hw->nvm.flash_base_addr;
1620 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1624 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1625 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1626 hsflctl.hsf_ctrl.fldbcount = size -1;
1627 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
1628 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1630 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1633 flash_data = (u32)data & 0x00FF;
1635 flash_data = (u32)data;
1637 ew32flash(ICH_FLASH_FDATA0, flash_data);
1640 * check if FCERR is set to 1 , if set to 1, clear it
1641 * and try the whole sequence a few more times else done
1643 ret_val = e1000_flash_cycle_ich8lan(hw,
1644 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
1649 * If we're here, then things are most likely
1650 * completely hosed, but if the error condition
1651 * is detected, it won't hurt to give it another
1652 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
1654 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1655 if (hsfsts.hsf_status.flcerr == 1)
1656 /* Repeat for some time before giving up. */
1658 if (hsfsts.hsf_status.flcdone == 0) {
1659 hw_dbg(hw, "Timeout error - flash cycle "
1660 "did not complete.");
1663 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1669 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
1670 * @hw: pointer to the HW structure
1671 * @offset: The index of the byte to read.
1672 * @data: The byte to write to the NVM.
1674 * Writes a single byte to the NVM using the flash access registers.
1676 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1679 u16 word = (u16)data;
1681 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
1685 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
1686 * @hw: pointer to the HW structure
1687 * @offset: The offset of the byte to write.
1688 * @byte: The byte to write to the NVM.
1690 * Writes a single byte to the NVM using the flash access registers.
1691 * Goes through a retry algorithm before giving up.
1693 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
1694 u32 offset, u8 byte)
1697 u16 program_retries;
1699 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1703 for (program_retries = 0; program_retries < 100; program_retries++) {
1704 hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
1706 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1710 if (program_retries == 100)
1711 return -E1000_ERR_NVM;
1717 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
1718 * @hw: pointer to the HW structure
1719 * @bank: 0 for first bank, 1 for second bank, etc.
1721 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
1722 * bank N is 4096 * N + flash_reg_addr.
1724 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
1726 struct e1000_nvm_info *nvm = &hw->nvm;
1727 union ich8_hws_flash_status hsfsts;
1728 union ich8_hws_flash_ctrl hsflctl;
1729 u32 flash_linear_addr;
1730 /* bank size is in 16bit words - adjust to bytes */
1731 u32 flash_bank_size = nvm->flash_bank_size * 2;
1738 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1741 * Determine HW Sector size: Read BERASE bits of hw flash status
1743 * 00: The Hw sector is 256 bytes, hence we need to erase 16
1744 * consecutive sectors. The start index for the nth Hw sector
1745 * can be calculated as = bank * 4096 + n * 256
1746 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
1747 * The start index for the nth Hw sector can be calculated
1749 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
1750 * (ich9 only, otherwise error condition)
1751 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
1753 switch (hsfsts.hsf_status.berasesz) {
1755 /* Hw sector size 256 */
1756 sector_size = ICH_FLASH_SEG_SIZE_256;
1757 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
1760 sector_size = ICH_FLASH_SEG_SIZE_4K;
1761 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_4K;
1764 if (hw->mac.type == e1000_ich9lan) {
1765 sector_size = ICH_FLASH_SEG_SIZE_8K;
1766 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
1768 return -E1000_ERR_NVM;
1772 sector_size = ICH_FLASH_SEG_SIZE_64K;
1773 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_64K;
1776 return -E1000_ERR_NVM;
1779 /* Start with the base address, then add the sector offset. */
1780 flash_linear_addr = hw->nvm.flash_base_addr;
1781 flash_linear_addr += (bank) ? (sector_size * iteration) : 0;
1783 for (j = 0; j < iteration ; j++) {
1786 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1791 * Write a value 11 (block Erase) in Flash
1792 * Cycle field in hw flash control
1794 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1795 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
1796 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1799 * Write the last 24 bits of an index within the
1800 * block into Flash Linear address field in Flash
1803 flash_linear_addr += (j * sector_size);
1804 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1806 ret_val = e1000_flash_cycle_ich8lan(hw,
1807 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
1812 * Check if FCERR is set to 1. If 1,
1813 * clear it and try the whole sequence
1814 * a few more times else Done
1816 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1817 if (hsfsts.hsf_status.flcerr == 1)
1818 /* repeat for some time before giving up */
1820 else if (hsfsts.hsf_status.flcdone == 0)
1822 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
1829 * e1000_valid_led_default_ich8lan - Set the default LED settings
1830 * @hw: pointer to the HW structure
1831 * @data: Pointer to the LED settings
1833 * Reads the LED default settings from the NVM to data. If the NVM LED
1834 * settings is all 0's or F's, set the LED default to a valid LED default
1837 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
1841 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1843 hw_dbg(hw, "NVM Read Error\n");
1847 if (*data == ID_LED_RESERVED_0000 ||
1848 *data == ID_LED_RESERVED_FFFF)
1849 *data = ID_LED_DEFAULT_ICH8LAN;
1855 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
1856 * @hw: pointer to the HW structure
1858 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
1859 * register, so the the bus width is hard coded.
1861 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
1863 struct e1000_bus_info *bus = &hw->bus;
1866 ret_val = e1000e_get_bus_info_pcie(hw);
1869 * ICH devices are "PCI Express"-ish. They have
1870 * a configuration space, but do not contain
1871 * PCI Express Capability registers, so bus width
1872 * must be hardcoded.
1874 if (bus->width == e1000_bus_width_unknown)
1875 bus->width = e1000_bus_width_pcie_x1;
1881 * e1000_reset_hw_ich8lan - Reset the hardware
1882 * @hw: pointer to the HW structure
1884 * Does a full reset of the hardware which includes a reset of the PHY and
1887 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
1893 * Prevent the PCI-E bus from sticking if there is no TLP connection
1894 * on the last TLP read/write transaction when MAC is reset.
1896 ret_val = e1000e_disable_pcie_master(hw);
1898 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
1901 hw_dbg(hw, "Masking off all interrupts\n");
1902 ew32(IMC, 0xffffffff);
1905 * Disable the Transmit and Receive units. Then delay to allow
1906 * any pending transactions to complete before we hit the MAC
1907 * with the global reset.
1910 ew32(TCTL, E1000_TCTL_PSP);
1915 /* Workaround for ICH8 bit corruption issue in FIFO memory */
1916 if (hw->mac.type == e1000_ich8lan) {
1917 /* Set Tx and Rx buffer allocation to 8k apiece. */
1918 ew32(PBA, E1000_PBA_8K);
1919 /* Set Packet Buffer Size to 16k. */
1920 ew32(PBS, E1000_PBS_16K);
1925 if (!e1000_check_reset_block(hw)) {
1927 * PHY HW reset requires MAC CORE reset at the same
1928 * time to make sure the interface between MAC and the
1929 * external PHY is reset.
1931 ctrl |= E1000_CTRL_PHY_RST;
1933 ret_val = e1000_acquire_swflag_ich8lan(hw);
1934 /* Whether or not the swflag was acquired, we need to reset the part */
1935 hw_dbg(hw, "Issuing a global reset to ich8lan\n");
1936 ew32(CTRL, (ctrl | E1000_CTRL_RST));
1940 /* release the swflag because it is not reset by
1943 e1000_release_swflag_ich8lan(hw);
1946 ret_val = e1000e_get_auto_rd_done(hw);
1949 * When auto config read does not complete, do not
1950 * return with an error. This can happen in situations
1951 * where there is no eeprom and prevents getting link.
1953 hw_dbg(hw, "Auto Read Done did not complete\n");
1956 ew32(IMC, 0xffffffff);
1959 kab = er32(KABGTXD);
1960 kab |= E1000_KABGTXD_BGSQLBIAS;
1967 * e1000_init_hw_ich8lan - Initialize the hardware
1968 * @hw: pointer to the HW structure
1970 * Prepares the hardware for transmit and receive by doing the following:
1971 * - initialize hardware bits
1972 * - initialize LED identification
1973 * - setup receive address registers
1974 * - setup flow control
1975 * - setup transmit descriptors
1976 * - clear statistics
1978 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
1980 struct e1000_mac_info *mac = &hw->mac;
1981 u32 ctrl_ext, txdctl, snoop;
1985 e1000_initialize_hw_bits_ich8lan(hw);
1987 /* Initialize identification LED */
1988 ret_val = e1000e_id_led_init(hw);
1990 hw_dbg(hw, "Error initializing identification LED\n");
1994 /* Setup the receive address. */
1995 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
1997 /* Zero out the Multicast HASH table */
1998 hw_dbg(hw, "Zeroing the MTA\n");
1999 for (i = 0; i < mac->mta_reg_count; i++)
2000 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
2002 /* Setup link and flow control */
2003 ret_val = e1000_setup_link_ich8lan(hw);
2005 /* Set the transmit descriptor write-back policy for both queues */
2006 txdctl = er32(TXDCTL(0));
2007 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2008 E1000_TXDCTL_FULL_TX_DESC_WB;
2009 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2010 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2011 ew32(TXDCTL(0), txdctl);
2012 txdctl = er32(TXDCTL(1));
2013 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2014 E1000_TXDCTL_FULL_TX_DESC_WB;
2015 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2016 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2017 ew32(TXDCTL(1), txdctl);
2020 * ICH8 has opposite polarity of no_snoop bits.
2021 * By default, we should use snoop behavior.
2023 if (mac->type == e1000_ich8lan)
2024 snoop = PCIE_ICH8_SNOOP_ALL;
2026 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
2027 e1000e_set_pcie_no_snoop(hw, snoop);
2029 ctrl_ext = er32(CTRL_EXT);
2030 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2031 ew32(CTRL_EXT, ctrl_ext);
2034 * Clear all of the statistics registers (clear on read). It is
2035 * important that we do this after we have tried to establish link
2036 * because the symbol error count will increment wildly if there
2039 e1000_clear_hw_cntrs_ich8lan(hw);
2044 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2045 * @hw: pointer to the HW structure
2047 * Sets/Clears required hardware bits necessary for correctly setting up the
2048 * hardware for transmit and receive.
2050 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2054 /* Extended Device Control */
2055 reg = er32(CTRL_EXT);
2057 ew32(CTRL_EXT, reg);
2059 /* Transmit Descriptor Control 0 */
2060 reg = er32(TXDCTL(0));
2062 ew32(TXDCTL(0), reg);
2064 /* Transmit Descriptor Control 1 */
2065 reg = er32(TXDCTL(1));
2067 ew32(TXDCTL(1), reg);
2069 /* Transmit Arbitration Control 0 */
2070 reg = er32(TARC(0));
2071 if (hw->mac.type == e1000_ich8lan)
2072 reg |= (1 << 28) | (1 << 29);
2073 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
2076 /* Transmit Arbitration Control 1 */
2077 reg = er32(TARC(1));
2078 if (er32(TCTL) & E1000_TCTL_MULR)
2082 reg |= (1 << 24) | (1 << 26) | (1 << 30);
2086 if (hw->mac.type == e1000_ich8lan) {
2094 * e1000_setup_link_ich8lan - Setup flow control and link settings
2095 * @hw: pointer to the HW structure
2097 * Determines which flow control settings to use, then configures flow
2098 * control. Calls the appropriate media-specific link configuration
2099 * function. Assuming the adapter has a valid link partner, a valid link
2100 * should be established. Assumes the hardware has previously been reset
2101 * and the transmitter and receiver are not enabled.
2103 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2107 if (e1000_check_reset_block(hw))
2111 * ICH parts do not have a word in the NVM to determine
2112 * the default flow control setting, so we explicitly
2115 if (hw->fc.requested_mode == e1000_fc_default)
2116 hw->fc.requested_mode = e1000_fc_full;
2119 * Save off the requested flow control mode for use later. Depending
2120 * on the link partner's capabilities, we may or may not use this mode.
2122 hw->fc.current_mode = hw->fc.requested_mode;
2124 hw_dbg(hw, "After fix-ups FlowControl is now = %x\n",
2125 hw->fc.current_mode);
2127 /* Continue to configure the copper link. */
2128 ret_val = e1000_setup_copper_link_ich8lan(hw);
2132 ew32(FCTTV, hw->fc.pause_time);
2134 return e1000e_set_fc_watermarks(hw);
2138 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2139 * @hw: pointer to the HW structure
2141 * Configures the kumeran interface to the PHY to wait the appropriate time
2142 * when polling the PHY, then call the generic setup_copper_link to finish
2143 * configuring the copper link.
2145 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2152 ctrl |= E1000_CTRL_SLU;
2153 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2157 * Set the mac to wait the maximum time between each iteration
2158 * and increase the max iterations when polling the phy;
2159 * this fixes erroneous timeouts at 10Mbps.
2161 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
2164 ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data);
2168 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
2172 if (hw->phy.type == e1000_phy_igp_3) {
2173 ret_val = e1000e_copper_link_setup_igp(hw);
2176 } else if (hw->phy.type == e1000_phy_bm) {
2177 ret_val = e1000e_copper_link_setup_m88(hw);
2182 if (hw->phy.type == e1000_phy_ife) {
2183 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data);
2187 reg_data &= ~IFE_PMC_AUTO_MDIX;
2189 switch (hw->phy.mdix) {
2191 reg_data &= ~IFE_PMC_FORCE_MDIX;
2194 reg_data |= IFE_PMC_FORCE_MDIX;
2198 reg_data |= IFE_PMC_AUTO_MDIX;
2201 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
2205 return e1000e_setup_copper_link(hw);
2209 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2210 * @hw: pointer to the HW structure
2211 * @speed: pointer to store current link speed
2212 * @duplex: pointer to store the current link duplex
2214 * Calls the generic get_speed_and_duplex to retrieve the current link
2215 * information and then calls the Kumeran lock loss workaround for links at
2218 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2223 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2227 if ((hw->mac.type == e1000_ich8lan) &&
2228 (hw->phy.type == e1000_phy_igp_3) &&
2229 (*speed == SPEED_1000)) {
2230 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
2237 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2238 * @hw: pointer to the HW structure
2240 * Work-around for 82566 Kumeran PCS lock loss:
2241 * On link status change (i.e. PCI reset, speed change) and link is up and
2243 * 0) if workaround is optionally disabled do nothing
2244 * 1) wait 1ms for Kumeran link to come up
2245 * 2) check Kumeran Diagnostic register PCS lock loss bit
2246 * 3) if not set the link is locked (all is good), otherwise...
2248 * 5) repeat up to 10 times
2249 * Note: this is only called for IGP3 copper when speed is 1gb.
2251 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2253 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2259 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
2263 * Make sure link is up before proceeding. If not just return.
2264 * Attempting this while link is negotiating fouled up link
2267 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2271 for (i = 0; i < 10; i++) {
2272 /* read once to clear */
2273 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2276 /* and again to get new status */
2277 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2281 /* check for PCS lock */
2282 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2285 /* Issue PHY reset */
2286 e1000_phy_hw_reset(hw);
2289 /* Disable GigE link negotiation */
2290 phy_ctrl = er32(PHY_CTRL);
2291 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
2292 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2293 ew32(PHY_CTRL, phy_ctrl);
2296 * Call gig speed drop workaround on Gig disable before accessing
2299 e1000e_gig_downshift_workaround_ich8lan(hw);
2301 /* unable to acquire PCS lock */
2302 return -E1000_ERR_PHY;
2306 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
2307 * @hw: pointer to the HW structure
2308 * @state: boolean value used to set the current Kumeran workaround state
2310 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
2311 * /disabled - FALSE).
2313 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
2316 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2318 if (hw->mac.type != e1000_ich8lan) {
2319 hw_dbg(hw, "Workaround applies to ICH8 only.\n");
2323 dev_spec->kmrn_lock_loss_workaround_enabled = state;
2327 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2328 * @hw: pointer to the HW structure
2330 * Workaround for 82566 power-down on D3 entry:
2331 * 1) disable gigabit link
2332 * 2) write VR power-down enable
2334 * Continue if successful, else issue LCD reset and repeat
2336 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
2342 if (hw->phy.type != e1000_phy_igp_3)
2345 /* Try the workaround twice (if needed) */
2348 reg = er32(PHY_CTRL);
2349 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
2350 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2351 ew32(PHY_CTRL, reg);
2354 * Call gig speed drop workaround on Gig disable before
2355 * accessing any PHY registers
2357 if (hw->mac.type == e1000_ich8lan)
2358 e1000e_gig_downshift_workaround_ich8lan(hw);
2360 /* Write VR power-down enable */
2361 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2362 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2363 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
2365 /* Read it back and test */
2366 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2367 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2368 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
2371 /* Issue PHY reset and repeat at most one more time */
2373 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
2379 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2380 * @hw: pointer to the HW structure
2382 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
2383 * LPLU, Gig disable, MDIC PHY reset):
2384 * 1) Set Kumeran Near-end loopback
2385 * 2) Clear Kumeran Near-end loopback
2386 * Should only be called for ICH8[m] devices with IGP_3 Phy.
2388 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
2393 if ((hw->mac.type != e1000_ich8lan) ||
2394 (hw->phy.type != e1000_phy_igp_3))
2397 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2401 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
2402 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2406 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
2407 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2412 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
2413 * @hw: pointer to the HW structure
2415 * During S0 to Sx transition, it is possible the link remains at gig
2416 * instead of negotiating to a lower speed. Before going to Sx, set
2417 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
2420 * Should only be called for ICH9 and ICH10 devices.
2422 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
2426 if ((hw->mac.type == e1000_ich10lan) ||
2427 (hw->mac.type == e1000_ich9lan)) {
2428 phy_ctrl = er32(PHY_CTRL);
2429 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
2430 E1000_PHY_CTRL_GBE_DISABLE;
2431 ew32(PHY_CTRL, phy_ctrl);
2438 * e1000_cleanup_led_ich8lan - Restore the default LED operation
2439 * @hw: pointer to the HW structure
2441 * Return the LED back to the default configuration.
2443 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
2445 if (hw->phy.type == e1000_phy_ife)
2446 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
2448 ew32(LEDCTL, hw->mac.ledctl_default);
2453 * e1000_led_on_ich8lan - Turn LEDs on
2454 * @hw: pointer to the HW structure
2458 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
2460 if (hw->phy.type == e1000_phy_ife)
2461 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2462 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
2464 ew32(LEDCTL, hw->mac.ledctl_mode2);
2469 * e1000_led_off_ich8lan - Turn LEDs off
2470 * @hw: pointer to the HW structure
2472 * Turn off the LEDs.
2474 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
2476 if (hw->phy.type == e1000_phy_ife)
2477 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2478 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
2480 ew32(LEDCTL, hw->mac.ledctl_mode1);
2485 * e1000_get_cfg_done_ich8lan - Read config done bit
2486 * @hw: pointer to the HW structure
2488 * Read the management control register for the config done bit for
2489 * completion status. NOTE: silicon which is EEPROM-less will fail trying
2490 * to read the config done bit, so an error is *ONLY* logged and returns
2491 * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon
2492 * would not be able to be reset or change link.
2494 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
2498 e1000e_get_cfg_done(hw);
2500 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
2501 if (hw->mac.type != e1000_ich10lan) {
2502 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
2503 (hw->phy.type == e1000_phy_igp_3)) {
2504 e1000e_phy_init_script_igp3(hw);
2507 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
2508 /* Maybe we should do a basic PHY config */
2509 hw_dbg(hw, "EEPROM not present\n");
2510 return -E1000_ERR_CONFIG;
2518 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
2519 * @hw: pointer to the HW structure
2521 * Clears hardware counters specific to the silicon family and calls
2522 * clear_hw_cntrs_generic to clear all general purpose counters.
2524 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
2528 e1000e_clear_hw_cntrs_base(hw);
2530 temp = er32(ALGNERRC);
2531 temp = er32(RXERRC);
2533 temp = er32(CEXTERR);
2535 temp = er32(TSCTFC);
2537 temp = er32(MGTPRC);
2538 temp = er32(MGTPDC);
2539 temp = er32(MGTPTC);
2542 temp = er32(ICRXOC);
2546 static struct e1000_mac_operations ich8_mac_ops = {
2547 .check_mng_mode = e1000_check_mng_mode_ich8lan,
2548 .check_for_link = e1000e_check_for_copper_link,
2549 .cleanup_led = e1000_cleanup_led_ich8lan,
2550 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
2551 .get_bus_info = e1000_get_bus_info_ich8lan,
2552 .get_link_up_info = e1000_get_link_up_info_ich8lan,
2553 .led_on = e1000_led_on_ich8lan,
2554 .led_off = e1000_led_off_ich8lan,
2555 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
2556 .reset_hw = e1000_reset_hw_ich8lan,
2557 .init_hw = e1000_init_hw_ich8lan,
2558 .setup_link = e1000_setup_link_ich8lan,
2559 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
2562 static struct e1000_phy_operations ich8_phy_ops = {
2563 .acquire_phy = e1000_acquire_swflag_ich8lan,
2564 .check_reset_block = e1000_check_reset_block_ich8lan,
2566 .force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan,
2567 .get_cfg_done = e1000_get_cfg_done_ich8lan,
2568 .get_cable_length = e1000e_get_cable_length_igp_2,
2569 .get_phy_info = e1000_get_phy_info_ich8lan,
2570 .read_phy_reg = e1000e_read_phy_reg_igp,
2571 .release_phy = e1000_release_swflag_ich8lan,
2572 .reset_phy = e1000_phy_hw_reset_ich8lan,
2573 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
2574 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
2575 .write_phy_reg = e1000e_write_phy_reg_igp,
2578 static struct e1000_nvm_operations ich8_nvm_ops = {
2579 .acquire_nvm = e1000_acquire_swflag_ich8lan,
2580 .read_nvm = e1000_read_nvm_ich8lan,
2581 .release_nvm = e1000_release_swflag_ich8lan,
2582 .update_nvm = e1000_update_nvm_checksum_ich8lan,
2583 .valid_led_default = e1000_valid_led_default_ich8lan,
2584 .validate_nvm = e1000_validate_nvm_checksum_ich8lan,
2585 .write_nvm = e1000_write_nvm_ich8lan,
2588 struct e1000_info e1000_ich8_info = {
2589 .mac = e1000_ich8lan,
2590 .flags = FLAG_HAS_WOL
2592 | FLAG_RX_CSUM_ENABLED
2593 | FLAG_HAS_CTRLEXT_ON_LOAD
2598 .get_variants = e1000_get_variants_ich8lan,
2599 .mac_ops = &ich8_mac_ops,
2600 .phy_ops = &ich8_phy_ops,
2601 .nvm_ops = &ich8_nvm_ops,
2604 struct e1000_info e1000_ich9_info = {
2605 .mac = e1000_ich9lan,
2606 .flags = FLAG_HAS_JUMBO_FRAMES
2609 | FLAG_RX_CSUM_ENABLED
2610 | FLAG_HAS_CTRLEXT_ON_LOAD
2616 .get_variants = e1000_get_variants_ich8lan,
2617 .mac_ops = &ich8_mac_ops,
2618 .phy_ops = &ich8_phy_ops,
2619 .nvm_ops = &ich8_nvm_ops,
2622 struct e1000_info e1000_ich10_info = {
2623 .mac = e1000_ich10lan,
2624 .flags = FLAG_HAS_JUMBO_FRAMES
2627 | FLAG_RX_CSUM_ENABLED
2628 | FLAG_HAS_CTRLEXT_ON_LOAD
2634 .get_variants = e1000_get_variants_ich8lan,
2635 .mac_ops = &ich8_mac_ops,
2636 .phy_ops = &ich8_phy_ops,
2637 .nvm_ops = &ich8_nvm_ops,