Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[linux-2.6] / drivers / net / e1000e / ich8lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82562G 10/100 Network Connection
31  * 82562G-2 10/100 Network Connection
32  * 82562GT 10/100 Network Connection
33  * 82562GT-2 10/100 Network Connection
34  * 82562V 10/100 Network Connection
35  * 82562V-2 10/100 Network Connection
36  * 82566DC-2 Gigabit Network Connection
37  * 82566DC Gigabit Network Connection
38  * 82566DM-2 Gigabit Network Connection
39  * 82566DM Gigabit Network Connection
40  * 82566MC Gigabit Network Connection
41  * 82566MM Gigabit Network Connection
42  * 82567LM Gigabit Network Connection
43  * 82567LF Gigabit Network Connection
44  * 82567V Gigabit Network Connection
45  * 82567LM-2 Gigabit Network Connection
46  * 82567LF-2 Gigabit Network Connection
47  * 82567V-2 Gigabit Network Connection
48  * 82567LF-3 Gigabit Network Connection
49  * 82567LM-3 Gigabit Network Connection
50  * 82567LM-4 Gigabit Network Connection
51  */
52
53 #include <linux/netdevice.h>
54 #include <linux/ethtool.h>
55 #include <linux/delay.h>
56 #include <linux/pci.h>
57
58 #include "e1000.h"
59
60 #define ICH_FLASH_GFPREG                0x0000
61 #define ICH_FLASH_HSFSTS                0x0004
62 #define ICH_FLASH_HSFCTL                0x0006
63 #define ICH_FLASH_FADDR                 0x0008
64 #define ICH_FLASH_FDATA0                0x0010
65 #define ICH_FLASH_PR0                   0x0074
66
67 #define ICH_FLASH_READ_COMMAND_TIMEOUT  500
68 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
69 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
70 #define ICH_FLASH_LINEAR_ADDR_MASK      0x00FFFFFF
71 #define ICH_FLASH_CYCLE_REPEAT_COUNT    10
72
73 #define ICH_CYCLE_READ                  0
74 #define ICH_CYCLE_WRITE                 2
75 #define ICH_CYCLE_ERASE                 3
76
77 #define FLASH_GFPREG_BASE_MASK          0x1FFF
78 #define FLASH_SECTOR_ADDR_SHIFT         12
79
80 #define ICH_FLASH_SEG_SIZE_256          256
81 #define ICH_FLASH_SEG_SIZE_4K           4096
82 #define ICH_FLASH_SEG_SIZE_8K           8192
83 #define ICH_FLASH_SEG_SIZE_64K          65536
84
85
86 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
87
88 #define E1000_ICH_MNG_IAMT_MODE         0x2
89
90 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
91                                  (ID_LED_DEF1_OFF2 <<  8) | \
92                                  (ID_LED_DEF1_ON2  <<  4) | \
93                                  (ID_LED_DEF1_DEF2))
94
95 #define E1000_ICH_NVM_SIG_WORD          0x13
96 #define E1000_ICH_NVM_SIG_MASK          0xC000
97 #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
98 #define E1000_ICH_NVM_SIG_VALUE         0x80
99
100 #define E1000_ICH8_LAN_INIT_TIMEOUT     1500
101
102 #define E1000_FEXTNVM_SW_CONFIG         1
103 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
104
105 #define PCIE_ICH8_SNOOP_ALL             PCIE_NO_SNOOP_ALL
106
107 #define E1000_ICH_RAR_ENTRIES           7
108
109 #define PHY_PAGE_SHIFT 5
110 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
111                            ((reg) & MAX_PHY_REG_ADDRESS))
112 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
113 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
114
115 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS    0x0002
116 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
117 #define IGP3_VR_CTRL_MODE_SHUTDOWN      0x0200
118
119 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
120 /* Offset 04h HSFSTS */
121 union ich8_hws_flash_status {
122         struct ich8_hsfsts {
123                 u16 flcdone    :1; /* bit 0 Flash Cycle Done */
124                 u16 flcerr     :1; /* bit 1 Flash Cycle Error */
125                 u16 dael       :1; /* bit 2 Direct Access error Log */
126                 u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
127                 u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
128                 u16 reserved1  :2; /* bit 13:6 Reserved */
129                 u16 reserved2  :6; /* bit 13:6 Reserved */
130                 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
131                 u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
132         } hsf_status;
133         u16 regval;
134 };
135
136 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
137 /* Offset 06h FLCTL */
138 union ich8_hws_flash_ctrl {
139         struct ich8_hsflctl {
140                 u16 flcgo      :1;   /* 0 Flash Cycle Go */
141                 u16 flcycle    :2;   /* 2:1 Flash Cycle */
142                 u16 reserved   :5;   /* 7:3 Reserved  */
143                 u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
144                 u16 flockdn    :6;   /* 15:10 Reserved */
145         } hsf_ctrl;
146         u16 regval;
147 };
148
149 /* ICH Flash Region Access Permissions */
150 union ich8_hws_flash_regacc {
151         struct ich8_flracc {
152                 u32 grra      :8; /* 0:7 GbE region Read Access */
153                 u32 grwa      :8; /* 8:15 GbE region Write Access */
154                 u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
155                 u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
156         } hsf_flregacc;
157         u16 regval;
158 };
159
160 /* ICH Flash Protected Region */
161 union ich8_flash_protected_range {
162         struct ich8_pr {
163                 u32 base:13;     /* 0:12 Protected Range Base */
164                 u32 reserved1:2; /* 13:14 Reserved */
165                 u32 rpe:1;       /* 15 Read Protection Enable */
166                 u32 limit:13;    /* 16:28 Protected Range Limit */
167                 u32 reserved2:2; /* 29:30 Reserved */
168                 u32 wpe:1;       /* 31 Write Protection Enable */
169         } range;
170         u32 regval;
171 };
172
173 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
174 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
175 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
176 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
177 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
178 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
179                                                 u32 offset, u8 byte);
180 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
181                                          u8 *data);
182 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
183                                          u16 *data);
184 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
185                                          u8 size, u16 *data);
186 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
187 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
188 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
189
190 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
191 {
192         return readw(hw->flash_address + reg);
193 }
194
195 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
196 {
197         return readl(hw->flash_address + reg);
198 }
199
200 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
201 {
202         writew(val, hw->flash_address + reg);
203 }
204
205 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
206 {
207         writel(val, hw->flash_address + reg);
208 }
209
210 #define er16flash(reg)          __er16flash(hw, (reg))
211 #define er32flash(reg)          __er32flash(hw, (reg))
212 #define ew16flash(reg,val)      __ew16flash(hw, (reg), (val))
213 #define ew32flash(reg,val)      __ew32flash(hw, (reg), (val))
214
215 /**
216  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
217  *  @hw: pointer to the HW structure
218  *
219  *  Initialize family-specific PHY parameters and function pointers.
220  **/
221 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
222 {
223         struct e1000_phy_info *phy = &hw->phy;
224         s32 ret_val;
225         u16 i = 0;
226
227         phy->addr                       = 1;
228         phy->reset_delay_us             = 100;
229
230         /*
231          * We may need to do this twice - once for IGP and if that fails,
232          * we'll set BM func pointers and try again
233          */
234         ret_val = e1000e_determine_phy_address(hw);
235         if (ret_val) {
236                 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
237                 hw->phy.ops.read_phy_reg  = e1000e_read_phy_reg_bm;
238                 ret_val = e1000e_determine_phy_address(hw);
239                 if (ret_val)
240                         return ret_val;
241         }
242
243         phy->id = 0;
244         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
245                (i++ < 100)) {
246                 msleep(1);
247                 ret_val = e1000e_get_phy_id(hw);
248                 if (ret_val)
249                         return ret_val;
250         }
251
252         /* Verify phy id */
253         switch (phy->id) {
254         case IGP03E1000_E_PHY_ID:
255                 phy->type = e1000_phy_igp_3;
256                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
257                 break;
258         case IFE_E_PHY_ID:
259         case IFE_PLUS_E_PHY_ID:
260         case IFE_C_E_PHY_ID:
261                 phy->type = e1000_phy_ife;
262                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
263                 break;
264         case BME1000_E_PHY_ID:
265                 phy->type = e1000_phy_bm;
266                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
267                 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
268                 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
269                 hw->phy.ops.commit_phy = e1000e_phy_sw_reset;
270                 break;
271         default:
272                 return -E1000_ERR_PHY;
273                 break;
274         }
275
276         return 0;
277 }
278
279 /**
280  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
281  *  @hw: pointer to the HW structure
282  *
283  *  Initialize family-specific NVM parameters and function
284  *  pointers.
285  **/
286 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
287 {
288         struct e1000_nvm_info *nvm = &hw->nvm;
289         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
290         u32 gfpreg;
291         u32 sector_base_addr;
292         u32 sector_end_addr;
293         u16 i;
294
295         /* Can't read flash registers if the register set isn't mapped. */
296         if (!hw->flash_address) {
297                 hw_dbg(hw, "ERROR: Flash registers not mapped\n");
298                 return -E1000_ERR_CONFIG;
299         }
300
301         nvm->type = e1000_nvm_flash_sw;
302
303         gfpreg = er32flash(ICH_FLASH_GFPREG);
304
305         /*
306          * sector_X_addr is a "sector"-aligned address (4096 bytes)
307          * Add 1 to sector_end_addr since this sector is included in
308          * the overall size.
309          */
310         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
311         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
312
313         /* flash_base_addr is byte-aligned */
314         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
315
316         /*
317          * find total size of the NVM, then cut in half since the total
318          * size represents two separate NVM banks.
319          */
320         nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
321                                 << FLASH_SECTOR_ADDR_SHIFT;
322         nvm->flash_bank_size /= 2;
323         /* Adjust to word count */
324         nvm->flash_bank_size /= sizeof(u16);
325
326         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
327
328         /* Clear shadow ram */
329         for (i = 0; i < nvm->word_size; i++) {
330                 dev_spec->shadow_ram[i].modified = 0;
331                 dev_spec->shadow_ram[i].value    = 0xFFFF;
332         }
333
334         return 0;
335 }
336
337 /**
338  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
339  *  @hw: pointer to the HW structure
340  *
341  *  Initialize family-specific MAC parameters and function
342  *  pointers.
343  **/
344 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
345 {
346         struct e1000_hw *hw = &adapter->hw;
347         struct e1000_mac_info *mac = &hw->mac;
348
349         /* Set media type function pointer */
350         hw->phy.media_type = e1000_media_type_copper;
351
352         /* Set mta register count */
353         mac->mta_reg_count = 32;
354         /* Set rar entry count */
355         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
356         if (mac->type == e1000_ich8lan)
357                 mac->rar_entry_count--;
358         /* Set if manageability features are enabled. */
359         mac->arc_subsystem_valid = 1;
360
361         /* Enable PCS Lock-loss workaround for ICH8 */
362         if (mac->type == e1000_ich8lan)
363                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
364
365         return 0;
366 }
367
368 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
369 {
370         struct e1000_hw *hw = &adapter->hw;
371         s32 rc;
372
373         rc = e1000_init_mac_params_ich8lan(adapter);
374         if (rc)
375                 return rc;
376
377         rc = e1000_init_nvm_params_ich8lan(hw);
378         if (rc)
379                 return rc;
380
381         rc = e1000_init_phy_params_ich8lan(hw);
382         if (rc)
383                 return rc;
384
385         if ((adapter->hw.mac.type == e1000_ich8lan) &&
386             (adapter->hw.phy.type == e1000_phy_igp_3))
387                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
388
389         return 0;
390 }
391
392 static DEFINE_MUTEX(nvm_mutex);
393
394 /**
395  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
396  *  @hw: pointer to the HW structure
397  *
398  *  Acquires the software control flag for performing NVM and PHY
399  *  operations.  This is a function pointer entry point only called by
400  *  read/write routines for the PHY and NVM parts.
401  **/
402 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
403 {
404         u32 extcnf_ctrl;
405         u32 timeout = PHY_CFG_TIMEOUT;
406
407         might_sleep();
408
409         mutex_lock(&nvm_mutex);
410
411         while (timeout) {
412                 extcnf_ctrl = er32(EXTCNF_CTRL);
413                 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
414                 ew32(EXTCNF_CTRL, extcnf_ctrl);
415
416                 extcnf_ctrl = er32(EXTCNF_CTRL);
417                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
418                         break;
419                 mdelay(1);
420                 timeout--;
421         }
422
423         if (!timeout) {
424                 hw_dbg(hw, "FW or HW has locked the resource for too long.\n");
425                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
426                 ew32(EXTCNF_CTRL, extcnf_ctrl);
427                 mutex_unlock(&nvm_mutex);
428                 return -E1000_ERR_CONFIG;
429         }
430
431         return 0;
432 }
433
434 /**
435  *  e1000_release_swflag_ich8lan - Release software control flag
436  *  @hw: pointer to the HW structure
437  *
438  *  Releases the software control flag for performing NVM and PHY operations.
439  *  This is a function pointer entry point only called by read/write
440  *  routines for the PHY and NVM parts.
441  **/
442 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
443 {
444         u32 extcnf_ctrl;
445
446         extcnf_ctrl = er32(EXTCNF_CTRL);
447         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
448         ew32(EXTCNF_CTRL, extcnf_ctrl);
449
450         mutex_unlock(&nvm_mutex);
451 }
452
453 /**
454  *  e1000_check_mng_mode_ich8lan - Checks management mode
455  *  @hw: pointer to the HW structure
456  *
457  *  This checks if the adapter has manageability enabled.
458  *  This is a function pointer entry point only called by read/write
459  *  routines for the PHY and NVM parts.
460  **/
461 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
462 {
463         u32 fwsm = er32(FWSM);
464
465         return (fwsm & E1000_FWSM_MODE_MASK) ==
466                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
467 }
468
469 /**
470  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
471  *  @hw: pointer to the HW structure
472  *
473  *  Checks if firmware is blocking the reset of the PHY.
474  *  This is a function pointer entry point only called by
475  *  reset routines.
476  **/
477 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
478 {
479         u32 fwsm;
480
481         fwsm = er32(FWSM);
482
483         return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
484 }
485
486 /**
487  *  e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
488  *  @hw: pointer to the HW structure
489  *
490  *  Forces the speed and duplex settings of the PHY.
491  *  This is a function pointer entry point only called by
492  *  PHY setup routines.
493  **/
494 static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
495 {
496         struct e1000_phy_info *phy = &hw->phy;
497         s32 ret_val;
498         u16 data;
499         bool link;
500
501         if (phy->type != e1000_phy_ife) {
502                 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
503                 return ret_val;
504         }
505
506         ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
507         if (ret_val)
508                 return ret_val;
509
510         e1000e_phy_force_speed_duplex_setup(hw, &data);
511
512         ret_val = e1e_wphy(hw, PHY_CONTROL, data);
513         if (ret_val)
514                 return ret_val;
515
516         /* Disable MDI-X support for 10/100 */
517         ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
518         if (ret_val)
519                 return ret_val;
520
521         data &= ~IFE_PMC_AUTO_MDIX;
522         data &= ~IFE_PMC_FORCE_MDIX;
523
524         ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
525         if (ret_val)
526                 return ret_val;
527
528         hw_dbg(hw, "IFE PMC: %X\n", data);
529
530         udelay(1);
531
532         if (phy->autoneg_wait_to_complete) {
533                 hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
534
535                 ret_val = e1000e_phy_has_link_generic(hw,
536                                                      PHY_FORCE_LIMIT,
537                                                      100000,
538                                                      &link);
539                 if (ret_val)
540                         return ret_val;
541
542                 if (!link)
543                         hw_dbg(hw, "Link taking longer than expected.\n");
544
545                 /* Try once more */
546                 ret_val = e1000e_phy_has_link_generic(hw,
547                                                      PHY_FORCE_LIMIT,
548                                                      100000,
549                                                      &link);
550                 if (ret_val)
551                         return ret_val;
552         }
553
554         return 0;
555 }
556
557 /**
558  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
559  *  @hw: pointer to the HW structure
560  *
561  *  Resets the PHY
562  *  This is a function pointer entry point called by drivers
563  *  or other shared routines.
564  **/
565 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
566 {
567         struct e1000_phy_info *phy = &hw->phy;
568         u32 i;
569         u32 data, cnf_size, cnf_base_addr, sw_cfg_mask;
570         s32 ret_val;
571         u16 loop = E1000_ICH8_LAN_INIT_TIMEOUT;
572         u16 word_addr, reg_data, reg_addr, phy_page = 0;
573
574         ret_val = e1000e_phy_hw_reset_generic(hw);
575         if (ret_val)
576                 return ret_val;
577
578         /*
579          * Initialize the PHY from the NVM on ICH platforms.  This
580          * is needed due to an issue where the NVM configuration is
581          * not properly autoloaded after power transitions.
582          * Therefore, after each PHY reset, we will load the
583          * configuration data out of the NVM manually.
584          */
585         if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
586                 struct e1000_adapter *adapter = hw->adapter;
587
588                 /* Check if SW needs configure the PHY */
589                 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
590                     (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M))
591                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
592                 else
593                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
594
595                 data = er32(FEXTNVM);
596                 if (!(data & sw_cfg_mask))
597                         return 0;
598
599                 /* Wait for basic configuration completes before proceeding*/
600                 do {
601                         data = er32(STATUS);
602                         data &= E1000_STATUS_LAN_INIT_DONE;
603                         udelay(100);
604                 } while ((!data) && --loop);
605
606                 /*
607                  * If basic configuration is incomplete before the above loop
608                  * count reaches 0, loading the configuration from NVM will
609                  * leave the PHY in a bad state possibly resulting in no link.
610                  */
611                 if (loop == 0) {
612                         hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
613                 }
614
615                 /* Clear the Init Done bit for the next init event */
616                 data = er32(STATUS);
617                 data &= ~E1000_STATUS_LAN_INIT_DONE;
618                 ew32(STATUS, data);
619
620                 /*
621                  * Make sure HW does not configure LCD from PHY
622                  * extended configuration before SW configuration
623                  */
624                 data = er32(EXTCNF_CTRL);
625                 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
626                         return 0;
627
628                 cnf_size = er32(EXTCNF_SIZE);
629                 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
630                 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
631                 if (!cnf_size)
632                         return 0;
633
634                 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
635                 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
636
637                 /* Configure LCD from extended configuration region. */
638
639                 /* cnf_base_addr is in DWORD */
640                 word_addr = (u16)(cnf_base_addr << 1);
641
642                 for (i = 0; i < cnf_size; i++) {
643                         ret_val = e1000_read_nvm(hw,
644                                                 (word_addr + i * 2),
645                                                 1,
646                                                 &reg_data);
647                         if (ret_val)
648                                 return ret_val;
649
650                         ret_val = e1000_read_nvm(hw,
651                                                 (word_addr + i * 2 + 1),
652                                                 1,
653                                                 &reg_addr);
654                         if (ret_val)
655                                 return ret_val;
656
657                         /* Save off the PHY page for future writes. */
658                         if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
659                                 phy_page = reg_data;
660                                 continue;
661                         }
662
663                         reg_addr |= phy_page;
664
665                         ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data);
666                         if (ret_val)
667                                 return ret_val;
668                 }
669         }
670
671         return 0;
672 }
673
674 /**
675  *  e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
676  *  @hw: pointer to the HW structure
677  *
678  *  Populates "phy" structure with various feature states.
679  *  This function is only called by other family-specific
680  *  routines.
681  **/
682 static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
683 {
684         struct e1000_phy_info *phy = &hw->phy;
685         s32 ret_val;
686         u16 data;
687         bool link;
688
689         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
690         if (ret_val)
691                 return ret_val;
692
693         if (!link) {
694                 hw_dbg(hw, "Phy info is only valid if link is up\n");
695                 return -E1000_ERR_CONFIG;
696         }
697
698         ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
699         if (ret_val)
700                 return ret_val;
701         phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
702
703         if (phy->polarity_correction) {
704                 ret_val = e1000_check_polarity_ife_ich8lan(hw);
705                 if (ret_val)
706                         return ret_val;
707         } else {
708                 /* Polarity is forced */
709                 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
710                                       ? e1000_rev_polarity_reversed
711                                       : e1000_rev_polarity_normal;
712         }
713
714         ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
715         if (ret_val)
716                 return ret_val;
717
718         phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
719
720         /* The following parameters are undefined for 10/100 operation. */
721         phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
722         phy->local_rx = e1000_1000t_rx_status_undefined;
723         phy->remote_rx = e1000_1000t_rx_status_undefined;
724
725         return 0;
726 }
727
728 /**
729  *  e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
730  *  @hw: pointer to the HW structure
731  *
732  *  Wrapper for calling the get_phy_info routines for the appropriate phy type.
733  *  This is a function pointer entry point called by drivers
734  *  or other shared routines.
735  **/
736 static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
737 {
738         switch (hw->phy.type) {
739         case e1000_phy_ife:
740                 return e1000_get_phy_info_ife_ich8lan(hw);
741                 break;
742         case e1000_phy_igp_3:
743         case e1000_phy_bm:
744                 return e1000e_get_phy_info_igp(hw);
745                 break;
746         default:
747                 break;
748         }
749
750         return -E1000_ERR_PHY_TYPE;
751 }
752
753 /**
754  *  e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
755  *  @hw: pointer to the HW structure
756  *
757  *  Polarity is determined on the polarity reversal feature being enabled.
758  *  This function is only called by other family-specific
759  *  routines.
760  **/
761 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
762 {
763         struct e1000_phy_info *phy = &hw->phy;
764         s32 ret_val;
765         u16 phy_data, offset, mask;
766
767         /*
768          * Polarity is determined based on the reversal feature being enabled.
769          */
770         if (phy->polarity_correction) {
771                 offset  = IFE_PHY_EXTENDED_STATUS_CONTROL;
772                 mask    = IFE_PESC_POLARITY_REVERSED;
773         } else {
774                 offset  = IFE_PHY_SPECIAL_CONTROL;
775                 mask    = IFE_PSC_FORCE_POLARITY;
776         }
777
778         ret_val = e1e_rphy(hw, offset, &phy_data);
779
780         if (!ret_val)
781                 phy->cable_polarity = (phy_data & mask)
782                                       ? e1000_rev_polarity_reversed
783                                       : e1000_rev_polarity_normal;
784
785         return ret_val;
786 }
787
788 /**
789  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
790  *  @hw: pointer to the HW structure
791  *  @active: TRUE to enable LPLU, FALSE to disable
792  *
793  *  Sets the LPLU D0 state according to the active flag.  When
794  *  activating LPLU this function also disables smart speed
795  *  and vice versa.  LPLU will not be activated unless the
796  *  device autonegotiation advertisement meets standards of
797  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
798  *  This is a function pointer entry point only called by
799  *  PHY setup routines.
800  **/
801 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
802 {
803         struct e1000_phy_info *phy = &hw->phy;
804         u32 phy_ctrl;
805         s32 ret_val = 0;
806         u16 data;
807
808         if (phy->type == e1000_phy_ife)
809                 return ret_val;
810
811         phy_ctrl = er32(PHY_CTRL);
812
813         if (active) {
814                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
815                 ew32(PHY_CTRL, phy_ctrl);
816
817                 /*
818                  * Call gig speed drop workaround on LPLU before accessing
819                  * any PHY registers
820                  */
821                 if ((hw->mac.type == e1000_ich8lan) &&
822                     (hw->phy.type == e1000_phy_igp_3))
823                         e1000e_gig_downshift_workaround_ich8lan(hw);
824
825                 /* When LPLU is enabled, we should disable SmartSpeed */
826                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
827                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
828                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
829                 if (ret_val)
830                         return ret_val;
831         } else {
832                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
833                 ew32(PHY_CTRL, phy_ctrl);
834
835                 /*
836                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
837                  * during Dx states where the power conservation is most
838                  * important.  During driver activity we should enable
839                  * SmartSpeed, so performance is maintained.
840                  */
841                 if (phy->smart_speed == e1000_smart_speed_on) {
842                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
843                                            &data);
844                         if (ret_val)
845                                 return ret_val;
846
847                         data |= IGP01E1000_PSCFR_SMART_SPEED;
848                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
849                                            data);
850                         if (ret_val)
851                                 return ret_val;
852                 } else if (phy->smart_speed == e1000_smart_speed_off) {
853                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
854                                            &data);
855                         if (ret_val)
856                                 return ret_val;
857
858                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
859                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
860                                            data);
861                         if (ret_val)
862                                 return ret_val;
863                 }
864         }
865
866         return 0;
867 }
868
869 /**
870  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
871  *  @hw: pointer to the HW structure
872  *  @active: TRUE to enable LPLU, FALSE to disable
873  *
874  *  Sets the LPLU D3 state according to the active flag.  When
875  *  activating LPLU this function also disables smart speed
876  *  and vice versa.  LPLU will not be activated unless the
877  *  device autonegotiation advertisement meets standards of
878  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
879  *  This is a function pointer entry point only called by
880  *  PHY setup routines.
881  **/
882 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
883 {
884         struct e1000_phy_info *phy = &hw->phy;
885         u32 phy_ctrl;
886         s32 ret_val;
887         u16 data;
888
889         phy_ctrl = er32(PHY_CTRL);
890
891         if (!active) {
892                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
893                 ew32(PHY_CTRL, phy_ctrl);
894                 /*
895                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
896                  * during Dx states where the power conservation is most
897                  * important.  During driver activity we should enable
898                  * SmartSpeed, so performance is maintained.
899                  */
900                 if (phy->smart_speed == e1000_smart_speed_on) {
901                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
902                                            &data);
903                         if (ret_val)
904                                 return ret_val;
905
906                         data |= IGP01E1000_PSCFR_SMART_SPEED;
907                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
908                                            data);
909                         if (ret_val)
910                                 return ret_val;
911                 } else if (phy->smart_speed == e1000_smart_speed_off) {
912                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
913                                            &data);
914                         if (ret_val)
915                                 return ret_val;
916
917                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
918                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
919                                            data);
920                         if (ret_val)
921                                 return ret_val;
922                 }
923         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
924                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
925                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
926                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
927                 ew32(PHY_CTRL, phy_ctrl);
928
929                 /*
930                  * Call gig speed drop workaround on LPLU before accessing
931                  * any PHY registers
932                  */
933                 if ((hw->mac.type == e1000_ich8lan) &&
934                     (hw->phy.type == e1000_phy_igp_3))
935                         e1000e_gig_downshift_workaround_ich8lan(hw);
936
937                 /* When LPLU is enabled, we should disable SmartSpeed */
938                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
939                 if (ret_val)
940                         return ret_val;
941
942                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
943                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
944         }
945
946         return 0;
947 }
948
949 /**
950  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
951  *  @hw: pointer to the HW structure
952  *  @bank:  pointer to the variable that returns the active bank
953  *
954  *  Reads signature byte from the NVM using the flash access registers.
955  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
956  **/
957 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
958 {
959         u32 eecd;
960         struct e1000_nvm_info *nvm = &hw->nvm;
961         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
962         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
963         u8 sig_byte = 0;
964         s32 ret_val = 0;
965
966         switch (hw->mac.type) {
967         case e1000_ich8lan:
968         case e1000_ich9lan:
969                 eecd = er32(EECD);
970                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
971                     E1000_EECD_SEC1VAL_VALID_MASK) {
972                         if (eecd & E1000_EECD_SEC1VAL)
973                                 *bank = 1;
974                         else
975                                 *bank = 0;
976
977                         return 0;
978                 }
979                 hw_dbg(hw, "Unable to determine valid NVM bank via EEC - "
980                        "reading flash signature\n");
981                 /* fall-thru */
982         default:
983                 /* set bank to 0 in case flash read fails */
984                 *bank = 0;
985
986                 /* Check bank 0 */
987                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
988                                                         &sig_byte);
989                 if (ret_val)
990                         return ret_val;
991                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
992                     E1000_ICH_NVM_SIG_VALUE) {
993                         *bank = 0;
994                         return 0;
995                 }
996
997                 /* Check bank 1 */
998                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
999                                                         bank1_offset,
1000                                                         &sig_byte);
1001                 if (ret_val)
1002                         return ret_val;
1003                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1004                     E1000_ICH_NVM_SIG_VALUE) {
1005                         *bank = 1;
1006                         return 0;
1007                 }
1008
1009                 hw_dbg(hw, "ERROR: No valid NVM bank present\n");
1010                 return -E1000_ERR_NVM;
1011         }
1012
1013         return 0;
1014 }
1015
1016 /**
1017  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
1018  *  @hw: pointer to the HW structure
1019  *  @offset: The offset (in bytes) of the word(s) to read.
1020  *  @words: Size of data to read in words
1021  *  @data: Pointer to the word(s) to read at offset.
1022  *
1023  *  Reads a word(s) from the NVM using the flash access registers.
1024  **/
1025 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1026                                   u16 *data)
1027 {
1028         struct e1000_nvm_info *nvm = &hw->nvm;
1029         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1030         u32 act_offset;
1031         s32 ret_val;
1032         u32 bank = 0;
1033         u16 i, word;
1034
1035         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1036             (words == 0)) {
1037                 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1038                 return -E1000_ERR_NVM;
1039         }
1040
1041         ret_val = e1000_acquire_swflag_ich8lan(hw);
1042         if (ret_val)
1043                 goto out;
1044
1045         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1046         if (ret_val)
1047                 goto release;
1048
1049         act_offset = (bank) ? nvm->flash_bank_size : 0;
1050         act_offset += offset;
1051
1052         for (i = 0; i < words; i++) {
1053                 if ((dev_spec->shadow_ram) &&
1054                     (dev_spec->shadow_ram[offset+i].modified)) {
1055                         data[i] = dev_spec->shadow_ram[offset+i].value;
1056                 } else {
1057                         ret_val = e1000_read_flash_word_ich8lan(hw,
1058                                                                 act_offset + i,
1059                                                                 &word);
1060                         if (ret_val)
1061                                 break;
1062                         data[i] = word;
1063                 }
1064         }
1065
1066 release:
1067         e1000_release_swflag_ich8lan(hw);
1068
1069 out:
1070         if (ret_val)
1071                 hw_dbg(hw, "NVM read error: %d\n", ret_val);
1072
1073         return ret_val;
1074 }
1075
1076 /**
1077  *  e1000_flash_cycle_init_ich8lan - Initialize flash
1078  *  @hw: pointer to the HW structure
1079  *
1080  *  This function does initial flash setup so that a new read/write/erase cycle
1081  *  can be started.
1082  **/
1083 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1084 {
1085         union ich8_hws_flash_status hsfsts;
1086         s32 ret_val = -E1000_ERR_NVM;
1087         s32 i = 0;
1088
1089         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1090
1091         /* Check if the flash descriptor is valid */
1092         if (hsfsts.hsf_status.fldesvalid == 0) {
1093                 hw_dbg(hw, "Flash descriptor invalid.  "
1094                          "SW Sequencing must be used.");
1095                 return -E1000_ERR_NVM;
1096         }
1097
1098         /* Clear FCERR and DAEL in hw status by writing 1 */
1099         hsfsts.hsf_status.flcerr = 1;
1100         hsfsts.hsf_status.dael = 1;
1101
1102         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1103
1104         /*
1105          * Either we should have a hardware SPI cycle in progress
1106          * bit to check against, in order to start a new cycle or
1107          * FDONE bit should be changed in the hardware so that it
1108          * is 1 after hardware reset, which can then be used as an
1109          * indication whether a cycle is in progress or has been
1110          * completed.
1111          */
1112
1113         if (hsfsts.hsf_status.flcinprog == 0) {
1114                 /*
1115                  * There is no cycle running at present,
1116                  * so we can start a cycle
1117                  * Begin by setting Flash Cycle Done.
1118                  */
1119                 hsfsts.hsf_status.flcdone = 1;
1120                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1121                 ret_val = 0;
1122         } else {
1123                 /*
1124                  * otherwise poll for sometime so the current
1125                  * cycle has a chance to end before giving up.
1126                  */
1127                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1128                         hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1129                         if (hsfsts.hsf_status.flcinprog == 0) {
1130                                 ret_val = 0;
1131                                 break;
1132                         }
1133                         udelay(1);
1134                 }
1135                 if (ret_val == 0) {
1136                         /*
1137                          * Successful in waiting for previous cycle to timeout,
1138                          * now set the Flash Cycle Done.
1139                          */
1140                         hsfsts.hsf_status.flcdone = 1;
1141                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1142                 } else {
1143                         hw_dbg(hw, "Flash controller busy, cannot get access");
1144                 }
1145         }
1146
1147         return ret_val;
1148 }
1149
1150 /**
1151  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1152  *  @hw: pointer to the HW structure
1153  *  @timeout: maximum time to wait for completion
1154  *
1155  *  This function starts a flash cycle and waits for its completion.
1156  **/
1157 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1158 {
1159         union ich8_hws_flash_ctrl hsflctl;
1160         union ich8_hws_flash_status hsfsts;
1161         s32 ret_val = -E1000_ERR_NVM;
1162         u32 i = 0;
1163
1164         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1165         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1166         hsflctl.hsf_ctrl.flcgo = 1;
1167         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1168
1169         /* wait till FDONE bit is set to 1 */
1170         do {
1171                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1172                 if (hsfsts.hsf_status.flcdone == 1)
1173                         break;
1174                 udelay(1);
1175         } while (i++ < timeout);
1176
1177         if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1178                 return 0;
1179
1180         return ret_val;
1181 }
1182
1183 /**
1184  *  e1000_read_flash_word_ich8lan - Read word from flash
1185  *  @hw: pointer to the HW structure
1186  *  @offset: offset to data location
1187  *  @data: pointer to the location for storing the data
1188  *
1189  *  Reads the flash word at offset into data.  Offset is converted
1190  *  to bytes before read.
1191  **/
1192 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1193                                          u16 *data)
1194 {
1195         /* Must convert offset into bytes. */
1196         offset <<= 1;
1197
1198         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1199 }
1200
1201 /**
1202  *  e1000_read_flash_byte_ich8lan - Read byte from flash
1203  *  @hw: pointer to the HW structure
1204  *  @offset: The offset of the byte to read.
1205  *  @data: Pointer to a byte to store the value read.
1206  *
1207  *  Reads a single byte from the NVM using the flash access registers.
1208  **/
1209 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1210                                          u8 *data)
1211 {
1212         s32 ret_val;
1213         u16 word = 0;
1214
1215         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1216         if (ret_val)
1217                 return ret_val;
1218
1219         *data = (u8)word;
1220
1221         return 0;
1222 }
1223
1224 /**
1225  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
1226  *  @hw: pointer to the HW structure
1227  *  @offset: The offset (in bytes) of the byte or word to read.
1228  *  @size: Size of data to read, 1=byte 2=word
1229  *  @data: Pointer to the word to store the value read.
1230  *
1231  *  Reads a byte or word from the NVM using the flash access registers.
1232  **/
1233 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1234                                          u8 size, u16 *data)
1235 {
1236         union ich8_hws_flash_status hsfsts;
1237         union ich8_hws_flash_ctrl hsflctl;
1238         u32 flash_linear_addr;
1239         u32 flash_data = 0;
1240         s32 ret_val = -E1000_ERR_NVM;
1241         u8 count = 0;
1242
1243         if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1244                 return -E1000_ERR_NVM;
1245
1246         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1247                             hw->nvm.flash_base_addr;
1248
1249         do {
1250                 udelay(1);
1251                 /* Steps */
1252                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1253                 if (ret_val != 0)
1254                         break;
1255
1256                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1257                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1258                 hsflctl.hsf_ctrl.fldbcount = size - 1;
1259                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1260                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1261
1262                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1263
1264                 ret_val = e1000_flash_cycle_ich8lan(hw,
1265                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
1266
1267                 /*
1268                  * Check if FCERR is set to 1, if set to 1, clear it
1269                  * and try the whole sequence a few more times, else
1270                  * read in (shift in) the Flash Data0, the order is
1271                  * least significant byte first msb to lsb
1272                  */
1273                 if (ret_val == 0) {
1274                         flash_data = er32flash(ICH_FLASH_FDATA0);
1275                         if (size == 1) {
1276                                 *data = (u8)(flash_data & 0x000000FF);
1277                         } else if (size == 2) {
1278                                 *data = (u16)(flash_data & 0x0000FFFF);
1279                         }
1280                         break;
1281                 } else {
1282                         /*
1283                          * If we've gotten here, then things are probably
1284                          * completely hosed, but if the error condition is
1285                          * detected, it won't hurt to give it another try...
1286                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1287                          */
1288                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1289                         if (hsfsts.hsf_status.flcerr == 1) {
1290                                 /* Repeat for some time before giving up. */
1291                                 continue;
1292                         } else if (hsfsts.hsf_status.flcdone == 0) {
1293                                 hw_dbg(hw, "Timeout error - flash cycle "
1294                                          "did not complete.");
1295                                 break;
1296                         }
1297                 }
1298         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1299
1300         return ret_val;
1301 }
1302
1303 /**
1304  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
1305  *  @hw: pointer to the HW structure
1306  *  @offset: The offset (in bytes) of the word(s) to write.
1307  *  @words: Size of data to write in words
1308  *  @data: Pointer to the word(s) to write at offset.
1309  *
1310  *  Writes a byte or word to the NVM using the flash access registers.
1311  **/
1312 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1313                                    u16 *data)
1314 {
1315         struct e1000_nvm_info *nvm = &hw->nvm;
1316         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1317         s32 ret_val;
1318         u16 i;
1319
1320         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1321             (words == 0)) {
1322                 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1323                 return -E1000_ERR_NVM;
1324         }
1325
1326         ret_val = e1000_acquire_swflag_ich8lan(hw);
1327         if (ret_val)
1328                 return ret_val;
1329
1330         for (i = 0; i < words; i++) {
1331                 dev_spec->shadow_ram[offset+i].modified = 1;
1332                 dev_spec->shadow_ram[offset+i].value = data[i];
1333         }
1334
1335         e1000_release_swflag_ich8lan(hw);
1336
1337         return 0;
1338 }
1339
1340 /**
1341  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1342  *  @hw: pointer to the HW structure
1343  *
1344  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
1345  *  which writes the checksum to the shadow ram.  The changes in the shadow
1346  *  ram are then committed to the EEPROM by processing each bank at a time
1347  *  checking for the modified bit and writing only the pending changes.
1348  *  After a successful commit, the shadow ram is cleared and is ready for
1349  *  future writes.
1350  **/
1351 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1352 {
1353         struct e1000_nvm_info *nvm = &hw->nvm;
1354         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1355         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
1356         s32 ret_val;
1357         u16 data;
1358
1359         ret_val = e1000e_update_nvm_checksum_generic(hw);
1360         if (ret_val)
1361                 goto out;
1362
1363         if (nvm->type != e1000_nvm_flash_sw)
1364                 goto out;
1365
1366         ret_val = e1000_acquire_swflag_ich8lan(hw);
1367         if (ret_val)
1368                 goto out;
1369
1370         /*
1371          * We're writing to the opposite bank so if we're on bank 1,
1372          * write to bank 0 etc.  We also need to erase the segment that
1373          * is going to be written
1374          */
1375         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1376         if (ret_val) {
1377                 e1000_release_swflag_ich8lan(hw);
1378                 goto out;
1379         }
1380
1381         if (bank == 0) {
1382                 new_bank_offset = nvm->flash_bank_size;
1383                 old_bank_offset = 0;
1384                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
1385                 if (ret_val) {
1386                         e1000_release_swflag_ich8lan(hw);
1387                         goto out;
1388                 }
1389         } else {
1390                 old_bank_offset = nvm->flash_bank_size;
1391                 new_bank_offset = 0;
1392                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
1393                 if (ret_val) {
1394                         e1000_release_swflag_ich8lan(hw);
1395                         goto out;
1396                 }
1397         }
1398
1399         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1400                 /*
1401                  * Determine whether to write the value stored
1402                  * in the other NVM bank or a modified value stored
1403                  * in the shadow RAM
1404                  */
1405                 if (dev_spec->shadow_ram[i].modified) {
1406                         data = dev_spec->shadow_ram[i].value;
1407                 } else {
1408                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
1409                                                                 old_bank_offset,
1410                                                                 &data);
1411                         if (ret_val)
1412                                 break;
1413                 }
1414
1415                 /*
1416                  * If the word is 0x13, then make sure the signature bits
1417                  * (15:14) are 11b until the commit has completed.
1418                  * This will allow us to write 10b which indicates the
1419                  * signature is valid.  We want to do this after the write
1420                  * has completed so that we don't mark the segment valid
1421                  * while the write is still in progress
1422                  */
1423                 if (i == E1000_ICH_NVM_SIG_WORD)
1424                         data |= E1000_ICH_NVM_SIG_MASK;
1425
1426                 /* Convert offset to bytes. */
1427                 act_offset = (i + new_bank_offset) << 1;
1428
1429                 udelay(100);
1430                 /* Write the bytes to the new bank. */
1431                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1432                                                                act_offset,
1433                                                                (u8)data);
1434                 if (ret_val)
1435                         break;
1436
1437                 udelay(100);
1438                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1439                                                           act_offset + 1,
1440                                                           (u8)(data >> 8));
1441                 if (ret_val)
1442                         break;
1443         }
1444
1445         /*
1446          * Don't bother writing the segment valid bits if sector
1447          * programming failed.
1448          */
1449         if (ret_val) {
1450                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
1451                 hw_dbg(hw, "Flash commit failed.\n");
1452                 e1000_release_swflag_ich8lan(hw);
1453                 goto out;
1454         }
1455
1456         /*
1457          * Finally validate the new segment by setting bit 15:14
1458          * to 10b in word 0x13 , this can be done without an
1459          * erase as well since these bits are 11 to start with
1460          * and we need to change bit 14 to 0b
1461          */
1462         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
1463         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
1464         if (ret_val) {
1465                 e1000_release_swflag_ich8lan(hw);
1466                 goto out;
1467         }
1468         data &= 0xBFFF;
1469         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1470                                                        act_offset * 2 + 1,
1471                                                        (u8)(data >> 8));
1472         if (ret_val) {
1473                 e1000_release_swflag_ich8lan(hw);
1474                 goto out;
1475         }
1476
1477         /*
1478          * And invalidate the previously valid segment by setting
1479          * its signature word (0x13) high_byte to 0b. This can be
1480          * done without an erase because flash erase sets all bits
1481          * to 1's. We can write 1's to 0's without an erase
1482          */
1483         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
1484         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
1485         if (ret_val) {
1486                 e1000_release_swflag_ich8lan(hw);
1487                 goto out;
1488         }
1489
1490         /* Great!  Everything worked, we can now clear the cached entries. */
1491         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1492                 dev_spec->shadow_ram[i].modified = 0;
1493                 dev_spec->shadow_ram[i].value = 0xFFFF;
1494         }
1495
1496         e1000_release_swflag_ich8lan(hw);
1497
1498         /*
1499          * Reload the EEPROM, or else modifications will not appear
1500          * until after the next adapter reset.
1501          */
1502         e1000e_reload_nvm(hw);
1503         msleep(10);
1504
1505 out:
1506         if (ret_val)
1507                 hw_dbg(hw, "NVM update error: %d\n", ret_val);
1508
1509         return ret_val;
1510 }
1511
1512 /**
1513  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1514  *  @hw: pointer to the HW structure
1515  *
1516  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1517  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
1518  *  calculated, in which case we need to calculate the checksum and set bit 6.
1519  **/
1520 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
1521 {
1522         s32 ret_val;
1523         u16 data;
1524
1525         /*
1526          * Read 0x19 and check bit 6.  If this bit is 0, the checksum
1527          * needs to be fixed.  This bit is an indication that the NVM
1528          * was prepared by OEM software and did not calculate the
1529          * checksum...a likely scenario.
1530          */
1531         ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
1532         if (ret_val)
1533                 return ret_val;
1534
1535         if ((data & 0x40) == 0) {
1536                 data |= 0x40;
1537                 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
1538                 if (ret_val)
1539                         return ret_val;
1540                 ret_val = e1000e_update_nvm_checksum(hw);
1541                 if (ret_val)
1542                         return ret_val;
1543         }
1544
1545         return e1000e_validate_nvm_checksum_generic(hw);
1546 }
1547
1548 /**
1549  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
1550  *  @hw: pointer to the HW structure
1551  *
1552  *  To prevent malicious write/erase of the NVM, set it to be read-only
1553  *  so that the hardware ignores all write/erase cycles of the NVM via
1554  *  the flash control registers.  The shadow-ram copy of the NVM will
1555  *  still be updated, however any updates to this copy will not stick
1556  *  across driver reloads.
1557  **/
1558 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
1559 {
1560         union ich8_flash_protected_range pr0;
1561         union ich8_hws_flash_status hsfsts;
1562         u32 gfpreg;
1563         s32 ret_val;
1564
1565         ret_val = e1000_acquire_swflag_ich8lan(hw);
1566         if (ret_val)
1567                 return;
1568
1569         gfpreg = er32flash(ICH_FLASH_GFPREG);
1570
1571         /* Write-protect GbE Sector of NVM */
1572         pr0.regval = er32flash(ICH_FLASH_PR0);
1573         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
1574         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
1575         pr0.range.wpe = true;
1576         ew32flash(ICH_FLASH_PR0, pr0.regval);
1577
1578         /*
1579          * Lock down a subset of GbE Flash Control Registers, e.g.
1580          * PR0 to prevent the write-protection from being lifted.
1581          * Once FLOCKDN is set, the registers protected by it cannot
1582          * be written until FLOCKDN is cleared by a hardware reset.
1583          */
1584         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1585         hsfsts.hsf_status.flockdn = true;
1586         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1587
1588         e1000_release_swflag_ich8lan(hw);
1589 }
1590
1591 /**
1592  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
1593  *  @hw: pointer to the HW structure
1594  *  @offset: The offset (in bytes) of the byte/word to read.
1595  *  @size: Size of data to read, 1=byte 2=word
1596  *  @data: The byte(s) to write to the NVM.
1597  *
1598  *  Writes one/two bytes to the NVM using the flash access registers.
1599  **/
1600 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1601                                           u8 size, u16 data)
1602 {
1603         union ich8_hws_flash_status hsfsts;
1604         union ich8_hws_flash_ctrl hsflctl;
1605         u32 flash_linear_addr;
1606         u32 flash_data = 0;
1607         s32 ret_val;
1608         u8 count = 0;
1609
1610         if (size < 1 || size > 2 || data > size * 0xff ||
1611             offset > ICH_FLASH_LINEAR_ADDR_MASK)
1612                 return -E1000_ERR_NVM;
1613
1614         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1615                             hw->nvm.flash_base_addr;
1616
1617         do {
1618                 udelay(1);
1619                 /* Steps */
1620                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1621                 if (ret_val)
1622                         break;
1623
1624                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1625                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1626                 hsflctl.hsf_ctrl.fldbcount = size -1;
1627                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
1628                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1629
1630                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1631
1632                 if (size == 1)
1633                         flash_data = (u32)data & 0x00FF;
1634                 else
1635                         flash_data = (u32)data;
1636
1637                 ew32flash(ICH_FLASH_FDATA0, flash_data);
1638
1639                 /*
1640                  * check if FCERR is set to 1 , if set to 1, clear it
1641                  * and try the whole sequence a few more times else done
1642                  */
1643                 ret_val = e1000_flash_cycle_ich8lan(hw,
1644                                                ICH_FLASH_WRITE_COMMAND_TIMEOUT);
1645                 if (!ret_val)
1646                         break;
1647
1648                 /*
1649                  * If we're here, then things are most likely
1650                  * completely hosed, but if the error condition
1651                  * is detected, it won't hurt to give it another
1652                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
1653                  */
1654                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1655                 if (hsfsts.hsf_status.flcerr == 1)
1656                         /* Repeat for some time before giving up. */
1657                         continue;
1658                 if (hsfsts.hsf_status.flcdone == 0) {
1659                         hw_dbg(hw, "Timeout error - flash cycle "
1660                                  "did not complete.");
1661                         break;
1662                 }
1663         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1664
1665         return ret_val;
1666 }
1667
1668 /**
1669  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
1670  *  @hw: pointer to the HW structure
1671  *  @offset: The index of the byte to read.
1672  *  @data: The byte to write to the NVM.
1673  *
1674  *  Writes a single byte to the NVM using the flash access registers.
1675  **/
1676 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1677                                           u8 data)
1678 {
1679         u16 word = (u16)data;
1680
1681         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
1682 }
1683
1684 /**
1685  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
1686  *  @hw: pointer to the HW structure
1687  *  @offset: The offset of the byte to write.
1688  *  @byte: The byte to write to the NVM.
1689  *
1690  *  Writes a single byte to the NVM using the flash access registers.
1691  *  Goes through a retry algorithm before giving up.
1692  **/
1693 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
1694                                                 u32 offset, u8 byte)
1695 {
1696         s32 ret_val;
1697         u16 program_retries;
1698
1699         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1700         if (!ret_val)
1701                 return ret_val;
1702
1703         for (program_retries = 0; program_retries < 100; program_retries++) {
1704                 hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
1705                 udelay(100);
1706                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1707                 if (!ret_val)
1708                         break;
1709         }
1710         if (program_retries == 100)
1711                 return -E1000_ERR_NVM;
1712
1713         return 0;
1714 }
1715
1716 /**
1717  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
1718  *  @hw: pointer to the HW structure
1719  *  @bank: 0 for first bank, 1 for second bank, etc.
1720  *
1721  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
1722  *  bank N is 4096 * N + flash_reg_addr.
1723  **/
1724 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
1725 {
1726         struct e1000_nvm_info *nvm = &hw->nvm;
1727         union ich8_hws_flash_status hsfsts;
1728         union ich8_hws_flash_ctrl hsflctl;
1729         u32 flash_linear_addr;
1730         /* bank size is in 16bit words - adjust to bytes */
1731         u32 flash_bank_size = nvm->flash_bank_size * 2;
1732         s32 ret_val;
1733         s32 count = 0;
1734         s32 iteration;
1735         s32 sector_size;
1736         s32 j;
1737
1738         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1739
1740         /*
1741          * Determine HW Sector size: Read BERASE bits of hw flash status
1742          * register
1743          * 00: The Hw sector is 256 bytes, hence we need to erase 16
1744          *     consecutive sectors.  The start index for the nth Hw sector
1745          *     can be calculated as = bank * 4096 + n * 256
1746          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
1747          *     The start index for the nth Hw sector can be calculated
1748          *     as = bank * 4096
1749          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
1750          *     (ich9 only, otherwise error condition)
1751          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
1752          */
1753         switch (hsfsts.hsf_status.berasesz) {
1754         case 0:
1755                 /* Hw sector size 256 */
1756                 sector_size = ICH_FLASH_SEG_SIZE_256;
1757                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
1758                 break;
1759         case 1:
1760                 sector_size = ICH_FLASH_SEG_SIZE_4K;
1761                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_4K;
1762                 break;
1763         case 2:
1764                 if (hw->mac.type == e1000_ich9lan) {
1765                         sector_size = ICH_FLASH_SEG_SIZE_8K;
1766                         iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
1767                 } else {
1768                         return -E1000_ERR_NVM;
1769                 }
1770                 break;
1771         case 3:
1772                 sector_size = ICH_FLASH_SEG_SIZE_64K;
1773                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_64K;
1774                 break;
1775         default:
1776                 return -E1000_ERR_NVM;
1777         }
1778
1779         /* Start with the base address, then add the sector offset. */
1780         flash_linear_addr = hw->nvm.flash_base_addr;
1781         flash_linear_addr += (bank) ? (sector_size * iteration) : 0;
1782
1783         for (j = 0; j < iteration ; j++) {
1784                 do {
1785                         /* Steps */
1786                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
1787                         if (ret_val)
1788                                 return ret_val;
1789
1790                         /*
1791                          * Write a value 11 (block Erase) in Flash
1792                          * Cycle field in hw flash control
1793                          */
1794                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1795                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
1796                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1797
1798                         /*
1799                          * Write the last 24 bits of an index within the
1800                          * block into Flash Linear address field in Flash
1801                          * Address.
1802                          */
1803                         flash_linear_addr += (j * sector_size);
1804                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1805
1806                         ret_val = e1000_flash_cycle_ich8lan(hw,
1807                                                ICH_FLASH_ERASE_COMMAND_TIMEOUT);
1808                         if (ret_val == 0)
1809                                 break;
1810
1811                         /*
1812                          * Check if FCERR is set to 1.  If 1,
1813                          * clear it and try the whole sequence
1814                          * a few more times else Done
1815                          */
1816                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1817                         if (hsfsts.hsf_status.flcerr == 1)
1818                                 /* repeat for some time before giving up */
1819                                 continue;
1820                         else if (hsfsts.hsf_status.flcdone == 0)
1821                                 return ret_val;
1822                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
1823         }
1824
1825         return 0;
1826 }
1827
1828 /**
1829  *  e1000_valid_led_default_ich8lan - Set the default LED settings
1830  *  @hw: pointer to the HW structure
1831  *  @data: Pointer to the LED settings
1832  *
1833  *  Reads the LED default settings from the NVM to data.  If the NVM LED
1834  *  settings is all 0's or F's, set the LED default to a valid LED default
1835  *  setting.
1836  **/
1837 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
1838 {
1839         s32 ret_val;
1840
1841         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1842         if (ret_val) {
1843                 hw_dbg(hw, "NVM Read Error\n");
1844                 return ret_val;
1845         }
1846
1847         if (*data == ID_LED_RESERVED_0000 ||
1848             *data == ID_LED_RESERVED_FFFF)
1849                 *data = ID_LED_DEFAULT_ICH8LAN;
1850
1851         return 0;
1852 }
1853
1854 /**
1855  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
1856  *  @hw: pointer to the HW structure
1857  *
1858  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
1859  *  register, so the the bus width is hard coded.
1860  **/
1861 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
1862 {
1863         struct e1000_bus_info *bus = &hw->bus;
1864         s32 ret_val;
1865
1866         ret_val = e1000e_get_bus_info_pcie(hw);
1867
1868         /*
1869          * ICH devices are "PCI Express"-ish.  They have
1870          * a configuration space, but do not contain
1871          * PCI Express Capability registers, so bus width
1872          * must be hardcoded.
1873          */
1874         if (bus->width == e1000_bus_width_unknown)
1875                 bus->width = e1000_bus_width_pcie_x1;
1876
1877         return ret_val;
1878 }
1879
1880 /**
1881  *  e1000_reset_hw_ich8lan - Reset the hardware
1882  *  @hw: pointer to the HW structure
1883  *
1884  *  Does a full reset of the hardware which includes a reset of the PHY and
1885  *  MAC.
1886  **/
1887 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
1888 {
1889         u32 ctrl, icr, kab;
1890         s32 ret_val;
1891
1892         /*
1893          * Prevent the PCI-E bus from sticking if there is no TLP connection
1894          * on the last TLP read/write transaction when MAC is reset.
1895          */
1896         ret_val = e1000e_disable_pcie_master(hw);
1897         if (ret_val) {
1898                 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
1899         }
1900
1901         hw_dbg(hw, "Masking off all interrupts\n");
1902         ew32(IMC, 0xffffffff);
1903
1904         /*
1905          * Disable the Transmit and Receive units.  Then delay to allow
1906          * any pending transactions to complete before we hit the MAC
1907          * with the global reset.
1908          */
1909         ew32(RCTL, 0);
1910         ew32(TCTL, E1000_TCTL_PSP);
1911         e1e_flush();
1912
1913         msleep(10);
1914
1915         /* Workaround for ICH8 bit corruption issue in FIFO memory */
1916         if (hw->mac.type == e1000_ich8lan) {
1917                 /* Set Tx and Rx buffer allocation to 8k apiece. */
1918                 ew32(PBA, E1000_PBA_8K);
1919                 /* Set Packet Buffer Size to 16k. */
1920                 ew32(PBS, E1000_PBS_16K);
1921         }
1922
1923         ctrl = er32(CTRL);
1924
1925         if (!e1000_check_reset_block(hw)) {
1926                 /*
1927                  * PHY HW reset requires MAC CORE reset at the same
1928                  * time to make sure the interface between MAC and the
1929                  * external PHY is reset.
1930                  */
1931                 ctrl |= E1000_CTRL_PHY_RST;
1932         }
1933         ret_val = e1000_acquire_swflag_ich8lan(hw);
1934         /* Whether or not the swflag was acquired, we need to reset the part */
1935         hw_dbg(hw, "Issuing a global reset to ich8lan\n");
1936         ew32(CTRL, (ctrl | E1000_CTRL_RST));
1937         msleep(20);
1938
1939         if (!ret_val) {
1940                 /* release the swflag because it is not reset by
1941                  * hardware reset
1942                  */
1943                 e1000_release_swflag_ich8lan(hw);
1944         }
1945
1946         ret_val = e1000e_get_auto_rd_done(hw);
1947         if (ret_val) {
1948                 /*
1949                  * When auto config read does not complete, do not
1950                  * return with an error. This can happen in situations
1951                  * where there is no eeprom and prevents getting link.
1952                  */
1953                 hw_dbg(hw, "Auto Read Done did not complete\n");
1954         }
1955
1956         ew32(IMC, 0xffffffff);
1957         icr = er32(ICR);
1958
1959         kab = er32(KABGTXD);
1960         kab |= E1000_KABGTXD_BGSQLBIAS;
1961         ew32(KABGTXD, kab);
1962
1963         return ret_val;
1964 }
1965
1966 /**
1967  *  e1000_init_hw_ich8lan - Initialize the hardware
1968  *  @hw: pointer to the HW structure
1969  *
1970  *  Prepares the hardware for transmit and receive by doing the following:
1971  *   - initialize hardware bits
1972  *   - initialize LED identification
1973  *   - setup receive address registers
1974  *   - setup flow control
1975  *   - setup transmit descriptors
1976  *   - clear statistics
1977  **/
1978 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
1979 {
1980         struct e1000_mac_info *mac = &hw->mac;
1981         u32 ctrl_ext, txdctl, snoop;
1982         s32 ret_val;
1983         u16 i;
1984
1985         e1000_initialize_hw_bits_ich8lan(hw);
1986
1987         /* Initialize identification LED */
1988         ret_val = e1000e_id_led_init(hw);
1989         if (ret_val) {
1990                 hw_dbg(hw, "Error initializing identification LED\n");
1991                 return ret_val;
1992         }
1993
1994         /* Setup the receive address. */
1995         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
1996
1997         /* Zero out the Multicast HASH table */
1998         hw_dbg(hw, "Zeroing the MTA\n");
1999         for (i = 0; i < mac->mta_reg_count; i++)
2000                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
2001
2002         /* Setup link and flow control */
2003         ret_val = e1000_setup_link_ich8lan(hw);
2004
2005         /* Set the transmit descriptor write-back policy for both queues */
2006         txdctl = er32(TXDCTL(0));
2007         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2008                  E1000_TXDCTL_FULL_TX_DESC_WB;
2009         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2010                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2011         ew32(TXDCTL(0), txdctl);
2012         txdctl = er32(TXDCTL(1));
2013         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2014                  E1000_TXDCTL_FULL_TX_DESC_WB;
2015         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2016                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2017         ew32(TXDCTL(1), txdctl);
2018
2019         /*
2020          * ICH8 has opposite polarity of no_snoop bits.
2021          * By default, we should use snoop behavior.
2022          */
2023         if (mac->type == e1000_ich8lan)
2024                 snoop = PCIE_ICH8_SNOOP_ALL;
2025         else
2026                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
2027         e1000e_set_pcie_no_snoop(hw, snoop);
2028
2029         ctrl_ext = er32(CTRL_EXT);
2030         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2031         ew32(CTRL_EXT, ctrl_ext);
2032
2033         /*
2034          * Clear all of the statistics registers (clear on read).  It is
2035          * important that we do this after we have tried to establish link
2036          * because the symbol error count will increment wildly if there
2037          * is no link.
2038          */
2039         e1000_clear_hw_cntrs_ich8lan(hw);
2040
2041         return 0;
2042 }
2043 /**
2044  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2045  *  @hw: pointer to the HW structure
2046  *
2047  *  Sets/Clears required hardware bits necessary for correctly setting up the
2048  *  hardware for transmit and receive.
2049  **/
2050 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2051 {
2052         u32 reg;
2053
2054         /* Extended Device Control */
2055         reg = er32(CTRL_EXT);
2056         reg |= (1 << 22);
2057         ew32(CTRL_EXT, reg);
2058
2059         /* Transmit Descriptor Control 0 */
2060         reg = er32(TXDCTL(0));
2061         reg |= (1 << 22);
2062         ew32(TXDCTL(0), reg);
2063
2064         /* Transmit Descriptor Control 1 */
2065         reg = er32(TXDCTL(1));
2066         reg |= (1 << 22);
2067         ew32(TXDCTL(1), reg);
2068
2069         /* Transmit Arbitration Control 0 */
2070         reg = er32(TARC(0));
2071         if (hw->mac.type == e1000_ich8lan)
2072                 reg |= (1 << 28) | (1 << 29);
2073         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
2074         ew32(TARC(0), reg);
2075
2076         /* Transmit Arbitration Control 1 */
2077         reg = er32(TARC(1));
2078         if (er32(TCTL) & E1000_TCTL_MULR)
2079                 reg &= ~(1 << 28);
2080         else
2081                 reg |= (1 << 28);
2082         reg |= (1 << 24) | (1 << 26) | (1 << 30);
2083         ew32(TARC(1), reg);
2084
2085         /* Device Status */
2086         if (hw->mac.type == e1000_ich8lan) {
2087                 reg = er32(STATUS);
2088                 reg &= ~(1 << 31);
2089                 ew32(STATUS, reg);
2090         }
2091 }
2092
2093 /**
2094  *  e1000_setup_link_ich8lan - Setup flow control and link settings
2095  *  @hw: pointer to the HW structure
2096  *
2097  *  Determines which flow control settings to use, then configures flow
2098  *  control.  Calls the appropriate media-specific link configuration
2099  *  function.  Assuming the adapter has a valid link partner, a valid link
2100  *  should be established.  Assumes the hardware has previously been reset
2101  *  and the transmitter and receiver are not enabled.
2102  **/
2103 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2104 {
2105         s32 ret_val;
2106
2107         if (e1000_check_reset_block(hw))
2108                 return 0;
2109
2110         /*
2111          * ICH parts do not have a word in the NVM to determine
2112          * the default flow control setting, so we explicitly
2113          * set it to full.
2114          */
2115         if (hw->fc.requested_mode == e1000_fc_default)
2116                 hw->fc.requested_mode = e1000_fc_full;
2117
2118         /*
2119          * Save off the requested flow control mode for use later.  Depending
2120          * on the link partner's capabilities, we may or may not use this mode.
2121          */
2122         hw->fc.current_mode = hw->fc.requested_mode;
2123
2124         hw_dbg(hw, "After fix-ups FlowControl is now = %x\n",
2125                 hw->fc.current_mode);
2126
2127         /* Continue to configure the copper link. */
2128         ret_val = e1000_setup_copper_link_ich8lan(hw);
2129         if (ret_val)
2130                 return ret_val;
2131
2132         ew32(FCTTV, hw->fc.pause_time);
2133
2134         return e1000e_set_fc_watermarks(hw);
2135 }
2136
2137 /**
2138  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2139  *  @hw: pointer to the HW structure
2140  *
2141  *  Configures the kumeran interface to the PHY to wait the appropriate time
2142  *  when polling the PHY, then call the generic setup_copper_link to finish
2143  *  configuring the copper link.
2144  **/
2145 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2146 {
2147         u32 ctrl;
2148         s32 ret_val;
2149         u16 reg_data;
2150
2151         ctrl = er32(CTRL);
2152         ctrl |= E1000_CTRL_SLU;
2153         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2154         ew32(CTRL, ctrl);
2155
2156         /*
2157          * Set the mac to wait the maximum time between each iteration
2158          * and increase the max iterations when polling the phy;
2159          * this fixes erroneous timeouts at 10Mbps.
2160          */
2161         ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
2162         if (ret_val)
2163                 return ret_val;
2164         ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
2165         if (ret_val)
2166                 return ret_val;
2167         reg_data |= 0x3F;
2168         ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
2169         if (ret_val)
2170                 return ret_val;
2171
2172         if (hw->phy.type == e1000_phy_igp_3) {
2173                 ret_val = e1000e_copper_link_setup_igp(hw);
2174                 if (ret_val)
2175                         return ret_val;
2176         } else if (hw->phy.type == e1000_phy_bm) {
2177                 ret_val = e1000e_copper_link_setup_m88(hw);
2178                 if (ret_val)
2179                         return ret_val;
2180         }
2181
2182         if (hw->phy.type == e1000_phy_ife) {
2183                 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
2184                 if (ret_val)
2185                         return ret_val;
2186
2187                 reg_data &= ~IFE_PMC_AUTO_MDIX;
2188
2189                 switch (hw->phy.mdix) {
2190                 case 1:
2191                         reg_data &= ~IFE_PMC_FORCE_MDIX;
2192                         break;
2193                 case 2:
2194                         reg_data |= IFE_PMC_FORCE_MDIX;
2195                         break;
2196                 case 0:
2197                 default:
2198                         reg_data |= IFE_PMC_AUTO_MDIX;
2199                         break;
2200                 }
2201                 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
2202                 if (ret_val)
2203                         return ret_val;
2204         }
2205         return e1000e_setup_copper_link(hw);
2206 }
2207
2208 /**
2209  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2210  *  @hw: pointer to the HW structure
2211  *  @speed: pointer to store current link speed
2212  *  @duplex: pointer to store the current link duplex
2213  *
2214  *  Calls the generic get_speed_and_duplex to retrieve the current link
2215  *  information and then calls the Kumeran lock loss workaround for links at
2216  *  gigabit speeds.
2217  **/
2218 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2219                                           u16 *duplex)
2220 {
2221         s32 ret_val;
2222
2223         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2224         if (ret_val)
2225                 return ret_val;
2226
2227         if ((hw->mac.type == e1000_ich8lan) &&
2228             (hw->phy.type == e1000_phy_igp_3) &&
2229             (*speed == SPEED_1000)) {
2230                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
2231         }
2232
2233         return ret_val;
2234 }
2235
2236 /**
2237  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2238  *  @hw: pointer to the HW structure
2239  *
2240  *  Work-around for 82566 Kumeran PCS lock loss:
2241  *  On link status change (i.e. PCI reset, speed change) and link is up and
2242  *  speed is gigabit-
2243  *    0) if workaround is optionally disabled do nothing
2244  *    1) wait 1ms for Kumeran link to come up
2245  *    2) check Kumeran Diagnostic register PCS lock loss bit
2246  *    3) if not set the link is locked (all is good), otherwise...
2247  *    4) reset the PHY
2248  *    5) repeat up to 10 times
2249  *  Note: this is only called for IGP3 copper when speed is 1gb.
2250  **/
2251 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2252 {
2253         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2254         u32 phy_ctrl;
2255         s32 ret_val;
2256         u16 i, data;
2257         bool link;
2258
2259         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
2260                 return 0;
2261
2262         /*
2263          * Make sure link is up before proceeding.  If not just return.
2264          * Attempting this while link is negotiating fouled up link
2265          * stability
2266          */
2267         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2268         if (!link)
2269                 return 0;
2270
2271         for (i = 0; i < 10; i++) {
2272                 /* read once to clear */
2273                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2274                 if (ret_val)
2275                         return ret_val;
2276                 /* and again to get new status */
2277                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2278                 if (ret_val)
2279                         return ret_val;
2280
2281                 /* check for PCS lock */
2282                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2283                         return 0;
2284
2285                 /* Issue PHY reset */
2286                 e1000_phy_hw_reset(hw);
2287                 mdelay(5);
2288         }
2289         /* Disable GigE link negotiation */
2290         phy_ctrl = er32(PHY_CTRL);
2291         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
2292                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2293         ew32(PHY_CTRL, phy_ctrl);
2294
2295         /*
2296          * Call gig speed drop workaround on Gig disable before accessing
2297          * any PHY registers
2298          */
2299         e1000e_gig_downshift_workaround_ich8lan(hw);
2300
2301         /* unable to acquire PCS lock */
2302         return -E1000_ERR_PHY;
2303 }
2304
2305 /**
2306  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
2307  *  @hw: pointer to the HW structure
2308  *  @state: boolean value used to set the current Kumeran workaround state
2309  *
2310  *  If ICH8, set the current Kumeran workaround state (enabled - TRUE
2311  *  /disabled - FALSE).
2312  **/
2313 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
2314                                                  bool state)
2315 {
2316         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2317
2318         if (hw->mac.type != e1000_ich8lan) {
2319                 hw_dbg(hw, "Workaround applies to ICH8 only.\n");
2320                 return;
2321         }
2322
2323         dev_spec->kmrn_lock_loss_workaround_enabled = state;
2324 }
2325
2326 /**
2327  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2328  *  @hw: pointer to the HW structure
2329  *
2330  *  Workaround for 82566 power-down on D3 entry:
2331  *    1) disable gigabit link
2332  *    2) write VR power-down enable
2333  *    3) read it back
2334  *  Continue if successful, else issue LCD reset and repeat
2335  **/
2336 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
2337 {
2338         u32 reg;
2339         u16 data;
2340         u8  retry = 0;
2341
2342         if (hw->phy.type != e1000_phy_igp_3)
2343                 return;
2344
2345         /* Try the workaround twice (if needed) */
2346         do {
2347                 /* Disable link */
2348                 reg = er32(PHY_CTRL);
2349                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
2350                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2351                 ew32(PHY_CTRL, reg);
2352
2353                 /*
2354                  * Call gig speed drop workaround on Gig disable before
2355                  * accessing any PHY registers
2356                  */
2357                 if (hw->mac.type == e1000_ich8lan)
2358                         e1000e_gig_downshift_workaround_ich8lan(hw);
2359
2360                 /* Write VR power-down enable */
2361                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2362                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2363                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
2364
2365                 /* Read it back and test */
2366                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2367                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2368                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
2369                         break;
2370
2371                 /* Issue PHY reset and repeat at most one more time */
2372                 reg = er32(CTRL);
2373                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
2374                 retry++;
2375         } while (retry);
2376 }
2377
2378 /**
2379  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2380  *  @hw: pointer to the HW structure
2381  *
2382  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
2383  *  LPLU, Gig disable, MDIC PHY reset):
2384  *    1) Set Kumeran Near-end loopback
2385  *    2) Clear Kumeran Near-end loopback
2386  *  Should only be called for ICH8[m] devices with IGP_3 Phy.
2387  **/
2388 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
2389 {
2390         s32 ret_val;
2391         u16 reg_data;
2392
2393         if ((hw->mac.type != e1000_ich8lan) ||
2394             (hw->phy.type != e1000_phy_igp_3))
2395                 return;
2396
2397         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2398                                       &reg_data);
2399         if (ret_val)
2400                 return;
2401         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
2402         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2403                                        reg_data);
2404         if (ret_val)
2405                 return;
2406         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
2407         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2408                                        reg_data);
2409 }
2410
2411 /**
2412  *  e1000e_disable_gig_wol_ich8lan - disable gig during WoL
2413  *  @hw: pointer to the HW structure
2414  *
2415  *  During S0 to Sx transition, it is possible the link remains at gig
2416  *  instead of negotiating to a lower speed.  Before going to Sx, set
2417  *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
2418  *  to a lower speed.
2419  *
2420  *  Should only be called for ICH9 and ICH10 devices.
2421  **/
2422 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
2423 {
2424         u32 phy_ctrl;
2425
2426         if ((hw->mac.type == e1000_ich10lan) ||
2427             (hw->mac.type == e1000_ich9lan)) {
2428                 phy_ctrl = er32(PHY_CTRL);
2429                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
2430                             E1000_PHY_CTRL_GBE_DISABLE;
2431                 ew32(PHY_CTRL, phy_ctrl);
2432         }
2433
2434         return;
2435 }
2436
2437 /**
2438  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
2439  *  @hw: pointer to the HW structure
2440  *
2441  *  Return the LED back to the default configuration.
2442  **/
2443 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
2444 {
2445         if (hw->phy.type == e1000_phy_ife)
2446                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
2447
2448         ew32(LEDCTL, hw->mac.ledctl_default);
2449         return 0;
2450 }
2451
2452 /**
2453  *  e1000_led_on_ich8lan - Turn LEDs on
2454  *  @hw: pointer to the HW structure
2455  *
2456  *  Turn on the LEDs.
2457  **/
2458 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
2459 {
2460         if (hw->phy.type == e1000_phy_ife)
2461                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2462                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
2463
2464         ew32(LEDCTL, hw->mac.ledctl_mode2);
2465         return 0;
2466 }
2467
2468 /**
2469  *  e1000_led_off_ich8lan - Turn LEDs off
2470  *  @hw: pointer to the HW structure
2471  *
2472  *  Turn off the LEDs.
2473  **/
2474 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
2475 {
2476         if (hw->phy.type == e1000_phy_ife)
2477                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2478                                (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
2479
2480         ew32(LEDCTL, hw->mac.ledctl_mode1);
2481         return 0;
2482 }
2483
2484 /**
2485  *  e1000_get_cfg_done_ich8lan - Read config done bit
2486  *  @hw: pointer to the HW structure
2487  *
2488  *  Read the management control register for the config done bit for
2489  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
2490  *  to read the config done bit, so an error is *ONLY* logged and returns
2491  *  E1000_SUCCESS.  If we were to return with error, EEPROM-less silicon
2492  *  would not be able to be reset or change link.
2493  **/
2494 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
2495 {
2496         u32 bank = 0;
2497
2498         e1000e_get_cfg_done(hw);
2499
2500         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
2501         if (hw->mac.type != e1000_ich10lan) {
2502                 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
2503                     (hw->phy.type == e1000_phy_igp_3)) {
2504                         e1000e_phy_init_script_igp3(hw);
2505                 }
2506         } else {
2507                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
2508                         /* Maybe we should do a basic PHY config */
2509                         hw_dbg(hw, "EEPROM not present\n");
2510                         return -E1000_ERR_CONFIG;
2511                 }
2512         }
2513
2514         return 0;
2515 }
2516
2517 /**
2518  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
2519  *  @hw: pointer to the HW structure
2520  *
2521  *  Clears hardware counters specific to the silicon family and calls
2522  *  clear_hw_cntrs_generic to clear all general purpose counters.
2523  **/
2524 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
2525 {
2526         u32 temp;
2527
2528         e1000e_clear_hw_cntrs_base(hw);
2529
2530         temp = er32(ALGNERRC);
2531         temp = er32(RXERRC);
2532         temp = er32(TNCRS);
2533         temp = er32(CEXTERR);
2534         temp = er32(TSCTC);
2535         temp = er32(TSCTFC);
2536
2537         temp = er32(MGTPRC);
2538         temp = er32(MGTPDC);
2539         temp = er32(MGTPTC);
2540
2541         temp = er32(IAC);
2542         temp = er32(ICRXOC);
2543
2544 }
2545
2546 static struct e1000_mac_operations ich8_mac_ops = {
2547         .check_mng_mode         = e1000_check_mng_mode_ich8lan,
2548         .check_for_link         = e1000e_check_for_copper_link,
2549         .cleanup_led            = e1000_cleanup_led_ich8lan,
2550         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
2551         .get_bus_info           = e1000_get_bus_info_ich8lan,
2552         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
2553         .led_on                 = e1000_led_on_ich8lan,
2554         .led_off                = e1000_led_off_ich8lan,
2555         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
2556         .reset_hw               = e1000_reset_hw_ich8lan,
2557         .init_hw                = e1000_init_hw_ich8lan,
2558         .setup_link             = e1000_setup_link_ich8lan,
2559         .setup_physical_interface= e1000_setup_copper_link_ich8lan,
2560 };
2561
2562 static struct e1000_phy_operations ich8_phy_ops = {
2563         .acquire_phy            = e1000_acquire_swflag_ich8lan,
2564         .check_reset_block      = e1000_check_reset_block_ich8lan,
2565         .commit_phy             = NULL,
2566         .force_speed_duplex     = e1000_phy_force_speed_duplex_ich8lan,
2567         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
2568         .get_cable_length       = e1000e_get_cable_length_igp_2,
2569         .get_phy_info           = e1000_get_phy_info_ich8lan,
2570         .read_phy_reg           = e1000e_read_phy_reg_igp,
2571         .release_phy            = e1000_release_swflag_ich8lan,
2572         .reset_phy              = e1000_phy_hw_reset_ich8lan,
2573         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
2574         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
2575         .write_phy_reg          = e1000e_write_phy_reg_igp,
2576 };
2577
2578 static struct e1000_nvm_operations ich8_nvm_ops = {
2579         .acquire_nvm            = e1000_acquire_swflag_ich8lan,
2580         .read_nvm               = e1000_read_nvm_ich8lan,
2581         .release_nvm            = e1000_release_swflag_ich8lan,
2582         .update_nvm             = e1000_update_nvm_checksum_ich8lan,
2583         .valid_led_default      = e1000_valid_led_default_ich8lan,
2584         .validate_nvm           = e1000_validate_nvm_checksum_ich8lan,
2585         .write_nvm              = e1000_write_nvm_ich8lan,
2586 };
2587
2588 struct e1000_info e1000_ich8_info = {
2589         .mac                    = e1000_ich8lan,
2590         .flags                  = FLAG_HAS_WOL
2591                                   | FLAG_IS_ICH
2592                                   | FLAG_RX_CSUM_ENABLED
2593                                   | FLAG_HAS_CTRLEXT_ON_LOAD
2594                                   | FLAG_HAS_AMT
2595                                   | FLAG_HAS_FLASH
2596                                   | FLAG_APME_IN_WUC,
2597         .pba                    = 8,
2598         .get_variants           = e1000_get_variants_ich8lan,
2599         .mac_ops                = &ich8_mac_ops,
2600         .phy_ops                = &ich8_phy_ops,
2601         .nvm_ops                = &ich8_nvm_ops,
2602 };
2603
2604 struct e1000_info e1000_ich9_info = {
2605         .mac                    = e1000_ich9lan,
2606         .flags                  = FLAG_HAS_JUMBO_FRAMES
2607                                   | FLAG_IS_ICH
2608                                   | FLAG_HAS_WOL
2609                                   | FLAG_RX_CSUM_ENABLED
2610                                   | FLAG_HAS_CTRLEXT_ON_LOAD
2611                                   | FLAG_HAS_AMT
2612                                   | FLAG_HAS_ERT
2613                                   | FLAG_HAS_FLASH
2614                                   | FLAG_APME_IN_WUC,
2615         .pba                    = 10,
2616         .get_variants           = e1000_get_variants_ich8lan,
2617         .mac_ops                = &ich8_mac_ops,
2618         .phy_ops                = &ich8_phy_ops,
2619         .nvm_ops                = &ich8_nvm_ops,
2620 };
2621
2622 struct e1000_info e1000_ich10_info = {
2623         .mac                    = e1000_ich10lan,
2624         .flags                  = FLAG_HAS_JUMBO_FRAMES
2625                                   | FLAG_IS_ICH
2626                                   | FLAG_HAS_WOL
2627                                   | FLAG_RX_CSUM_ENABLED
2628                                   | FLAG_HAS_CTRLEXT_ON_LOAD
2629                                   | FLAG_HAS_AMT
2630                                   | FLAG_HAS_ERT
2631                                   | FLAG_HAS_FLASH
2632                                   | FLAG_APME_IN_WUC,
2633         .pba                    = 10,
2634         .get_variants           = e1000_get_variants_ich8lan,
2635         .mac_ops                = &ich8_mac_ops,
2636         .phy_ops                = &ich8_phy_ops,
2637         .nvm_ops                = &ich8_nvm_ops,
2638 };