2 * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
3 * Copyright (c) 2001 Intel Corp.
4 * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
5 * Copyright (c) 2002 NEC Corp.
6 * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
7 * Copyright (c) 2004 Silicon Graphics, Inc
8 * Russ Anderson <rja@sgi.com>
9 * Jesse Barnes <jbarnes@sgi.com>
10 * Jack Steiner <steiner@sgi.com>
14 * Platform initialization for Discontig Memory
17 #include <linux/kernel.h>
19 #include <linux/swap.h>
20 #include <linux/bootmem.h>
21 #include <linux/acpi.h>
22 #include <linux/efi.h>
23 #include <linux/nodemask.h>
24 #include <asm/pgalloc.h>
26 #include <asm/meminit.h>
28 #include <asm/sections.h>
31 * Track per-node information needed to setup the boot memory allocator, the
32 * per-node areas, and the real VM.
34 struct early_node_data {
35 struct ia64_node_data *node_data;
37 unsigned long pernode_addr;
38 unsigned long pernode_size;
39 struct bootmem_data bootmem_data;
40 unsigned long num_physpages;
41 unsigned long num_dma_physpages;
42 unsigned long min_pfn;
43 unsigned long max_pfn;
46 static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
47 static nodemask_t memory_less_mask __initdata;
50 * To prevent cache aliasing effects, align per-node structures so that they
51 * start at addresses that are strided by node number.
53 #define NODEDATA_ALIGN(addr, node) \
54 ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + (node)*PERCPU_PAGE_SIZE)
57 * build_node_maps - callback to setup bootmem structs for each node
58 * @start: physical start of range
59 * @len: length of range
60 * @node: node where this range resides
62 * We allocate a struct bootmem_data for each piece of memory that we wish to
63 * treat as a virtually contiguous block (i.e. each node). Each such block
64 * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
65 * if necessary. Any non-existent pages will simply be part of the virtual
66 * memmap. We also update min_low_pfn and max_low_pfn here as we receive
67 * memory ranges from the caller.
69 static int __init build_node_maps(unsigned long start, unsigned long len,
72 unsigned long cstart, epfn, end = start + len;
73 struct bootmem_data *bdp = &mem_data[node].bootmem_data;
75 epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
76 cstart = GRANULEROUNDDOWN(start);
78 if (!bdp->node_low_pfn) {
79 bdp->node_boot_start = cstart;
80 bdp->node_low_pfn = epfn;
82 bdp->node_boot_start = min(cstart, bdp->node_boot_start);
83 bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
86 min_low_pfn = min(min_low_pfn, bdp->node_boot_start>>PAGE_SHIFT);
87 max_low_pfn = max(max_low_pfn, bdp->node_low_pfn);
93 * early_nr_cpus_node - return number of cpus on a given node
94 * @node: node to check
96 * Count the number of cpus on @node. We can't use nr_cpus_node() yet because
97 * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
98 * called yet. Note that node 0 will also count all non-existent cpus.
100 static int __init early_nr_cpus_node(int node)
104 for (cpu = 0; cpu < NR_CPUS; cpu++)
105 if (node == node_cpuid[cpu].nid)
112 * compute_pernodesize - compute size of pernode data
113 * @node: the node id.
115 static unsigned long __init compute_pernodesize(int node)
117 unsigned long pernodesize = 0, cpus;
119 cpus = early_nr_cpus_node(node);
120 pernodesize += PERCPU_PAGE_SIZE * cpus;
121 pernodesize += node * L1_CACHE_BYTES;
122 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
123 pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
124 pernodesize = PAGE_ALIGN(pernodesize);
129 * per_cpu_node_setup - setup per-cpu areas on each node
130 * @cpu_data: per-cpu area on this node
131 * @node: node to setup
133 * Copy the static per-cpu data into the region we just set aside and then
134 * setup __per_cpu_offset for each CPU on this node. Return a pointer to
135 * the end of the area.
137 static void *per_cpu_node_setup(void *cpu_data, int node)
142 for (cpu = 0; cpu < NR_CPUS; cpu++) {
143 if (node == node_cpuid[cpu].nid) {
144 memcpy(__va(cpu_data), __phys_per_cpu_start,
145 __per_cpu_end - __per_cpu_start);
146 __per_cpu_offset[cpu] = (char*)__va(cpu_data) -
148 cpu_data += PERCPU_PAGE_SIZE;
156 * fill_pernode - initialize pernode data.
157 * @node: the node id.
158 * @pernode: physical address of pernode data
159 * @pernodesize: size of the pernode data
161 static void __init fill_pernode(int node, unsigned long pernode,
162 unsigned long pernodesize)
165 int cpus = early_nr_cpus_node(node);
166 struct bootmem_data *bdp = &mem_data[node].bootmem_data;
168 mem_data[node].pernode_addr = pernode;
169 mem_data[node].pernode_size = pernodesize;
170 memset(__va(pernode), 0, pernodesize);
172 cpu_data = (void *)pernode;
173 pernode += PERCPU_PAGE_SIZE * cpus;
174 pernode += node * L1_CACHE_BYTES;
176 mem_data[node].pgdat = __va(pernode);
177 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
179 mem_data[node].node_data = __va(pernode);
180 pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
182 mem_data[node].pgdat->bdata = bdp;
183 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
185 cpu_data = per_cpu_node_setup(cpu_data, node);
191 * find_pernode_space - allocate memory for memory map and per-node structures
192 * @start: physical start of range
193 * @len: length of range
194 * @node: node where this range resides
196 * This routine reserves space for the per-cpu data struct, the list of
197 * pg_data_ts and the per-node data struct. Each node will have something like
198 * the following in the first chunk of addr. space large enough to hold it.
200 * ________________________
202 * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
203 * | PERCPU_PAGE_SIZE * | start and length big enough
204 * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
205 * |------------------------|
206 * | local pg_data_t * |
207 * |------------------------|
208 * | local ia64_node_data |
209 * |------------------------|
211 * |________________________|
213 * Once this space has been set aside, the bootmem maps are initialized. We
214 * could probably move the allocation of the per-cpu and ia64_node_data space
215 * outside of this function and use alloc_bootmem_node(), but doing it here
216 * is straightforward and we get the alignments we want so...
218 static int __init find_pernode_space(unsigned long start, unsigned long len,
222 unsigned long pernodesize = 0, pernode, pages, mapsize;
223 struct bootmem_data *bdp = &mem_data[node].bootmem_data;
225 epfn = (start + len) >> PAGE_SHIFT;
227 pages = bdp->node_low_pfn - (bdp->node_boot_start >> PAGE_SHIFT);
228 mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
231 * Make sure this memory falls within this node's usable memory
232 * since we may have thrown some away in build_maps().
234 if (start < bdp->node_boot_start || epfn > bdp->node_low_pfn)
237 /* Don't setup this node's local space twice... */
238 if (mem_data[node].pernode_addr)
242 * Calculate total size needed, incl. what's necessary
243 * for good alignment and alias prevention.
245 pernodesize = compute_pernodesize(node);
246 pernode = NODEDATA_ALIGN(start, node);
248 /* Is this range big enough for what we want to store here? */
249 if (start + len > (pernode + pernodesize + mapsize))
250 fill_pernode(node, pernode, pernodesize);
256 * free_node_bootmem - free bootmem allocator memory for use
257 * @start: physical start of range
258 * @len: length of range
259 * @node: node where this range resides
261 * Simply calls the bootmem allocator to free the specified ranged from
262 * the given pg_data_t's bdata struct. After this function has been called
263 * for all the entries in the EFI memory map, the bootmem allocator will
264 * be ready to service allocation requests.
266 static int __init free_node_bootmem(unsigned long start, unsigned long len,
269 free_bootmem_node(mem_data[node].pgdat, start, len);
275 * reserve_pernode_space - reserve memory for per-node space
277 * Reserve the space used by the bootmem maps & per-node space in the boot
278 * allocator so that when we actually create the real mem maps we don't
281 static void __init reserve_pernode_space(void)
283 unsigned long base, size, pages;
284 struct bootmem_data *bdp;
287 for_each_online_node(node) {
288 pg_data_t *pdp = mem_data[node].pgdat;
290 if (node_isset(node, memory_less_mask))
295 /* First the bootmem_map itself */
296 pages = bdp->node_low_pfn - (bdp->node_boot_start>>PAGE_SHIFT);
297 size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
298 base = __pa(bdp->node_bootmem_map);
299 reserve_bootmem_node(pdp, base, size);
301 /* Now the per-node space */
302 size = mem_data[node].pernode_size;
303 base = __pa(mem_data[node].pernode_addr);
304 reserve_bootmem_node(pdp, base, size);
309 * initialize_pernode_data - fixup per-cpu & per-node pointers
311 * Each node's per-node area has a copy of the global pg_data_t list, so
312 * we copy that to each node here, as well as setting the per-cpu pointer
313 * to the local node data structure. The active_cpus field of the per-node
314 * structure gets setup by the platform_cpu_init() function later.
316 static void __init initialize_pernode_data(void)
318 pg_data_t *pgdat_list[MAX_NUMNODES];
321 for_each_online_node(node)
322 pgdat_list[node] = mem_data[node].pgdat;
324 /* Copy the pg_data_t list to each node and init the node field */
325 for_each_online_node(node) {
326 memcpy(mem_data[node].node_data->pg_data_ptrs, pgdat_list,
330 /* Set the node_data pointer for each per-cpu struct */
331 for (cpu = 0; cpu < NR_CPUS; cpu++) {
332 node = node_cpuid[cpu].nid;
333 per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data;
337 struct cpuinfo_ia64 *cpu0_cpu_info;
339 node = node_cpuid[cpu].nid;
340 cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
341 ((char *)&per_cpu__cpu_info - __per_cpu_start));
342 cpu0_cpu_info->node_data = mem_data[node].node_data;
344 #endif /* CONFIG_SMP */
348 * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
349 * node but fall back to any other node when __alloc_bootmem_node fails
352 * @pernodesize: size of this node's pernode data
353 * @align: alignment to use for this node's pernode data
355 static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize,
360 int bestnode = -1, node;
362 for_each_online_node(node) {
363 if (node_isset(node, memory_less_mask))
365 else if (node_distance(nid, node) < best) {
366 best = node_distance(nid, node);
371 ptr = __alloc_bootmem_node(mem_data[bestnode].pgdat,
372 pernodesize, align, __pa(MAX_DMA_ADDRESS));
375 panic("NO memory for memory less node\n");
380 * pgdat_insert - insert the pgdat into global pgdat_list
381 * @pgdat: the pgdat for a node.
383 static void __init pgdat_insert(pg_data_t *pgdat)
385 pg_data_t *prev = NULL, *next;
388 if (pgdat->node_id < next->node_id)
394 prev->pgdat_next = pgdat;
395 pgdat->pgdat_next = next;
397 pgdat->pgdat_next = pgdat_list;
405 * memory_less_nodes - allocate and initialize CPU only nodes pernode
408 static void __init memory_less_nodes(void)
410 unsigned long pernodesize;
414 for_each_node_mask(node, memory_less_mask) {
415 pernodesize = compute_pernodesize(node);
416 pernode = memory_less_node_alloc(node, pernodesize,
417 (node) ? (node * PERCPU_PAGE_SIZE) : (1024*1024));
418 fill_pernode(node, __pa(pernode), pernodesize);
424 #ifdef CONFIG_SPARSEMEM
426 * register_sparse_mem - notify SPARSEMEM that this memory range exists.
427 * @start: physical start of range
428 * @end: physical end of range
431 * Simply calls SPARSEMEM to register memory section(s).
433 static int __init register_sparse_mem(unsigned long start, unsigned long end,
438 start = __pa(start) >> PAGE_SHIFT;
439 end = __pa(end) >> PAGE_SHIFT;
440 nid = early_pfn_to_nid(start);
441 memory_present(nid, start, end);
446 static void __init arch_sparse_init(void)
448 efi_memmap_walk(register_sparse_mem, NULL);
452 #define arch_sparse_init() do {} while (0)
456 * find_memory - walk the EFI memory map and setup the bootmem allocator
458 * Called early in boot to setup the bootmem allocator, and to
459 * allocate the per-cpu and per-node structures.
461 void __init find_memory(void)
467 if (num_online_nodes() == 0) {
468 printk(KERN_ERR "node info missing!\n");
472 nodes_or(memory_less_mask, memory_less_mask, node_online_map);
476 /* These actually end up getting called by call_pernode_memory() */
477 efi_memmap_walk(filter_rsvd_memory, build_node_maps);
478 efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
480 for_each_online_node(node)
481 if (mem_data[node].bootmem_data.node_low_pfn) {
482 node_clear(node, memory_less_mask);
483 mem_data[node].min_pfn = ~0UL;
486 * Initialize the boot memory maps in reverse order since that's
487 * what the bootmem allocator expects
489 for (node = MAX_NUMNODES - 1; node >= 0; node--) {
490 unsigned long pernode, pernodesize, map;
491 struct bootmem_data *bdp;
493 if (!node_online(node))
495 else if (node_isset(node, memory_less_mask))
498 bdp = &mem_data[node].bootmem_data;
499 pernode = mem_data[node].pernode_addr;
500 pernodesize = mem_data[node].pernode_size;
501 map = pernode + pernodesize;
503 init_bootmem_node(mem_data[node].pgdat,
505 bdp->node_boot_start>>PAGE_SHIFT,
509 efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
511 reserve_pernode_space();
513 initialize_pernode_data();
515 max_pfn = max_low_pfn;
522 * per_cpu_init - setup per-cpu variables
524 * find_pernode_space() does most of this already, we just need to set
525 * local_per_cpu_offset
527 void *per_cpu_init(void)
531 if (smp_processor_id() != 0)
532 return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
534 for (cpu = 0; cpu < NR_CPUS; cpu++)
535 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
537 return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
539 #endif /* CONFIG_SMP */
542 * show_mem - give short summary of memory stats
544 * Shows a simple page count of reserved and used pages in the system.
545 * For discontig machines, it does this on a per-pgdat basis.
549 int i, total_reserved = 0;
550 int total_shared = 0, total_cached = 0;
551 unsigned long total_present = 0;
554 printk("Mem-info:\n");
556 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
557 for_each_pgdat(pgdat) {
558 unsigned long present;
560 int shared = 0, cached = 0, reserved = 0;
562 printk("Node ID: %d\n", pgdat->node_id);
563 pgdat_resize_lock(pgdat, &flags);
564 present = pgdat->node_present_pages;
565 for(i = 0; i < pgdat->node_spanned_pages; i++) {
567 if (pfn_valid(pgdat->node_start_pfn + i))
568 page = pfn_to_page(pgdat->node_start_pfn + i);
571 if (PageReserved(page))
573 else if (PageSwapCache(page))
575 else if (page_count(page))
576 shared += page_count(page)-1;
578 pgdat_resize_unlock(pgdat, &flags);
579 total_present += present;
580 total_reserved += reserved;
581 total_cached += cached;
582 total_shared += shared;
583 printk("\t%ld pages of RAM\n", present);
584 printk("\t%d reserved pages\n", reserved);
585 printk("\t%d pages shared\n", shared);
586 printk("\t%d pages swap cached\n", cached);
588 printk("%ld pages of RAM\n", total_present);
589 printk("%d reserved pages\n", total_reserved);
590 printk("%d pages shared\n", total_shared);
591 printk("%d pages swap cached\n", total_cached);
592 printk("Total of %ld pages in page table cache\n",
593 pgtable_quicklist_total_size());
594 printk("%d free buffer pages\n", nr_free_buffer_pages());
598 * call_pernode_memory - use SRAT to call callback functions with node info
599 * @start: physical start of range
600 * @len: length of range
601 * @arg: function to call for each range
603 * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
604 * out to which node a block of memory belongs. Ignore memory that we cannot
605 * identify, and split blocks that run across multiple nodes.
607 * Take this opportunity to round the start address up and the end address
608 * down to page boundaries.
610 void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
612 unsigned long rs, re, end = start + len;
613 void (*func)(unsigned long, unsigned long, int);
616 start = PAGE_ALIGN(start);
623 if (!num_node_memblks) {
624 /* No SRAT table, so assume one node (node 0) */
626 (*func)(start, end - start, 0);
630 for (i = 0; i < num_node_memblks; i++) {
631 rs = max(start, node_memblk[i].start_paddr);
632 re = min(end, node_memblk[i].start_paddr +
633 node_memblk[i].size);
636 (*func)(rs, re - rs, node_memblk[i].nid);
644 * count_node_pages - callback to build per-node memory info structures
645 * @start: physical start of range
646 * @len: length of range
647 * @node: node where this range resides
649 * Each node has it's own number of physical pages, DMAable pages, start, and
650 * end page frame number. This routine will be called by call_pernode_memory()
651 * for each piece of usable memory and will setup these values for each node.
652 * Very similar to build_maps().
654 static __init int count_node_pages(unsigned long start, unsigned long len, int node)
656 unsigned long end = start + len;
658 mem_data[node].num_physpages += len >> PAGE_SHIFT;
659 if (start <= __pa(MAX_DMA_ADDRESS))
660 mem_data[node].num_dma_physpages +=
661 (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
662 start = GRANULEROUNDDOWN(start);
663 start = ORDERROUNDDOWN(start);
664 end = GRANULEROUNDUP(end);
665 mem_data[node].max_pfn = max(mem_data[node].max_pfn,
667 mem_data[node].min_pfn = min(mem_data[node].min_pfn,
668 start >> PAGE_SHIFT);
674 * paging_init - setup page tables
676 * paging_init() sets up the page tables for each node of the system and frees
677 * the bootmem allocator memory for general use.
679 void __init paging_init(void)
681 unsigned long max_dma;
682 unsigned long zones_size[MAX_NR_ZONES];
683 unsigned long zholes_size[MAX_NR_ZONES];
684 unsigned long pfn_offset = 0;
687 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
691 efi_memmap_walk(filter_rsvd_memory, count_node_pages);
693 #ifdef CONFIG_VIRTUAL_MEM_MAP
694 vmalloc_end -= PAGE_ALIGN(max_low_pfn * sizeof(struct page));
695 vmem_map = (struct page *) vmalloc_end;
696 efi_memmap_walk(create_mem_map_page_table, NULL);
697 printk("Virtual mem_map starts at 0x%p\n", vmem_map);
700 for_each_online_node(node) {
701 memset(zones_size, 0, sizeof(zones_size));
702 memset(zholes_size, 0, sizeof(zholes_size));
704 num_physpages += mem_data[node].num_physpages;
706 if (mem_data[node].min_pfn >= max_dma) {
707 /* All of this node's memory is above ZONE_DMA */
708 zones_size[ZONE_NORMAL] = mem_data[node].max_pfn -
709 mem_data[node].min_pfn;
710 zholes_size[ZONE_NORMAL] = mem_data[node].max_pfn -
711 mem_data[node].min_pfn -
712 mem_data[node].num_physpages;
713 } else if (mem_data[node].max_pfn < max_dma) {
714 /* All of this node's memory is in ZONE_DMA */
715 zones_size[ZONE_DMA] = mem_data[node].max_pfn -
716 mem_data[node].min_pfn;
717 zholes_size[ZONE_DMA] = mem_data[node].max_pfn -
718 mem_data[node].min_pfn -
719 mem_data[node].num_dma_physpages;
721 /* This node has memory in both zones */
722 zones_size[ZONE_DMA] = max_dma -
723 mem_data[node].min_pfn;
724 zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] -
725 mem_data[node].num_dma_physpages;
726 zones_size[ZONE_NORMAL] = mem_data[node].max_pfn -
728 zholes_size[ZONE_NORMAL] = zones_size[ZONE_NORMAL] -
729 (mem_data[node].num_physpages -
730 mem_data[node].num_dma_physpages);
733 pfn_offset = mem_data[node].min_pfn;
735 #ifdef CONFIG_VIRTUAL_MEM_MAP
736 NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
738 free_area_init_node(node, NODE_DATA(node), zones_size,
739 pfn_offset, zholes_size);
743 * Make memory less nodes become a member of the known nodes.
745 for_each_node_mask(node, memory_less_mask)
746 pgdat_insert(mem_data[node].pgdat);
748 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));