2 * Copyright (c) 2007 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/pagemap.h>
34 #include <linux/rbtree.h>
35 #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */
42 * - should we limit the size of a mr region? let transport return failure?
43 * - should we detect duplicate keys on a socket? hmm.
44 * - an rdma is an mlock, apply rlimit?
48 * get the number of pages by looking at the page indices that the start and
49 * end addresses fall in.
51 * Returns 0 if the vec is invalid. It is invalid if the number of bytes
52 * causes the address to wrap or overflows an unsigned int. This comes
53 * from being stored in the 'length' member of 'struct scatterlist'.
55 static unsigned int rds_pages_in_vec(struct rds_iovec *vec)
57 if ((vec->addr + vec->bytes <= vec->addr) ||
58 (vec->bytes > (u64)UINT_MAX))
61 return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) -
62 (vec->addr >> PAGE_SHIFT);
65 static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key,
66 struct rds_mr *insert)
68 struct rb_node **p = &root->rb_node;
69 struct rb_node *parent = NULL;
74 mr = rb_entry(parent, struct rds_mr, r_rb_node);
78 else if (key > mr->r_key)
85 rb_link_node(&insert->r_rb_node, parent, p);
86 rb_insert_color(&insert->r_rb_node, root);
87 atomic_inc(&insert->r_refcount);
93 * Destroy the transport-specific part of a MR.
95 static void rds_destroy_mr(struct rds_mr *mr)
97 struct rds_sock *rs = mr->r_sock;
98 void *trans_private = NULL;
101 rdsdebug("RDS: destroy mr key is %x refcnt %u\n",
102 mr->r_key, atomic_read(&mr->r_refcount));
104 if (test_and_set_bit(RDS_MR_DEAD, &mr->r_state))
107 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
108 if (!RB_EMPTY_NODE(&mr->r_rb_node))
109 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
110 trans_private = mr->r_trans_private;
111 mr->r_trans_private = NULL;
112 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
115 mr->r_trans->free_mr(trans_private, mr->r_invalidate);
118 void __rds_put_mr_final(struct rds_mr *mr)
125 * By the time this is called we can't have any more ioctls called on
126 * the socket so we don't need to worry about racing with others.
128 void rds_rdma_drop_keys(struct rds_sock *rs)
131 struct rb_node *node;
133 /* Release any MRs associated with this socket */
134 while ((node = rb_first(&rs->rs_rdma_keys))) {
135 mr = container_of(node, struct rds_mr, r_rb_node);
136 if (mr->r_trans == rs->rs_transport)
137 mr->r_invalidate = 0;
141 if (rs->rs_transport && rs->rs_transport->flush_mrs)
142 rs->rs_transport->flush_mrs();
146 * Helper function to pin user pages.
148 static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages,
149 struct page **pages, int write)
153 down_read(¤t->mm->mmap_sem);
154 ret = get_user_pages(current, current->mm, user_addr,
155 nr_pages, write, 0, pages, NULL);
156 up_read(¤t->mm->mmap_sem);
158 if (0 <= ret && (unsigned) ret < nr_pages) {
160 put_page(pages[ret]);
167 static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args,
168 u64 *cookie_ret, struct rds_mr **mr_ret)
170 struct rds_mr *mr = NULL, *found;
171 unsigned int nr_pages;
172 struct page **pages = NULL;
173 struct scatterlist *sg;
176 rds_rdma_cookie_t cookie;
181 if (rs->rs_bound_addr == 0) {
182 ret = -ENOTCONN; /* XXX not a great errno */
186 if (rs->rs_transport->get_mr == NULL) {
191 nr_pages = rds_pages_in_vec(&args->vec);
197 rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n",
198 args->vec.addr, args->vec.bytes, nr_pages);
200 /* XXX clamp nr_pages to limit the size of this alloc? */
201 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
207 mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL);
213 atomic_set(&mr->r_refcount, 1);
214 RB_CLEAR_NODE(&mr->r_rb_node);
215 mr->r_trans = rs->rs_transport;
218 if (args->flags & RDS_RDMA_USE_ONCE)
220 if (args->flags & RDS_RDMA_INVALIDATE)
221 mr->r_invalidate = 1;
222 if (args->flags & RDS_RDMA_READWRITE)
226 * Pin the pages that make up the user buffer and transfer the page
227 * pointers to the mr's sg array. We check to see if we've mapped
228 * the whole region after transferring the partial page references
229 * to the sg array so that we can have one page ref cleanup path.
231 * For now we have no flag that tells us whether the mapping is
232 * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to
235 ret = rds_pin_pages(args->vec.addr & PAGE_MASK, nr_pages, pages, 1);
240 sg = kcalloc(nents, sizeof(*sg), GFP_KERNEL);
246 sg_init_table(sg, nents);
248 /* Stick all pages into the scatterlist */
249 for (i = 0 ; i < nents; i++)
250 sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0);
252 rdsdebug("RDS: trans_private nents is %u\n", nents);
254 /* Obtain a transport specific MR. If this succeeds, the
255 * s/g list is now owned by the MR.
256 * Note that dma_map() implies that pending writes are
257 * flushed to RAM, so no dma_sync is needed here. */
258 trans_private = rs->rs_transport->get_mr(sg, nents, rs,
261 if (IS_ERR(trans_private)) {
262 for (i = 0 ; i < nents; i++)
263 put_page(sg_page(&sg[i]));
265 ret = PTR_ERR(trans_private);
269 mr->r_trans_private = trans_private;
271 rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n",
272 mr->r_key, (void *)(unsigned long) args->cookie_addr);
274 /* The user may pass us an unaligned address, but we can only
275 * map page aligned regions. So we keep the offset, and build
276 * a 64bit cookie containing <R_Key, offset> and pass that
278 cookie = rds_rdma_make_cookie(mr->r_key, args->vec.addr & ~PAGE_MASK);
280 *cookie_ret = cookie;
282 if (args->cookie_addr && put_user(cookie, (u64 __user *)(unsigned long) args->cookie_addr)) {
287 /* Inserting the new MR into the rbtree bumps its
288 * reference count. */
289 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
290 found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr);
291 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
293 BUG_ON(found && found != mr);
295 rdsdebug("RDS: get_mr key is %x\n", mr->r_key);
297 atomic_inc(&mr->r_refcount);
309 int rds_get_mr(struct rds_sock *rs, char __user *optval, int optlen)
311 struct rds_get_mr_args args;
313 if (optlen != sizeof(struct rds_get_mr_args))
316 if (copy_from_user(&args, (struct rds_get_mr_args __user *)optval,
317 sizeof(struct rds_get_mr_args)))
320 return __rds_rdma_map(rs, &args, NULL, NULL);
324 * Free the MR indicated by the given R_Key
326 int rds_free_mr(struct rds_sock *rs, char __user *optval, int optlen)
328 struct rds_free_mr_args args;
332 if (optlen != sizeof(struct rds_free_mr_args))
335 if (copy_from_user(&args, (struct rds_free_mr_args __user *)optval,
336 sizeof(struct rds_free_mr_args)))
339 /* Special case - a null cookie means flush all unused MRs */
340 if (args.cookie == 0) {
341 if (!rs->rs_transport || !rs->rs_transport->flush_mrs)
343 rs->rs_transport->flush_mrs();
347 /* Look up the MR given its R_key and remove it from the rbtree
348 * so nobody else finds it.
349 * This should also prevent races with rds_rdma_unuse.
351 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
352 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL);
354 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
355 RB_CLEAR_NODE(&mr->r_rb_node);
356 if (args.flags & RDS_RDMA_INVALIDATE)
357 mr->r_invalidate = 1;
359 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
365 * call rds_destroy_mr() ourselves so that we're sure it's done by the time
366 * we return. If we let rds_mr_put() do it it might not happen until
367 * someone else drops their ref.
375 * This is called when we receive an extension header that
376 * tells us this MR was used. It allows us to implement
379 void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force)
385 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
386 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
387 if (mr && (mr->r_use_once || force)) {
388 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
389 RB_CLEAR_NODE(&mr->r_rb_node);
392 atomic_inc(&mr->r_refcount);
393 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
395 /* May have to issue a dma_sync on this memory region.
396 * Note we could avoid this if the operation was a RDMA READ,
397 * but at this point we can't tell. */
399 if (mr->r_trans->sync_mr)
400 mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE);
402 /* If the MR was marked as invalidate, this will
403 * trigger an async flush. */
410 void rds_rdma_free_op(struct rds_rdma_op *ro)
414 for (i = 0; i < ro->r_nents; i++) {
415 struct page *page = sg_page(&ro->r_sg[i]);
417 /* Mark page dirty if it was possibly modified, which
418 * is the case for a RDMA_READ which copies from remote
421 set_page_dirty(page);
425 kfree(ro->r_notifier);
430 * args is a pointer to an in-kernel copy in the sendmsg cmsg.
432 static struct rds_rdma_op *rds_rdma_prepare(struct rds_sock *rs,
433 struct rds_rdma_args *args)
435 struct rds_iovec vec;
436 struct rds_rdma_op *op = NULL;
437 unsigned int nr_pages;
438 unsigned int max_pages;
439 unsigned int nr_bytes;
440 struct page **pages = NULL;
441 struct rds_iovec __user *local_vec;
442 struct scatterlist *sg;
448 if (rs->rs_bound_addr == 0) {
449 ret = -ENOTCONN; /* XXX not a great errno */
453 if (args->nr_local > (u64)UINT_MAX) {
461 local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr;
463 /* figure out the number of pages in the vector */
464 for (i = 0; i < args->nr_local; i++) {
465 if (copy_from_user(&vec, &local_vec[i],
466 sizeof(struct rds_iovec))) {
471 nr = rds_pages_in_vec(&vec);
477 max_pages = max(nr, max_pages);
481 pages = kcalloc(max_pages, sizeof(struct page *), GFP_KERNEL);
487 op = kzalloc(offsetof(struct rds_rdma_op, r_sg[nr_pages]), GFP_KERNEL);
493 op->r_write = !!(args->flags & RDS_RDMA_READWRITE);
494 op->r_fence = !!(args->flags & RDS_RDMA_FENCE);
495 op->r_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
496 op->r_recverr = rs->rs_recverr;
498 sg_init_table(op->r_sg, nr_pages);
500 if (op->r_notify || op->r_recverr) {
501 /* We allocate an uninitialized notifier here, because
502 * we don't want to do that in the completion handler. We
503 * would have to use GFP_ATOMIC there, and don't want to deal
504 * with failed allocations.
506 op->r_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL);
507 if (!op->r_notifier) {
511 op->r_notifier->n_user_token = args->user_token;
512 op->r_notifier->n_status = RDS_RDMA_SUCCESS;
515 /* The cookie contains the R_Key of the remote memory region, and
516 * optionally an offset into it. This is how we implement RDMA into
518 * When setting up the RDMA, we need to add that offset to the
519 * destination address (which is really an offset into the MR)
520 * FIXME: We may want to move this into ib_rdma.c
522 op->r_key = rds_rdma_cookie_key(args->cookie);
523 op->r_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie);
527 rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n",
528 (unsigned long long)args->nr_local,
529 (unsigned long long)args->remote_vec.addr,
532 for (i = 0; i < args->nr_local; i++) {
533 if (copy_from_user(&vec, &local_vec[i],
534 sizeof(struct rds_iovec))) {
539 nr = rds_pages_in_vec(&vec);
545 rs->rs_user_addr = vec.addr;
546 rs->rs_user_bytes = vec.bytes;
548 /* did the user change the vec under us? */
549 if (nr > max_pages || op->r_nents + nr > nr_pages) {
553 /* If it's a WRITE operation, we want to pin the pages for reading.
554 * If it's a READ operation, we need to pin the pages for writing.
556 ret = rds_pin_pages(vec.addr & PAGE_MASK, nr, pages, !op->r_write);
560 rdsdebug("RDS: nr_bytes %u nr %u vec.bytes %llu vec.addr %llx\n",
561 nr_bytes, nr, vec.bytes, vec.addr);
563 nr_bytes += vec.bytes;
565 for (j = 0; j < nr; j++) {
566 unsigned int offset = vec.addr & ~PAGE_MASK;
568 sg = &op->r_sg[op->r_nents + j];
569 sg_set_page(sg, pages[j],
570 min_t(unsigned int, vec.bytes, PAGE_SIZE - offset),
573 rdsdebug("RDS: sg->offset %x sg->len %x vec.addr %llx vec.bytes %llu\n",
574 sg->offset, sg->length, vec.addr, vec.bytes);
576 vec.addr += sg->length;
577 vec.bytes -= sg->length;
584 if (nr_bytes > args->remote_vec.bytes) {
585 rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n",
587 (unsigned int) args->remote_vec.bytes);
591 op->r_bytes = nr_bytes;
598 rds_rdma_free_op(op);
605 * The application asks for a RDMA transfer.
606 * Extract all arguments and set up the rdma_op
608 int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm,
609 struct cmsghdr *cmsg)
611 struct rds_rdma_op *op;
613 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args))
614 || rm->m_rdma_op != NULL)
617 op = rds_rdma_prepare(rs, CMSG_DATA(cmsg));
620 rds_stats_inc(s_send_rdma);
626 * The application wants us to pass an RDMA destination (aka MR)
629 int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm,
630 struct cmsghdr *cmsg)
637 if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t))
638 || rm->m_rdma_cookie != 0)
641 memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie));
643 /* We are reusing a previously mapped MR here. Most likely, the
644 * application has written to the buffer, so we need to explicitly
645 * flush those writes to RAM. Otherwise the HCA may not see them
646 * when doing a DMA from that buffer.
648 r_key = rds_rdma_cookie_key(rm->m_rdma_cookie);
650 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
651 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
653 err = -EINVAL; /* invalid r_key */
655 atomic_inc(&mr->r_refcount);
656 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
659 mr->r_trans->sync_mr(mr->r_trans_private, DMA_TO_DEVICE);
666 * The application passes us an address range it wants to enable RDMA
667 * to/from. We map the area, and save the <R_Key,offset> pair
668 * in rm->m_rdma_cookie. This causes it to be sent along to the peer
669 * in an extension header.
671 int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm,
672 struct cmsghdr *cmsg)
674 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args))
675 || rm->m_rdma_cookie != 0)
678 return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie, &rm->m_rdma_mr);