[SCSI] lpfc 8.2.8 : Add MSI-X support
[linux-2.6] / crypto / twofish.c
1 /*
2  * Twofish for CryptoAPI
3  *
4  * Originally Twofish for GPG
5  * By Matthew Skala <mskala@ansuz.sooke.bc.ca>, July 26, 1998
6  * 256-bit key length added March 20, 1999
7  * Some modifications to reduce the text size by Werner Koch, April, 1998
8  * Ported to the kerneli patch by Marc Mutz <Marc@Mutz.com>
9  * Ported to CryptoAPI by Colin Slater <hoho@tacomeat.net>
10  *
11  * The original author has disclaimed all copyright interest in this
12  * code and thus put it in the public domain. The subsequent authors 
13  * have put this under the GNU General Public License.
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  *
20  * This program is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
23  * GNU General Public License for more details.
24  * 
25  * You should have received a copy of the GNU General Public License
26  * along with this program; if not, write to the Free Software
27  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307
28  * USA
29  *
30  * This code is a "clean room" implementation, written from the paper
31  * _Twofish: A 128-Bit Block Cipher_ by Bruce Schneier, John Kelsey,
32  * Doug Whiting, David Wagner, Chris Hall, and Niels Ferguson, available
33  * through http://www.counterpane.com/twofish.html
34  *
35  * For background information on multiplication in finite fields, used for
36  * the matrix operations in the key schedule, see the book _Contemporary
37  * Abstract Algebra_ by Joseph A. Gallian, especially chapter 22 in the
38  * Third Edition.
39  */
40
41 #include <asm/byteorder.h>
42 #include <crypto/twofish.h>
43 #include <linux/module.h>
44 #include <linux/init.h>
45 #include <linux/types.h>
46 #include <linux/errno.h>
47 #include <linux/crypto.h>
48 #include <linux/bitops.h>
49
50 /* Macros to compute the g() function in the encryption and decryption
51  * rounds.  G1 is the straight g() function; G2 includes the 8-bit
52  * rotation for the high 32-bit word. */
53
54 #define G1(a) \
55      (ctx->s[0][(a) & 0xFF]) ^ (ctx->s[1][((a) >> 8) & 0xFF]) \
56    ^ (ctx->s[2][((a) >> 16) & 0xFF]) ^ (ctx->s[3][(a) >> 24])
57
58 #define G2(b) \
59      (ctx->s[1][(b) & 0xFF]) ^ (ctx->s[2][((b) >> 8) & 0xFF]) \
60    ^ (ctx->s[3][((b) >> 16) & 0xFF]) ^ (ctx->s[0][(b) >> 24])
61
62 /* Encryption and decryption Feistel rounds.  Each one calls the two g()
63  * macros, does the PHT, and performs the XOR and the appropriate bit
64  * rotations.  The parameters are the round number (used to select subkeys),
65  * and the four 32-bit chunks of the text. */
66
67 #define ENCROUND(n, a, b, c, d) \
68    x = G1 (a); y = G2 (b); \
69    x += y; y += x + ctx->k[2 * (n) + 1]; \
70    (c) ^= x + ctx->k[2 * (n)]; \
71    (c) = ror32((c), 1); \
72    (d) = rol32((d), 1) ^ y
73
74 #define DECROUND(n, a, b, c, d) \
75    x = G1 (a); y = G2 (b); \
76    x += y; y += x; \
77    (d) ^= y + ctx->k[2 * (n) + 1]; \
78    (d) = ror32((d), 1); \
79    (c) = rol32((c), 1); \
80    (c) ^= (x + ctx->k[2 * (n)])
81
82 /* Encryption and decryption cycles; each one is simply two Feistel rounds
83  * with the 32-bit chunks re-ordered to simulate the "swap" */
84
85 #define ENCCYCLE(n) \
86    ENCROUND (2 * (n), a, b, c, d); \
87    ENCROUND (2 * (n) + 1, c, d, a, b)
88
89 #define DECCYCLE(n) \
90    DECROUND (2 * (n) + 1, c, d, a, b); \
91    DECROUND (2 * (n), a, b, c, d)
92
93 /* Macros to convert the input and output bytes into 32-bit words,
94  * and simultaneously perform the whitening step.  INPACK packs word
95  * number n into the variable named by x, using whitening subkey number m.
96  * OUTUNPACK unpacks word number n from the variable named by x, using
97  * whitening subkey number m. */
98
99 #define INPACK(n, x, m) \
100    x = le32_to_cpu(src[n]) ^ ctx->w[m]
101
102 #define OUTUNPACK(n, x, m) \
103    x ^= ctx->w[m]; \
104    dst[n] = cpu_to_le32(x)
105
106
107
108 /* Encrypt one block.  in and out may be the same. */
109 static void twofish_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
110 {
111         struct twofish_ctx *ctx = crypto_tfm_ctx(tfm);
112         const __le32 *src = (const __le32 *)in;
113         __le32 *dst = (__le32 *)out;
114
115         /* The four 32-bit chunks of the text. */
116         u32 a, b, c, d;
117         
118         /* Temporaries used by the round function. */
119         u32 x, y;
120
121         /* Input whitening and packing. */
122         INPACK (0, a, 0);
123         INPACK (1, b, 1);
124         INPACK (2, c, 2);
125         INPACK (3, d, 3);
126         
127         /* Encryption Feistel cycles. */
128         ENCCYCLE (0);
129         ENCCYCLE (1);
130         ENCCYCLE (2);
131         ENCCYCLE (3);
132         ENCCYCLE (4);
133         ENCCYCLE (5);
134         ENCCYCLE (6);
135         ENCCYCLE (7);
136         
137         /* Output whitening and unpacking. */
138         OUTUNPACK (0, c, 4);
139         OUTUNPACK (1, d, 5);
140         OUTUNPACK (2, a, 6);
141         OUTUNPACK (3, b, 7);
142         
143 }
144
145 /* Decrypt one block.  in and out may be the same. */
146 static void twofish_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
147 {
148         struct twofish_ctx *ctx = crypto_tfm_ctx(tfm);
149         const __le32 *src = (const __le32 *)in;
150         __le32 *dst = (__le32 *)out;
151   
152         /* The four 32-bit chunks of the text. */
153         u32 a, b, c, d;
154         
155         /* Temporaries used by the round function. */
156         u32 x, y;
157         
158         /* Input whitening and packing. */
159         INPACK (0, c, 4);
160         INPACK (1, d, 5);
161         INPACK (2, a, 6);
162         INPACK (3, b, 7);
163         
164         /* Encryption Feistel cycles. */
165         DECCYCLE (7);
166         DECCYCLE (6);
167         DECCYCLE (5);
168         DECCYCLE (4);
169         DECCYCLE (3);
170         DECCYCLE (2);
171         DECCYCLE (1);
172         DECCYCLE (0);
173
174         /* Output whitening and unpacking. */
175         OUTUNPACK (0, a, 0);
176         OUTUNPACK (1, b, 1);
177         OUTUNPACK (2, c, 2);
178         OUTUNPACK (3, d, 3);
179
180 }
181
182 static struct crypto_alg alg = {
183         .cra_name           =   "twofish",
184         .cra_driver_name    =   "twofish-generic",
185         .cra_priority       =   100,
186         .cra_flags          =   CRYPTO_ALG_TYPE_CIPHER,
187         .cra_blocksize      =   TF_BLOCK_SIZE,
188         .cra_ctxsize        =   sizeof(struct twofish_ctx),
189         .cra_alignmask      =   3,
190         .cra_module         =   THIS_MODULE,
191         .cra_list           =   LIST_HEAD_INIT(alg.cra_list),
192         .cra_u              =   { .cipher = {
193         .cia_min_keysize    =   TF_MIN_KEY_SIZE,
194         .cia_max_keysize    =   TF_MAX_KEY_SIZE,
195         .cia_setkey         =   twofish_setkey,
196         .cia_encrypt        =   twofish_encrypt,
197         .cia_decrypt        =   twofish_decrypt } }
198 };
199
200 static int __init twofish_mod_init(void)
201 {
202         return crypto_register_alg(&alg);
203 }
204
205 static void __exit twofish_mod_fini(void)
206 {
207         crypto_unregister_alg(&alg);
208 }
209
210 module_init(twofish_mod_init);
211 module_exit(twofish_mod_fini);
212
213 MODULE_LICENSE("GPL");
214 MODULE_DESCRIPTION ("Twofish Cipher Algorithm");