6 * ELF register definitions..
8 #include <asm/ptrace.h>
11 typedef unsigned long elf_greg_t;
12 typedef unsigned long elf_freg_t[3];
14 #define ELF_NGREG (sizeof (struct pt_regs) / sizeof(elf_greg_t))
15 typedef elf_greg_t elf_gregset_t[ELF_NGREG];
17 typedef struct user_fp elf_fpregset_t;
21 #define EF_ARM_APCS26 0x08
22 #define EF_ARM_SOFT_FLOAT 0x200
23 #define EF_ARM_EABI_MASK 0xFF000000
29 #define R_ARM_JUMP24 29
32 * These are used to set parameters in the core dumps.
34 #define ELF_CLASS ELFCLASS32
36 #define ELF_DATA ELFDATA2MSB
38 #define ELF_DATA ELFDATA2LSB
40 #define ELF_ARCH EM_ARM
43 * HWCAP flags - for elf_hwcap (in kernel) and AT_HWCAP
48 #define HWCAP_26BIT 8 /* Play it safe */
49 #define HWCAP_FAST_MULT 16
52 #define HWCAP_EDSP 128
53 #define HWCAP_JAVA 256
54 #define HWCAP_IWMMXT 512
59 * This yields a mask that user programs can use to figure out what
60 * instruction set this cpu supports.
62 #define ELF_HWCAP (elf_hwcap)
63 extern unsigned int elf_hwcap;
66 * This yields a string that ld.so will use to load implementation
67 * specific libraries for optimization. This is more specific in
68 * intent than poking at uname or /proc/cpuinfo.
70 * For now we just provide a fairly general string that describes the
71 * processor family. This could be made more specific later if someone
72 * implemented optimisations that require it. 26-bit CPUs give you
73 * "v1l" for ARM2 (no SWP) and "v2l" for anything else (ARM1 isn't
74 * supported). 32-bit CPUs give you "v3[lb]" for anything based on an
75 * ARM6 or ARM7 core and "armv4[lb]" for anything based on a StrongARM-1
78 #define ELF_PLATFORM_SIZE 8
79 #define ELF_PLATFORM (elf_platform)
81 extern char elf_platform[];
85 * This is used to ensure we don't load something for the wrong architecture.
87 #define elf_check_arch(x) ((x)->e_machine == EM_ARM && ELF_PROC_OK(x))
90 * 32-bit code is always OK. Some cpus can do 26-bit, some can't.
92 #define ELF_PROC_OK(x) (ELF_THUMB_OK(x) && ELF_26BIT_OK(x))
94 #define ELF_THUMB_OK(x) \
95 ((elf_hwcap & HWCAP_THUMB && ((x)->e_entry & 1) == 1) || \
96 ((x)->e_entry & 3) == 0)
98 #define ELF_26BIT_OK(x) \
99 ((elf_hwcap & HWCAP_26BIT && (x)->e_flags & EF_ARM_APCS26) || \
100 ((x)->e_flags & EF_ARM_APCS26) == 0)
102 #define USE_ELF_CORE_DUMP
103 #define ELF_EXEC_PAGESIZE 4096
105 /* This is the location that an ET_DYN program is loaded if exec'ed. Typical
106 use of this is to invoke "./ld.so someprog" to test out a new version of
107 the loader. We need to make sure that it is out of the way of the program
108 that it will "exec", and that there is sufficient room for the brk. */
110 #define ELF_ET_DYN_BASE (2 * TASK_SIZE / 3)
112 /* When the program starts, a1 contains a pointer to a function to be
113 registered with atexit, as per the SVR4 ABI. A value of 0 means we
114 have no such handler. */
115 #define ELF_PLAT_INIT(_r, load_addr) (_r)->ARM_r0 = 0
118 * Since the FPA coprocessor uses CP1 and CP2, and iWMMXt uses CP0
119 * and CP1, we only enable access to the iWMMXt coprocessor if the
120 * binary is EABI or softfloat (and thus, guaranteed not to use
123 #define SET_PERSONALITY(ex, ibcs2) \
125 if ((ex).e_flags & EF_ARM_APCS26) { \
126 set_personality(PER_LINUX); \
128 set_personality(PER_LINUX_32BIT); \
129 if (elf_hwcap & HWCAP_IWMMXT && (ex).e_flags & (EF_ARM_EABI_MASK | EF_ARM_SOFT_FLOAT)) \
130 set_thread_flag(TIF_USING_IWMMXT); \
132 clear_thread_flag(TIF_USING_IWMMXT); \