2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
43 #include <linux/module.h>
44 #include <linux/delay.h>
45 #include <linux/hardirq.h>
48 #include <linux/netdevice.h>
49 #include <linux/cache.h>
50 #include <linux/pci.h>
51 #include <linux/ethtool.h>
52 #include <linux/uaccess.h>
54 #include <net/ieee80211_radiotap.h>
56 #include <asm/unaligned.h>
62 static int ath5k_calinterval = 10; /* Calibrate PHY every 10 secs (TODO: Fixme) */
70 MODULE_AUTHOR("Jiri Slaby");
71 MODULE_AUTHOR("Nick Kossifidis");
72 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
73 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
74 MODULE_LICENSE("Dual BSD/GPL");
75 MODULE_VERSION("0.6.0 (EXPERIMENTAL)");
79 static struct pci_device_id ath5k_pci_id_table[] __devinitdata = {
80 { PCI_VDEVICE(ATHEROS, 0x0207), .driver_data = AR5K_AR5210 }, /* 5210 early */
81 { PCI_VDEVICE(ATHEROS, 0x0007), .driver_data = AR5K_AR5210 }, /* 5210 */
82 { PCI_VDEVICE(ATHEROS, 0x0011), .driver_data = AR5K_AR5211 }, /* 5311 - this is on AHB bus !*/
83 { PCI_VDEVICE(ATHEROS, 0x0012), .driver_data = AR5K_AR5211 }, /* 5211 */
84 { PCI_VDEVICE(ATHEROS, 0x0013), .driver_data = AR5K_AR5212 }, /* 5212 */
85 { PCI_VDEVICE(3COM_2, 0x0013), .driver_data = AR5K_AR5212 }, /* 3com 5212 */
86 { PCI_VDEVICE(3COM, 0x0013), .driver_data = AR5K_AR5212 }, /* 3com 3CRDAG675 5212 */
87 { PCI_VDEVICE(ATHEROS, 0x1014), .driver_data = AR5K_AR5212 }, /* IBM minipci 5212 */
88 { PCI_VDEVICE(ATHEROS, 0x0014), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
89 { PCI_VDEVICE(ATHEROS, 0x0015), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
90 { PCI_VDEVICE(ATHEROS, 0x0016), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
91 { PCI_VDEVICE(ATHEROS, 0x0017), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
92 { PCI_VDEVICE(ATHEROS, 0x0018), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
93 { PCI_VDEVICE(ATHEROS, 0x0019), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
94 { PCI_VDEVICE(ATHEROS, 0x001a), .driver_data = AR5K_AR5212 }, /* 2413 Griffin-lite */
95 { PCI_VDEVICE(ATHEROS, 0x001b), .driver_data = AR5K_AR5212 }, /* 5413 Eagle */
96 { PCI_VDEVICE(ATHEROS, 0x001c), .driver_data = AR5K_AR5212 }, /* PCI-E cards */
97 { PCI_VDEVICE(ATHEROS, 0x001d), .driver_data = AR5K_AR5212 }, /* 2417 Nala */
100 MODULE_DEVICE_TABLE(pci, ath5k_pci_id_table);
103 static struct ath5k_srev_name srev_names[] = {
104 { "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 },
105 { "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 },
106 { "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A },
107 { "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B },
108 { "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 },
109 { "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 },
110 { "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 },
111 { "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A },
112 { "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 },
113 { "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 },
114 { "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 },
115 { "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 },
116 { "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 },
117 { "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 },
118 { "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 },
119 { "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 },
120 { "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 },
121 { "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 },
122 { "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN },
123 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
124 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
125 { "5111A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111A },
126 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
127 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
128 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
129 { "5112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112B },
130 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
131 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
132 { "2112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112B },
133 { "2413", AR5K_VERSION_RAD, AR5K_SREV_RAD_2413 },
134 { "5413", AR5K_VERSION_RAD, AR5K_SREV_RAD_5413 },
135 { "2316", AR5K_VERSION_RAD, AR5K_SREV_RAD_2316 },
136 { "2317", AR5K_VERSION_RAD, AR5K_SREV_RAD_2317 },
137 { "5424", AR5K_VERSION_RAD, AR5K_SREV_RAD_5424 },
138 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
139 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
142 static struct ieee80211_rate ath5k_rates[] = {
144 .hw_value = ATH5K_RATE_CODE_1M, },
146 .hw_value = ATH5K_RATE_CODE_2M,
147 .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
148 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
150 .hw_value = ATH5K_RATE_CODE_5_5M,
151 .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
152 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
154 .hw_value = ATH5K_RATE_CODE_11M,
155 .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
156 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
158 .hw_value = ATH5K_RATE_CODE_6M,
161 .hw_value = ATH5K_RATE_CODE_9M,
164 .hw_value = ATH5K_RATE_CODE_12M,
167 .hw_value = ATH5K_RATE_CODE_18M,
170 .hw_value = ATH5K_RATE_CODE_24M,
173 .hw_value = ATH5K_RATE_CODE_36M,
176 .hw_value = ATH5K_RATE_CODE_48M,
179 .hw_value = ATH5K_RATE_CODE_54M,
185 * Prototypes - PCI stack related functions
187 static int __devinit ath5k_pci_probe(struct pci_dev *pdev,
188 const struct pci_device_id *id);
189 static void __devexit ath5k_pci_remove(struct pci_dev *pdev);
191 static int ath5k_pci_suspend(struct pci_dev *pdev,
193 static int ath5k_pci_resume(struct pci_dev *pdev);
195 #define ath5k_pci_suspend NULL
196 #define ath5k_pci_resume NULL
197 #endif /* CONFIG_PM */
199 static struct pci_driver ath5k_pci_driver = {
201 .id_table = ath5k_pci_id_table,
202 .probe = ath5k_pci_probe,
203 .remove = __devexit_p(ath5k_pci_remove),
204 .suspend = ath5k_pci_suspend,
205 .resume = ath5k_pci_resume,
211 * Prototypes - MAC 802.11 stack related functions
213 static int ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb);
214 static int ath5k_reset(struct ath5k_softc *sc, bool stop, bool change_channel);
215 static int ath5k_reset_wake(struct ath5k_softc *sc);
216 static int ath5k_start(struct ieee80211_hw *hw);
217 static void ath5k_stop(struct ieee80211_hw *hw);
218 static int ath5k_add_interface(struct ieee80211_hw *hw,
219 struct ieee80211_if_init_conf *conf);
220 static void ath5k_remove_interface(struct ieee80211_hw *hw,
221 struct ieee80211_if_init_conf *conf);
222 static int ath5k_config(struct ieee80211_hw *hw,
223 struct ieee80211_conf *conf);
224 static int ath5k_config_interface(struct ieee80211_hw *hw,
225 struct ieee80211_vif *vif,
226 struct ieee80211_if_conf *conf);
227 static void ath5k_configure_filter(struct ieee80211_hw *hw,
228 unsigned int changed_flags,
229 unsigned int *new_flags,
230 int mc_count, struct dev_mc_list *mclist);
231 static int ath5k_set_key(struct ieee80211_hw *hw,
232 enum set_key_cmd cmd,
233 const u8 *local_addr, const u8 *addr,
234 struct ieee80211_key_conf *key);
235 static int ath5k_get_stats(struct ieee80211_hw *hw,
236 struct ieee80211_low_level_stats *stats);
237 static int ath5k_get_tx_stats(struct ieee80211_hw *hw,
238 struct ieee80211_tx_queue_stats *stats);
239 static u64 ath5k_get_tsf(struct ieee80211_hw *hw);
240 static void ath5k_reset_tsf(struct ieee80211_hw *hw);
241 static int ath5k_beacon_update(struct ieee80211_hw *hw,
242 struct sk_buff *skb);
243 static void ath5k_bss_info_changed(struct ieee80211_hw *hw,
244 struct ieee80211_vif *vif,
245 struct ieee80211_bss_conf *bss_conf,
248 static struct ieee80211_ops ath5k_hw_ops = {
250 .start = ath5k_start,
252 .add_interface = ath5k_add_interface,
253 .remove_interface = ath5k_remove_interface,
254 .config = ath5k_config,
255 .config_interface = ath5k_config_interface,
256 .configure_filter = ath5k_configure_filter,
257 .set_key = ath5k_set_key,
258 .get_stats = ath5k_get_stats,
260 .get_tx_stats = ath5k_get_tx_stats,
261 .get_tsf = ath5k_get_tsf,
262 .reset_tsf = ath5k_reset_tsf,
263 .bss_info_changed = ath5k_bss_info_changed,
267 * Prototypes - Internal functions
270 static int ath5k_attach(struct pci_dev *pdev,
271 struct ieee80211_hw *hw);
272 static void ath5k_detach(struct pci_dev *pdev,
273 struct ieee80211_hw *hw);
274 /* Channel/mode setup */
275 static inline short ath5k_ieee2mhz(short chan);
276 static unsigned int ath5k_copy_channels(struct ath5k_hw *ah,
277 struct ieee80211_channel *channels,
280 static int ath5k_setup_bands(struct ieee80211_hw *hw);
281 static int ath5k_chan_set(struct ath5k_softc *sc,
282 struct ieee80211_channel *chan);
283 static void ath5k_setcurmode(struct ath5k_softc *sc,
285 static void ath5k_mode_setup(struct ath5k_softc *sc);
287 /* Descriptor setup */
288 static int ath5k_desc_alloc(struct ath5k_softc *sc,
289 struct pci_dev *pdev);
290 static void ath5k_desc_free(struct ath5k_softc *sc,
291 struct pci_dev *pdev);
293 static int ath5k_rxbuf_setup(struct ath5k_softc *sc,
294 struct ath5k_buf *bf);
295 static int ath5k_txbuf_setup(struct ath5k_softc *sc,
296 struct ath5k_buf *bf);
297 static inline void ath5k_txbuf_free(struct ath5k_softc *sc,
298 struct ath5k_buf *bf)
303 pci_unmap_single(sc->pdev, bf->skbaddr, bf->skb->len,
305 dev_kfree_skb_any(bf->skb);
310 static struct ath5k_txq *ath5k_txq_setup(struct ath5k_softc *sc,
311 int qtype, int subtype);
312 static int ath5k_beaconq_setup(struct ath5k_hw *ah);
313 static int ath5k_beaconq_config(struct ath5k_softc *sc);
314 static void ath5k_txq_drainq(struct ath5k_softc *sc,
315 struct ath5k_txq *txq);
316 static void ath5k_txq_cleanup(struct ath5k_softc *sc);
317 static void ath5k_txq_release(struct ath5k_softc *sc);
319 static int ath5k_rx_start(struct ath5k_softc *sc);
320 static void ath5k_rx_stop(struct ath5k_softc *sc);
321 static unsigned int ath5k_rx_decrypted(struct ath5k_softc *sc,
322 struct ath5k_desc *ds,
324 struct ath5k_rx_status *rs);
325 static void ath5k_tasklet_rx(unsigned long data);
327 static void ath5k_tx_processq(struct ath5k_softc *sc,
328 struct ath5k_txq *txq);
329 static void ath5k_tasklet_tx(unsigned long data);
330 /* Beacon handling */
331 static int ath5k_beacon_setup(struct ath5k_softc *sc,
332 struct ath5k_buf *bf);
333 static void ath5k_beacon_send(struct ath5k_softc *sc);
334 static void ath5k_beacon_config(struct ath5k_softc *sc);
335 static void ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf);
337 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
339 u64 tsf = ath5k_hw_get_tsf64(ah);
341 if ((tsf & 0x7fff) < rstamp)
344 return (tsf & ~0x7fff) | rstamp;
347 /* Interrupt handling */
348 static int ath5k_init(struct ath5k_softc *sc, bool is_resume);
349 static int ath5k_stop_locked(struct ath5k_softc *sc);
350 static int ath5k_stop_hw(struct ath5k_softc *sc, bool is_suspend);
351 static irqreturn_t ath5k_intr(int irq, void *dev_id);
352 static void ath5k_tasklet_reset(unsigned long data);
354 static void ath5k_calibrate(unsigned long data);
356 static int ath5k_init_leds(struct ath5k_softc *sc);
357 static void ath5k_led_enable(struct ath5k_softc *sc);
358 static void ath5k_led_off(struct ath5k_softc *sc);
359 static void ath5k_unregister_leds(struct ath5k_softc *sc);
362 * Module init/exit functions
371 ret = pci_register_driver(&ath5k_pci_driver);
373 printk(KERN_ERR "ath5k_pci: can't register pci driver\n");
383 pci_unregister_driver(&ath5k_pci_driver);
385 ath5k_debug_finish();
388 module_init(init_ath5k_pci);
389 module_exit(exit_ath5k_pci);
392 /********************\
393 * PCI Initialization *
394 \********************/
397 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
399 const char *name = "xxxxx";
402 for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
403 if (srev_names[i].sr_type != type)
406 if ((val & 0xf0) == srev_names[i].sr_val)
407 name = srev_names[i].sr_name;
409 if ((val & 0xff) == srev_names[i].sr_val) {
410 name = srev_names[i].sr_name;
419 ath5k_pci_probe(struct pci_dev *pdev,
420 const struct pci_device_id *id)
423 struct ath5k_softc *sc;
424 struct ieee80211_hw *hw;
428 ret = pci_enable_device(pdev);
430 dev_err(&pdev->dev, "can't enable device\n");
434 /* XXX 32-bit addressing only */
435 ret = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
437 dev_err(&pdev->dev, "32-bit DMA not available\n");
442 * Cache line size is used to size and align various
443 * structures used to communicate with the hardware.
445 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
448 * Linux 2.4.18 (at least) writes the cache line size
449 * register as a 16-bit wide register which is wrong.
450 * We must have this setup properly for rx buffer
451 * DMA to work so force a reasonable value here if it
454 csz = L1_CACHE_BYTES / sizeof(u32);
455 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
458 * The default setting of latency timer yields poor results,
459 * set it to the value used by other systems. It may be worth
460 * tweaking this setting more.
462 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
464 /* Enable bus mastering */
465 pci_set_master(pdev);
468 * Disable the RETRY_TIMEOUT register (0x41) to keep
469 * PCI Tx retries from interfering with C3 CPU state.
471 pci_write_config_byte(pdev, 0x41, 0);
473 ret = pci_request_region(pdev, 0, "ath5k");
475 dev_err(&pdev->dev, "cannot reserve PCI memory region\n");
479 mem = pci_iomap(pdev, 0, 0);
481 dev_err(&pdev->dev, "cannot remap PCI memory region\n") ;
487 * Allocate hw (mac80211 main struct)
488 * and hw->priv (driver private data)
490 hw = ieee80211_alloc_hw(sizeof(*sc), &ath5k_hw_ops);
492 dev_err(&pdev->dev, "cannot allocate ieee80211_hw\n");
497 dev_info(&pdev->dev, "registered as '%s'\n", wiphy_name(hw->wiphy));
499 /* Initialize driver private data */
500 SET_IEEE80211_DEV(hw, &pdev->dev);
501 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
502 IEEE80211_HW_SIGNAL_DBM |
503 IEEE80211_HW_NOISE_DBM;
505 hw->wiphy->interface_modes =
506 BIT(NL80211_IFTYPE_STATION) |
507 BIT(NL80211_IFTYPE_ADHOC) |
508 BIT(NL80211_IFTYPE_MESH_POINT);
510 hw->extra_tx_headroom = 2;
511 hw->channel_change_time = 5000;
516 ath5k_debug_init_device(sc);
519 * Mark the device as detached to avoid processing
520 * interrupts until setup is complete.
522 __set_bit(ATH_STAT_INVALID, sc->status);
524 sc->iobase = mem; /* So we can unmap it on detach */
525 sc->cachelsz = csz * sizeof(u32); /* convert to bytes */
526 sc->opmode = NL80211_IFTYPE_STATION;
527 mutex_init(&sc->lock);
528 spin_lock_init(&sc->rxbuflock);
529 spin_lock_init(&sc->txbuflock);
530 spin_lock_init(&sc->block);
532 /* Set private data */
533 pci_set_drvdata(pdev, hw);
535 /* Setup interrupt handler */
536 ret = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
538 ATH5K_ERR(sc, "request_irq failed\n");
542 /* Initialize device */
543 sc->ah = ath5k_hw_attach(sc, id->driver_data);
544 if (IS_ERR(sc->ah)) {
545 ret = PTR_ERR(sc->ah);
549 /* set up multi-rate retry capabilities */
550 if (sc->ah->ah_version == AR5K_AR5212) {
551 hw->max_altrates = 3;
552 hw->max_altrate_tries = 11;
555 /* Finish private driver data initialization */
556 ret = ath5k_attach(pdev, hw);
560 ATH5K_INFO(sc, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
561 ath5k_chip_name(AR5K_VERSION_MAC, sc->ah->ah_mac_srev),
563 sc->ah->ah_phy_revision);
565 if (!sc->ah->ah_single_chip) {
566 /* Single chip radio (!RF5111) */
567 if (sc->ah->ah_radio_5ghz_revision &&
568 !sc->ah->ah_radio_2ghz_revision) {
569 /* No 5GHz support -> report 2GHz radio */
570 if (!test_bit(AR5K_MODE_11A,
571 sc->ah->ah_capabilities.cap_mode)) {
572 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
573 ath5k_chip_name(AR5K_VERSION_RAD,
574 sc->ah->ah_radio_5ghz_revision),
575 sc->ah->ah_radio_5ghz_revision);
576 /* No 2GHz support (5110 and some
577 * 5Ghz only cards) -> report 5Ghz radio */
578 } else if (!test_bit(AR5K_MODE_11B,
579 sc->ah->ah_capabilities.cap_mode)) {
580 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
581 ath5k_chip_name(AR5K_VERSION_RAD,
582 sc->ah->ah_radio_5ghz_revision),
583 sc->ah->ah_radio_5ghz_revision);
584 /* Multiband radio */
586 ATH5K_INFO(sc, "RF%s multiband radio found"
588 ath5k_chip_name(AR5K_VERSION_RAD,
589 sc->ah->ah_radio_5ghz_revision),
590 sc->ah->ah_radio_5ghz_revision);
593 /* Multi chip radio (RF5111 - RF2111) ->
594 * report both 2GHz/5GHz radios */
595 else if (sc->ah->ah_radio_5ghz_revision &&
596 sc->ah->ah_radio_2ghz_revision){
597 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
598 ath5k_chip_name(AR5K_VERSION_RAD,
599 sc->ah->ah_radio_5ghz_revision),
600 sc->ah->ah_radio_5ghz_revision);
601 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
602 ath5k_chip_name(AR5K_VERSION_RAD,
603 sc->ah->ah_radio_2ghz_revision),
604 sc->ah->ah_radio_2ghz_revision);
609 /* ready to process interrupts */
610 __clear_bit(ATH_STAT_INVALID, sc->status);
614 ath5k_hw_detach(sc->ah);
616 free_irq(pdev->irq, sc);
618 ieee80211_free_hw(hw);
620 pci_iounmap(pdev, mem);
622 pci_release_region(pdev, 0);
624 pci_disable_device(pdev);
629 static void __devexit
630 ath5k_pci_remove(struct pci_dev *pdev)
632 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
633 struct ath5k_softc *sc = hw->priv;
635 ath5k_debug_finish_device(sc);
636 ath5k_detach(pdev, hw);
637 ath5k_hw_detach(sc->ah);
638 free_irq(pdev->irq, sc);
639 pci_iounmap(pdev, sc->iobase);
640 pci_release_region(pdev, 0);
641 pci_disable_device(pdev);
642 ieee80211_free_hw(hw);
647 ath5k_pci_suspend(struct pci_dev *pdev, pm_message_t state)
649 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
650 struct ath5k_softc *sc = hw->priv;
654 ath5k_stop_hw(sc, true);
656 free_irq(pdev->irq, sc);
657 pci_save_state(pdev);
658 pci_disable_device(pdev);
659 pci_set_power_state(pdev, PCI_D3hot);
665 ath5k_pci_resume(struct pci_dev *pdev)
667 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
668 struct ath5k_softc *sc = hw->priv;
671 pci_restore_state(pdev);
673 err = pci_enable_device(pdev);
678 * Suspend/Resume resets the PCI configuration space, so we have to
679 * re-disable the RETRY_TIMEOUT register (0x41) to keep
680 * PCI Tx retries from interfering with C3 CPU state
682 pci_write_config_byte(pdev, 0x41, 0);
684 err = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
686 ATH5K_ERR(sc, "request_irq failed\n");
690 err = ath5k_init(sc, true);
693 ath5k_led_enable(sc);
697 free_irq(pdev->irq, sc);
699 pci_disable_device(pdev);
702 #endif /* CONFIG_PM */
705 /***********************\
706 * Driver Initialization *
707 \***********************/
710 ath5k_attach(struct pci_dev *pdev, struct ieee80211_hw *hw)
712 struct ath5k_softc *sc = hw->priv;
713 struct ath5k_hw *ah = sc->ah;
717 ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "devid 0x%x\n", pdev->device);
720 * Check if the MAC has multi-rate retry support.
721 * We do this by trying to setup a fake extended
722 * descriptor. MAC's that don't have support will
723 * return false w/o doing anything. MAC's that do
724 * support it will return true w/o doing anything.
726 ret = ah->ah_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
730 __set_bit(ATH_STAT_MRRETRY, sc->status);
733 * Collect the channel list. The 802.11 layer
734 * is resposible for filtering this list based
735 * on settings like the phy mode and regulatory
736 * domain restrictions.
738 ret = ath5k_setup_bands(hw);
740 ATH5K_ERR(sc, "can't get channels\n");
744 /* NB: setup here so ath5k_rate_update is happy */
745 if (test_bit(AR5K_MODE_11A, ah->ah_modes))
746 ath5k_setcurmode(sc, AR5K_MODE_11A);
748 ath5k_setcurmode(sc, AR5K_MODE_11B);
751 * Allocate tx+rx descriptors and populate the lists.
753 ret = ath5k_desc_alloc(sc, pdev);
755 ATH5K_ERR(sc, "can't allocate descriptors\n");
760 * Allocate hardware transmit queues: one queue for
761 * beacon frames and one data queue for each QoS
762 * priority. Note that hw functions handle reseting
763 * these queues at the needed time.
765 ret = ath5k_beaconq_setup(ah);
767 ATH5K_ERR(sc, "can't setup a beacon xmit queue\n");
772 sc->txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
773 if (IS_ERR(sc->txq)) {
774 ATH5K_ERR(sc, "can't setup xmit queue\n");
775 ret = PTR_ERR(sc->txq);
779 tasklet_init(&sc->rxtq, ath5k_tasklet_rx, (unsigned long)sc);
780 tasklet_init(&sc->txtq, ath5k_tasklet_tx, (unsigned long)sc);
781 tasklet_init(&sc->restq, ath5k_tasklet_reset, (unsigned long)sc);
782 setup_timer(&sc->calib_tim, ath5k_calibrate, (unsigned long)sc);
784 ath5k_hw_get_lladdr(ah, mac);
785 SET_IEEE80211_PERM_ADDR(hw, mac);
786 /* All MAC address bits matter for ACKs */
787 memset(sc->bssidmask, 0xff, ETH_ALEN);
788 ath5k_hw_set_bssid_mask(sc->ah, sc->bssidmask);
790 ret = ieee80211_register_hw(hw);
792 ATH5K_ERR(sc, "can't register ieee80211 hw\n");
800 ath5k_txq_release(sc);
802 ath5k_hw_release_tx_queue(ah, sc->bhalq);
804 ath5k_desc_free(sc, pdev);
810 ath5k_detach(struct pci_dev *pdev, struct ieee80211_hw *hw)
812 struct ath5k_softc *sc = hw->priv;
815 * NB: the order of these is important:
816 * o call the 802.11 layer before detaching ath5k_hw to
817 * insure callbacks into the driver to delete global
818 * key cache entries can be handled
819 * o reclaim the tx queue data structures after calling
820 * the 802.11 layer as we'll get called back to reclaim
821 * node state and potentially want to use them
822 * o to cleanup the tx queues the hal is called, so detach
824 * XXX: ??? detach ath5k_hw ???
825 * Other than that, it's straightforward...
827 ieee80211_unregister_hw(hw);
828 ath5k_desc_free(sc, pdev);
829 ath5k_txq_release(sc);
830 ath5k_hw_release_tx_queue(sc->ah, sc->bhalq);
831 ath5k_unregister_leds(sc);
834 * NB: can't reclaim these until after ieee80211_ifdetach
835 * returns because we'll get called back to reclaim node
836 * state and potentially want to use them.
843 /********************\
844 * Channel/mode setup *
845 \********************/
848 * Convert IEEE channel number to MHz frequency.
851 ath5k_ieee2mhz(short chan)
853 if (chan <= 14 || chan >= 27)
854 return ieee80211chan2mhz(chan);
856 return 2212 + chan * 20;
860 ath5k_copy_channels(struct ath5k_hw *ah,
861 struct ieee80211_channel *channels,
865 unsigned int i, count, size, chfreq, freq, ch;
867 if (!test_bit(mode, ah->ah_modes))
872 case AR5K_MODE_11A_TURBO:
873 /* 1..220, but 2GHz frequencies are filtered by check_channel */
875 chfreq = CHANNEL_5GHZ;
879 case AR5K_MODE_11G_TURBO:
881 chfreq = CHANNEL_2GHZ;
884 ATH5K_WARN(ah->ah_sc, "bad mode, not copying channels\n");
888 for (i = 0, count = 0; i < size && max > 0; i++) {
890 freq = ath5k_ieee2mhz(ch);
892 /* Check if channel is supported by the chipset */
893 if (!ath5k_channel_ok(ah, freq, chfreq))
896 /* Write channel info and increment counter */
897 channels[count].center_freq = freq;
898 channels[count].band = (chfreq == CHANNEL_2GHZ) ?
899 IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
903 channels[count].hw_value = chfreq | CHANNEL_OFDM;
905 case AR5K_MODE_11A_TURBO:
906 case AR5K_MODE_11G_TURBO:
907 channels[count].hw_value = chfreq |
908 CHANNEL_OFDM | CHANNEL_TURBO;
911 channels[count].hw_value = CHANNEL_B;
922 ath5k_setup_rate_idx(struct ath5k_softc *sc, struct ieee80211_supported_band *b)
926 for (i = 0; i < AR5K_MAX_RATES; i++)
927 sc->rate_idx[b->band][i] = -1;
929 for (i = 0; i < b->n_bitrates; i++) {
930 sc->rate_idx[b->band][b->bitrates[i].hw_value] = i;
931 if (b->bitrates[i].hw_value_short)
932 sc->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
937 ath5k_setup_bands(struct ieee80211_hw *hw)
939 struct ath5k_softc *sc = hw->priv;
940 struct ath5k_hw *ah = sc->ah;
941 struct ieee80211_supported_band *sband;
942 int max_c, count_c = 0;
945 BUILD_BUG_ON(ARRAY_SIZE(sc->sbands) < IEEE80211_NUM_BANDS);
946 max_c = ARRAY_SIZE(sc->channels);
949 sband = &sc->sbands[IEEE80211_BAND_2GHZ];
950 sband->band = IEEE80211_BAND_2GHZ;
951 sband->bitrates = &sc->rates[IEEE80211_BAND_2GHZ][0];
953 if (test_bit(AR5K_MODE_11G, sc->ah->ah_capabilities.cap_mode)) {
955 memcpy(sband->bitrates, &ath5k_rates[0],
956 sizeof(struct ieee80211_rate) * 12);
957 sband->n_bitrates = 12;
959 sband->channels = sc->channels;
960 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
961 AR5K_MODE_11G, max_c);
963 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
964 count_c = sband->n_channels;
966 } else if (test_bit(AR5K_MODE_11B, sc->ah->ah_capabilities.cap_mode)) {
968 memcpy(sband->bitrates, &ath5k_rates[0],
969 sizeof(struct ieee80211_rate) * 4);
970 sband->n_bitrates = 4;
972 /* 5211 only supports B rates and uses 4bit rate codes
973 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
976 if (ah->ah_version == AR5K_AR5211) {
977 for (i = 0; i < 4; i++) {
978 sband->bitrates[i].hw_value =
979 sband->bitrates[i].hw_value & 0xF;
980 sband->bitrates[i].hw_value_short =
981 sband->bitrates[i].hw_value_short & 0xF;
985 sband->channels = sc->channels;
986 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
987 AR5K_MODE_11B, max_c);
989 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
990 count_c = sband->n_channels;
993 ath5k_setup_rate_idx(sc, sband);
995 /* 5GHz band, A mode */
996 if (test_bit(AR5K_MODE_11A, sc->ah->ah_capabilities.cap_mode)) {
997 sband = &sc->sbands[IEEE80211_BAND_5GHZ];
998 sband->band = IEEE80211_BAND_5GHZ;
999 sband->bitrates = &sc->rates[IEEE80211_BAND_5GHZ][0];
1001 memcpy(sband->bitrates, &ath5k_rates[4],
1002 sizeof(struct ieee80211_rate) * 8);
1003 sband->n_bitrates = 8;
1005 sband->channels = &sc->channels[count_c];
1006 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
1007 AR5K_MODE_11A, max_c);
1009 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
1011 ath5k_setup_rate_idx(sc, sband);
1013 ath5k_debug_dump_bands(sc);
1019 * Set/change channels. If the channel is really being changed,
1020 * it's done by reseting the chip. To accomplish this we must
1021 * first cleanup any pending DMA, then restart stuff after a la
1025 ath5k_chan_set(struct ath5k_softc *sc, struct ieee80211_channel *chan)
1027 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "(%u MHz) -> (%u MHz)\n",
1028 sc->curchan->center_freq, chan->center_freq);
1030 if (chan->center_freq != sc->curchan->center_freq ||
1031 chan->hw_value != sc->curchan->hw_value) {
1034 sc->curband = &sc->sbands[chan->band];
1037 * To switch channels clear any pending DMA operations;
1038 * wait long enough for the RX fifo to drain, reset the
1039 * hardware at the new frequency, and then re-enable
1040 * the relevant bits of the h/w.
1042 return ath5k_reset(sc, true, true);
1049 ath5k_setcurmode(struct ath5k_softc *sc, unsigned int mode)
1053 if (mode == AR5K_MODE_11A) {
1054 sc->curband = &sc->sbands[IEEE80211_BAND_5GHZ];
1056 sc->curband = &sc->sbands[IEEE80211_BAND_2GHZ];
1061 ath5k_mode_setup(struct ath5k_softc *sc)
1063 struct ath5k_hw *ah = sc->ah;
1066 /* configure rx filter */
1067 rfilt = sc->filter_flags;
1068 ath5k_hw_set_rx_filter(ah, rfilt);
1070 if (ath5k_hw_hasbssidmask(ah))
1071 ath5k_hw_set_bssid_mask(ah, sc->bssidmask);
1073 /* configure operational mode */
1074 ath5k_hw_set_opmode(ah);
1076 ath5k_hw_set_mcast_filter(ah, 0, 0);
1077 ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
1081 ath5k_hw_to_driver_rix(struct ath5k_softc *sc, int hw_rix)
1083 WARN_ON(hw_rix < 0 || hw_rix > AR5K_MAX_RATES);
1084 return sc->rate_idx[sc->curband->band][hw_rix];
1092 ath5k_rxbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1094 struct ath5k_hw *ah = sc->ah;
1095 struct sk_buff *skb = bf->skb;
1096 struct ath5k_desc *ds;
1098 if (likely(skb == NULL)) {
1102 * Allocate buffer with headroom_needed space for the
1103 * fake physical layer header at the start.
1105 skb = dev_alloc_skb(sc->rxbufsize + sc->cachelsz - 1);
1106 if (unlikely(skb == NULL)) {
1107 ATH5K_ERR(sc, "can't alloc skbuff of size %u\n",
1108 sc->rxbufsize + sc->cachelsz - 1);
1112 * Cache-line-align. This is important (for the
1113 * 5210 at least) as not doing so causes bogus data
1116 off = ((unsigned long)skb->data) % sc->cachelsz;
1118 skb_reserve(skb, sc->cachelsz - off);
1121 bf->skbaddr = pci_map_single(sc->pdev,
1122 skb->data, sc->rxbufsize, PCI_DMA_FROMDEVICE);
1123 if (unlikely(pci_dma_mapping_error(sc->pdev, bf->skbaddr))) {
1124 ATH5K_ERR(sc, "%s: DMA mapping failed\n", __func__);
1132 * Setup descriptors. For receive we always terminate
1133 * the descriptor list with a self-linked entry so we'll
1134 * not get overrun under high load (as can happen with a
1135 * 5212 when ANI processing enables PHY error frames).
1137 * To insure the last descriptor is self-linked we create
1138 * each descriptor as self-linked and add it to the end. As
1139 * each additional descriptor is added the previous self-linked
1140 * entry is ``fixed'' naturally. This should be safe even
1141 * if DMA is happening. When processing RX interrupts we
1142 * never remove/process the last, self-linked, entry on the
1143 * descriptor list. This insures the hardware always has
1144 * someplace to write a new frame.
1147 ds->ds_link = bf->daddr; /* link to self */
1148 ds->ds_data = bf->skbaddr;
1149 ah->ah_setup_rx_desc(ah, ds,
1150 skb_tailroom(skb), /* buffer size */
1153 if (sc->rxlink != NULL)
1154 *sc->rxlink = bf->daddr;
1155 sc->rxlink = &ds->ds_link;
1160 ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1162 struct ath5k_hw *ah = sc->ah;
1163 struct ath5k_txq *txq = sc->txq;
1164 struct ath5k_desc *ds = bf->desc;
1165 struct sk_buff *skb = bf->skb;
1166 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1167 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
1168 struct ieee80211_rate *rate;
1169 unsigned int mrr_rate[3], mrr_tries[3];
1172 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
1174 /* XXX endianness */
1175 bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
1178 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
1179 flags |= AR5K_TXDESC_NOACK;
1183 if (info->control.hw_key) {
1184 keyidx = info->control.hw_key->hw_key_idx;
1185 pktlen += info->control.hw_key->icv_len;
1187 ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
1188 ieee80211_get_hdrlen_from_skb(skb), AR5K_PKT_TYPE_NORMAL,
1189 (sc->power_level * 2),
1190 ieee80211_get_tx_rate(sc->hw, info)->hw_value,
1191 info->control.retry_limit, keyidx, 0, flags, 0, 0);
1195 memset(mrr_rate, 0, sizeof(mrr_rate));
1196 memset(mrr_tries, 0, sizeof(mrr_tries));
1197 for (i = 0; i < 3; i++) {
1198 rate = ieee80211_get_alt_retry_rate(sc->hw, info, i);
1202 mrr_rate[i] = rate->hw_value;
1203 mrr_tries[i] = info->control.retries[i].limit;
1206 ah->ah_setup_mrr_tx_desc(ah, ds,
1207 mrr_rate[0], mrr_tries[0],
1208 mrr_rate[1], mrr_tries[1],
1209 mrr_rate[2], mrr_tries[2]);
1212 ds->ds_data = bf->skbaddr;
1214 spin_lock_bh(&txq->lock);
1215 list_add_tail(&bf->list, &txq->q);
1216 sc->tx_stats[txq->qnum].len++;
1217 if (txq->link == NULL) /* is this first packet? */
1218 ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
1219 else /* no, so only link it */
1220 *txq->link = bf->daddr;
1222 txq->link = &ds->ds_link;
1223 ath5k_hw_start_tx_dma(ah, txq->qnum);
1225 spin_unlock_bh(&txq->lock);
1229 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
1233 /*******************\
1234 * Descriptors setup *
1235 \*******************/
1238 ath5k_desc_alloc(struct ath5k_softc *sc, struct pci_dev *pdev)
1240 struct ath5k_desc *ds;
1241 struct ath5k_buf *bf;
1246 /* allocate descriptors */
1247 sc->desc_len = sizeof(struct ath5k_desc) *
1248 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
1249 sc->desc = pci_alloc_consistent(pdev, sc->desc_len, &sc->desc_daddr);
1250 if (sc->desc == NULL) {
1251 ATH5K_ERR(sc, "can't allocate descriptors\n");
1256 da = sc->desc_daddr;
1257 ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
1258 ds, sc->desc_len, (unsigned long long)sc->desc_daddr);
1260 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
1261 sizeof(struct ath5k_buf), GFP_KERNEL);
1263 ATH5K_ERR(sc, "can't allocate bufptr\n");
1269 INIT_LIST_HEAD(&sc->rxbuf);
1270 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
1273 list_add_tail(&bf->list, &sc->rxbuf);
1276 INIT_LIST_HEAD(&sc->txbuf);
1277 sc->txbuf_len = ATH_TXBUF;
1278 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++,
1279 da += sizeof(*ds)) {
1282 list_add_tail(&bf->list, &sc->txbuf);
1292 pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
1299 ath5k_desc_free(struct ath5k_softc *sc, struct pci_dev *pdev)
1301 struct ath5k_buf *bf;
1303 ath5k_txbuf_free(sc, sc->bbuf);
1304 list_for_each_entry(bf, &sc->txbuf, list)
1305 ath5k_txbuf_free(sc, bf);
1306 list_for_each_entry(bf, &sc->rxbuf, list)
1307 ath5k_txbuf_free(sc, bf);
1309 /* Free memory associated with all descriptors */
1310 pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
1324 static struct ath5k_txq *
1325 ath5k_txq_setup(struct ath5k_softc *sc,
1326 int qtype, int subtype)
1328 struct ath5k_hw *ah = sc->ah;
1329 struct ath5k_txq *txq;
1330 struct ath5k_txq_info qi = {
1331 .tqi_subtype = subtype,
1332 .tqi_aifs = AR5K_TXQ_USEDEFAULT,
1333 .tqi_cw_min = AR5K_TXQ_USEDEFAULT,
1334 .tqi_cw_max = AR5K_TXQ_USEDEFAULT
1339 * Enable interrupts only for EOL and DESC conditions.
1340 * We mark tx descriptors to receive a DESC interrupt
1341 * when a tx queue gets deep; otherwise waiting for the
1342 * EOL to reap descriptors. Note that this is done to
1343 * reduce interrupt load and this only defers reaping
1344 * descriptors, never transmitting frames. Aside from
1345 * reducing interrupts this also permits more concurrency.
1346 * The only potential downside is if the tx queue backs
1347 * up in which case the top half of the kernel may backup
1348 * due to a lack of tx descriptors.
1350 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1351 AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1352 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1355 * NB: don't print a message, this happens
1356 * normally on parts with too few tx queues
1358 return ERR_PTR(qnum);
1360 if (qnum >= ARRAY_SIZE(sc->txqs)) {
1361 ATH5K_ERR(sc, "hw qnum %u out of range, max %tu!\n",
1362 qnum, ARRAY_SIZE(sc->txqs));
1363 ath5k_hw_release_tx_queue(ah, qnum);
1364 return ERR_PTR(-EINVAL);
1366 txq = &sc->txqs[qnum];
1370 INIT_LIST_HEAD(&txq->q);
1371 spin_lock_init(&txq->lock);
1374 return &sc->txqs[qnum];
1378 ath5k_beaconq_setup(struct ath5k_hw *ah)
1380 struct ath5k_txq_info qi = {
1381 .tqi_aifs = AR5K_TXQ_USEDEFAULT,
1382 .tqi_cw_min = AR5K_TXQ_USEDEFAULT,
1383 .tqi_cw_max = AR5K_TXQ_USEDEFAULT,
1384 /* NB: for dynamic turbo, don't enable any other interrupts */
1385 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1388 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1392 ath5k_beaconq_config(struct ath5k_softc *sc)
1394 struct ath5k_hw *ah = sc->ah;
1395 struct ath5k_txq_info qi;
1398 ret = ath5k_hw_get_tx_queueprops(ah, sc->bhalq, &qi);
1401 if (sc->opmode == NL80211_IFTYPE_AP ||
1402 sc->opmode == NL80211_IFTYPE_MESH_POINT) {
1404 * Always burst out beacon and CAB traffic
1405 * (aifs = cwmin = cwmax = 0)
1410 } else if (sc->opmode == NL80211_IFTYPE_ADHOC) {
1412 * Adhoc mode; backoff between 0 and (2 * cw_min).
1416 qi.tqi_cw_max = 2 * ah->ah_cw_min;
1419 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1420 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1421 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1423 ret = ath5k_hw_set_tx_queueprops(ah, sc->bhalq, &qi);
1425 ATH5K_ERR(sc, "%s: unable to update parameters for beacon "
1426 "hardware queue!\n", __func__);
1430 return ath5k_hw_reset_tx_queue(ah, sc->bhalq); /* push to h/w */;
1434 ath5k_txq_drainq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1436 struct ath5k_buf *bf, *bf0;
1439 * NB: this assumes output has been stopped and
1440 * we do not need to block ath5k_tx_tasklet
1442 spin_lock_bh(&txq->lock);
1443 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1444 ath5k_debug_printtxbuf(sc, bf);
1446 ath5k_txbuf_free(sc, bf);
1448 spin_lock_bh(&sc->txbuflock);
1449 sc->tx_stats[txq->qnum].len--;
1450 list_move_tail(&bf->list, &sc->txbuf);
1452 spin_unlock_bh(&sc->txbuflock);
1455 spin_unlock_bh(&txq->lock);
1459 * Drain the transmit queues and reclaim resources.
1462 ath5k_txq_cleanup(struct ath5k_softc *sc)
1464 struct ath5k_hw *ah = sc->ah;
1467 /* XXX return value */
1468 if (likely(!test_bit(ATH_STAT_INVALID, sc->status))) {
1469 /* don't touch the hardware if marked invalid */
1470 ath5k_hw_stop_tx_dma(ah, sc->bhalq);
1471 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "beacon queue %x\n",
1472 ath5k_hw_get_txdp(ah, sc->bhalq));
1473 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1474 if (sc->txqs[i].setup) {
1475 ath5k_hw_stop_tx_dma(ah, sc->txqs[i].qnum);
1476 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "txq [%u] %x, "
1479 ath5k_hw_get_txdp(ah,
1484 ieee80211_wake_queues(sc->hw); /* XXX move to callers */
1486 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1487 if (sc->txqs[i].setup)
1488 ath5k_txq_drainq(sc, &sc->txqs[i]);
1492 ath5k_txq_release(struct ath5k_softc *sc)
1494 struct ath5k_txq *txq = sc->txqs;
1497 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++, txq++)
1499 ath5k_hw_release_tx_queue(sc->ah, txq->qnum);
1512 * Enable the receive h/w following a reset.
1515 ath5k_rx_start(struct ath5k_softc *sc)
1517 struct ath5k_hw *ah = sc->ah;
1518 struct ath5k_buf *bf;
1521 sc->rxbufsize = roundup(IEEE80211_MAX_LEN, sc->cachelsz);
1523 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "cachelsz %u rxbufsize %u\n",
1524 sc->cachelsz, sc->rxbufsize);
1528 spin_lock_bh(&sc->rxbuflock);
1529 list_for_each_entry(bf, &sc->rxbuf, list) {
1530 ret = ath5k_rxbuf_setup(sc, bf);
1532 spin_unlock_bh(&sc->rxbuflock);
1536 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1537 spin_unlock_bh(&sc->rxbuflock);
1539 ath5k_hw_set_rxdp(ah, bf->daddr);
1540 ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */
1541 ath5k_mode_setup(sc); /* set filters, etc. */
1542 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
1550 * Disable the receive h/w in preparation for a reset.
1553 ath5k_rx_stop(struct ath5k_softc *sc)
1555 struct ath5k_hw *ah = sc->ah;
1557 ath5k_hw_stop_rx_pcu(ah); /* disable PCU */
1558 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
1559 ath5k_hw_stop_rx_dma(ah); /* disable DMA engine */
1561 ath5k_debug_printrxbuffs(sc, ah);
1563 sc->rxlink = NULL; /* just in case */
1567 ath5k_rx_decrypted(struct ath5k_softc *sc, struct ath5k_desc *ds,
1568 struct sk_buff *skb, struct ath5k_rx_status *rs)
1570 struct ieee80211_hdr *hdr = (void *)skb->data;
1571 unsigned int keyix, hlen;
1573 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1574 rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1575 return RX_FLAG_DECRYPTED;
1577 /* Apparently when a default key is used to decrypt the packet
1578 the hw does not set the index used to decrypt. In such cases
1579 get the index from the packet. */
1580 hlen = ieee80211_hdrlen(hdr->frame_control);
1581 if (ieee80211_has_protected(hdr->frame_control) &&
1582 !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1583 skb->len >= hlen + 4) {
1584 keyix = skb->data[hlen + 3] >> 6;
1586 if (test_bit(keyix, sc->keymap))
1587 return RX_FLAG_DECRYPTED;
1595 ath5k_check_ibss_tsf(struct ath5k_softc *sc, struct sk_buff *skb,
1596 struct ieee80211_rx_status *rxs)
1600 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1602 if (ieee80211_is_beacon(mgmt->frame_control) &&
1603 le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1604 memcmp(mgmt->bssid, sc->ah->ah_bssid, ETH_ALEN) == 0) {
1606 * Received an IBSS beacon with the same BSSID. Hardware *must*
1607 * have updated the local TSF. We have to work around various
1608 * hardware bugs, though...
1610 tsf = ath5k_hw_get_tsf64(sc->ah);
1611 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1612 hw_tu = TSF_TO_TU(tsf);
1614 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1615 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1616 (unsigned long long)bc_tstamp,
1617 (unsigned long long)rxs->mactime,
1618 (unsigned long long)(rxs->mactime - bc_tstamp),
1619 (unsigned long long)tsf);
1622 * Sometimes the HW will give us a wrong tstamp in the rx
1623 * status, causing the timestamp extension to go wrong.
1624 * (This seems to happen especially with beacon frames bigger
1625 * than 78 byte (incl. FCS))
1626 * But we know that the receive timestamp must be later than the
1627 * timestamp of the beacon since HW must have synced to that.
1629 * NOTE: here we assume mactime to be after the frame was
1630 * received, not like mac80211 which defines it at the start.
1632 if (bc_tstamp > rxs->mactime) {
1633 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1634 "fixing mactime from %llx to %llx\n",
1635 (unsigned long long)rxs->mactime,
1636 (unsigned long long)tsf);
1641 * Local TSF might have moved higher than our beacon timers,
1642 * in that case we have to update them to continue sending
1643 * beacons. This also takes care of synchronizing beacon sending
1644 * times with other stations.
1646 if (hw_tu >= sc->nexttbtt)
1647 ath5k_beacon_update_timers(sc, bc_tstamp);
1653 ath5k_tasklet_rx(unsigned long data)
1655 struct ieee80211_rx_status rxs = {};
1656 struct ath5k_rx_status rs = {};
1657 struct sk_buff *skb;
1658 struct ath5k_softc *sc = (void *)data;
1659 struct ath5k_buf *bf, *bf_last;
1660 struct ath5k_desc *ds;
1665 spin_lock(&sc->rxbuflock);
1666 if (list_empty(&sc->rxbuf)) {
1667 ATH5K_WARN(sc, "empty rx buf pool\n");
1670 bf_last = list_entry(sc->rxbuf.prev, struct ath5k_buf, list);
1674 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1675 BUG_ON(bf->skb == NULL);
1680 * last buffer must not be freed to ensure proper hardware
1681 * function. When the hardware finishes also a packet next to
1682 * it, we are sure, it doesn't use it anymore and we can go on.
1687 struct ath5k_buf *bf_next = list_entry(bf->list.next,
1688 struct ath5k_buf, list);
1689 ret = sc->ah->ah_proc_rx_desc(sc->ah, bf_next->desc,
1694 /* skip the overwritten one (even status is martian) */
1698 ret = sc->ah->ah_proc_rx_desc(sc->ah, ds, &rs);
1699 if (unlikely(ret == -EINPROGRESS))
1701 else if (unlikely(ret)) {
1702 ATH5K_ERR(sc, "error in processing rx descriptor\n");
1703 spin_unlock(&sc->rxbuflock);
1707 if (unlikely(rs.rs_more)) {
1708 ATH5K_WARN(sc, "unsupported jumbo\n");
1712 if (unlikely(rs.rs_status)) {
1713 if (rs.rs_status & AR5K_RXERR_PHY)
1715 if (rs.rs_status & AR5K_RXERR_DECRYPT) {
1717 * Decrypt error. If the error occurred
1718 * because there was no hardware key, then
1719 * let the frame through so the upper layers
1720 * can process it. This is necessary for 5210
1721 * parts which have no way to setup a ``clear''
1724 * XXX do key cache faulting
1726 if (rs.rs_keyix == AR5K_RXKEYIX_INVALID &&
1727 !(rs.rs_status & AR5K_RXERR_CRC))
1730 if (rs.rs_status & AR5K_RXERR_MIC) {
1731 rxs.flag |= RX_FLAG_MMIC_ERROR;
1735 /* let crypto-error packets fall through in MNTR */
1737 ~(AR5K_RXERR_DECRYPT|AR5K_RXERR_MIC)) ||
1738 sc->opmode != NL80211_IFTYPE_MONITOR)
1742 pci_unmap_single(sc->pdev, bf->skbaddr, sc->rxbufsize,
1743 PCI_DMA_FROMDEVICE);
1746 skb_put(skb, rs.rs_datalen);
1749 * the hardware adds a padding to 4 byte boundaries between
1750 * the header and the payload data if the header length is
1751 * not multiples of 4 - remove it
1753 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1756 memmove(skb->data + pad, skb->data, hdrlen);
1761 * always extend the mac timestamp, since this information is
1762 * also needed for proper IBSS merging.
1764 * XXX: it might be too late to do it here, since rs_tstamp is
1765 * 15bit only. that means TSF extension has to be done within
1766 * 32768usec (about 32ms). it might be necessary to move this to
1767 * the interrupt handler, like it is done in madwifi.
1769 * Unfortunately we don't know when the hardware takes the rx
1770 * timestamp (beginning of phy frame, data frame, end of rx?).
1771 * The only thing we know is that it is hardware specific...
1772 * On AR5213 it seems the rx timestamp is at the end of the
1773 * frame, but i'm not sure.
1775 * NOTE: mac80211 defines mactime at the beginning of the first
1776 * data symbol. Since we don't have any time references it's
1777 * impossible to comply to that. This affects IBSS merge only
1778 * right now, so it's not too bad...
1780 rxs.mactime = ath5k_extend_tsf(sc->ah, rs.rs_tstamp);
1781 rxs.flag |= RX_FLAG_TSFT;
1783 rxs.freq = sc->curchan->center_freq;
1784 rxs.band = sc->curband->band;
1786 rxs.noise = sc->ah->ah_noise_floor;
1787 rxs.signal = rxs.noise + rs.rs_rssi;
1788 rxs.qual = rs.rs_rssi * 100 / 64;
1790 rxs.antenna = rs.rs_antenna;
1791 rxs.rate_idx = ath5k_hw_to_driver_rix(sc, rs.rs_rate);
1792 rxs.flag |= ath5k_rx_decrypted(sc, ds, skb, &rs);
1794 if (rxs.rate_idx >= 0 && rs.rs_rate ==
1795 sc->curband->bitrates[rxs.rate_idx].hw_value_short)
1796 rxs.flag |= RX_FLAG_SHORTPRE;
1798 ath5k_debug_dump_skb(sc, skb, "RX ", 0);
1800 /* check beacons in IBSS mode */
1801 if (sc->opmode == NL80211_IFTYPE_ADHOC)
1802 ath5k_check_ibss_tsf(sc, skb, &rxs);
1804 __ieee80211_rx(sc->hw, skb, &rxs);
1806 list_move_tail(&bf->list, &sc->rxbuf);
1807 } while (ath5k_rxbuf_setup(sc, bf) == 0);
1809 spin_unlock(&sc->rxbuflock);
1820 ath5k_tx_processq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1822 struct ath5k_tx_status ts = {};
1823 struct ath5k_buf *bf, *bf0;
1824 struct ath5k_desc *ds;
1825 struct sk_buff *skb;
1826 struct ieee80211_tx_info *info;
1829 spin_lock(&txq->lock);
1830 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1833 ret = sc->ah->ah_proc_tx_desc(sc->ah, ds, &ts);
1834 if (unlikely(ret == -EINPROGRESS))
1836 else if (unlikely(ret)) {
1837 ATH5K_ERR(sc, "error %d while processing queue %u\n",
1843 info = IEEE80211_SKB_CB(skb);
1846 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len,
1849 memset(&info->status, 0, sizeof(info->status));
1850 info->tx_rate_idx = ath5k_hw_to_driver_rix(sc,
1851 ts.ts_rate[ts.ts_final_idx]);
1852 info->status.retry_count = ts.ts_longretry;
1854 for (i = 0; i < 4; i++) {
1855 struct ieee80211_tx_altrate *r =
1856 &info->status.retries[i];
1858 if (ts.ts_rate[i]) {
1859 r->rate_idx = ath5k_hw_to_driver_rix(sc, ts.ts_rate[i]);
1860 r->limit = ts.ts_retry[i];
1867 info->status.excessive_retries = 0;
1868 if (unlikely(ts.ts_status)) {
1869 sc->ll_stats.dot11ACKFailureCount++;
1870 if (ts.ts_status & AR5K_TXERR_XRETRY)
1871 info->status.excessive_retries = 1;
1872 else if (ts.ts_status & AR5K_TXERR_FILT)
1873 info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1875 info->flags |= IEEE80211_TX_STAT_ACK;
1876 info->status.ack_signal = ts.ts_rssi;
1879 ieee80211_tx_status(sc->hw, skb);
1880 sc->tx_stats[txq->qnum].count++;
1882 spin_lock(&sc->txbuflock);
1883 sc->tx_stats[txq->qnum].len--;
1884 list_move_tail(&bf->list, &sc->txbuf);
1886 spin_unlock(&sc->txbuflock);
1888 if (likely(list_empty(&txq->q)))
1890 spin_unlock(&txq->lock);
1891 if (sc->txbuf_len > ATH_TXBUF / 5)
1892 ieee80211_wake_queues(sc->hw);
1896 ath5k_tasklet_tx(unsigned long data)
1898 struct ath5k_softc *sc = (void *)data;
1900 ath5k_tx_processq(sc, sc->txq);
1909 * Setup the beacon frame for transmit.
1912 ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1914 struct sk_buff *skb = bf->skb;
1915 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1916 struct ath5k_hw *ah = sc->ah;
1917 struct ath5k_desc *ds;
1918 int ret, antenna = 0;
1921 bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
1923 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1924 "skbaddr %llx\n", skb, skb->data, skb->len,
1925 (unsigned long long)bf->skbaddr);
1926 if (pci_dma_mapping_error(sc->pdev, bf->skbaddr)) {
1927 ATH5K_ERR(sc, "beacon DMA mapping failed\n");
1933 flags = AR5K_TXDESC_NOACK;
1934 if (sc->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1935 ds->ds_link = bf->daddr; /* self-linked */
1936 flags |= AR5K_TXDESC_VEOL;
1938 * Let hardware handle antenna switching if txantenna is not set
1943 * Switch antenna every 4 beacons if txantenna is not set
1944 * XXX assumes two antennas
1947 antenna = sc->bsent & 4 ? 2 : 1;
1950 ds->ds_data = bf->skbaddr;
1951 ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1952 ieee80211_get_hdrlen_from_skb(skb),
1953 AR5K_PKT_TYPE_BEACON, (sc->power_level * 2),
1954 ieee80211_get_tx_rate(sc->hw, info)->hw_value,
1955 1, AR5K_TXKEYIX_INVALID,
1956 antenna, flags, 0, 0);
1962 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
1967 * Transmit a beacon frame at SWBA. Dynamic updates to the
1968 * frame contents are done as needed and the slot time is
1969 * also adjusted based on current state.
1971 * this is usually called from interrupt context (ath5k_intr())
1972 * but also from ath5k_beacon_config() in IBSS mode which in turn
1973 * can be called from a tasklet and user context
1976 ath5k_beacon_send(struct ath5k_softc *sc)
1978 struct ath5k_buf *bf = sc->bbuf;
1979 struct ath5k_hw *ah = sc->ah;
1981 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1983 if (unlikely(bf->skb == NULL || sc->opmode == NL80211_IFTYPE_STATION ||
1984 sc->opmode == NL80211_IFTYPE_MONITOR)) {
1985 ATH5K_WARN(sc, "bf=%p bf_skb=%p\n", bf, bf ? bf->skb : NULL);
1989 * Check if the previous beacon has gone out. If
1990 * not don't don't try to post another, skip this
1991 * period and wait for the next. Missed beacons
1992 * indicate a problem and should not occur. If we
1993 * miss too many consecutive beacons reset the device.
1995 if (unlikely(ath5k_hw_num_tx_pending(ah, sc->bhalq) != 0)) {
1997 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1998 "missed %u consecutive beacons\n", sc->bmisscount);
1999 if (sc->bmisscount > 3) { /* NB: 3 is a guess */
2000 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2001 "stuck beacon time (%u missed)\n",
2003 tasklet_schedule(&sc->restq);
2007 if (unlikely(sc->bmisscount != 0)) {
2008 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2009 "resume beacon xmit after %u misses\n",
2015 * Stop any current dma and put the new frame on the queue.
2016 * This should never fail since we check above that no frames
2017 * are still pending on the queue.
2019 if (unlikely(ath5k_hw_stop_tx_dma(ah, sc->bhalq))) {
2020 ATH5K_WARN(sc, "beacon queue %u didn't stop?\n", sc->bhalq);
2021 /* NB: hw still stops DMA, so proceed */
2024 ath5k_hw_set_txdp(ah, sc->bhalq, bf->daddr);
2025 ath5k_hw_start_tx_dma(ah, sc->bhalq);
2026 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
2027 sc->bhalq, (unsigned long long)bf->daddr, bf->desc);
2034 * ath5k_beacon_update_timers - update beacon timers
2036 * @sc: struct ath5k_softc pointer we are operating on
2037 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2038 * beacon timer update based on the current HW TSF.
2040 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2041 * of a received beacon or the current local hardware TSF and write it to the
2042 * beacon timer registers.
2044 * This is called in a variety of situations, e.g. when a beacon is received,
2045 * when a TSF update has been detected, but also when an new IBSS is created or
2046 * when we otherwise know we have to update the timers, but we keep it in this
2047 * function to have it all together in one place.
2050 ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf)
2052 struct ath5k_hw *ah = sc->ah;
2053 u32 nexttbtt, intval, hw_tu, bc_tu;
2056 intval = sc->bintval & AR5K_BEACON_PERIOD;
2057 if (WARN_ON(!intval))
2060 /* beacon TSF converted to TU */
2061 bc_tu = TSF_TO_TU(bc_tsf);
2063 /* current TSF converted to TU */
2064 hw_tsf = ath5k_hw_get_tsf64(ah);
2065 hw_tu = TSF_TO_TU(hw_tsf);
2068 /* we use FUDGE to make sure the next TBTT is ahead of the current TU */
2071 * no beacons received, called internally.
2072 * just need to refresh timers based on HW TSF.
2074 nexttbtt = roundup(hw_tu + FUDGE, intval);
2075 } else if (bc_tsf == 0) {
2077 * no beacon received, probably called by ath5k_reset_tsf().
2078 * reset TSF to start with 0.
2081 intval |= AR5K_BEACON_RESET_TSF;
2082 } else if (bc_tsf > hw_tsf) {
2084 * beacon received, SW merge happend but HW TSF not yet updated.
2085 * not possible to reconfigure timers yet, but next time we
2086 * receive a beacon with the same BSSID, the hardware will
2087 * automatically update the TSF and then we need to reconfigure
2090 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2091 "need to wait for HW TSF sync\n");
2095 * most important case for beacon synchronization between STA.
2097 * beacon received and HW TSF has been already updated by HW.
2098 * update next TBTT based on the TSF of the beacon, but make
2099 * sure it is ahead of our local TSF timer.
2101 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2105 sc->nexttbtt = nexttbtt;
2107 intval |= AR5K_BEACON_ENA;
2108 ath5k_hw_init_beacon(ah, nexttbtt, intval);
2111 * debugging output last in order to preserve the time critical aspect
2115 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2116 "reconfigured timers based on HW TSF\n");
2117 else if (bc_tsf == 0)
2118 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2119 "reset HW TSF and timers\n");
2121 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2122 "updated timers based on beacon TSF\n");
2124 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2125 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2126 (unsigned long long) bc_tsf,
2127 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2128 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2129 intval & AR5K_BEACON_PERIOD,
2130 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2131 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2136 * ath5k_beacon_config - Configure the beacon queues and interrupts
2138 * @sc: struct ath5k_softc pointer we are operating on
2140 * When operating in station mode we want to receive a BMISS interrupt when we
2141 * stop seeing beacons from the AP we've associated with so we can look for
2142 * another AP to associate with.
2144 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2145 * interrupts to detect TSF updates only.
2147 * AP mode is missing.
2150 ath5k_beacon_config(struct ath5k_softc *sc)
2152 struct ath5k_hw *ah = sc->ah;
2154 ath5k_hw_set_imr(ah, 0);
2156 sc->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2158 if (sc->opmode == NL80211_IFTYPE_STATION) {
2159 sc->imask |= AR5K_INT_BMISS;
2160 } else if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2162 * In IBSS mode we use a self-linked tx descriptor and let the
2163 * hardware send the beacons automatically. We have to load it
2165 * We use the SWBA interrupt only to keep track of the beacon
2166 * timers in order to detect automatic TSF updates.
2168 ath5k_beaconq_config(sc);
2170 sc->imask |= AR5K_INT_SWBA;
2172 if (ath5k_hw_hasveol(ah)) {
2173 spin_lock(&sc->block);
2174 ath5k_beacon_send(sc);
2175 spin_unlock(&sc->block);
2180 ath5k_hw_set_imr(ah, sc->imask);
2184 /********************\
2185 * Interrupt handling *
2186 \********************/
2189 ath5k_init(struct ath5k_softc *sc, bool is_resume)
2191 struct ath5k_hw *ah = sc->ah;
2194 mutex_lock(&sc->lock);
2196 if (is_resume && !test_bit(ATH_STAT_STARTED, sc->status))
2199 __clear_bit(ATH_STAT_STARTED, sc->status);
2201 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mode %d\n", sc->opmode);
2204 * Stop anything previously setup. This is safe
2205 * no matter this is the first time through or not.
2207 ath5k_stop_locked(sc);
2210 * The basic interface to setting the hardware in a good
2211 * state is ``reset''. On return the hardware is known to
2212 * be powered up and with interrupts disabled. This must
2213 * be followed by initialization of the appropriate bits
2214 * and then setup of the interrupt mask.
2216 sc->curchan = sc->hw->conf.channel;
2217 sc->curband = &sc->sbands[sc->curchan->band];
2218 sc->imask = AR5K_INT_RX | AR5K_INT_TX | AR5K_INT_RXEOL |
2219 AR5K_INT_RXORN | AR5K_INT_FATAL | AR5K_INT_GLOBAL |
2221 ret = ath5k_reset(sc, false, false);
2226 * Reset the key cache since some parts do not reset the
2227 * contents on initial power up or resume from suspend.
2229 for (i = 0; i < AR5K_KEYTABLE_SIZE; i++)
2230 ath5k_hw_reset_key(ah, i);
2232 __set_bit(ATH_STAT_STARTED, sc->status);
2234 /* Set ack to be sent at low bit-rates */
2235 ath5k_hw_set_ack_bitrate_high(ah, false);
2237 mod_timer(&sc->calib_tim, round_jiffies(jiffies +
2238 msecs_to_jiffies(ath5k_calinterval * 1000)));
2244 mutex_unlock(&sc->lock);
2249 ath5k_stop_locked(struct ath5k_softc *sc)
2251 struct ath5k_hw *ah = sc->ah;
2253 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "invalid %u\n",
2254 test_bit(ATH_STAT_INVALID, sc->status));
2257 * Shutdown the hardware and driver:
2258 * stop output from above
2259 * disable interrupts
2261 * turn off the radio
2262 * clear transmit machinery
2263 * clear receive machinery
2264 * drain and release tx queues
2265 * reclaim beacon resources
2266 * power down hardware
2268 * Note that some of this work is not possible if the
2269 * hardware is gone (invalid).
2271 ieee80211_stop_queues(sc->hw);
2273 if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2275 ath5k_hw_set_imr(ah, 0);
2276 synchronize_irq(sc->pdev->irq);
2278 ath5k_txq_cleanup(sc);
2279 if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2281 ath5k_hw_phy_disable(ah);
2289 * Stop the device, grabbing the top-level lock to protect
2290 * against concurrent entry through ath5k_init (which can happen
2291 * if another thread does a system call and the thread doing the
2292 * stop is preempted).
2295 ath5k_stop_hw(struct ath5k_softc *sc, bool is_suspend)
2299 mutex_lock(&sc->lock);
2300 ret = ath5k_stop_locked(sc);
2301 if (ret == 0 && !test_bit(ATH_STAT_INVALID, sc->status)) {
2303 * Set the chip in full sleep mode. Note that we are
2304 * careful to do this only when bringing the interface
2305 * completely to a stop. When the chip is in this state
2306 * it must be carefully woken up or references to
2307 * registers in the PCI clock domain may freeze the bus
2308 * (and system). This varies by chip and is mostly an
2309 * issue with newer parts that go to sleep more quickly.
2311 if (sc->ah->ah_mac_srev >= 0x78) {
2314 * don't put newer MAC revisions > 7.8 to sleep because
2315 * of the above mentioned problems
2317 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mac version > 7.8, "
2318 "not putting device to sleep\n");
2320 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2321 "putting device to full sleep\n");
2322 ath5k_hw_set_power(sc->ah, AR5K_PM_FULL_SLEEP, true, 0);
2325 ath5k_txbuf_free(sc, sc->bbuf);
2327 __clear_bit(ATH_STAT_STARTED, sc->status);
2330 mutex_unlock(&sc->lock);
2332 del_timer_sync(&sc->calib_tim);
2333 tasklet_kill(&sc->rxtq);
2334 tasklet_kill(&sc->txtq);
2335 tasklet_kill(&sc->restq);
2341 ath5k_intr(int irq, void *dev_id)
2343 struct ath5k_softc *sc = dev_id;
2344 struct ath5k_hw *ah = sc->ah;
2345 enum ath5k_int status;
2346 unsigned int counter = 1000;
2348 if (unlikely(test_bit(ATH_STAT_INVALID, sc->status) ||
2349 !ath5k_hw_is_intr_pending(ah)))
2354 * Figure out the reason(s) for the interrupt. Note
2355 * that get_isr returns a pseudo-ISR that may include
2356 * bits we haven't explicitly enabled so we mask the
2357 * value to insure we only process bits we requested.
2359 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
2360 ATH5K_DBG(sc, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2362 status &= sc->imask; /* discard unasked for bits */
2363 if (unlikely(status & AR5K_INT_FATAL)) {
2365 * Fatal errors are unrecoverable.
2366 * Typically these are caused by DMA errors.
2368 tasklet_schedule(&sc->restq);
2369 } else if (unlikely(status & AR5K_INT_RXORN)) {
2370 tasklet_schedule(&sc->restq);
2372 if (status & AR5K_INT_SWBA) {
2374 * Software beacon alert--time to send a beacon.
2375 * Handle beacon transmission directly; deferring
2376 * this is too slow to meet timing constraints
2379 * In IBSS mode we use this interrupt just to
2380 * keep track of the next TBTT (target beacon
2381 * transmission time) in order to detect wether
2382 * automatic TSF updates happened.
2384 if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2385 /* XXX: only if VEOL suppported */
2386 u64 tsf = ath5k_hw_get_tsf64(ah);
2387 sc->nexttbtt += sc->bintval;
2388 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2389 "SWBA nexttbtt: %x hw_tu: %x "
2393 (unsigned long long) tsf);
2395 spin_lock(&sc->block);
2396 ath5k_beacon_send(sc);
2397 spin_unlock(&sc->block);
2400 if (status & AR5K_INT_RXEOL) {
2402 * NB: the hardware should re-read the link when
2403 * RXE bit is written, but it doesn't work at
2404 * least on older hardware revs.
2408 if (status & AR5K_INT_TXURN) {
2409 /* bump tx trigger level */
2410 ath5k_hw_update_tx_triglevel(ah, true);
2412 if (status & AR5K_INT_RX)
2413 tasklet_schedule(&sc->rxtq);
2414 if (status & AR5K_INT_TX)
2415 tasklet_schedule(&sc->txtq);
2416 if (status & AR5K_INT_BMISS) {
2418 if (status & AR5K_INT_MIB) {
2420 * These stats are also used for ANI i think
2421 * so how about updating them more often ?
2423 ath5k_hw_update_mib_counters(ah, &sc->ll_stats);
2426 } while (ath5k_hw_is_intr_pending(ah) && counter-- > 0);
2428 if (unlikely(!counter))
2429 ATH5K_WARN(sc, "too many interrupts, giving up for now\n");
2435 ath5k_tasklet_reset(unsigned long data)
2437 struct ath5k_softc *sc = (void *)data;
2439 ath5k_reset_wake(sc);
2443 * Periodically recalibrate the PHY to account
2444 * for temperature/environment changes.
2447 ath5k_calibrate(unsigned long data)
2449 struct ath5k_softc *sc = (void *)data;
2450 struct ath5k_hw *ah = sc->ah;
2452 ATH5K_DBG(sc, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2453 ieee80211_frequency_to_channel(sc->curchan->center_freq),
2454 sc->curchan->hw_value);
2456 if (ath5k_hw_get_rf_gain(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2458 * Rfgain is out of bounds, reset the chip
2459 * to load new gain values.
2461 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "calibration, resetting\n");
2462 ath5k_reset_wake(sc);
2464 if (ath5k_hw_phy_calibrate(ah, sc->curchan))
2465 ATH5K_ERR(sc, "calibration of channel %u failed\n",
2466 ieee80211_frequency_to_channel(
2467 sc->curchan->center_freq));
2469 mod_timer(&sc->calib_tim, round_jiffies(jiffies +
2470 msecs_to_jiffies(ath5k_calinterval * 1000)));
2480 ath5k_led_enable(struct ath5k_softc *sc)
2482 if (test_bit(ATH_STAT_LEDSOFT, sc->status)) {
2483 ath5k_hw_set_gpio_output(sc->ah, sc->led_pin);
2489 ath5k_led_on(struct ath5k_softc *sc)
2491 if (!test_bit(ATH_STAT_LEDSOFT, sc->status))
2493 ath5k_hw_set_gpio(sc->ah, sc->led_pin, sc->led_on);
2497 ath5k_led_off(struct ath5k_softc *sc)
2499 if (!test_bit(ATH_STAT_LEDSOFT, sc->status))
2501 ath5k_hw_set_gpio(sc->ah, sc->led_pin, !sc->led_on);
2505 ath5k_led_brightness_set(struct led_classdev *led_dev,
2506 enum led_brightness brightness)
2508 struct ath5k_led *led = container_of(led_dev, struct ath5k_led,
2511 if (brightness == LED_OFF)
2512 ath5k_led_off(led->sc);
2514 ath5k_led_on(led->sc);
2518 ath5k_register_led(struct ath5k_softc *sc, struct ath5k_led *led,
2519 const char *name, char *trigger)
2524 strncpy(led->name, name, sizeof(led->name));
2525 led->led_dev.name = led->name;
2526 led->led_dev.default_trigger = trigger;
2527 led->led_dev.brightness_set = ath5k_led_brightness_set;
2529 err = led_classdev_register(&sc->pdev->dev, &led->led_dev);
2532 ATH5K_WARN(sc, "could not register LED %s\n", name);
2539 ath5k_unregister_led(struct ath5k_led *led)
2543 led_classdev_unregister(&led->led_dev);
2544 ath5k_led_off(led->sc);
2549 ath5k_unregister_leds(struct ath5k_softc *sc)
2551 ath5k_unregister_led(&sc->rx_led);
2552 ath5k_unregister_led(&sc->tx_led);
2557 ath5k_init_leds(struct ath5k_softc *sc)
2560 struct ieee80211_hw *hw = sc->hw;
2561 struct pci_dev *pdev = sc->pdev;
2562 char name[ATH5K_LED_MAX_NAME_LEN + 1];
2565 * Auto-enable soft led processing for IBM cards and for
2566 * 5211 minipci cards.
2568 if (pdev->device == PCI_DEVICE_ID_ATHEROS_AR5212_IBM ||
2569 pdev->device == PCI_DEVICE_ID_ATHEROS_AR5211) {
2570 __set_bit(ATH_STAT_LEDSOFT, sc->status);
2572 sc->led_on = 0; /* active low */
2574 /* Enable softled on PIN1 on HP Compaq nc6xx, nc4000 & nx5000 laptops */
2575 if (pdev->subsystem_vendor == PCI_VENDOR_ID_COMPAQ) {
2576 __set_bit(ATH_STAT_LEDSOFT, sc->status);
2578 sc->led_on = 1; /* active high */
2580 if (!test_bit(ATH_STAT_LEDSOFT, sc->status))
2583 ath5k_led_enable(sc);
2585 snprintf(name, sizeof(name), "ath5k-%s::rx", wiphy_name(hw->wiphy));
2586 ret = ath5k_register_led(sc, &sc->rx_led, name,
2587 ieee80211_get_rx_led_name(hw));
2591 snprintf(name, sizeof(name), "ath5k-%s::tx", wiphy_name(hw->wiphy));
2592 ret = ath5k_register_led(sc, &sc->tx_led, name,
2593 ieee80211_get_tx_led_name(hw));
2599 /********************\
2600 * Mac80211 functions *
2601 \********************/
2604 ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
2606 struct ath5k_softc *sc = hw->priv;
2607 struct ath5k_buf *bf;
2608 unsigned long flags;
2612 ath5k_debug_dump_skb(sc, skb, "TX ", 1);
2614 if (sc->opmode == NL80211_IFTYPE_MONITOR)
2615 ATH5K_DBG(sc, ATH5K_DEBUG_XMIT, "tx in monitor (scan?)\n");
2618 * the hardware expects the header padded to 4 byte boundaries
2619 * if this is not the case we add the padding after the header
2621 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2624 if (skb_headroom(skb) < pad) {
2625 ATH5K_ERR(sc, "tx hdrlen not %%4: %d not enough"
2626 " headroom to pad %d\n", hdrlen, pad);
2630 memmove(skb->data, skb->data+pad, hdrlen);
2633 spin_lock_irqsave(&sc->txbuflock, flags);
2634 if (list_empty(&sc->txbuf)) {
2635 ATH5K_ERR(sc, "no further txbuf available, dropping packet\n");
2636 spin_unlock_irqrestore(&sc->txbuflock, flags);
2637 ieee80211_stop_queue(hw, skb_get_queue_mapping(skb));
2640 bf = list_first_entry(&sc->txbuf, struct ath5k_buf, list);
2641 list_del(&bf->list);
2643 if (list_empty(&sc->txbuf))
2644 ieee80211_stop_queues(hw);
2645 spin_unlock_irqrestore(&sc->txbuflock, flags);
2649 if (ath5k_txbuf_setup(sc, bf)) {
2651 spin_lock_irqsave(&sc->txbuflock, flags);
2652 list_add_tail(&bf->list, &sc->txbuf);
2654 spin_unlock_irqrestore(&sc->txbuflock, flags);
2655 dev_kfree_skb_any(skb);
2663 ath5k_reset(struct ath5k_softc *sc, bool stop, bool change_channel)
2665 struct ath5k_hw *ah = sc->ah;
2668 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "resetting\n");
2671 ath5k_hw_set_imr(ah, 0);
2672 ath5k_txq_cleanup(sc);
2675 ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, true);
2677 ATH5K_ERR(sc, "can't reset hardware (%d)\n", ret);
2682 * This is needed only to setup initial state
2683 * but it's best done after a reset.
2685 ath5k_hw_set_txpower_limit(sc->ah, 0);
2687 ret = ath5k_rx_start(sc);
2689 ATH5K_ERR(sc, "can't start recv logic\n");
2694 * Change channels and update the h/w rate map if we're switching;
2695 * e.g. 11a to 11b/g.
2697 * We may be doing a reset in response to an ioctl that changes the
2698 * channel so update any state that might change as a result.
2702 /* ath5k_chan_change(sc, c); */
2704 ath5k_beacon_config(sc);
2705 /* intrs are enabled by ath5k_beacon_config */
2713 ath5k_reset_wake(struct ath5k_softc *sc)
2717 ret = ath5k_reset(sc, true, true);
2719 ieee80211_wake_queues(sc->hw);
2724 static int ath5k_start(struct ieee80211_hw *hw)
2726 return ath5k_init(hw->priv, false);
2729 static void ath5k_stop(struct ieee80211_hw *hw)
2731 ath5k_stop_hw(hw->priv, false);
2734 static int ath5k_add_interface(struct ieee80211_hw *hw,
2735 struct ieee80211_if_init_conf *conf)
2737 struct ath5k_softc *sc = hw->priv;
2740 mutex_lock(&sc->lock);
2746 sc->vif = conf->vif;
2748 switch (conf->type) {
2749 case NL80211_IFTYPE_STATION:
2750 case NL80211_IFTYPE_ADHOC:
2751 case NL80211_IFTYPE_MONITOR:
2752 sc->opmode = conf->type;
2759 /* Set to a reasonable value. Note that this will
2760 * be set to mac80211's value at ath5k_config(). */
2765 mutex_unlock(&sc->lock);
2770 ath5k_remove_interface(struct ieee80211_hw *hw,
2771 struct ieee80211_if_init_conf *conf)
2773 struct ath5k_softc *sc = hw->priv;
2775 mutex_lock(&sc->lock);
2776 if (sc->vif != conf->vif)
2781 mutex_unlock(&sc->lock);
2785 * TODO: Phy disable/diversity etc
2788 ath5k_config(struct ieee80211_hw *hw,
2789 struct ieee80211_conf *conf)
2791 struct ath5k_softc *sc = hw->priv;
2793 sc->bintval = conf->beacon_int;
2794 sc->power_level = conf->power_level;
2796 return ath5k_chan_set(sc, conf->channel);
2800 ath5k_config_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2801 struct ieee80211_if_conf *conf)
2803 struct ath5k_softc *sc = hw->priv;
2804 struct ath5k_hw *ah = sc->ah;
2807 mutex_lock(&sc->lock);
2808 if (sc->vif != vif) {
2813 /* Cache for later use during resets */
2814 memcpy(ah->ah_bssid, conf->bssid, ETH_ALEN);
2815 /* XXX: assoc id is set to 0 for now, mac80211 doesn't have
2816 * a clean way of letting us retrieve this yet. */
2817 ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
2821 if (conf->changed & IEEE80211_IFCC_BEACON &&
2822 vif->type == NL80211_IFTYPE_ADHOC) {
2823 struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
2828 /* call old handler for now */
2829 ath5k_beacon_update(hw, beacon);
2832 mutex_unlock(&sc->lock);
2834 return ath5k_reset_wake(sc);
2836 mutex_unlock(&sc->lock);
2840 #define SUPPORTED_FIF_FLAGS \
2841 FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | \
2842 FIF_PLCPFAIL | FIF_CONTROL | FIF_OTHER_BSS | \
2843 FIF_BCN_PRBRESP_PROMISC
2845 * o always accept unicast, broadcast, and multicast traffic
2846 * o multicast traffic for all BSSIDs will be enabled if mac80211
2848 * o maintain current state of phy ofdm or phy cck error reception.
2849 * If the hardware detects any of these type of errors then
2850 * ath5k_hw_get_rx_filter() will pass to us the respective
2851 * hardware filters to be able to receive these type of frames.
2852 * o probe request frames are accepted only when operating in
2853 * hostap, adhoc, or monitor modes
2854 * o enable promiscuous mode according to the interface state
2856 * - when operating in adhoc mode so the 802.11 layer creates
2857 * node table entries for peers,
2858 * - when operating in station mode for collecting rssi data when
2859 * the station is otherwise quiet, or
2862 static void ath5k_configure_filter(struct ieee80211_hw *hw,
2863 unsigned int changed_flags,
2864 unsigned int *new_flags,
2865 int mc_count, struct dev_mc_list *mclist)
2867 struct ath5k_softc *sc = hw->priv;
2868 struct ath5k_hw *ah = sc->ah;
2869 u32 mfilt[2], val, rfilt;
2876 /* Only deal with supported flags */
2877 changed_flags &= SUPPORTED_FIF_FLAGS;
2878 *new_flags &= SUPPORTED_FIF_FLAGS;
2880 /* If HW detects any phy or radar errors, leave those filters on.
2881 * Also, always enable Unicast, Broadcasts and Multicast
2882 * XXX: move unicast, bssid broadcasts and multicast to mac80211 */
2883 rfilt = (ath5k_hw_get_rx_filter(ah) & (AR5K_RX_FILTER_PHYERR)) |
2884 (AR5K_RX_FILTER_UCAST | AR5K_RX_FILTER_BCAST |
2885 AR5K_RX_FILTER_MCAST);
2887 if (changed_flags & (FIF_PROMISC_IN_BSS | FIF_OTHER_BSS)) {
2888 if (*new_flags & FIF_PROMISC_IN_BSS) {
2889 rfilt |= AR5K_RX_FILTER_PROM;
2890 __set_bit(ATH_STAT_PROMISC, sc->status);
2893 __clear_bit(ATH_STAT_PROMISC, sc->status);
2896 /* Note, AR5K_RX_FILTER_MCAST is already enabled */
2897 if (*new_flags & FIF_ALLMULTI) {
2901 for (i = 0; i < mc_count; i++) {
2904 /* calculate XOR of eight 6-bit values */
2905 val = get_unaligned_le32(mclist->dmi_addr + 0);
2906 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2907 val = get_unaligned_le32(mclist->dmi_addr + 3);
2908 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2910 mfilt[pos / 32] |= (1 << (pos % 32));
2911 /* XXX: we might be able to just do this instead,
2912 * but not sure, needs testing, if we do use this we'd
2913 * neet to inform below to not reset the mcast */
2914 /* ath5k_hw_set_mcast_filterindex(ah,
2915 * mclist->dmi_addr[5]); */
2916 mclist = mclist->next;
2920 /* This is the best we can do */
2921 if (*new_flags & (FIF_FCSFAIL | FIF_PLCPFAIL))
2922 rfilt |= AR5K_RX_FILTER_PHYERR;
2924 /* FIF_BCN_PRBRESP_PROMISC really means to enable beacons
2925 * and probes for any BSSID, this needs testing */
2926 if (*new_flags & FIF_BCN_PRBRESP_PROMISC)
2927 rfilt |= AR5K_RX_FILTER_BEACON | AR5K_RX_FILTER_PROBEREQ;
2929 /* FIF_CONTROL doc says that if FIF_PROMISC_IN_BSS is not
2930 * set we should only pass on control frames for this
2931 * station. This needs testing. I believe right now this
2932 * enables *all* control frames, which is OK.. but
2933 * but we should see if we can improve on granularity */
2934 if (*new_flags & FIF_CONTROL)
2935 rfilt |= AR5K_RX_FILTER_CONTROL;
2937 /* Additional settings per mode -- this is per ath5k */
2939 /* XXX move these to mac80211, and add a beacon IFF flag to mac80211 */
2941 if (sc->opmode == NL80211_IFTYPE_MONITOR)
2942 rfilt |= AR5K_RX_FILTER_CONTROL | AR5K_RX_FILTER_BEACON |
2943 AR5K_RX_FILTER_PROBEREQ | AR5K_RX_FILTER_PROM;
2944 if (sc->opmode != NL80211_IFTYPE_STATION)
2945 rfilt |= AR5K_RX_FILTER_PROBEREQ;
2946 if (sc->opmode != NL80211_IFTYPE_AP &&
2947 sc->opmode != NL80211_IFTYPE_MESH_POINT &&
2948 test_bit(ATH_STAT_PROMISC, sc->status))
2949 rfilt |= AR5K_RX_FILTER_PROM;
2950 if ((sc->opmode == NL80211_IFTYPE_STATION && sc->assoc) ||
2951 sc->opmode == NL80211_IFTYPE_ADHOC) {
2952 rfilt |= AR5K_RX_FILTER_BEACON;
2956 ath5k_hw_set_rx_filter(ah,rfilt);
2958 /* Set multicast bits */
2959 ath5k_hw_set_mcast_filter(ah, mfilt[0], mfilt[1]);
2960 /* Set the cached hw filter flags, this will alter actually
2962 sc->filter_flags = rfilt;
2966 ath5k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
2967 const u8 *local_addr, const u8 *addr,
2968 struct ieee80211_key_conf *key)
2970 struct ath5k_softc *sc = hw->priv;
2975 /* XXX: fix hardware encryption, its not working. For now
2976 * allow software encryption */
2986 mutex_lock(&sc->lock);
2990 ret = ath5k_hw_set_key(sc->ah, key->keyidx, key, addr);
2992 ATH5K_ERR(sc, "can't set the key\n");
2995 __set_bit(key->keyidx, sc->keymap);
2996 key->hw_key_idx = key->keyidx;
2999 ath5k_hw_reset_key(sc->ah, key->keyidx);
3000 __clear_bit(key->keyidx, sc->keymap);
3009 mutex_unlock(&sc->lock);
3014 ath5k_get_stats(struct ieee80211_hw *hw,
3015 struct ieee80211_low_level_stats *stats)
3017 struct ath5k_softc *sc = hw->priv;
3018 struct ath5k_hw *ah = sc->ah;
3021 ath5k_hw_update_mib_counters(ah, &sc->ll_stats);
3023 memcpy(stats, &sc->ll_stats, sizeof(sc->ll_stats));
3029 ath5k_get_tx_stats(struct ieee80211_hw *hw,
3030 struct ieee80211_tx_queue_stats *stats)
3032 struct ath5k_softc *sc = hw->priv;
3034 memcpy(stats, &sc->tx_stats, sizeof(sc->tx_stats));
3040 ath5k_get_tsf(struct ieee80211_hw *hw)
3042 struct ath5k_softc *sc = hw->priv;
3044 return ath5k_hw_get_tsf64(sc->ah);
3048 ath5k_reset_tsf(struct ieee80211_hw *hw)
3050 struct ath5k_softc *sc = hw->priv;
3053 * in IBSS mode we need to update the beacon timers too.
3054 * this will also reset the TSF if we call it with 0
3056 if (sc->opmode == NL80211_IFTYPE_ADHOC)
3057 ath5k_beacon_update_timers(sc, 0);
3059 ath5k_hw_reset_tsf(sc->ah);
3063 ath5k_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb)
3065 struct ath5k_softc *sc = hw->priv;
3066 unsigned long flags;
3069 ath5k_debug_dump_skb(sc, skb, "BC ", 1);
3071 if (sc->opmode != NL80211_IFTYPE_ADHOC) {
3076 spin_lock_irqsave(&sc->block, flags);
3077 ath5k_txbuf_free(sc, sc->bbuf);
3078 sc->bbuf->skb = skb;
3079 ret = ath5k_beacon_setup(sc, sc->bbuf);
3081 sc->bbuf->skb = NULL;
3082 spin_unlock_irqrestore(&sc->block, flags);
3084 ath5k_beacon_config(sc);
3092 set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3094 struct ath5k_softc *sc = hw->priv;
3095 struct ath5k_hw *ah = sc->ah;
3097 rfilt = ath5k_hw_get_rx_filter(ah);
3099 rfilt |= AR5K_RX_FILTER_BEACON;
3101 rfilt &= ~AR5K_RX_FILTER_BEACON;
3102 ath5k_hw_set_rx_filter(ah, rfilt);
3103 sc->filter_flags = rfilt;
3106 static void ath5k_bss_info_changed(struct ieee80211_hw *hw,
3107 struct ieee80211_vif *vif,
3108 struct ieee80211_bss_conf *bss_conf,
3111 struct ath5k_softc *sc = hw->priv;
3112 if (changes & BSS_CHANGED_ASSOC) {
3113 mutex_lock(&sc->lock);
3114 sc->assoc = bss_conf->assoc;
3115 if (sc->opmode == NL80211_IFTYPE_STATION)
3116 set_beacon_filter(hw, sc->assoc);
3117 mutex_unlock(&sc->lock);