Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-2.6] / drivers / net / wireless / ath / ath5k / phy.c
1 /*
2  * PHY functions
3  *
4  * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  *
21  */
22
23 #define _ATH5K_PHY
24
25 #include <linux/delay.h>
26
27 #include "ath5k.h"
28 #include "reg.h"
29 #include "base.h"
30 #include "rfbuffer.h"
31 #include "rfgain.h"
32
33 /*
34  * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
35  */
36 static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
37                                         const struct ath5k_rf_reg *rf_regs,
38                                         u32 val, u8 reg_id, bool set)
39 {
40         const struct ath5k_rf_reg *rfreg = NULL;
41         u8 offset, bank, num_bits, col, position;
42         u16 entry;
43         u32 mask, data, last_bit, bits_shifted, first_bit;
44         u32 *rfb;
45         s32 bits_left;
46         int i;
47
48         data = 0;
49         rfb = ah->ah_rf_banks;
50
51         for (i = 0; i < ah->ah_rf_regs_count; i++) {
52                 if (rf_regs[i].index == reg_id) {
53                         rfreg = &rf_regs[i];
54                         break;
55                 }
56         }
57
58         if (rfb == NULL || rfreg == NULL) {
59                 ATH5K_PRINTF("Rf register not found!\n");
60                 /* should not happen */
61                 return 0;
62         }
63
64         bank = rfreg->bank;
65         num_bits = rfreg->field.len;
66         first_bit = rfreg->field.pos;
67         col = rfreg->field.col;
68
69         /* first_bit is an offset from bank's
70          * start. Since we have all banks on
71          * the same array, we use this offset
72          * to mark each bank's start */
73         offset = ah->ah_offset[bank];
74
75         /* Boundary check */
76         if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
77                 ATH5K_PRINTF("invalid values at offset %u\n", offset);
78                 return 0;
79         }
80
81         entry = ((first_bit - 1) / 8) + offset;
82         position = (first_bit - 1) % 8;
83
84         if (set)
85                 data = ath5k_hw_bitswap(val, num_bits);
86
87         for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
88         position = 0, entry++) {
89
90                 last_bit = (position + bits_left > 8) ? 8 :
91                                         position + bits_left;
92
93                 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
94                                                                 (col * 8);
95
96                 if (set) {
97                         rfb[entry] &= ~mask;
98                         rfb[entry] |= ((data << position) << (col * 8)) & mask;
99                         data >>= (8 - position);
100                 } else {
101                         data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
102                                 << bits_shifted;
103                         bits_shifted += last_bit - position;
104                 }
105
106                 bits_left -= 8 - position;
107         }
108
109         data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
110
111         return data;
112 }
113
114 /**********************\
115 * RF Gain optimization *
116 \**********************/
117
118 /*
119  * This code is used to optimize rf gain on different environments
120  * (temprature mostly) based on feedback from a power detector.
121  *
122  * It's only used on RF5111 and RF5112, later RF chips seem to have
123  * auto adjustment on hw -notice they have a much smaller BANK 7 and
124  * no gain optimization ladder-.
125  *
126  * For more infos check out this patent doc
127  * http://www.freepatentsonline.com/7400691.html
128  *
129  * This paper describes power drops as seen on the receiver due to
130  * probe packets
131  * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
132  * %20of%20Power%20Control.pdf
133  *
134  * And this is the MadWiFi bug entry related to the above
135  * http://madwifi-project.org/ticket/1659
136  * with various measurements and diagrams
137  *
138  * TODO: Deal with power drops due to probes by setting an apropriate
139  * tx power on the probe packets ! Make this part of the calibration process.
140  */
141
142 /* Initialize ah_gain durring attach */
143 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
144 {
145         /* Initialize the gain optimization values */
146         switch (ah->ah_radio) {
147         case AR5K_RF5111:
148                 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
149                 ah->ah_gain.g_low = 20;
150                 ah->ah_gain.g_high = 35;
151                 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
152                 break;
153         case AR5K_RF5112:
154                 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
155                 ah->ah_gain.g_low = 20;
156                 ah->ah_gain.g_high = 85;
157                 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
158                 break;
159         default:
160                 return -EINVAL;
161         }
162
163         return 0;
164 }
165
166 /* Schedule a gain probe check on the next transmited packet.
167  * That means our next packet is going to be sent with lower
168  * tx power and a Peak to Average Power Detector (PAPD) will try
169  * to measure the gain.
170  *
171  * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
172  * just after we enable the probe so that we don't mess with
173  * standard traffic ? Maybe it's time to use sw interrupts and
174  * a probe tasklet !!!
175  */
176 static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
177 {
178
179         /* Skip if gain calibration is inactive or
180          * we already handle a probe request */
181         if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
182                 return;
183
184         /* Send the packet with 2dB below max power as
185          * patent doc suggest */
186         ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
187                         AR5K_PHY_PAPD_PROBE_TXPOWER) |
188                         AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
189
190         ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
191
192 }
193
194 /* Calculate gain_F measurement correction
195  * based on the current step for RF5112 rev. 2 */
196 static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
197 {
198         u32 mix, step;
199         u32 *rf;
200         const struct ath5k_gain_opt *go;
201         const struct ath5k_gain_opt_step *g_step;
202         const struct ath5k_rf_reg *rf_regs;
203
204         /* Only RF5112 Rev. 2 supports it */
205         if ((ah->ah_radio != AR5K_RF5112) ||
206         (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
207                 return 0;
208
209         go = &rfgain_opt_5112;
210         rf_regs = rf_regs_5112a;
211         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
212
213         g_step = &go->go_step[ah->ah_gain.g_step_idx];
214
215         if (ah->ah_rf_banks == NULL)
216                 return 0;
217
218         rf = ah->ah_rf_banks;
219         ah->ah_gain.g_f_corr = 0;
220
221         /* No VGA (Variable Gain Amplifier) override, skip */
222         if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
223                 return 0;
224
225         /* Mix gain stepping */
226         step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
227
228         /* Mix gain override */
229         mix = g_step->gos_param[0];
230
231         switch (mix) {
232         case 3:
233                 ah->ah_gain.g_f_corr = step * 2;
234                 break;
235         case 2:
236                 ah->ah_gain.g_f_corr = (step - 5) * 2;
237                 break;
238         case 1:
239                 ah->ah_gain.g_f_corr = step;
240                 break;
241         default:
242                 ah->ah_gain.g_f_corr = 0;
243                 break;
244         }
245
246         return ah->ah_gain.g_f_corr;
247 }
248
249 /* Check if current gain_F measurement is in the range of our
250  * power detector windows. If we get a measurement outside range
251  * we know it's not accurate (detectors can't measure anything outside
252  * their detection window) so we must ignore it */
253 static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
254 {
255         const struct ath5k_rf_reg *rf_regs;
256         u32 step, mix_ovr, level[4];
257         u32 *rf;
258
259         if (ah->ah_rf_banks == NULL)
260                 return false;
261
262         rf = ah->ah_rf_banks;
263
264         if (ah->ah_radio == AR5K_RF5111) {
265
266                 rf_regs = rf_regs_5111;
267                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
268
269                 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
270                         false);
271
272                 level[0] = 0;
273                 level[1] = (step == 63) ? 50 : step + 4;
274                 level[2] = (step != 63) ? 64 : level[0];
275                 level[3] = level[2] + 50 ;
276
277                 ah->ah_gain.g_high = level[3] -
278                         (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
279                 ah->ah_gain.g_low = level[0] +
280                         (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
281         } else {
282
283                 rf_regs = rf_regs_5112;
284                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
285
286                 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
287                         false);
288
289                 level[0] = level[2] = 0;
290
291                 if (mix_ovr == 1) {
292                         level[1] = level[3] = 83;
293                 } else {
294                         level[1] = level[3] = 107;
295                         ah->ah_gain.g_high = 55;
296                 }
297         }
298
299         return (ah->ah_gain.g_current >= level[0] &&
300                         ah->ah_gain.g_current <= level[1]) ||
301                 (ah->ah_gain.g_current >= level[2] &&
302                         ah->ah_gain.g_current <= level[3]);
303 }
304
305 /* Perform gain_F adjustment by choosing the right set
306  * of parameters from rf gain optimization ladder */
307 static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
308 {
309         const struct ath5k_gain_opt *go;
310         const struct ath5k_gain_opt_step *g_step;
311         int ret = 0;
312
313         switch (ah->ah_radio) {
314         case AR5K_RF5111:
315                 go = &rfgain_opt_5111;
316                 break;
317         case AR5K_RF5112:
318                 go = &rfgain_opt_5112;
319                 break;
320         default:
321                 return 0;
322         }
323
324         g_step = &go->go_step[ah->ah_gain.g_step_idx];
325
326         if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
327
328                 /* Reached maximum */
329                 if (ah->ah_gain.g_step_idx == 0)
330                         return -1;
331
332                 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
333                                 ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
334                                 ah->ah_gain.g_step_idx > 0;
335                                 g_step = &go->go_step[ah->ah_gain.g_step_idx])
336                         ah->ah_gain.g_target -= 2 *
337                             (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
338                             g_step->gos_gain);
339
340                 ret = 1;
341                 goto done;
342         }
343
344         if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
345
346                 /* Reached minimum */
347                 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
348                         return -2;
349
350                 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
351                                 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
352                                 ah->ah_gain.g_step_idx < go->go_steps_count-1;
353                                 g_step = &go->go_step[ah->ah_gain.g_step_idx])
354                         ah->ah_gain.g_target -= 2 *
355                             (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
356                             g_step->gos_gain);
357
358                 ret = 2;
359                 goto done;
360         }
361
362 done:
363         ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
364                 "ret %d, gain step %u, current gain %u, target gain %u\n",
365                 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
366                 ah->ah_gain.g_target);
367
368         return ret;
369 }
370
371 /* Main callback for thermal rf gain calibration engine
372  * Check for a new gain reading and schedule an adjustment
373  * if needed.
374  *
375  * TODO: Use sw interrupt to schedule reset if gain_F needs
376  * adjustment */
377 enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
378 {
379         u32 data, type;
380         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
381
382         ATH5K_TRACE(ah->ah_sc);
383
384         if (ah->ah_rf_banks == NULL ||
385         ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
386                 return AR5K_RFGAIN_INACTIVE;
387
388         /* No check requested, either engine is inactive
389          * or an adjustment is already requested */
390         if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
391                 goto done;
392
393         /* Read the PAPD (Peak to Average Power Detector)
394          * register */
395         data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
396
397         /* No probe is scheduled, read gain_F measurement */
398         if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
399                 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
400                 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
401
402                 /* If tx packet is CCK correct the gain_F measurement
403                  * by cck ofdm gain delta */
404                 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
405                         if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
406                                 ah->ah_gain.g_current +=
407                                         ee->ee_cck_ofdm_gain_delta;
408                         else
409                                 ah->ah_gain.g_current +=
410                                         AR5K_GAIN_CCK_PROBE_CORR;
411                 }
412
413                 /* Further correct gain_F measurement for
414                  * RF5112A radios */
415                 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
416                         ath5k_hw_rf_gainf_corr(ah);
417                         ah->ah_gain.g_current =
418                                 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
419                                 (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
420                                 0;
421                 }
422
423                 /* Check if measurement is ok and if we need
424                  * to adjust gain, schedule a gain adjustment,
425                  * else switch back to the acive state */
426                 if (ath5k_hw_rf_check_gainf_readback(ah) &&
427                 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
428                 ath5k_hw_rf_gainf_adjust(ah)) {
429                         ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
430                 } else {
431                         ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
432                 }
433         }
434
435 done:
436         return ah->ah_gain.g_state;
437 }
438
439 /* Write initial rf gain table to set the RF sensitivity
440  * this one works on all RF chips and has nothing to do
441  * with gain_F calibration */
442 int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
443 {
444         const struct ath5k_ini_rfgain *ath5k_rfg;
445         unsigned int i, size;
446
447         switch (ah->ah_radio) {
448         case AR5K_RF5111:
449                 ath5k_rfg = rfgain_5111;
450                 size = ARRAY_SIZE(rfgain_5111);
451                 break;
452         case AR5K_RF5112:
453                 ath5k_rfg = rfgain_5112;
454                 size = ARRAY_SIZE(rfgain_5112);
455                 break;
456         case AR5K_RF2413:
457                 ath5k_rfg = rfgain_2413;
458                 size = ARRAY_SIZE(rfgain_2413);
459                 break;
460         case AR5K_RF2316:
461                 ath5k_rfg = rfgain_2316;
462                 size = ARRAY_SIZE(rfgain_2316);
463                 break;
464         case AR5K_RF5413:
465                 ath5k_rfg = rfgain_5413;
466                 size = ARRAY_SIZE(rfgain_5413);
467                 break;
468         case AR5K_RF2317:
469         case AR5K_RF2425:
470                 ath5k_rfg = rfgain_2425;
471                 size = ARRAY_SIZE(rfgain_2425);
472                 break;
473         default:
474                 return -EINVAL;
475         }
476
477         switch (freq) {
478         case AR5K_INI_RFGAIN_2GHZ:
479         case AR5K_INI_RFGAIN_5GHZ:
480                 break;
481         default:
482                 return -EINVAL;
483         }
484
485         for (i = 0; i < size; i++) {
486                 AR5K_REG_WAIT(i);
487                 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
488                         (u32)ath5k_rfg[i].rfg_register);
489         }
490
491         return 0;
492 }
493
494
495
496 /********************\
497 * RF Registers setup *
498 \********************/
499
500
501 /*
502  * Setup RF registers by writing rf buffer on hw
503  */
504 int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
505                 unsigned int mode)
506 {
507         const struct ath5k_rf_reg *rf_regs;
508         const struct ath5k_ini_rfbuffer *ini_rfb;
509         const struct ath5k_gain_opt *go = NULL;
510         const struct ath5k_gain_opt_step *g_step;
511         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
512         u8 ee_mode = 0;
513         u32 *rfb;
514         int i, obdb = -1, bank = -1;
515
516         switch (ah->ah_radio) {
517         case AR5K_RF5111:
518                 rf_regs = rf_regs_5111;
519                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
520                 ini_rfb = rfb_5111;
521                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
522                 go = &rfgain_opt_5111;
523                 break;
524         case AR5K_RF5112:
525                 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
526                         rf_regs = rf_regs_5112a;
527                         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
528                         ini_rfb = rfb_5112a;
529                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
530                 } else {
531                         rf_regs = rf_regs_5112;
532                         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
533                         ini_rfb = rfb_5112;
534                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
535                 }
536                 go = &rfgain_opt_5112;
537                 break;
538         case AR5K_RF2413:
539                 rf_regs = rf_regs_2413;
540                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
541                 ini_rfb = rfb_2413;
542                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
543                 break;
544         case AR5K_RF2316:
545                 rf_regs = rf_regs_2316;
546                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
547                 ini_rfb = rfb_2316;
548                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
549                 break;
550         case AR5K_RF5413:
551                 rf_regs = rf_regs_5413;
552                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
553                 ini_rfb = rfb_5413;
554                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
555                 break;
556         case AR5K_RF2317:
557                 rf_regs = rf_regs_2425;
558                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
559                 ini_rfb = rfb_2317;
560                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
561                 break;
562         case AR5K_RF2425:
563                 rf_regs = rf_regs_2425;
564                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
565                 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
566                         ini_rfb = rfb_2425;
567                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
568                 } else {
569                         ini_rfb = rfb_2417;
570                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
571                 }
572                 break;
573         default:
574                 return -EINVAL;
575         }
576
577         /* If it's the first time we set rf buffer, allocate
578          * ah->ah_rf_banks based on ah->ah_rf_banks_size
579          * we set above */
580         if (ah->ah_rf_banks == NULL) {
581                 ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
582                                                                 GFP_KERNEL);
583                 if (ah->ah_rf_banks == NULL) {
584                         ATH5K_ERR(ah->ah_sc, "out of memory\n");
585                         return -ENOMEM;
586                 }
587         }
588
589         /* Copy values to modify them */
590         rfb = ah->ah_rf_banks;
591
592         for (i = 0; i < ah->ah_rf_banks_size; i++) {
593                 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
594                         ATH5K_ERR(ah->ah_sc, "invalid bank\n");
595                         return -EINVAL;
596                 }
597
598                 /* Bank changed, write down the offset */
599                 if (bank != ini_rfb[i].rfb_bank) {
600                         bank = ini_rfb[i].rfb_bank;
601                         ah->ah_offset[bank] = i;
602                 }
603
604                 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
605         }
606
607         /* Set Output and Driver bias current (OB/DB) */
608         if (channel->hw_value & CHANNEL_2GHZ) {
609
610                 if (channel->hw_value & CHANNEL_CCK)
611                         ee_mode = AR5K_EEPROM_MODE_11B;
612                 else
613                         ee_mode = AR5K_EEPROM_MODE_11G;
614
615                 /* For RF511X/RF211X combination we
616                  * use b_OB and b_DB parameters stored
617                  * in eeprom on ee->ee_ob[ee_mode][0]
618                  *
619                  * For all other chips we use OB/DB for 2Ghz
620                  * stored in the b/g modal section just like
621                  * 802.11a on ee->ee_ob[ee_mode][1] */
622                 if ((ah->ah_radio == AR5K_RF5111) ||
623                 (ah->ah_radio == AR5K_RF5112))
624                         obdb = 0;
625                 else
626                         obdb = 1;
627
628                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
629                                                 AR5K_RF_OB_2GHZ, true);
630
631                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
632                                                 AR5K_RF_DB_2GHZ, true);
633
634         /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
635         } else if ((channel->hw_value & CHANNEL_5GHZ) ||
636                         (ah->ah_radio == AR5K_RF5111)) {
637
638                 /* For 11a, Turbo and XR we need to choose
639                  * OB/DB based on frequency range */
640                 ee_mode = AR5K_EEPROM_MODE_11A;
641                 obdb =   channel->center_freq >= 5725 ? 3 :
642                         (channel->center_freq >= 5500 ? 2 :
643                         (channel->center_freq >= 5260 ? 1 :
644                          (channel->center_freq > 4000 ? 0 : -1)));
645
646                 if (obdb < 0)
647                         return -EINVAL;
648
649                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
650                                                 AR5K_RF_OB_5GHZ, true);
651
652                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
653                                                 AR5K_RF_DB_5GHZ, true);
654         }
655
656         g_step = &go->go_step[ah->ah_gain.g_step_idx];
657
658         /* Bank Modifications (chip-specific) */
659         if (ah->ah_radio == AR5K_RF5111) {
660
661                 /* Set gain_F settings according to current step */
662                 if (channel->hw_value & CHANNEL_OFDM) {
663
664                         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
665                                         AR5K_PHY_FRAME_CTL_TX_CLIP,
666                                         g_step->gos_param[0]);
667
668                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
669                                                         AR5K_RF_PWD_90, true);
670
671                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
672                                                         AR5K_RF_PWD_84, true);
673
674                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
675                                                 AR5K_RF_RFGAIN_SEL, true);
676
677                         /* We programmed gain_F parameters, switch back
678                          * to active state */
679                         ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
680
681                 }
682
683                 /* Bank 6/7 setup */
684
685                 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
686                                                 AR5K_RF_PWD_XPD, true);
687
688                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
689                                                 AR5K_RF_XPD_GAIN, true);
690
691                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
692                                                 AR5K_RF_GAIN_I, true);
693
694                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
695                                                 AR5K_RF_PLO_SEL, true);
696
697                 /* TODO: Half/quarter channel support */
698         }
699
700         if (ah->ah_radio == AR5K_RF5112) {
701
702                 /* Set gain_F settings according to current step */
703                 if (channel->hw_value & CHANNEL_OFDM) {
704
705                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
706                                                 AR5K_RF_MIXGAIN_OVR, true);
707
708                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
709                                                 AR5K_RF_PWD_138, true);
710
711                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
712                                                 AR5K_RF_PWD_137, true);
713
714                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
715                                                 AR5K_RF_PWD_136, true);
716
717                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
718                                                 AR5K_RF_PWD_132, true);
719
720                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
721                                                 AR5K_RF_PWD_131, true);
722
723                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
724                                                 AR5K_RF_PWD_130, true);
725
726                         /* We programmed gain_F parameters, switch back
727                          * to active state */
728                         ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
729                 }
730
731                 /* Bank 6/7 setup */
732
733                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
734                                                 AR5K_RF_XPD_SEL, true);
735
736                 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
737                         /* Rev. 1 supports only one xpd */
738                         ath5k_hw_rfb_op(ah, rf_regs,
739                                                 ee->ee_x_gain[ee_mode],
740                                                 AR5K_RF_XPD_GAIN, true);
741
742                 } else {
743                         /* TODO: Set high and low gain bits */
744                         ath5k_hw_rfb_op(ah, rf_regs,
745                                                 ee->ee_x_gain[ee_mode],
746                                                 AR5K_RF_PD_GAIN_LO, true);
747                         ath5k_hw_rfb_op(ah, rf_regs,
748                                                 ee->ee_x_gain[ee_mode],
749                                                 AR5K_RF_PD_GAIN_HI, true);
750
751                         /* Lower synth voltage on Rev 2 */
752                         ath5k_hw_rfb_op(ah, rf_regs, 2,
753                                         AR5K_RF_HIGH_VC_CP, true);
754
755                         ath5k_hw_rfb_op(ah, rf_regs, 2,
756                                         AR5K_RF_MID_VC_CP, true);
757
758                         ath5k_hw_rfb_op(ah, rf_regs, 2,
759                                         AR5K_RF_LOW_VC_CP, true);
760
761                         ath5k_hw_rfb_op(ah, rf_regs, 2,
762                                         AR5K_RF_PUSH_UP, true);
763
764                         /* Decrease power consumption on 5213+ BaseBand */
765                         if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
766                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
767                                                 AR5K_RF_PAD2GND, true);
768
769                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
770                                                 AR5K_RF_XB2_LVL, true);
771
772                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
773                                                 AR5K_RF_XB5_LVL, true);
774
775                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
776                                                 AR5K_RF_PWD_167, true);
777
778                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
779                                                 AR5K_RF_PWD_166, true);
780                         }
781                 }
782
783                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
784                                                 AR5K_RF_GAIN_I, true);
785
786                 /* TODO: Half/quarter channel support */
787
788         }
789
790         if (ah->ah_radio == AR5K_RF5413 &&
791         channel->hw_value & CHANNEL_2GHZ) {
792
793                 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
794                                                                         true);
795
796                 /* Set optimum value for early revisions (on pci-e chips) */
797                 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
798                 ah->ah_mac_srev < AR5K_SREV_AR5413)
799                         ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
800                                                 AR5K_RF_PWD_ICLOBUF_2G, true);
801
802         }
803
804         /* Write RF banks on hw */
805         for (i = 0; i < ah->ah_rf_banks_size; i++) {
806                 AR5K_REG_WAIT(i);
807                 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
808         }
809
810         return 0;
811 }
812
813
814 /**************************\
815   PHY/RF channel functions
816 \**************************/
817
818 /*
819  * Check if a channel is supported
820  */
821 bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
822 {
823         /* Check if the channel is in our supported range */
824         if (flags & CHANNEL_2GHZ) {
825                 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
826                     (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
827                         return true;
828         } else if (flags & CHANNEL_5GHZ)
829                 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
830                     (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
831                         return true;
832
833         return false;
834 }
835
836 /*
837  * Convertion needed for RF5110
838  */
839 static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
840 {
841         u32 athchan;
842
843         /*
844          * Convert IEEE channel/MHz to an internal channel value used
845          * by the AR5210 chipset. This has not been verified with
846          * newer chipsets like the AR5212A who have a completely
847          * different RF/PHY part.
848          */
849         athchan = (ath5k_hw_bitswap(
850                         (ieee80211_frequency_to_channel(
851                                 channel->center_freq) - 24) / 2, 5)
852                                 << 1) | (1 << 6) | 0x1;
853         return athchan;
854 }
855
856 /*
857  * Set channel on RF5110
858  */
859 static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
860                 struct ieee80211_channel *channel)
861 {
862         u32 data;
863
864         /*
865          * Set the channel and wait
866          */
867         data = ath5k_hw_rf5110_chan2athchan(channel);
868         ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
869         ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
870         mdelay(1);
871
872         return 0;
873 }
874
875 /*
876  * Convertion needed for 5111
877  */
878 static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
879                 struct ath5k_athchan_2ghz *athchan)
880 {
881         int channel;
882
883         /* Cast this value to catch negative channel numbers (>= -19) */
884         channel = (int)ieee;
885
886         /*
887          * Map 2GHz IEEE channel to 5GHz Atheros channel
888          */
889         if (channel <= 13) {
890                 athchan->a2_athchan = 115 + channel;
891                 athchan->a2_flags = 0x46;
892         } else if (channel == 14) {
893                 athchan->a2_athchan = 124;
894                 athchan->a2_flags = 0x44;
895         } else if (channel >= 15 && channel <= 26) {
896                 athchan->a2_athchan = ((channel - 14) * 4) + 132;
897                 athchan->a2_flags = 0x46;
898         } else
899                 return -EINVAL;
900
901         return 0;
902 }
903
904 /*
905  * Set channel on 5111
906  */
907 static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
908                 struct ieee80211_channel *channel)
909 {
910         struct ath5k_athchan_2ghz ath5k_channel_2ghz;
911         unsigned int ath5k_channel =
912                 ieee80211_frequency_to_channel(channel->center_freq);
913         u32 data0, data1, clock;
914         int ret;
915
916         /*
917          * Set the channel on the RF5111 radio
918          */
919         data0 = data1 = 0;
920
921         if (channel->hw_value & CHANNEL_2GHZ) {
922                 /* Map 2GHz channel to 5GHz Atheros channel ID */
923                 ret = ath5k_hw_rf5111_chan2athchan(
924                         ieee80211_frequency_to_channel(channel->center_freq),
925                         &ath5k_channel_2ghz);
926                 if (ret)
927                         return ret;
928
929                 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
930                 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
931                     << 5) | (1 << 4);
932         }
933
934         if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
935                 clock = 1;
936                 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
937                         (clock << 1) | (1 << 10) | 1;
938         } else {
939                 clock = 0;
940                 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
941                         << 2) | (clock << 1) | (1 << 10) | 1;
942         }
943
944         ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
945                         AR5K_RF_BUFFER);
946         ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
947                         AR5K_RF_BUFFER_CONTROL_3);
948
949         return 0;
950 }
951
952 /*
953  * Set channel on 5112 and newer
954  */
955 static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
956                 struct ieee80211_channel *channel)
957 {
958         u32 data, data0, data1, data2;
959         u16 c;
960
961         data = data0 = data1 = data2 = 0;
962         c = channel->center_freq;
963
964         if (c < 4800) {
965                 if (!((c - 2224) % 5)) {
966                         data0 = ((2 * (c - 704)) - 3040) / 10;
967                         data1 = 1;
968                 } else if (!((c - 2192) % 5)) {
969                         data0 = ((2 * (c - 672)) - 3040) / 10;
970                         data1 = 0;
971                 } else
972                         return -EINVAL;
973
974                 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
975         } else if ((c - (c % 5)) != 2 || c > 5435) {
976                 if (!(c % 20) && c >= 5120) {
977                         data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
978                         data2 = ath5k_hw_bitswap(3, 2);
979                 } else if (!(c % 10)) {
980                         data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
981                         data2 = ath5k_hw_bitswap(2, 2);
982                 } else if (!(c % 5)) {
983                         data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
984                         data2 = ath5k_hw_bitswap(1, 2);
985                 } else
986                         return -EINVAL;
987         } else {
988                 data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
989                 data2 = ath5k_hw_bitswap(0, 2);
990         }
991
992         data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
993
994         ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
995         ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
996
997         return 0;
998 }
999
1000 /*
1001  * Set the channel on the RF2425
1002  */
1003 static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1004                 struct ieee80211_channel *channel)
1005 {
1006         u32 data, data0, data2;
1007         u16 c;
1008
1009         data = data0 = data2 = 0;
1010         c = channel->center_freq;
1011
1012         if (c < 4800) {
1013                 data0 = ath5k_hw_bitswap((c - 2272), 8);
1014                 data2 = 0;
1015         /* ? 5GHz ? */
1016         } else if ((c - (c % 5)) != 2 || c > 5435) {
1017                 if (!(c % 20) && c < 5120)
1018                         data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1019                 else if (!(c % 10))
1020                         data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1021                 else if (!(c % 5))
1022                         data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1023                 else
1024                         return -EINVAL;
1025                 data2 = ath5k_hw_bitswap(1, 2);
1026         } else {
1027                 data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
1028                 data2 = ath5k_hw_bitswap(0, 2);
1029         }
1030
1031         data = (data0 << 4) | data2 << 2 | 0x1001;
1032
1033         ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1034         ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1035
1036         return 0;
1037 }
1038
1039 /*
1040  * Set a channel on the radio chip
1041  */
1042 int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1043 {
1044         int ret;
1045         /*
1046          * Check bounds supported by the PHY (we don't care about regultory
1047          * restrictions at this point). Note: hw_value already has the band
1048          * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1049          * of the band by that */
1050         if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1051                 ATH5K_ERR(ah->ah_sc,
1052                         "channel frequency (%u MHz) out of supported "
1053                         "band range\n",
1054                         channel->center_freq);
1055                         return -EINVAL;
1056         }
1057
1058         /*
1059          * Set the channel and wait
1060          */
1061         switch (ah->ah_radio) {
1062         case AR5K_RF5110:
1063                 ret = ath5k_hw_rf5110_channel(ah, channel);
1064                 break;
1065         case AR5K_RF5111:
1066                 ret = ath5k_hw_rf5111_channel(ah, channel);
1067                 break;
1068         case AR5K_RF2425:
1069                 ret = ath5k_hw_rf2425_channel(ah, channel);
1070                 break;
1071         default:
1072                 ret = ath5k_hw_rf5112_channel(ah, channel);
1073                 break;
1074         }
1075
1076         if (ret)
1077                 return ret;
1078
1079         /* Set JAPAN setting for channel 14 */
1080         if (channel->center_freq == 2484) {
1081                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1082                                 AR5K_PHY_CCKTXCTL_JAPAN);
1083         } else {
1084                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1085                                 AR5K_PHY_CCKTXCTL_WORLD);
1086         }
1087
1088         ah->ah_current_channel.center_freq = channel->center_freq;
1089         ah->ah_current_channel.hw_value = channel->hw_value;
1090         ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
1091
1092         return 0;
1093 }
1094
1095 /*****************\
1096   PHY calibration
1097 \*****************/
1098
1099 /**
1100  * ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration
1101  *
1102  * @ah: struct ath5k_hw pointer we are operating on
1103  * @freq: the channel frequency, just used for error logging
1104  *
1105  * This function performs a noise floor calibration of the PHY and waits for
1106  * it to complete. Then the noise floor value is compared to some maximum
1107  * noise floor we consider valid.
1108  *
1109  * Note that this is different from what the madwifi HAL does: it reads the
1110  * noise floor and afterwards initiates the calibration. Since the noise floor
1111  * calibration can take some time to finish, depending on the current channel
1112  * use, that avoids the occasional timeout warnings we are seeing now.
1113  *
1114  * See the following link for an Atheros patent on noise floor calibration:
1115  * http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \
1116  * &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7
1117  *
1118  * XXX: Since during noise floor calibration antennas are detached according to
1119  * the patent, we should stop tx queues here.
1120  */
1121 int
1122 ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq)
1123 {
1124         int ret;
1125         unsigned int i;
1126         s32 noise_floor;
1127
1128         /*
1129          * Enable noise floor calibration
1130          */
1131         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1132                                 AR5K_PHY_AGCCTL_NF);
1133
1134         ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1135                         AR5K_PHY_AGCCTL_NF, 0, false);
1136         if (ret) {
1137                 ATH5K_ERR(ah->ah_sc,
1138                         "noise floor calibration timeout (%uMHz)\n", freq);
1139                 return -EAGAIN;
1140         }
1141
1142         /* Wait until the noise floor is calibrated and read the value */
1143         for (i = 20; i > 0; i--) {
1144                 mdelay(1);
1145                 noise_floor = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1146                 noise_floor = AR5K_PHY_NF_RVAL(noise_floor);
1147                 if (noise_floor & AR5K_PHY_NF_ACTIVE) {
1148                         noise_floor = AR5K_PHY_NF_AVAL(noise_floor);
1149
1150                         if (noise_floor <= AR5K_TUNE_NOISE_FLOOR)
1151                                 break;
1152                 }
1153         }
1154
1155         ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1156                 "noise floor %d\n", noise_floor);
1157
1158         if (noise_floor > AR5K_TUNE_NOISE_FLOOR) {
1159                 ATH5K_ERR(ah->ah_sc,
1160                         "noise floor calibration failed (%uMHz)\n", freq);
1161                 return -EAGAIN;
1162         }
1163
1164         ah->ah_noise_floor = noise_floor;
1165
1166         return 0;
1167 }
1168
1169 /*
1170  * Perform a PHY calibration on RF5110
1171  * -Fix BPSK/QAM Constellation (I/Q correction)
1172  * -Calculate Noise Floor
1173  */
1174 static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1175                 struct ieee80211_channel *channel)
1176 {
1177         u32 phy_sig, phy_agc, phy_sat, beacon;
1178         int ret;
1179
1180         /*
1181          * Disable beacons and RX/TX queues, wait
1182          */
1183         AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1184                 AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1185         beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1186         ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1187
1188         mdelay(2);
1189
1190         /*
1191          * Set the channel (with AGC turned off)
1192          */
1193         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1194         udelay(10);
1195         ret = ath5k_hw_channel(ah, channel);
1196
1197         /*
1198          * Activate PHY and wait
1199          */
1200         ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1201         mdelay(1);
1202
1203         AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1204
1205         if (ret)
1206                 return ret;
1207
1208         /*
1209          * Calibrate the radio chip
1210          */
1211
1212         /* Remember normal state */
1213         phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1214         phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1215         phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1216
1217         /* Update radio registers */
1218         ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1219                 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1220
1221         ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1222                         AR5K_PHY_AGCCOARSE_LO)) |
1223                 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1224                 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1225
1226         ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1227                         AR5K_PHY_ADCSAT_THR)) |
1228                 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1229                 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1230
1231         udelay(20);
1232
1233         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1234         udelay(10);
1235         ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1236         AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1237
1238         mdelay(1);
1239
1240         /*
1241          * Enable calibration and wait until completion
1242          */
1243         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1244
1245         ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1246                         AR5K_PHY_AGCCTL_CAL, 0, false);
1247
1248         /* Reset to normal state */
1249         ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1250         ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1251         ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1252
1253         if (ret) {
1254                 ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1255                                 channel->center_freq);
1256                 return ret;
1257         }
1258
1259         ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1260
1261         /*
1262          * Re-enable RX/TX and beacons
1263          */
1264         AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1265                 AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1266         ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1267
1268         return 0;
1269 }
1270
1271 /*
1272  * Perform a PHY calibration on RF5111/5112 and newer chips
1273  */
1274 static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
1275                 struct ieee80211_channel *channel)
1276 {
1277         u32 i_pwr, q_pwr;
1278         s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1279         int i;
1280         ATH5K_TRACE(ah->ah_sc);
1281
1282         if (!ah->ah_calibration ||
1283                 ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1284                 goto done;
1285
1286         /* Calibration has finished, get the results and re-run */
1287         for (i = 0; i <= 10; i++) {
1288                 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1289                 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1290                 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1291         }
1292
1293         i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1294         q_coffd = q_pwr >> 7;
1295
1296         /* No correction */
1297         if (i_coffd == 0 || q_coffd == 0)
1298                 goto done;
1299
1300         i_coff = ((-iq_corr) / i_coffd) & 0x3f;
1301
1302         /* Boundary check */
1303         if (i_coff > 31)
1304                 i_coff = 31;
1305         if (i_coff < -32)
1306                 i_coff = -32;
1307
1308         q_coff = (((s32)i_pwr / q_coffd) - 128) & 0x1f;
1309
1310         /* Boundary check */
1311         if (q_coff > 15)
1312                 q_coff = 15;
1313         if (q_coff < -16)
1314                 q_coff = -16;
1315
1316         /* Commit new I/Q value */
1317         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE |
1318                 ((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S));
1319
1320         /* Re-enable calibration -if we don't we'll commit
1321          * the same values again and again */
1322         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1323                         AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1324         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1325
1326 done:
1327
1328         /* TODO: Separate noise floor calibration from I/Q calibration
1329          * since noise floor calibration interrupts rx path while I/Q
1330          * calibration doesn't. We don't need to run noise floor calibration
1331          * as often as I/Q calibration.*/
1332         ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1333
1334         /* Initiate a gain_F calibration */
1335         ath5k_hw_request_rfgain_probe(ah);
1336
1337         return 0;
1338 }
1339
1340 /*
1341  * Perform a PHY calibration
1342  */
1343 int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1344                 struct ieee80211_channel *channel)
1345 {
1346         int ret;
1347
1348         if (ah->ah_radio == AR5K_RF5110)
1349                 ret = ath5k_hw_rf5110_calibrate(ah, channel);
1350         else
1351                 ret = ath5k_hw_rf511x_calibrate(ah, channel);
1352
1353         return ret;
1354 }
1355
1356 /***************************\
1357 * Spur mitigation functions *
1358 \***************************/
1359
1360 bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
1361                                 struct ieee80211_channel *channel)
1362 {
1363         u8 refclk_freq;
1364
1365         if ((ah->ah_radio == AR5K_RF5112) ||
1366         (ah->ah_radio == AR5K_RF5413) ||
1367         (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
1368                 refclk_freq = 40;
1369         else
1370                 refclk_freq = 32;
1371
1372         if ((channel->center_freq % refclk_freq != 0) &&
1373         ((channel->center_freq % refclk_freq < 10) ||
1374         (channel->center_freq % refclk_freq > 22)))
1375                 return true;
1376         else
1377                 return false;
1378 }
1379
1380 void
1381 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1382                                 struct ieee80211_channel *channel)
1383 {
1384         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1385         u32 mag_mask[4] = {0, 0, 0, 0};
1386         u32 pilot_mask[2] = {0, 0};
1387         /* Note: fbin values are scaled up by 2 */
1388         u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1389         s32 spur_delta_phase, spur_freq_sigma_delta;
1390         s32 spur_offset, num_symbols_x16;
1391         u8 num_symbol_offsets, i, freq_band;
1392
1393         /* Convert current frequency to fbin value (the same way channels
1394          * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1395          * up by 2 so we can compare it later */
1396         if (channel->hw_value & CHANNEL_2GHZ) {
1397                 chan_fbin = (channel->center_freq - 2300) * 10;
1398                 freq_band = AR5K_EEPROM_BAND_2GHZ;
1399         } else {
1400                 chan_fbin = (channel->center_freq - 4900) * 10;
1401                 freq_band = AR5K_EEPROM_BAND_5GHZ;
1402         }
1403
1404         /* Check if any spur_chan_fbin from EEPROM is
1405          * within our current channel's spur detection range */
1406         spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1407         spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1408         /* XXX: Half/Quarter channels ?*/
1409         if (channel->hw_value & CHANNEL_TURBO)
1410                 spur_detection_window *= 2;
1411
1412         for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1413                 spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1414
1415                 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1416                  * so it's zero if we got nothing from EEPROM */
1417                 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1418                         spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1419                         break;
1420                 }
1421
1422                 if ((chan_fbin - spur_detection_window <=
1423                 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1424                 (chan_fbin + spur_detection_window >=
1425                 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1426                         spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1427                         break;
1428                 }
1429         }
1430
1431         /* We need to enable spur filter for this channel */
1432         if (spur_chan_fbin) {
1433                 spur_offset = spur_chan_fbin - chan_fbin;
1434                 /*
1435                  * Calculate deltas:
1436                  * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1437                  * spur_delta_phase -> spur_offset / chip_freq << 11
1438                  * Note: Both values have 100KHz resolution
1439                  */
1440                 /* XXX: Half/Quarter rate channels ? */
1441                 switch (channel->hw_value) {
1442                 case CHANNEL_A:
1443                         /* Both sample_freq and chip_freq are 40MHz */
1444                         spur_delta_phase = (spur_offset << 17) / 25;
1445                         spur_freq_sigma_delta = (spur_delta_phase >> 10);
1446                         symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1447                         break;
1448                 case CHANNEL_G:
1449                         /* sample_freq -> 40MHz chip_freq -> 44MHz
1450                          * (for b compatibility) */
1451                         spur_freq_sigma_delta = (spur_offset << 8) / 55;
1452                         spur_delta_phase = (spur_offset << 17) / 25;
1453                         symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1454                         break;
1455                 case CHANNEL_T:
1456                 case CHANNEL_TG:
1457                         /* Both sample_freq and chip_freq are 80MHz */
1458                         spur_delta_phase = (spur_offset << 16) / 25;
1459                         spur_freq_sigma_delta = (spur_delta_phase >> 10);
1460                         symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1461                         break;
1462                 default:
1463                         return;
1464                 }
1465
1466                 /* Calculate pilot and magnitude masks */
1467
1468                 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
1469                  * and divide by symbol_width to find how many symbols we have
1470                  * Note: number of symbols is scaled up by 16 */
1471                 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1472
1473                 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1474                 if (!(num_symbols_x16 & 0xF))
1475                         /* _X_ */
1476                         num_symbol_offsets = 3;
1477                 else
1478                         /* _xx_ */
1479                         num_symbol_offsets = 4;
1480
1481                 for (i = 0; i < num_symbol_offsets; i++) {
1482
1483                         /* Calculate pilot mask */
1484                         s32 curr_sym_off =
1485                                 (num_symbols_x16 / 16) + i + 25;
1486
1487                         /* Pilot magnitude mask seems to be a way to
1488                          * declare the boundaries for our detection
1489                          * window or something, it's 2 for the middle
1490                          * value(s) where the symbol is expected to be
1491                          * and 1 on the boundary values */
1492                         u8 plt_mag_map =
1493                                 (i == 0 || i == (num_symbol_offsets - 1))
1494                                                                 ? 1 : 2;
1495
1496                         if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1497                                 if (curr_sym_off <= 25)
1498                                         pilot_mask[0] |= 1 << curr_sym_off;
1499                                 else if (curr_sym_off >= 27)
1500                                         pilot_mask[0] |= 1 << (curr_sym_off - 1);
1501                         } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1502                                 pilot_mask[1] |= 1 << (curr_sym_off - 33);
1503
1504                         /* Calculate magnitude mask (for viterbi decoder) */
1505                         if (curr_sym_off >= -1 && curr_sym_off <= 14)
1506                                 mag_mask[0] |=
1507                                         plt_mag_map << (curr_sym_off + 1) * 2;
1508                         else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1509                                 mag_mask[1] |=
1510                                         plt_mag_map << (curr_sym_off - 15) * 2;
1511                         else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1512                                 mag_mask[2] |=
1513                                         plt_mag_map << (curr_sym_off - 31) * 2;
1514                         else if (curr_sym_off >= 46 && curr_sym_off <= 53)
1515                                 mag_mask[3] |=
1516                                         plt_mag_map << (curr_sym_off - 47) * 2;
1517
1518                 }
1519
1520                 /* Write settings on hw to enable spur filter */
1521                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1522                                         AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1523                 /* XXX: Self correlator also ? */
1524                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1525                                         AR5K_PHY_IQ_PILOT_MASK_EN |
1526                                         AR5K_PHY_IQ_CHAN_MASK_EN |
1527                                         AR5K_PHY_IQ_SPUR_FILT_EN);
1528
1529                 /* Set delta phase and freq sigma delta */
1530                 ath5k_hw_reg_write(ah,
1531                                 AR5K_REG_SM(spur_delta_phase,
1532                                         AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1533                                 AR5K_REG_SM(spur_freq_sigma_delta,
1534                                 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1535                                 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1536                                 AR5K_PHY_TIMING_11);
1537
1538                 /* Write pilot masks */
1539                 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1540                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1541                                         AR5K_PHY_TIMING_8_PILOT_MASK_2,
1542                                         pilot_mask[1]);
1543
1544                 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1545                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1546                                         AR5K_PHY_TIMING_10_PILOT_MASK_2,
1547                                         pilot_mask[1]);
1548
1549                 /* Write magnitude masks */
1550                 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1551                 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1552                 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1553                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1554                                         AR5K_PHY_BIN_MASK_CTL_MASK_4,
1555                                         mag_mask[3]);
1556
1557                 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1558                 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1559                 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1560                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1561                                         AR5K_PHY_BIN_MASK2_4_MASK_4,
1562                                         mag_mask[3]);
1563
1564         } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1565         AR5K_PHY_IQ_SPUR_FILT_EN) {
1566                 /* Clean up spur mitigation settings and disable fliter */
1567                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1568                                         AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1569                 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1570                                         AR5K_PHY_IQ_PILOT_MASK_EN |
1571                                         AR5K_PHY_IQ_CHAN_MASK_EN |
1572                                         AR5K_PHY_IQ_SPUR_FILT_EN);
1573                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1574
1575                 /* Clear pilot masks */
1576                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1577                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1578                                         AR5K_PHY_TIMING_8_PILOT_MASK_2,
1579                                         0);
1580
1581                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1582                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1583                                         AR5K_PHY_TIMING_10_PILOT_MASK_2,
1584                                         0);
1585
1586                 /* Clear magnitude masks */
1587                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1588                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1589                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1590                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1591                                         AR5K_PHY_BIN_MASK_CTL_MASK_4,
1592                                         0);
1593
1594                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1595                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1596                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1597                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1598                                         AR5K_PHY_BIN_MASK2_4_MASK_4,
1599                                         0);
1600         }
1601 }
1602
1603 /********************\
1604   Misc PHY functions
1605 \********************/
1606
1607 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1608 {
1609         ATH5K_TRACE(ah->ah_sc);
1610         /*Just a try M.F.*/
1611         ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1612
1613         return 0;
1614 }
1615
1616 /*
1617  * Get the PHY Chip revision
1618  */
1619 u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1620 {
1621         unsigned int i;
1622         u32 srev;
1623         u16 ret;
1624
1625         ATH5K_TRACE(ah->ah_sc);
1626
1627         /*
1628          * Set the radio chip access register
1629          */
1630         switch (chan) {
1631         case CHANNEL_2GHZ:
1632                 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1633                 break;
1634         case CHANNEL_5GHZ:
1635                 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1636                 break;
1637         default:
1638                 return 0;
1639         }
1640
1641         mdelay(2);
1642
1643         /* ...wait until PHY is ready and read the selected radio revision */
1644         ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1645
1646         for (i = 0; i < 8; i++)
1647                 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1648
1649         if (ah->ah_version == AR5K_AR5210) {
1650                 srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1651                 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1652         } else {
1653                 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1654                 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1655                                 ((srev & 0x0f) << 4), 8);
1656         }
1657
1658         /* Reset to the 5GHz mode */
1659         ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1660
1661         return ret;
1662 }
1663
1664 /*****************\
1665 * Antenna control *
1666 \*****************/
1667
1668 void /*TODO:Boundary check*/
1669 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1670 {
1671         ATH5K_TRACE(ah->ah_sc);
1672
1673         if (ah->ah_version != AR5K_AR5210)
1674                 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1675 }
1676
1677 unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
1678 {
1679         ATH5K_TRACE(ah->ah_sc);
1680
1681         if (ah->ah_version != AR5K_AR5210)
1682                 return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA) & 0x7;
1683
1684         return false; /*XXX: What do we return for 5210 ?*/
1685 }
1686
1687 /*
1688  * Enable/disable fast rx antenna diversity
1689  */
1690 static void
1691 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1692 {
1693         switch (ee_mode) {
1694         case AR5K_EEPROM_MODE_11G:
1695                 /* XXX: This is set to
1696                  * disabled on initvals !!! */
1697         case AR5K_EEPROM_MODE_11A:
1698                 if (enable)
1699                         AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1700                                         AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1701                 else
1702                         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1703                                         AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1704                 break;
1705         case AR5K_EEPROM_MODE_11B:
1706                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1707                                         AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1708                 break;
1709         default:
1710                 return;
1711         }
1712
1713         if (enable) {
1714                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1715                                 AR5K_PHY_RESTART_DIV_GC, 0xc);
1716
1717                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1718                                         AR5K_PHY_FAST_ANT_DIV_EN);
1719         } else {
1720                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1721                                 AR5K_PHY_RESTART_DIV_GC, 0x8);
1722
1723                 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1724                                         AR5K_PHY_FAST_ANT_DIV_EN);
1725         }
1726 }
1727
1728 /*
1729  * Set antenna operating mode
1730  */
1731 void
1732 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1733 {
1734         struct ieee80211_channel *channel = &ah->ah_current_channel;
1735         bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1736         bool use_def_for_sg;
1737         u8 def_ant, tx_ant, ee_mode;
1738         u32 sta_id1 = 0;
1739
1740         def_ant = ah->ah_def_ant;
1741
1742         ATH5K_TRACE(ah->ah_sc);
1743
1744         switch (channel->hw_value & CHANNEL_MODES) {
1745         case CHANNEL_A:
1746         case CHANNEL_T:
1747         case CHANNEL_XR:
1748                 ee_mode = AR5K_EEPROM_MODE_11A;
1749                 break;
1750         case CHANNEL_G:
1751         case CHANNEL_TG:
1752                 ee_mode = AR5K_EEPROM_MODE_11G;
1753                 break;
1754         case CHANNEL_B:
1755                 ee_mode = AR5K_EEPROM_MODE_11B;
1756                 break;
1757         default:
1758                 ATH5K_ERR(ah->ah_sc,
1759                         "invalid channel: %d\n", channel->center_freq);
1760                 return;
1761         }
1762
1763         switch (ant_mode) {
1764         case AR5K_ANTMODE_DEFAULT:
1765                 tx_ant = 0;
1766                 use_def_for_tx = false;
1767                 update_def_on_tx = false;
1768                 use_def_for_rts = false;
1769                 use_def_for_sg = false;
1770                 fast_div = true;
1771                 break;
1772         case AR5K_ANTMODE_FIXED_A:
1773                 def_ant = 1;
1774                 tx_ant = 0;
1775                 use_def_for_tx = true;
1776                 update_def_on_tx = false;
1777                 use_def_for_rts = true;
1778                 use_def_for_sg = true;
1779                 fast_div = false;
1780                 break;
1781         case AR5K_ANTMODE_FIXED_B:
1782                 def_ant = 2;
1783                 tx_ant = 0;
1784                 use_def_for_tx = true;
1785                 update_def_on_tx = false;
1786                 use_def_for_rts = true;
1787                 use_def_for_sg = true;
1788                 fast_div = false;
1789                 break;
1790         case AR5K_ANTMODE_SINGLE_AP:
1791                 def_ant = 1;    /* updated on tx */
1792                 tx_ant = 0;
1793                 use_def_for_tx = true;
1794                 update_def_on_tx = true;
1795                 use_def_for_rts = true;
1796                 use_def_for_sg = true;
1797                 fast_div = true;
1798                 break;
1799         case AR5K_ANTMODE_SECTOR_AP:
1800                 tx_ant = 1;     /* variable */
1801                 use_def_for_tx = false;
1802                 update_def_on_tx = false;
1803                 use_def_for_rts = true;
1804                 use_def_for_sg = false;
1805                 fast_div = false;
1806                 break;
1807         case AR5K_ANTMODE_SECTOR_STA:
1808                 tx_ant = 1;     /* variable */
1809                 use_def_for_tx = true;
1810                 update_def_on_tx = false;
1811                 use_def_for_rts = true;
1812                 use_def_for_sg = false;
1813                 fast_div = true;
1814                 break;
1815         case AR5K_ANTMODE_DEBUG:
1816                 def_ant = 1;
1817                 tx_ant = 2;
1818                 use_def_for_tx = false;
1819                 update_def_on_tx = false;
1820                 use_def_for_rts = false;
1821                 use_def_for_sg = false;
1822                 fast_div = false;
1823                 break;
1824         default:
1825                 return;
1826         }
1827
1828         ah->ah_tx_ant = tx_ant;
1829         ah->ah_ant_mode = ant_mode;
1830
1831         sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1832         sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1833         sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1834         sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1835
1836         AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1837
1838         if (sta_id1)
1839                 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1840
1841         /* Note: set diversity before default antenna
1842          * because it won't work correctly */
1843         ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
1844         ath5k_hw_set_def_antenna(ah, def_ant);
1845 }
1846
1847
1848 /****************\
1849 * TX power setup *
1850 \****************/
1851
1852 /*
1853  * Helper functions
1854  */
1855
1856 /*
1857  * Do linear interpolation between two given (x, y) points
1858  */
1859 static s16
1860 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1861                                         s16 y_left, s16 y_right)
1862 {
1863         s16 ratio, result;
1864
1865         /* Avoid divide by zero and skip interpolation
1866          * if we have the same point */
1867         if ((x_left == x_right) || (y_left == y_right))
1868                 return y_left;
1869
1870         /*
1871          * Since we use ints and not fps, we need to scale up in
1872          * order to get a sane ratio value (or else we 'll eg. get
1873          * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1874          * to have some accuracy both for 0.5 and 0.25 steps.
1875          */
1876         ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1877
1878         /* Now scale down to be in range */
1879         result = y_left + (ratio * (target - x_left) / 100);
1880
1881         return result;
1882 }
1883
1884 /*
1885  * Find vertical boundary (min pwr) for the linear PCDAC curve.
1886  *
1887  * Since we have the top of the curve and we draw the line below
1888  * until we reach 1 (1 pcdac step) we need to know which point
1889  * (x value) that is so that we don't go below y axis and have negative
1890  * pcdac values when creating the curve, or fill the table with zeroes.
1891  */
1892 static s16
1893 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1894                                 const s16 *pwrL, const s16 *pwrR)
1895 {
1896         s8 tmp;
1897         s16 min_pwrL, min_pwrR;
1898         s16 pwr_i;
1899
1900         if (WARN_ON(stepL[0] == stepL[1] || stepR[0] == stepR[1]))
1901                 return 0;
1902
1903         if (pwrL[0] == pwrL[1])
1904                 min_pwrL = pwrL[0];
1905         else {
1906                 pwr_i = pwrL[0];
1907                 do {
1908                         pwr_i--;
1909                         tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1910                                                         pwrL[0], pwrL[1],
1911                                                         stepL[0], stepL[1]);
1912                 } while (tmp > 1);
1913
1914                 min_pwrL = pwr_i;
1915         }
1916
1917         if (pwrR[0] == pwrR[1])
1918                 min_pwrR = pwrR[0];
1919         else {
1920                 pwr_i = pwrR[0];
1921                 do {
1922                         pwr_i--;
1923                         tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1924                                                         pwrR[0], pwrR[1],
1925                                                         stepR[0], stepR[1]);
1926                 } while (tmp > 1);
1927
1928                 min_pwrR = pwr_i;
1929         }
1930
1931         /* Keep the right boundary so that it works for both curves */
1932         return max(min_pwrL, min_pwrR);
1933 }
1934
1935 /*
1936  * Interpolate (pwr,vpd) points to create a Power to PDADC or a
1937  * Power to PCDAC curve.
1938  *
1939  * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
1940  * steps (offsets) on y axis. Power can go up to 31.5dB and max
1941  * PCDAC/PDADC step for each curve is 64 but we can write more than
1942  * one curves on hw so we can go up to 128 (which is the max step we
1943  * can write on the final table).
1944  *
1945  * We write y values (PCDAC/PDADC steps) on hw.
1946  */
1947 static void
1948 ath5k_create_power_curve(s16 pmin, s16 pmax,
1949                         const s16 *pwr, const u8 *vpd,
1950                         u8 num_points,
1951                         u8 *vpd_table, u8 type)
1952 {
1953         u8 idx[2] = { 0, 1 };
1954         s16 pwr_i = 2*pmin;
1955         int i;
1956
1957         if (num_points < 2)
1958                 return;
1959
1960         /* We want the whole line, so adjust boundaries
1961          * to cover the entire power range. Note that
1962          * power values are already 0.25dB so no need
1963          * to multiply pwr_i by 2 */
1964         if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
1965                 pwr_i = pmin;
1966                 pmin = 0;
1967                 pmax = 63;
1968         }
1969
1970         /* Find surrounding turning points (TPs)
1971          * and interpolate between them */
1972         for (i = 0; (i <= (u16) (pmax - pmin)) &&
1973         (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
1974
1975                 /* We passed the right TP, move to the next set of TPs
1976                  * if we pass the last TP, extrapolate above using the last
1977                  * two TPs for ratio */
1978                 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
1979                         idx[0]++;
1980                         idx[1]++;
1981                 }
1982
1983                 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
1984                                                 pwr[idx[0]], pwr[idx[1]],
1985                                                 vpd[idx[0]], vpd[idx[1]]);
1986
1987                 /* Increase by 0.5dB
1988                  * (0.25 dB units) */
1989                 pwr_i += 2;
1990         }
1991 }
1992
1993 /*
1994  * Get the surrounding per-channel power calibration piers
1995  * for a given frequency so that we can interpolate between
1996  * them and come up with an apropriate dataset for our current
1997  * channel.
1998  */
1999 static void
2000 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2001                         struct ieee80211_channel *channel,
2002                         struct ath5k_chan_pcal_info **pcinfo_l,
2003                         struct ath5k_chan_pcal_info **pcinfo_r)
2004 {
2005         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2006         struct ath5k_chan_pcal_info *pcinfo;
2007         u8 idx_l, idx_r;
2008         u8 mode, max, i;
2009         u32 target = channel->center_freq;
2010
2011         idx_l = 0;
2012         idx_r = 0;
2013
2014         if (!(channel->hw_value & CHANNEL_OFDM)) {
2015                 pcinfo = ee->ee_pwr_cal_b;
2016                 mode = AR5K_EEPROM_MODE_11B;
2017         } else if (channel->hw_value & CHANNEL_2GHZ) {
2018                 pcinfo = ee->ee_pwr_cal_g;
2019                 mode = AR5K_EEPROM_MODE_11G;
2020         } else {
2021                 pcinfo = ee->ee_pwr_cal_a;
2022                 mode = AR5K_EEPROM_MODE_11A;
2023         }
2024         max = ee->ee_n_piers[mode] - 1;
2025
2026         /* Frequency is below our calibrated
2027          * range. Use the lowest power curve
2028          * we have */
2029         if (target < pcinfo[0].freq) {
2030                 idx_l = idx_r = 0;
2031                 goto done;
2032         }
2033
2034         /* Frequency is above our calibrated
2035          * range. Use the highest power curve
2036          * we have */
2037         if (target > pcinfo[max].freq) {
2038                 idx_l = idx_r = max;
2039                 goto done;
2040         }
2041
2042         /* Frequency is inside our calibrated
2043          * channel range. Pick the surrounding
2044          * calibration piers so that we can
2045          * interpolate */
2046         for (i = 0; i <= max; i++) {
2047
2048                 /* Frequency matches one of our calibration
2049                  * piers, no need to interpolate, just use
2050                  * that calibration pier */
2051                 if (pcinfo[i].freq == target) {
2052                         idx_l = idx_r = i;
2053                         goto done;
2054                 }
2055
2056                 /* We found a calibration pier that's above
2057                  * frequency, use this pier and the previous
2058                  * one to interpolate */
2059                 if (target < pcinfo[i].freq) {
2060                         idx_r = i;
2061                         idx_l = idx_r - 1;
2062                         goto done;
2063                 }
2064         }
2065
2066 done:
2067         *pcinfo_l = &pcinfo[idx_l];
2068         *pcinfo_r = &pcinfo[idx_r];
2069
2070         return;
2071 }
2072
2073 /*
2074  * Get the surrounding per-rate power calibration data
2075  * for a given frequency and interpolate between power
2076  * values to set max target power supported by hw for
2077  * each rate.
2078  */
2079 static void
2080 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2081                         struct ieee80211_channel *channel,
2082                         struct ath5k_rate_pcal_info *rates)
2083 {
2084         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2085         struct ath5k_rate_pcal_info *rpinfo;
2086         u8 idx_l, idx_r;
2087         u8 mode, max, i;
2088         u32 target = channel->center_freq;
2089
2090         idx_l = 0;
2091         idx_r = 0;
2092
2093         if (!(channel->hw_value & CHANNEL_OFDM)) {
2094                 rpinfo = ee->ee_rate_tpwr_b;
2095                 mode = AR5K_EEPROM_MODE_11B;
2096         } else if (channel->hw_value & CHANNEL_2GHZ) {
2097                 rpinfo = ee->ee_rate_tpwr_g;
2098                 mode = AR5K_EEPROM_MODE_11G;
2099         } else {
2100                 rpinfo = ee->ee_rate_tpwr_a;
2101                 mode = AR5K_EEPROM_MODE_11A;
2102         }
2103         max = ee->ee_rate_target_pwr_num[mode] - 1;
2104
2105         /* Get the surrounding calibration
2106          * piers - same as above */
2107         if (target < rpinfo[0].freq) {
2108                 idx_l = idx_r = 0;
2109                 goto done;
2110         }
2111
2112         if (target > rpinfo[max].freq) {
2113                 idx_l = idx_r = max;
2114                 goto done;
2115         }
2116
2117         for (i = 0; i <= max; i++) {
2118
2119                 if (rpinfo[i].freq == target) {
2120                         idx_l = idx_r = i;
2121                         goto done;
2122                 }
2123
2124                 if (target < rpinfo[i].freq) {
2125                         idx_r = i;
2126                         idx_l = idx_r - 1;
2127                         goto done;
2128                 }
2129         }
2130
2131 done:
2132         /* Now interpolate power value, based on the frequency */
2133         rates->freq = target;
2134
2135         rates->target_power_6to24 =
2136                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2137                                         rpinfo[idx_r].freq,
2138                                         rpinfo[idx_l].target_power_6to24,
2139                                         rpinfo[idx_r].target_power_6to24);
2140
2141         rates->target_power_36 =
2142                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2143                                         rpinfo[idx_r].freq,
2144                                         rpinfo[idx_l].target_power_36,
2145                                         rpinfo[idx_r].target_power_36);
2146
2147         rates->target_power_48 =
2148                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2149                                         rpinfo[idx_r].freq,
2150                                         rpinfo[idx_l].target_power_48,
2151                                         rpinfo[idx_r].target_power_48);
2152
2153         rates->target_power_54 =
2154                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2155                                         rpinfo[idx_r].freq,
2156                                         rpinfo[idx_l].target_power_54,
2157                                         rpinfo[idx_r].target_power_54);
2158 }
2159
2160 /*
2161  * Get the max edge power for this channel if
2162  * we have such data from EEPROM's Conformance Test
2163  * Limits (CTL), and limit max power if needed.
2164  */
2165 static void
2166 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2167                         struct ieee80211_channel *channel)
2168 {
2169         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2170         struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2171         u8 *ctl_val = ee->ee_ctl;
2172         s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2173         s16 edge_pwr = 0;
2174         u8 rep_idx;
2175         u8 i, ctl_mode;
2176         u8 ctl_idx = 0xFF;
2177         u32 target = channel->center_freq;
2178
2179         ctl_mode = ath_regd_get_band_ctl(&ah->ah_regulatory, channel->band);
2180
2181         switch (channel->hw_value & CHANNEL_MODES) {
2182         case CHANNEL_A:
2183                 ctl_mode |= AR5K_CTL_11A;
2184                 break;
2185         case CHANNEL_G:
2186                 ctl_mode |= AR5K_CTL_11G;
2187                 break;
2188         case CHANNEL_B:
2189                 ctl_mode |= AR5K_CTL_11B;
2190                 break;
2191         case CHANNEL_T:
2192                 ctl_mode |= AR5K_CTL_TURBO;
2193                 break;
2194         case CHANNEL_TG:
2195                 ctl_mode |= AR5K_CTL_TURBOG;
2196                 break;
2197         case CHANNEL_XR:
2198                 /* Fall through */
2199         default:
2200                 return;
2201         }
2202
2203         for (i = 0; i < ee->ee_ctls; i++) {
2204                 if (ctl_val[i] == ctl_mode) {
2205                         ctl_idx = i;
2206                         break;
2207                 }
2208         }
2209
2210         /* If we have a CTL dataset available grab it and find the
2211          * edge power for our frequency */
2212         if (ctl_idx == 0xFF)
2213                 return;
2214
2215         /* Edge powers are sorted by frequency from lower
2216          * to higher. Each CTL corresponds to 8 edge power
2217          * measurements. */
2218         rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2219
2220         /* Don't do boundaries check because we
2221          * might have more that one bands defined
2222          * for this mode */
2223
2224         /* Get the edge power that's closer to our
2225          * frequency */
2226         for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2227                 rep_idx += i;
2228                 if (target <= rep[rep_idx].freq)
2229                         edge_pwr = (s16) rep[rep_idx].edge;
2230         }
2231
2232         if (edge_pwr)
2233                 ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2234 }
2235
2236
2237 /*
2238  * Power to PCDAC table functions
2239  */
2240
2241 /*
2242  * Fill Power to PCDAC table on RF5111
2243  *
2244  * No further processing is needed for RF5111, the only thing we have to
2245  * do is fill the values below and above calibration range since eeprom data
2246  * may not cover the entire PCDAC table.
2247  */
2248 static void
2249 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2250                                                         s16 *table_max)
2251 {
2252         u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2253         u8      *pcdac_tmp = ah->ah_txpower.tmpL[0];
2254         u8      pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2255         s16     min_pwr, max_pwr;
2256
2257         /* Get table boundaries */
2258         min_pwr = table_min[0];
2259         pcdac_0 = pcdac_tmp[0];
2260
2261         max_pwr = table_max[0];
2262         pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2263
2264         /* Extrapolate below minimum using pcdac_0 */
2265         pcdac_i = 0;
2266         for (i = 0; i < min_pwr; i++)
2267                 pcdac_out[pcdac_i++] = pcdac_0;
2268
2269         /* Copy values from pcdac_tmp */
2270         pwr_idx = min_pwr;
2271         for (i = 0 ; pwr_idx <= max_pwr &&
2272         pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2273                 pcdac_out[pcdac_i++] = pcdac_tmp[i];
2274                 pwr_idx++;
2275         }
2276
2277         /* Extrapolate above maximum */
2278         while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2279                 pcdac_out[pcdac_i++] = pcdac_n;
2280
2281 }
2282
2283 /*
2284  * Combine available XPD Curves and fill Linear Power to PCDAC table
2285  * on RF5112
2286  *
2287  * RFX112 can have up to 2 curves (one for low txpower range and one for
2288  * higher txpower range). We need to put them both on pcdac_out and place
2289  * them in the correct location. In case we only have one curve available
2290  * just fit it on pcdac_out (it's supposed to cover the entire range of
2291  * available pwr levels since it's always the higher power curve). Extrapolate
2292  * below and above final table if needed.
2293  */
2294 static void
2295 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2296                                                 s16 *table_max, u8 pdcurves)
2297 {
2298         u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2299         u8      *pcdac_low_pwr;
2300         u8      *pcdac_high_pwr;
2301         u8      *pcdac_tmp;
2302         u8      pwr;
2303         s16     max_pwr_idx;
2304         s16     min_pwr_idx;
2305         s16     mid_pwr_idx = 0;
2306         /* Edge flag turs on the 7nth bit on the PCDAC
2307          * to delcare the higher power curve (force values
2308          * to be greater than 64). If we only have one curve
2309          * we don't need to set this, if we have 2 curves and
2310          * fill the table backwards this can also be used to
2311          * switch from higher power curve to lower power curve */
2312         u8      edge_flag;
2313         int     i;
2314
2315         /* When we have only one curve available
2316          * that's the higher power curve. If we have
2317          * two curves the first is the high power curve
2318          * and the next is the low power curve. */
2319         if (pdcurves > 1) {
2320                 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2321                 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2322                 mid_pwr_idx = table_max[1] - table_min[1] - 1;
2323                 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2324
2325                 /* If table size goes beyond 31.5dB, keep the
2326                  * upper 31.5dB range when setting tx power.
2327                  * Note: 126 = 31.5 dB in quarter dB steps */
2328                 if (table_max[0] - table_min[1] > 126)
2329                         min_pwr_idx = table_max[0] - 126;
2330                 else
2331                         min_pwr_idx = table_min[1];
2332
2333                 /* Since we fill table backwards
2334                  * start from high power curve */
2335                 pcdac_tmp = pcdac_high_pwr;
2336
2337                 edge_flag = 0x40;
2338 #if 0
2339                 /* If both min and max power limits are in lower
2340                  * power curve's range, only use the low power curve.
2341                  * TODO: min/max levels are related to target
2342                  * power values requested from driver/user
2343                  * XXX: Is this really needed ? */
2344                 if (min_pwr < table_max[1] &&
2345                 max_pwr < table_max[1]) {
2346                         edge_flag = 0;
2347                         pcdac_tmp = pcdac_low_pwr;
2348                         max_pwr_idx = (table_max[1] - table_min[1])/2;
2349                 }
2350 #endif
2351         } else {
2352                 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2353                 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2354                 min_pwr_idx = table_min[0];
2355                 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2356                 pcdac_tmp = pcdac_high_pwr;
2357                 edge_flag = 0;
2358         }
2359
2360         /* This is used when setting tx power*/
2361         ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2362
2363         /* Fill Power to PCDAC table backwards */
2364         pwr = max_pwr_idx;
2365         for (i = 63; i >= 0; i--) {
2366                 /* Entering lower power range, reset
2367                  * edge flag and set pcdac_tmp to lower
2368                  * power curve.*/
2369                 if (edge_flag == 0x40 &&
2370                 (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2371                         edge_flag = 0x00;
2372                         pcdac_tmp = pcdac_low_pwr;
2373                         pwr = mid_pwr_idx/2;
2374                 }
2375
2376                 /* Don't go below 1, extrapolate below if we have
2377                  * already swithced to the lower power curve -or
2378                  * we only have one curve and edge_flag is zero
2379                  * anyway */
2380                 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2381                         while (i >= 0) {
2382                                 pcdac_out[i] = pcdac_out[i + 1];
2383                                 i--;
2384                         }
2385                         break;
2386                 }
2387
2388                 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2389
2390                 /* Extrapolate above if pcdac is greater than
2391                  * 126 -this can happen because we OR pcdac_out
2392                  * value with edge_flag on high power curve */
2393                 if (pcdac_out[i] > 126)
2394                         pcdac_out[i] = 126;
2395
2396                 /* Decrease by a 0.5dB step */
2397                 pwr--;
2398         }
2399 }
2400
2401 /* Write PCDAC values on hw */
2402 static void
2403 ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2404 {
2405         u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2406         int     i;
2407
2408         /*
2409          * Write TX power values
2410          */
2411         for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2412                 ath5k_hw_reg_write(ah,
2413                         (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2414                         (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2415                         AR5K_PHY_PCDAC_TXPOWER(i));
2416         }
2417 }
2418
2419
2420 /*
2421  * Power to PDADC table functions
2422  */
2423
2424 /*
2425  * Set the gain boundaries and create final Power to PDADC table
2426  *
2427  * We can have up to 4 pd curves, we need to do a simmilar process
2428  * as we do for RF5112. This time we don't have an edge_flag but we
2429  * set the gain boundaries on a separate register.
2430  */
2431 static void
2432 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2433                         s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2434 {
2435         u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2436         u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2437         u8 *pdadc_tmp;
2438         s16 pdadc_0;
2439         u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2440         u8 pd_gain_overlap;
2441
2442         /* Note: Register value is initialized on initvals
2443          * there is no feedback from hw.
2444          * XXX: What about pd_gain_overlap from EEPROM ? */
2445         pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2446                 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2447
2448         /* Create final PDADC table */
2449         for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2450                 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2451
2452                 if (pdg == pdcurves - 1)
2453                         /* 2 dB boundary stretch for last
2454                          * (higher power) curve */
2455                         gain_boundaries[pdg] = pwr_max[pdg] + 4;
2456                 else
2457                         /* Set gain boundary in the middle
2458                          * between this curve and the next one */
2459                         gain_boundaries[pdg] =
2460                                 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2461
2462                 /* Sanity check in case our 2 db stretch got out of
2463                  * range. */
2464                 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2465                         gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2466
2467                 /* For the first curve (lower power)
2468                  * start from 0 dB */
2469                 if (pdg == 0)
2470                         pdadc_0 = 0;
2471                 else
2472                         /* For the other curves use the gain overlap */
2473                         pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2474                                                         pd_gain_overlap;
2475
2476                 /* Force each power step to be at least 0.5 dB */
2477                 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2478                         pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2479                 else
2480                         pwr_step = 1;
2481
2482                 /* If pdadc_0 is negative, we need to extrapolate
2483                  * below this pdgain by a number of pwr_steps */
2484                 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2485                         s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2486                         pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2487                         pdadc_0++;
2488                 }
2489
2490                 /* Set last pwr level, using gain boundaries */
2491                 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2492                 /* Limit it to be inside pwr range */
2493                 table_size = pwr_max[pdg] - pwr_min[pdg];
2494                 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2495
2496                 /* Fill pdadc_out table */
2497                 while (pdadc_0 < max_idx)
2498                         pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2499
2500                 /* Need to extrapolate above this pdgain? */
2501                 if (pdadc_n <= max_idx)
2502                         continue;
2503
2504                 /* Force each power step to be at least 0.5 dB */
2505                 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2506                         pwr_step = pdadc_tmp[table_size - 1] -
2507                                                 pdadc_tmp[table_size - 2];
2508                 else
2509                         pwr_step = 1;
2510
2511                 /* Extrapolate above */
2512                 while ((pdadc_0 < (s16) pdadc_n) &&
2513                 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2514                         s16 tmp = pdadc_tmp[table_size - 1] +
2515                                         (pdadc_0 - max_idx) * pwr_step;
2516                         pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2517                         pdadc_0++;
2518                 }
2519         }
2520
2521         while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2522                 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2523                 pdg++;
2524         }
2525
2526         while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2527                 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2528                 pdadc_i++;
2529         }
2530
2531         /* Set gain boundaries */
2532         ath5k_hw_reg_write(ah,
2533                 AR5K_REG_SM(pd_gain_overlap,
2534                         AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2535                 AR5K_REG_SM(gain_boundaries[0],
2536                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2537                 AR5K_REG_SM(gain_boundaries[1],
2538                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2539                 AR5K_REG_SM(gain_boundaries[2],
2540                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2541                 AR5K_REG_SM(gain_boundaries[3],
2542                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2543                 AR5K_PHY_TPC_RG5);
2544
2545         /* Used for setting rate power table */
2546         ah->ah_txpower.txp_min_idx = pwr_min[0];
2547
2548 }
2549
2550 /* Write PDADC values on hw */
2551 static void
2552 ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2553                         u8 pdcurves, u8 *pdg_to_idx)
2554 {
2555         u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2556         u32 reg;
2557         u8 i;
2558
2559         /* Select the right pdgain curves */
2560
2561         /* Clear current settings */
2562         reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2563         reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2564                 AR5K_PHY_TPC_RG1_PDGAIN_2 |
2565                 AR5K_PHY_TPC_RG1_PDGAIN_3 |
2566                 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2567
2568         /*
2569          * Use pd_gains curve from eeprom
2570          *
2571          * This overrides the default setting from initvals
2572          * in case some vendors (e.g. Zcomax) don't use the default
2573          * curves. If we don't honor their settings we 'll get a
2574          * 5dB (1 * gain overlap ?) drop.
2575          */
2576         reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2577
2578         switch (pdcurves) {
2579         case 3:
2580                 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2581                 /* Fall through */
2582         case 2:
2583                 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2584                 /* Fall through */
2585         case 1:
2586                 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2587                 break;
2588         }
2589         ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2590
2591         /*
2592          * Write TX power values
2593          */
2594         for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2595                 ath5k_hw_reg_write(ah,
2596                         ((pdadc_out[4*i + 0] & 0xff) << 0) |
2597                         ((pdadc_out[4*i + 1] & 0xff) << 8) |
2598                         ((pdadc_out[4*i + 2] & 0xff) << 16) |
2599                         ((pdadc_out[4*i + 3] & 0xff) << 24),
2600                         AR5K_PHY_PDADC_TXPOWER(i));
2601         }
2602 }
2603
2604
2605 /*
2606  * Common code for PCDAC/PDADC tables
2607  */
2608
2609 /*
2610  * This is the main function that uses all of the above
2611  * to set PCDAC/PDADC table on hw for the current channel.
2612  * This table is used for tx power calibration on the basband,
2613  * without it we get weird tx power levels and in some cases
2614  * distorted spectral mask
2615  */
2616 static int
2617 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2618                         struct ieee80211_channel *channel,
2619                         u8 ee_mode, u8 type)
2620 {
2621         struct ath5k_pdgain_info *pdg_L, *pdg_R;
2622         struct ath5k_chan_pcal_info *pcinfo_L;
2623         struct ath5k_chan_pcal_info *pcinfo_R;
2624         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2625         u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2626         s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2627         s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2628         u8 *tmpL;
2629         u8 *tmpR;
2630         u32 target = channel->center_freq;
2631         int pdg, i;
2632
2633         /* Get surounding freq piers for this channel */
2634         ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2635                                                 &pcinfo_L,
2636                                                 &pcinfo_R);
2637
2638         /* Loop over pd gain curves on
2639          * surounding freq piers by index */
2640         for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2641
2642                 /* Fill curves in reverse order
2643                  * from lower power (max gain)
2644                  * to higher power. Use curve -> idx
2645                  * backmaping we did on eeprom init */
2646                 u8 idx = pdg_curve_to_idx[pdg];
2647
2648                 /* Grab the needed curves by index */
2649                 pdg_L = &pcinfo_L->pd_curves[idx];
2650                 pdg_R = &pcinfo_R->pd_curves[idx];
2651
2652                 /* Initialize the temp tables */
2653                 tmpL = ah->ah_txpower.tmpL[pdg];
2654                 tmpR = ah->ah_txpower.tmpR[pdg];
2655
2656                 /* Set curve's x boundaries and create
2657                  * curves so that they cover the same
2658                  * range (if we don't do that one table
2659                  * will have values on some range and the
2660                  * other one won't have any so interpolation
2661                  * will fail) */
2662                 table_min[pdg] = min(pdg_L->pd_pwr[0],
2663                                         pdg_R->pd_pwr[0]) / 2;
2664
2665                 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2666                                 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2667
2668                 /* Now create the curves on surrounding channels
2669                  * and interpolate if needed to get the final
2670                  * curve for this gain on this channel */
2671                 switch (type) {
2672                 case AR5K_PWRTABLE_LINEAR_PCDAC:
2673                         /* Override min/max so that we don't loose
2674                          * accuracy (don't divide by 2) */
2675                         table_min[pdg] = min(pdg_L->pd_pwr[0],
2676                                                 pdg_R->pd_pwr[0]);
2677
2678                         table_max[pdg] =
2679                                 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2680                                         pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2681
2682                         /* Override minimum so that we don't get
2683                          * out of bounds while extrapolating
2684                          * below. Don't do this when we have 2
2685                          * curves and we are on the high power curve
2686                          * because table_min is ok in this case */
2687                         if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2688
2689                                 table_min[pdg] =
2690                                         ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2691                                                                 pdg_R->pd_step,
2692                                                                 pdg_L->pd_pwr,
2693                                                                 pdg_R->pd_pwr);
2694
2695                                 /* Don't go too low because we will
2696                                  * miss the upper part of the curve.
2697                                  * Note: 126 = 31.5dB (max power supported)
2698                                  * in 0.25dB units */
2699                                 if (table_max[pdg] - table_min[pdg] > 126)
2700                                         table_min[pdg] = table_max[pdg] - 126;
2701                         }
2702
2703                         /* Fall through */
2704                 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2705                 case AR5K_PWRTABLE_PWR_TO_PDADC:
2706
2707                         ath5k_create_power_curve(table_min[pdg],
2708                                                 table_max[pdg],
2709                                                 pdg_L->pd_pwr,
2710                                                 pdg_L->pd_step,
2711                                                 pdg_L->pd_points, tmpL, type);
2712
2713                         /* We are in a calibration
2714                          * pier, no need to interpolate
2715                          * between freq piers */
2716                         if (pcinfo_L == pcinfo_R)
2717                                 continue;
2718
2719                         ath5k_create_power_curve(table_min[pdg],
2720                                                 table_max[pdg],
2721                                                 pdg_R->pd_pwr,
2722                                                 pdg_R->pd_step,
2723                                                 pdg_R->pd_points, tmpR, type);
2724                         break;
2725                 default:
2726                         return -EINVAL;
2727                 }
2728
2729                 /* Interpolate between curves
2730                  * of surounding freq piers to
2731                  * get the final curve for this
2732                  * pd gain. Re-use tmpL for interpolation
2733                  * output */
2734                 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2735                 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2736                         tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2737                                                         (s16) pcinfo_L->freq,
2738                                                         (s16) pcinfo_R->freq,
2739                                                         (s16) tmpL[i],
2740                                                         (s16) tmpR[i]);
2741                 }
2742         }
2743
2744         /* Now we have a set of curves for this
2745          * channel on tmpL (x range is table_max - table_min
2746          * and y values are tmpL[pdg][]) sorted in the same
2747          * order as EEPROM (because we've used the backmaping).
2748          * So for RF5112 it's from higher power to lower power
2749          * and for RF2413 it's from lower power to higher power.
2750          * For RF5111 we only have one curve. */
2751
2752         /* Fill min and max power levels for this
2753          * channel by interpolating the values on
2754          * surounding channels to complete the dataset */
2755         ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2756                                         (s16) pcinfo_L->freq,
2757                                         (s16) pcinfo_R->freq,
2758                                         pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2759
2760         ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2761                                         (s16) pcinfo_L->freq,
2762                                         (s16) pcinfo_R->freq,
2763                                         pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2764
2765         /* We are ready to go, fill PCDAC/PDADC
2766          * table and write settings on hardware */
2767         switch (type) {
2768         case AR5K_PWRTABLE_LINEAR_PCDAC:
2769                 /* For RF5112 we can have one or two curves
2770                  * and each curve covers a certain power lvl
2771                  * range so we need to do some more processing */
2772                 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2773                                                 ee->ee_pd_gains[ee_mode]);
2774
2775                 /* Set txp.offset so that we can
2776                  * match max power value with max
2777                  * table index */
2778                 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2779
2780                 /* Write settings on hw */
2781                 ath5k_setup_pcdac_table(ah);
2782                 break;
2783         case AR5K_PWRTABLE_PWR_TO_PCDAC:
2784                 /* We are done for RF5111 since it has only
2785                  * one curve, just fit the curve on the table */
2786                 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2787
2788                 /* No rate powertable adjustment for RF5111 */
2789                 ah->ah_txpower.txp_min_idx = 0;
2790                 ah->ah_txpower.txp_offset = 0;
2791
2792                 /* Write settings on hw */
2793                 ath5k_setup_pcdac_table(ah);
2794                 break;
2795         case AR5K_PWRTABLE_PWR_TO_PDADC:
2796                 /* Set PDADC boundaries and fill
2797                  * final PDADC table */
2798                 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2799                                                 ee->ee_pd_gains[ee_mode]);
2800
2801                 /* Write settings on hw */
2802                 ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2803
2804                 /* Set txp.offset, note that table_min
2805                  * can be negative */
2806                 ah->ah_txpower.txp_offset = table_min[0];
2807                 break;
2808         default:
2809                 return -EINVAL;
2810         }
2811
2812         return 0;
2813 }
2814
2815
2816 /*
2817  * Per-rate tx power setting
2818  *
2819  * This is the code that sets the desired tx power (below
2820  * maximum) on hw for each rate (we also have TPC that sets
2821  * power per packet). We do that by providing an index on the
2822  * PCDAC/PDADC table we set up.
2823  */
2824
2825 /*
2826  * Set rate power table
2827  *
2828  * For now we only limit txpower based on maximum tx power
2829  * supported by hw (what's inside rate_info). We need to limit
2830  * this even more, based on regulatory domain etc.
2831  *
2832  * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2833  * and is indexed as follows:
2834  * rates[0] - rates[7] -> OFDM rates
2835  * rates[8] - rates[14] -> CCK rates
2836  * rates[15] -> XR rates (they all have the same power)
2837  */
2838 static void
2839 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2840                         struct ath5k_rate_pcal_info *rate_info,
2841                         u8 ee_mode)
2842 {
2843         unsigned int i;
2844         u16 *rates;
2845
2846         /* max_pwr is power level we got from driver/user in 0.5dB
2847          * units, switch to 0.25dB units so we can compare */
2848         max_pwr *= 2;
2849         max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2850
2851         /* apply rate limits */
2852         rates = ah->ah_txpower.txp_rates_power_table;
2853
2854         /* OFDM rates 6 to 24Mb/s */
2855         for (i = 0; i < 5; i++)
2856                 rates[i] = min(max_pwr, rate_info->target_power_6to24);
2857
2858         /* Rest OFDM rates */
2859         rates[5] = min(rates[0], rate_info->target_power_36);
2860         rates[6] = min(rates[0], rate_info->target_power_48);
2861         rates[7] = min(rates[0], rate_info->target_power_54);
2862
2863         /* CCK rates */
2864         /* 1L */
2865         rates[8] = min(rates[0], rate_info->target_power_6to24);
2866         /* 2L */
2867         rates[9] = min(rates[0], rate_info->target_power_36);
2868         /* 2S */
2869         rates[10] = min(rates[0], rate_info->target_power_36);
2870         /* 5L */
2871         rates[11] = min(rates[0], rate_info->target_power_48);
2872         /* 5S */
2873         rates[12] = min(rates[0], rate_info->target_power_48);
2874         /* 11L */
2875         rates[13] = min(rates[0], rate_info->target_power_54);
2876         /* 11S */
2877         rates[14] = min(rates[0], rate_info->target_power_54);
2878
2879         /* XR rates */
2880         rates[15] = min(rates[0], rate_info->target_power_6to24);
2881
2882         /* CCK rates have different peak to average ratio
2883          * so we have to tweak their power so that gainf
2884          * correction works ok. For this we use OFDM to
2885          * CCK delta from eeprom */
2886         if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2887         (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2888                 for (i = 8; i <= 15; i++)
2889                         rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2890
2891         /* Now that we have all rates setup use table offset to
2892          * match the power range set by user with the power indices
2893          * on PCDAC/PDADC table */
2894         for (i = 0; i < 16; i++) {
2895                 rates[i] += ah->ah_txpower.txp_offset;
2896                 /* Don't get out of bounds */
2897                 if (rates[i] > 63)
2898                         rates[i] = 63;
2899         }
2900
2901         /* Min/max in 0.25dB units */
2902         ah->ah_txpower.txp_min_pwr = 2 * rates[7];
2903         ah->ah_txpower.txp_max_pwr = 2 * rates[0];
2904         ah->ah_txpower.txp_ofdm = rates[7];
2905 }
2906
2907
2908 /*
2909  * Set transmition power
2910  */
2911 int
2912 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
2913                 u8 ee_mode, u8 txpower)
2914 {
2915         struct ath5k_rate_pcal_info rate_info;
2916         u8 type;
2917         int ret;
2918
2919         ATH5K_TRACE(ah->ah_sc);
2920         if (txpower > AR5K_TUNE_MAX_TXPOWER) {
2921                 ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
2922                 return -EINVAL;
2923         }
2924         if (txpower == 0)
2925                 txpower = AR5K_TUNE_DEFAULT_TXPOWER;
2926
2927         /* Reset TX power values */
2928         memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
2929         ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
2930         ah->ah_txpower.txp_min_pwr = 0;
2931         ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
2932
2933         /* Initialize TX power table */
2934         switch (ah->ah_radio) {
2935         case AR5K_RF5111:
2936                 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
2937                 break;
2938         case AR5K_RF5112:
2939                 type = AR5K_PWRTABLE_LINEAR_PCDAC;
2940                 break;
2941         case AR5K_RF2413:
2942         case AR5K_RF5413:
2943         case AR5K_RF2316:
2944         case AR5K_RF2317:
2945         case AR5K_RF2425:
2946                 type = AR5K_PWRTABLE_PWR_TO_PDADC;
2947                 break;
2948         default:
2949                 return -EINVAL;
2950         }
2951
2952         /* FIXME: Only on channel/mode change */
2953         ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
2954         if (ret)
2955                 return ret;
2956
2957         /* Limit max power if we have a CTL available */
2958         ath5k_get_max_ctl_power(ah, channel);
2959
2960         /* FIXME: Tx power limit for this regdomain
2961          * XXX: Mac80211/CRDA will do that anyway ? */
2962
2963         /* FIXME: Antenna reduction stuff */
2964
2965         /* FIXME: Limit power on turbo modes */
2966
2967         /* FIXME: TPC scale reduction */
2968
2969         /* Get surounding channels for per-rate power table
2970          * calibration */
2971         ath5k_get_rate_pcal_data(ah, channel, &rate_info);
2972
2973         /* Setup rate power table */
2974         ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
2975
2976         /* Write rate power table on hw */
2977         ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
2978                 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
2979                 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
2980
2981         ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
2982                 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
2983                 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
2984
2985         ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
2986                 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
2987                 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
2988
2989         ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
2990                 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
2991                 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
2992
2993         /* FIXME: TPC support */
2994         if (ah->ah_txpower.txp_tpc) {
2995                 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
2996                         AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
2997
2998                 ath5k_hw_reg_write(ah,
2999                         AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3000                         AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3001                         AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3002                         AR5K_TPC);
3003         } else {
3004                 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3005                         AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3006         }
3007
3008         return 0;
3009 }
3010
3011 int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3012 {
3013         /*Just a try M.F.*/
3014         struct ieee80211_channel *channel = &ah->ah_current_channel;
3015         u8 ee_mode;
3016
3017         ATH5K_TRACE(ah->ah_sc);
3018
3019         switch (channel->hw_value & CHANNEL_MODES) {
3020         case CHANNEL_A:
3021         case CHANNEL_T:
3022         case CHANNEL_XR:
3023                 ee_mode = AR5K_EEPROM_MODE_11A;
3024                 break;
3025         case CHANNEL_G:
3026         case CHANNEL_TG:
3027                 ee_mode = AR5K_EEPROM_MODE_11G;
3028                 break;
3029         case CHANNEL_B:
3030                 ee_mode = AR5K_EEPROM_MODE_11B;
3031                 break;
3032         default:
3033                 ATH5K_ERR(ah->ah_sc,
3034                         "invalid channel: %d\n", channel->center_freq);
3035                 return -EINVAL;
3036         }
3037
3038         ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3039                 "changing txpower to %d\n", txpower);
3040
3041         return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
3042 }
3043
3044 #undef _ATH5K_PHY