4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
25 #include <linux/delay.h>
34 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
36 static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
37 const struct ath5k_rf_reg *rf_regs,
38 u32 val, u8 reg_id, bool set)
40 const struct ath5k_rf_reg *rfreg = NULL;
41 u8 offset, bank, num_bits, col, position;
43 u32 mask, data, last_bit, bits_shifted, first_bit;
49 rfb = ah->ah_rf_banks;
51 for (i = 0; i < ah->ah_rf_regs_count; i++) {
52 if (rf_regs[i].index == reg_id) {
58 if (rfb == NULL || rfreg == NULL) {
59 ATH5K_PRINTF("Rf register not found!\n");
60 /* should not happen */
65 num_bits = rfreg->field.len;
66 first_bit = rfreg->field.pos;
67 col = rfreg->field.col;
69 /* first_bit is an offset from bank's
70 * start. Since we have all banks on
71 * the same array, we use this offset
72 * to mark each bank's start */
73 offset = ah->ah_offset[bank];
76 if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
77 ATH5K_PRINTF("invalid values at offset %u\n", offset);
81 entry = ((first_bit - 1) / 8) + offset;
82 position = (first_bit - 1) % 8;
85 data = ath5k_hw_bitswap(val, num_bits);
87 for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
88 position = 0, entry++) {
90 last_bit = (position + bits_left > 8) ? 8 :
93 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
98 rfb[entry] |= ((data << position) << (col * 8)) & mask;
99 data >>= (8 - position);
101 data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
103 bits_shifted += last_bit - position;
106 bits_left -= 8 - position;
109 data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
114 /**********************\
115 * RF Gain optimization *
116 \**********************/
119 * This code is used to optimize rf gain on different environments
120 * (temprature mostly) based on feedback from a power detector.
122 * It's only used on RF5111 and RF5112, later RF chips seem to have
123 * auto adjustment on hw -notice they have a much smaller BANK 7 and
124 * no gain optimization ladder-.
126 * For more infos check out this patent doc
127 * http://www.freepatentsonline.com/7400691.html
129 * This paper describes power drops as seen on the receiver due to
131 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
132 * %20of%20Power%20Control.pdf
134 * And this is the MadWiFi bug entry related to the above
135 * http://madwifi-project.org/ticket/1659
136 * with various measurements and diagrams
138 * TODO: Deal with power drops due to probes by setting an apropriate
139 * tx power on the probe packets ! Make this part of the calibration process.
142 /* Initialize ah_gain durring attach */
143 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
145 /* Initialize the gain optimization values */
146 switch (ah->ah_radio) {
148 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
149 ah->ah_gain.g_low = 20;
150 ah->ah_gain.g_high = 35;
151 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
154 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
155 ah->ah_gain.g_low = 20;
156 ah->ah_gain.g_high = 85;
157 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
166 /* Schedule a gain probe check on the next transmited packet.
167 * That means our next packet is going to be sent with lower
168 * tx power and a Peak to Average Power Detector (PAPD) will try
169 * to measure the gain.
171 * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc)
172 * just after we enable the probe so that we don't mess with
173 * standard traffic ? Maybe it's time to use sw interrupts and
174 * a probe tasklet !!!
176 static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
179 /* Skip if gain calibration is inactive or
180 * we already handle a probe request */
181 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
184 /* Send the packet with 2dB below max power as
185 * patent doc suggest */
186 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
187 AR5K_PHY_PAPD_PROBE_TXPOWER) |
188 AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
190 ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
194 /* Calculate gain_F measurement correction
195 * based on the current step for RF5112 rev. 2 */
196 static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
200 const struct ath5k_gain_opt *go;
201 const struct ath5k_gain_opt_step *g_step;
202 const struct ath5k_rf_reg *rf_regs;
204 /* Only RF5112 Rev. 2 supports it */
205 if ((ah->ah_radio != AR5K_RF5112) ||
206 (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
209 go = &rfgain_opt_5112;
210 rf_regs = rf_regs_5112a;
211 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
213 g_step = &go->go_step[ah->ah_gain.g_step_idx];
215 if (ah->ah_rf_banks == NULL)
218 rf = ah->ah_rf_banks;
219 ah->ah_gain.g_f_corr = 0;
221 /* No VGA (Variable Gain Amplifier) override, skip */
222 if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
225 /* Mix gain stepping */
226 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
228 /* Mix gain override */
229 mix = g_step->gos_param[0];
233 ah->ah_gain.g_f_corr = step * 2;
236 ah->ah_gain.g_f_corr = (step - 5) * 2;
239 ah->ah_gain.g_f_corr = step;
242 ah->ah_gain.g_f_corr = 0;
246 return ah->ah_gain.g_f_corr;
249 /* Check if current gain_F measurement is in the range of our
250 * power detector windows. If we get a measurement outside range
251 * we know it's not accurate (detectors can't measure anything outside
252 * their detection window) so we must ignore it */
253 static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
255 const struct ath5k_rf_reg *rf_regs;
256 u32 step, mix_ovr, level[4];
259 if (ah->ah_rf_banks == NULL)
262 rf = ah->ah_rf_banks;
264 if (ah->ah_radio == AR5K_RF5111) {
266 rf_regs = rf_regs_5111;
267 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
269 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
273 level[1] = (step == 63) ? 50 : step + 4;
274 level[2] = (step != 63) ? 64 : level[0];
275 level[3] = level[2] + 50 ;
277 ah->ah_gain.g_high = level[3] -
278 (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
279 ah->ah_gain.g_low = level[0] +
280 (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
283 rf_regs = rf_regs_5112;
284 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
286 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
289 level[0] = level[2] = 0;
292 level[1] = level[3] = 83;
294 level[1] = level[3] = 107;
295 ah->ah_gain.g_high = 55;
299 return (ah->ah_gain.g_current >= level[0] &&
300 ah->ah_gain.g_current <= level[1]) ||
301 (ah->ah_gain.g_current >= level[2] &&
302 ah->ah_gain.g_current <= level[3]);
305 /* Perform gain_F adjustment by choosing the right set
306 * of parameters from rf gain optimization ladder */
307 static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
309 const struct ath5k_gain_opt *go;
310 const struct ath5k_gain_opt_step *g_step;
313 switch (ah->ah_radio) {
315 go = &rfgain_opt_5111;
318 go = &rfgain_opt_5112;
324 g_step = &go->go_step[ah->ah_gain.g_step_idx];
326 if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
328 /* Reached maximum */
329 if (ah->ah_gain.g_step_idx == 0)
332 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
333 ah->ah_gain.g_target >= ah->ah_gain.g_high &&
334 ah->ah_gain.g_step_idx > 0;
335 g_step = &go->go_step[ah->ah_gain.g_step_idx])
336 ah->ah_gain.g_target -= 2 *
337 (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
344 if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
346 /* Reached minimum */
347 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
350 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
351 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
352 ah->ah_gain.g_step_idx < go->go_steps_count-1;
353 g_step = &go->go_step[ah->ah_gain.g_step_idx])
354 ah->ah_gain.g_target -= 2 *
355 (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
363 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
364 "ret %d, gain step %u, current gain %u, target gain %u\n",
365 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
366 ah->ah_gain.g_target);
371 /* Main callback for thermal rf gain calibration engine
372 * Check for a new gain reading and schedule an adjustment
375 * TODO: Use sw interrupt to schedule reset if gain_F needs
377 enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
380 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
382 ATH5K_TRACE(ah->ah_sc);
384 if (ah->ah_rf_banks == NULL ||
385 ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
386 return AR5K_RFGAIN_INACTIVE;
388 /* No check requested, either engine is inactive
389 * or an adjustment is already requested */
390 if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
393 /* Read the PAPD (Peak to Average Power Detector)
395 data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
397 /* No probe is scheduled, read gain_F measurement */
398 if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
399 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
400 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
402 /* If tx packet is CCK correct the gain_F measurement
403 * by cck ofdm gain delta */
404 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
405 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
406 ah->ah_gain.g_current +=
407 ee->ee_cck_ofdm_gain_delta;
409 ah->ah_gain.g_current +=
410 AR5K_GAIN_CCK_PROBE_CORR;
413 /* Further correct gain_F measurement for
415 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
416 ath5k_hw_rf_gainf_corr(ah);
417 ah->ah_gain.g_current =
418 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
419 (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
423 /* Check if measurement is ok and if we need
424 * to adjust gain, schedule a gain adjustment,
425 * else switch back to the acive state */
426 if (ath5k_hw_rf_check_gainf_readback(ah) &&
427 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
428 ath5k_hw_rf_gainf_adjust(ah)) {
429 ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
431 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
436 return ah->ah_gain.g_state;
439 /* Write initial rf gain table to set the RF sensitivity
440 * this one works on all RF chips and has nothing to do
441 * with gain_F calibration */
442 int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
444 const struct ath5k_ini_rfgain *ath5k_rfg;
445 unsigned int i, size;
447 switch (ah->ah_radio) {
449 ath5k_rfg = rfgain_5111;
450 size = ARRAY_SIZE(rfgain_5111);
453 ath5k_rfg = rfgain_5112;
454 size = ARRAY_SIZE(rfgain_5112);
457 ath5k_rfg = rfgain_2413;
458 size = ARRAY_SIZE(rfgain_2413);
461 ath5k_rfg = rfgain_2316;
462 size = ARRAY_SIZE(rfgain_2316);
465 ath5k_rfg = rfgain_5413;
466 size = ARRAY_SIZE(rfgain_5413);
470 ath5k_rfg = rfgain_2425;
471 size = ARRAY_SIZE(rfgain_2425);
478 case AR5K_INI_RFGAIN_2GHZ:
479 case AR5K_INI_RFGAIN_5GHZ:
485 for (i = 0; i < size; i++) {
487 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
488 (u32)ath5k_rfg[i].rfg_register);
496 /********************\
497 * RF Registers setup *
498 \********************/
502 * Setup RF registers by writing rf buffer on hw
504 int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
507 const struct ath5k_rf_reg *rf_regs;
508 const struct ath5k_ini_rfbuffer *ini_rfb;
509 const struct ath5k_gain_opt *go = NULL;
510 const struct ath5k_gain_opt_step *g_step;
511 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
514 int i, obdb = -1, bank = -1;
516 switch (ah->ah_radio) {
518 rf_regs = rf_regs_5111;
519 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
521 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
522 go = &rfgain_opt_5111;
525 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
526 rf_regs = rf_regs_5112a;
527 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
529 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
531 rf_regs = rf_regs_5112;
532 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
534 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
536 go = &rfgain_opt_5112;
539 rf_regs = rf_regs_2413;
540 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
542 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
545 rf_regs = rf_regs_2316;
546 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
548 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
551 rf_regs = rf_regs_5413;
552 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
554 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
557 rf_regs = rf_regs_2425;
558 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
560 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
563 rf_regs = rf_regs_2425;
564 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
565 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
567 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
570 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
577 /* If it's the first time we set rf buffer, allocate
578 * ah->ah_rf_banks based on ah->ah_rf_banks_size
580 if (ah->ah_rf_banks == NULL) {
581 ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
583 if (ah->ah_rf_banks == NULL) {
584 ATH5K_ERR(ah->ah_sc, "out of memory\n");
589 /* Copy values to modify them */
590 rfb = ah->ah_rf_banks;
592 for (i = 0; i < ah->ah_rf_banks_size; i++) {
593 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
594 ATH5K_ERR(ah->ah_sc, "invalid bank\n");
598 /* Bank changed, write down the offset */
599 if (bank != ini_rfb[i].rfb_bank) {
600 bank = ini_rfb[i].rfb_bank;
601 ah->ah_offset[bank] = i;
604 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
607 /* Set Output and Driver bias current (OB/DB) */
608 if (channel->hw_value & CHANNEL_2GHZ) {
610 if (channel->hw_value & CHANNEL_CCK)
611 ee_mode = AR5K_EEPROM_MODE_11B;
613 ee_mode = AR5K_EEPROM_MODE_11G;
615 /* For RF511X/RF211X combination we
616 * use b_OB and b_DB parameters stored
617 * in eeprom on ee->ee_ob[ee_mode][0]
619 * For all other chips we use OB/DB for 2Ghz
620 * stored in the b/g modal section just like
621 * 802.11a on ee->ee_ob[ee_mode][1] */
622 if ((ah->ah_radio == AR5K_RF5111) ||
623 (ah->ah_radio == AR5K_RF5112))
628 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
629 AR5K_RF_OB_2GHZ, true);
631 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
632 AR5K_RF_DB_2GHZ, true);
634 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
635 } else if ((channel->hw_value & CHANNEL_5GHZ) ||
636 (ah->ah_radio == AR5K_RF5111)) {
638 /* For 11a, Turbo and XR we need to choose
639 * OB/DB based on frequency range */
640 ee_mode = AR5K_EEPROM_MODE_11A;
641 obdb = channel->center_freq >= 5725 ? 3 :
642 (channel->center_freq >= 5500 ? 2 :
643 (channel->center_freq >= 5260 ? 1 :
644 (channel->center_freq > 4000 ? 0 : -1)));
649 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
650 AR5K_RF_OB_5GHZ, true);
652 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
653 AR5K_RF_DB_5GHZ, true);
656 g_step = &go->go_step[ah->ah_gain.g_step_idx];
658 /* Bank Modifications (chip-specific) */
659 if (ah->ah_radio == AR5K_RF5111) {
661 /* Set gain_F settings according to current step */
662 if (channel->hw_value & CHANNEL_OFDM) {
664 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
665 AR5K_PHY_FRAME_CTL_TX_CLIP,
666 g_step->gos_param[0]);
668 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
669 AR5K_RF_PWD_90, true);
671 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
672 AR5K_RF_PWD_84, true);
674 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
675 AR5K_RF_RFGAIN_SEL, true);
677 /* We programmed gain_F parameters, switch back
679 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
685 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
686 AR5K_RF_PWD_XPD, true);
688 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
689 AR5K_RF_XPD_GAIN, true);
691 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
692 AR5K_RF_GAIN_I, true);
694 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
695 AR5K_RF_PLO_SEL, true);
697 /* TODO: Half/quarter channel support */
700 if (ah->ah_radio == AR5K_RF5112) {
702 /* Set gain_F settings according to current step */
703 if (channel->hw_value & CHANNEL_OFDM) {
705 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
706 AR5K_RF_MIXGAIN_OVR, true);
708 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
709 AR5K_RF_PWD_138, true);
711 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
712 AR5K_RF_PWD_137, true);
714 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
715 AR5K_RF_PWD_136, true);
717 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
718 AR5K_RF_PWD_132, true);
720 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
721 AR5K_RF_PWD_131, true);
723 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
724 AR5K_RF_PWD_130, true);
726 /* We programmed gain_F parameters, switch back
728 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
733 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
734 AR5K_RF_XPD_SEL, true);
736 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
737 /* Rev. 1 supports only one xpd */
738 ath5k_hw_rfb_op(ah, rf_regs,
739 ee->ee_x_gain[ee_mode],
740 AR5K_RF_XPD_GAIN, true);
743 /* TODO: Set high and low gain bits */
744 ath5k_hw_rfb_op(ah, rf_regs,
745 ee->ee_x_gain[ee_mode],
746 AR5K_RF_PD_GAIN_LO, true);
747 ath5k_hw_rfb_op(ah, rf_regs,
748 ee->ee_x_gain[ee_mode],
749 AR5K_RF_PD_GAIN_HI, true);
751 /* Lower synth voltage on Rev 2 */
752 ath5k_hw_rfb_op(ah, rf_regs, 2,
753 AR5K_RF_HIGH_VC_CP, true);
755 ath5k_hw_rfb_op(ah, rf_regs, 2,
756 AR5K_RF_MID_VC_CP, true);
758 ath5k_hw_rfb_op(ah, rf_regs, 2,
759 AR5K_RF_LOW_VC_CP, true);
761 ath5k_hw_rfb_op(ah, rf_regs, 2,
762 AR5K_RF_PUSH_UP, true);
764 /* Decrease power consumption on 5213+ BaseBand */
765 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
766 ath5k_hw_rfb_op(ah, rf_regs, 1,
767 AR5K_RF_PAD2GND, true);
769 ath5k_hw_rfb_op(ah, rf_regs, 1,
770 AR5K_RF_XB2_LVL, true);
772 ath5k_hw_rfb_op(ah, rf_regs, 1,
773 AR5K_RF_XB5_LVL, true);
775 ath5k_hw_rfb_op(ah, rf_regs, 1,
776 AR5K_RF_PWD_167, true);
778 ath5k_hw_rfb_op(ah, rf_regs, 1,
779 AR5K_RF_PWD_166, true);
783 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
784 AR5K_RF_GAIN_I, true);
786 /* TODO: Half/quarter channel support */
790 if (ah->ah_radio == AR5K_RF5413 &&
791 channel->hw_value & CHANNEL_2GHZ) {
793 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
796 /* Set optimum value for early revisions (on pci-e chips) */
797 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
798 ah->ah_mac_srev < AR5K_SREV_AR5413)
799 ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
800 AR5K_RF_PWD_ICLOBUF_2G, true);
804 /* Write RF banks on hw */
805 for (i = 0; i < ah->ah_rf_banks_size; i++) {
807 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
814 /**************************\
815 PHY/RF channel functions
816 \**************************/
819 * Check if a channel is supported
821 bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
823 /* Check if the channel is in our supported range */
824 if (flags & CHANNEL_2GHZ) {
825 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
826 (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
828 } else if (flags & CHANNEL_5GHZ)
829 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
830 (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
837 * Convertion needed for RF5110
839 static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
844 * Convert IEEE channel/MHz to an internal channel value used
845 * by the AR5210 chipset. This has not been verified with
846 * newer chipsets like the AR5212A who have a completely
847 * different RF/PHY part.
849 athchan = (ath5k_hw_bitswap(
850 (ieee80211_frequency_to_channel(
851 channel->center_freq) - 24) / 2, 5)
852 << 1) | (1 << 6) | 0x1;
857 * Set channel on RF5110
859 static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
860 struct ieee80211_channel *channel)
865 * Set the channel and wait
867 data = ath5k_hw_rf5110_chan2athchan(channel);
868 ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
869 ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
876 * Convertion needed for 5111
878 static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
879 struct ath5k_athchan_2ghz *athchan)
883 /* Cast this value to catch negative channel numbers (>= -19) */
887 * Map 2GHz IEEE channel to 5GHz Atheros channel
890 athchan->a2_athchan = 115 + channel;
891 athchan->a2_flags = 0x46;
892 } else if (channel == 14) {
893 athchan->a2_athchan = 124;
894 athchan->a2_flags = 0x44;
895 } else if (channel >= 15 && channel <= 26) {
896 athchan->a2_athchan = ((channel - 14) * 4) + 132;
897 athchan->a2_flags = 0x46;
905 * Set channel on 5111
907 static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
908 struct ieee80211_channel *channel)
910 struct ath5k_athchan_2ghz ath5k_channel_2ghz;
911 unsigned int ath5k_channel =
912 ieee80211_frequency_to_channel(channel->center_freq);
913 u32 data0, data1, clock;
917 * Set the channel on the RF5111 radio
921 if (channel->hw_value & CHANNEL_2GHZ) {
922 /* Map 2GHz channel to 5GHz Atheros channel ID */
923 ret = ath5k_hw_rf5111_chan2athchan(
924 ieee80211_frequency_to_channel(channel->center_freq),
925 &ath5k_channel_2ghz);
929 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
930 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
934 if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
936 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
937 (clock << 1) | (1 << 10) | 1;
940 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
941 << 2) | (clock << 1) | (1 << 10) | 1;
944 ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
946 ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
947 AR5K_RF_BUFFER_CONTROL_3);
953 * Set channel on 5112 and newer
955 static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
956 struct ieee80211_channel *channel)
958 u32 data, data0, data1, data2;
961 data = data0 = data1 = data2 = 0;
962 c = channel->center_freq;
965 if (!((c - 2224) % 5)) {
966 data0 = ((2 * (c - 704)) - 3040) / 10;
968 } else if (!((c - 2192) % 5)) {
969 data0 = ((2 * (c - 672)) - 3040) / 10;
974 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
975 } else if ((c - (c % 5)) != 2 || c > 5435) {
976 if (!(c % 20) && c >= 5120) {
977 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
978 data2 = ath5k_hw_bitswap(3, 2);
979 } else if (!(c % 10)) {
980 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
981 data2 = ath5k_hw_bitswap(2, 2);
982 } else if (!(c % 5)) {
983 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
984 data2 = ath5k_hw_bitswap(1, 2);
988 data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
989 data2 = ath5k_hw_bitswap(0, 2);
992 data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
994 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
995 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1001 * Set the channel on the RF2425
1003 static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1004 struct ieee80211_channel *channel)
1006 u32 data, data0, data2;
1009 data = data0 = data2 = 0;
1010 c = channel->center_freq;
1013 data0 = ath5k_hw_bitswap((c - 2272), 8);
1016 } else if ((c - (c % 5)) != 2 || c > 5435) {
1017 if (!(c % 20) && c < 5120)
1018 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1020 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1022 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1025 data2 = ath5k_hw_bitswap(1, 2);
1027 data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
1028 data2 = ath5k_hw_bitswap(0, 2);
1031 data = (data0 << 4) | data2 << 2 | 0x1001;
1033 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1034 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1040 * Set a channel on the radio chip
1042 int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1046 * Check bounds supported by the PHY (we don't care about regultory
1047 * restrictions at this point). Note: hw_value already has the band
1048 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1049 * of the band by that */
1050 if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1051 ATH5K_ERR(ah->ah_sc,
1052 "channel frequency (%u MHz) out of supported "
1054 channel->center_freq);
1059 * Set the channel and wait
1061 switch (ah->ah_radio) {
1063 ret = ath5k_hw_rf5110_channel(ah, channel);
1066 ret = ath5k_hw_rf5111_channel(ah, channel);
1069 ret = ath5k_hw_rf2425_channel(ah, channel);
1072 ret = ath5k_hw_rf5112_channel(ah, channel);
1079 /* Set JAPAN setting for channel 14 */
1080 if (channel->center_freq == 2484) {
1081 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1082 AR5K_PHY_CCKTXCTL_JAPAN);
1084 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1085 AR5K_PHY_CCKTXCTL_WORLD);
1088 ah->ah_current_channel.center_freq = channel->center_freq;
1089 ah->ah_current_channel.hw_value = channel->hw_value;
1090 ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
1100 * ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration
1102 * @ah: struct ath5k_hw pointer we are operating on
1103 * @freq: the channel frequency, just used for error logging
1105 * This function performs a noise floor calibration of the PHY and waits for
1106 * it to complete. Then the noise floor value is compared to some maximum
1107 * noise floor we consider valid.
1109 * Note that this is different from what the madwifi HAL does: it reads the
1110 * noise floor and afterwards initiates the calibration. Since the noise floor
1111 * calibration can take some time to finish, depending on the current channel
1112 * use, that avoids the occasional timeout warnings we are seeing now.
1114 * See the following link for an Atheros patent on noise floor calibration:
1115 * http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \
1116 * &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7
1118 * XXX: Since during noise floor calibration antennas are detached according to
1119 * the patent, we should stop tx queues here.
1122 ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq)
1129 * Enable noise floor calibration
1131 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1132 AR5K_PHY_AGCCTL_NF);
1134 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1135 AR5K_PHY_AGCCTL_NF, 0, false);
1137 ATH5K_ERR(ah->ah_sc,
1138 "noise floor calibration timeout (%uMHz)\n", freq);
1142 /* Wait until the noise floor is calibrated and read the value */
1143 for (i = 20; i > 0; i--) {
1145 noise_floor = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1146 noise_floor = AR5K_PHY_NF_RVAL(noise_floor);
1147 if (noise_floor & AR5K_PHY_NF_ACTIVE) {
1148 noise_floor = AR5K_PHY_NF_AVAL(noise_floor);
1150 if (noise_floor <= AR5K_TUNE_NOISE_FLOOR)
1155 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1156 "noise floor %d\n", noise_floor);
1158 if (noise_floor > AR5K_TUNE_NOISE_FLOOR) {
1159 ATH5K_ERR(ah->ah_sc,
1160 "noise floor calibration failed (%uMHz)\n", freq);
1164 ah->ah_noise_floor = noise_floor;
1170 * Perform a PHY calibration on RF5110
1171 * -Fix BPSK/QAM Constellation (I/Q correction)
1172 * -Calculate Noise Floor
1174 static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1175 struct ieee80211_channel *channel)
1177 u32 phy_sig, phy_agc, phy_sat, beacon;
1181 * Disable beacons and RX/TX queues, wait
1183 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1184 AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1185 beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1186 ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1191 * Set the channel (with AGC turned off)
1193 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1195 ret = ath5k_hw_channel(ah, channel);
1198 * Activate PHY and wait
1200 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1203 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1209 * Calibrate the radio chip
1212 /* Remember normal state */
1213 phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1214 phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1215 phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1217 /* Update radio registers */
1218 ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1219 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1221 ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1222 AR5K_PHY_AGCCOARSE_LO)) |
1223 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1224 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1226 ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1227 AR5K_PHY_ADCSAT_THR)) |
1228 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1229 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1233 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1235 ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1236 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1241 * Enable calibration and wait until completion
1243 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1245 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1246 AR5K_PHY_AGCCTL_CAL, 0, false);
1248 /* Reset to normal state */
1249 ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1250 ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1251 ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1254 ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1255 channel->center_freq);
1259 ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1262 * Re-enable RX/TX and beacons
1264 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1265 AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1266 ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1272 * Perform a PHY calibration on RF5111/5112 and newer chips
1274 static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
1275 struct ieee80211_channel *channel)
1278 s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1280 ATH5K_TRACE(ah->ah_sc);
1282 if (!ah->ah_calibration ||
1283 ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1286 /* Calibration has finished, get the results and re-run */
1287 for (i = 0; i <= 10; i++) {
1288 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1289 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1290 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1293 i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1294 q_coffd = q_pwr >> 7;
1297 if (i_coffd == 0 || q_coffd == 0)
1300 i_coff = ((-iq_corr) / i_coffd) & 0x3f;
1302 /* Boundary check */
1308 q_coff = (((s32)i_pwr / q_coffd) - 128) & 0x1f;
1310 /* Boundary check */
1316 /* Commit new I/Q value */
1317 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE |
1318 ((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S));
1320 /* Re-enable calibration -if we don't we'll commit
1321 * the same values again and again */
1322 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1323 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1324 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1328 /* TODO: Separate noise floor calibration from I/Q calibration
1329 * since noise floor calibration interrupts rx path while I/Q
1330 * calibration doesn't. We don't need to run noise floor calibration
1331 * as often as I/Q calibration.*/
1332 ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1334 /* Initiate a gain_F calibration */
1335 ath5k_hw_request_rfgain_probe(ah);
1341 * Perform a PHY calibration
1343 int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1344 struct ieee80211_channel *channel)
1348 if (ah->ah_radio == AR5K_RF5110)
1349 ret = ath5k_hw_rf5110_calibrate(ah, channel);
1351 ret = ath5k_hw_rf511x_calibrate(ah, channel);
1356 /***************************\
1357 * Spur mitigation functions *
1358 \***************************/
1360 bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
1361 struct ieee80211_channel *channel)
1365 if ((ah->ah_radio == AR5K_RF5112) ||
1366 (ah->ah_radio == AR5K_RF5413) ||
1367 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
1372 if ((channel->center_freq % refclk_freq != 0) &&
1373 ((channel->center_freq % refclk_freq < 10) ||
1374 (channel->center_freq % refclk_freq > 22)))
1381 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1382 struct ieee80211_channel *channel)
1384 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1385 u32 mag_mask[4] = {0, 0, 0, 0};
1386 u32 pilot_mask[2] = {0, 0};
1387 /* Note: fbin values are scaled up by 2 */
1388 u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1389 s32 spur_delta_phase, spur_freq_sigma_delta;
1390 s32 spur_offset, num_symbols_x16;
1391 u8 num_symbol_offsets, i, freq_band;
1393 /* Convert current frequency to fbin value (the same way channels
1394 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1395 * up by 2 so we can compare it later */
1396 if (channel->hw_value & CHANNEL_2GHZ) {
1397 chan_fbin = (channel->center_freq - 2300) * 10;
1398 freq_band = AR5K_EEPROM_BAND_2GHZ;
1400 chan_fbin = (channel->center_freq - 4900) * 10;
1401 freq_band = AR5K_EEPROM_BAND_5GHZ;
1404 /* Check if any spur_chan_fbin from EEPROM is
1405 * within our current channel's spur detection range */
1406 spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1407 spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1408 /* XXX: Half/Quarter channels ?*/
1409 if (channel->hw_value & CHANNEL_TURBO)
1410 spur_detection_window *= 2;
1412 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1413 spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1415 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1416 * so it's zero if we got nothing from EEPROM */
1417 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1418 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1422 if ((chan_fbin - spur_detection_window <=
1423 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1424 (chan_fbin + spur_detection_window >=
1425 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1426 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1431 /* We need to enable spur filter for this channel */
1432 if (spur_chan_fbin) {
1433 spur_offset = spur_chan_fbin - chan_fbin;
1436 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1437 * spur_delta_phase -> spur_offset / chip_freq << 11
1438 * Note: Both values have 100KHz resolution
1440 /* XXX: Half/Quarter rate channels ? */
1441 switch (channel->hw_value) {
1443 /* Both sample_freq and chip_freq are 40MHz */
1444 spur_delta_phase = (spur_offset << 17) / 25;
1445 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1446 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1449 /* sample_freq -> 40MHz chip_freq -> 44MHz
1450 * (for b compatibility) */
1451 spur_freq_sigma_delta = (spur_offset << 8) / 55;
1452 spur_delta_phase = (spur_offset << 17) / 25;
1453 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1457 /* Both sample_freq and chip_freq are 80MHz */
1458 spur_delta_phase = (spur_offset << 16) / 25;
1459 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1460 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1466 /* Calculate pilot and magnitude masks */
1468 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
1469 * and divide by symbol_width to find how many symbols we have
1470 * Note: number of symbols is scaled up by 16 */
1471 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1473 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1474 if (!(num_symbols_x16 & 0xF))
1476 num_symbol_offsets = 3;
1479 num_symbol_offsets = 4;
1481 for (i = 0; i < num_symbol_offsets; i++) {
1483 /* Calculate pilot mask */
1485 (num_symbols_x16 / 16) + i + 25;
1487 /* Pilot magnitude mask seems to be a way to
1488 * declare the boundaries for our detection
1489 * window or something, it's 2 for the middle
1490 * value(s) where the symbol is expected to be
1491 * and 1 on the boundary values */
1493 (i == 0 || i == (num_symbol_offsets - 1))
1496 if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1497 if (curr_sym_off <= 25)
1498 pilot_mask[0] |= 1 << curr_sym_off;
1499 else if (curr_sym_off >= 27)
1500 pilot_mask[0] |= 1 << (curr_sym_off - 1);
1501 } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1502 pilot_mask[1] |= 1 << (curr_sym_off - 33);
1504 /* Calculate magnitude mask (for viterbi decoder) */
1505 if (curr_sym_off >= -1 && curr_sym_off <= 14)
1507 plt_mag_map << (curr_sym_off + 1) * 2;
1508 else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1510 plt_mag_map << (curr_sym_off - 15) * 2;
1511 else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1513 plt_mag_map << (curr_sym_off - 31) * 2;
1514 else if (curr_sym_off >= 46 && curr_sym_off <= 53)
1516 plt_mag_map << (curr_sym_off - 47) * 2;
1520 /* Write settings on hw to enable spur filter */
1521 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1522 AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1523 /* XXX: Self correlator also ? */
1524 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1525 AR5K_PHY_IQ_PILOT_MASK_EN |
1526 AR5K_PHY_IQ_CHAN_MASK_EN |
1527 AR5K_PHY_IQ_SPUR_FILT_EN);
1529 /* Set delta phase and freq sigma delta */
1530 ath5k_hw_reg_write(ah,
1531 AR5K_REG_SM(spur_delta_phase,
1532 AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1533 AR5K_REG_SM(spur_freq_sigma_delta,
1534 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1535 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1536 AR5K_PHY_TIMING_11);
1538 /* Write pilot masks */
1539 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1540 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1541 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1544 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1545 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1546 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1549 /* Write magnitude masks */
1550 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1551 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1552 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1553 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1554 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1557 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1558 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1559 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1560 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1561 AR5K_PHY_BIN_MASK2_4_MASK_4,
1564 } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1565 AR5K_PHY_IQ_SPUR_FILT_EN) {
1566 /* Clean up spur mitigation settings and disable fliter */
1567 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1568 AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1569 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1570 AR5K_PHY_IQ_PILOT_MASK_EN |
1571 AR5K_PHY_IQ_CHAN_MASK_EN |
1572 AR5K_PHY_IQ_SPUR_FILT_EN);
1573 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1575 /* Clear pilot masks */
1576 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1577 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1578 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1581 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1582 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1583 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1586 /* Clear magnitude masks */
1587 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1588 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1589 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1590 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1591 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1594 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1595 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1596 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1597 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1598 AR5K_PHY_BIN_MASK2_4_MASK_4,
1603 /********************\
1605 \********************/
1607 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1609 ATH5K_TRACE(ah->ah_sc);
1611 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1617 * Get the PHY Chip revision
1619 u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1625 ATH5K_TRACE(ah->ah_sc);
1628 * Set the radio chip access register
1632 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1635 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1643 /* ...wait until PHY is ready and read the selected radio revision */
1644 ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1646 for (i = 0; i < 8; i++)
1647 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1649 if (ah->ah_version == AR5K_AR5210) {
1650 srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1651 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1653 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1654 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1655 ((srev & 0x0f) << 4), 8);
1658 /* Reset to the 5GHz mode */
1659 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1668 void /*TODO:Boundary check*/
1669 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1671 ATH5K_TRACE(ah->ah_sc);
1673 if (ah->ah_version != AR5K_AR5210)
1674 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1677 unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
1679 ATH5K_TRACE(ah->ah_sc);
1681 if (ah->ah_version != AR5K_AR5210)
1682 return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA) & 0x7;
1684 return false; /*XXX: What do we return for 5210 ?*/
1688 * Enable/disable fast rx antenna diversity
1691 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1694 case AR5K_EEPROM_MODE_11G:
1695 /* XXX: This is set to
1696 * disabled on initvals !!! */
1697 case AR5K_EEPROM_MODE_11A:
1699 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1700 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1702 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1703 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1705 case AR5K_EEPROM_MODE_11B:
1706 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1707 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1714 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1715 AR5K_PHY_RESTART_DIV_GC, 0xc);
1717 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1718 AR5K_PHY_FAST_ANT_DIV_EN);
1720 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1721 AR5K_PHY_RESTART_DIV_GC, 0x8);
1723 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1724 AR5K_PHY_FAST_ANT_DIV_EN);
1729 * Set antenna operating mode
1732 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1734 struct ieee80211_channel *channel = &ah->ah_current_channel;
1735 bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1736 bool use_def_for_sg;
1737 u8 def_ant, tx_ant, ee_mode;
1740 def_ant = ah->ah_def_ant;
1742 ATH5K_TRACE(ah->ah_sc);
1744 switch (channel->hw_value & CHANNEL_MODES) {
1748 ee_mode = AR5K_EEPROM_MODE_11A;
1752 ee_mode = AR5K_EEPROM_MODE_11G;
1755 ee_mode = AR5K_EEPROM_MODE_11B;
1758 ATH5K_ERR(ah->ah_sc,
1759 "invalid channel: %d\n", channel->center_freq);
1764 case AR5K_ANTMODE_DEFAULT:
1766 use_def_for_tx = false;
1767 update_def_on_tx = false;
1768 use_def_for_rts = false;
1769 use_def_for_sg = false;
1772 case AR5K_ANTMODE_FIXED_A:
1775 use_def_for_tx = true;
1776 update_def_on_tx = false;
1777 use_def_for_rts = true;
1778 use_def_for_sg = true;
1781 case AR5K_ANTMODE_FIXED_B:
1784 use_def_for_tx = true;
1785 update_def_on_tx = false;
1786 use_def_for_rts = true;
1787 use_def_for_sg = true;
1790 case AR5K_ANTMODE_SINGLE_AP:
1791 def_ant = 1; /* updated on tx */
1793 use_def_for_tx = true;
1794 update_def_on_tx = true;
1795 use_def_for_rts = true;
1796 use_def_for_sg = true;
1799 case AR5K_ANTMODE_SECTOR_AP:
1800 tx_ant = 1; /* variable */
1801 use_def_for_tx = false;
1802 update_def_on_tx = false;
1803 use_def_for_rts = true;
1804 use_def_for_sg = false;
1807 case AR5K_ANTMODE_SECTOR_STA:
1808 tx_ant = 1; /* variable */
1809 use_def_for_tx = true;
1810 update_def_on_tx = false;
1811 use_def_for_rts = true;
1812 use_def_for_sg = false;
1815 case AR5K_ANTMODE_DEBUG:
1818 use_def_for_tx = false;
1819 update_def_on_tx = false;
1820 use_def_for_rts = false;
1821 use_def_for_sg = false;
1828 ah->ah_tx_ant = tx_ant;
1829 ah->ah_ant_mode = ant_mode;
1831 sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1832 sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1833 sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1834 sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1836 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1839 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1841 /* Note: set diversity before default antenna
1842 * because it won't work correctly */
1843 ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
1844 ath5k_hw_set_def_antenna(ah, def_ant);
1857 * Do linear interpolation between two given (x, y) points
1860 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1861 s16 y_left, s16 y_right)
1865 /* Avoid divide by zero and skip interpolation
1866 * if we have the same point */
1867 if ((x_left == x_right) || (y_left == y_right))
1871 * Since we use ints and not fps, we need to scale up in
1872 * order to get a sane ratio value (or else we 'll eg. get
1873 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1874 * to have some accuracy both for 0.5 and 0.25 steps.
1876 ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1878 /* Now scale down to be in range */
1879 result = y_left + (ratio * (target - x_left) / 100);
1885 * Find vertical boundary (min pwr) for the linear PCDAC curve.
1887 * Since we have the top of the curve and we draw the line below
1888 * until we reach 1 (1 pcdac step) we need to know which point
1889 * (x value) that is so that we don't go below y axis and have negative
1890 * pcdac values when creating the curve, or fill the table with zeroes.
1893 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1894 const s16 *pwrL, const s16 *pwrR)
1897 s16 min_pwrL, min_pwrR;
1900 if (WARN_ON(stepL[0] == stepL[1] || stepR[0] == stepR[1]))
1903 if (pwrL[0] == pwrL[1])
1909 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1911 stepL[0], stepL[1]);
1917 if (pwrR[0] == pwrR[1])
1923 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1925 stepR[0], stepR[1]);
1931 /* Keep the right boundary so that it works for both curves */
1932 return max(min_pwrL, min_pwrR);
1936 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
1937 * Power to PCDAC curve.
1939 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
1940 * steps (offsets) on y axis. Power can go up to 31.5dB and max
1941 * PCDAC/PDADC step for each curve is 64 but we can write more than
1942 * one curves on hw so we can go up to 128 (which is the max step we
1943 * can write on the final table).
1945 * We write y values (PCDAC/PDADC steps) on hw.
1948 ath5k_create_power_curve(s16 pmin, s16 pmax,
1949 const s16 *pwr, const u8 *vpd,
1951 u8 *vpd_table, u8 type)
1953 u8 idx[2] = { 0, 1 };
1960 /* We want the whole line, so adjust boundaries
1961 * to cover the entire power range. Note that
1962 * power values are already 0.25dB so no need
1963 * to multiply pwr_i by 2 */
1964 if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
1970 /* Find surrounding turning points (TPs)
1971 * and interpolate between them */
1972 for (i = 0; (i <= (u16) (pmax - pmin)) &&
1973 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
1975 /* We passed the right TP, move to the next set of TPs
1976 * if we pass the last TP, extrapolate above using the last
1977 * two TPs for ratio */
1978 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
1983 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
1984 pwr[idx[0]], pwr[idx[1]],
1985 vpd[idx[0]], vpd[idx[1]]);
1987 /* Increase by 0.5dB
1988 * (0.25 dB units) */
1994 * Get the surrounding per-channel power calibration piers
1995 * for a given frequency so that we can interpolate between
1996 * them and come up with an apropriate dataset for our current
2000 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2001 struct ieee80211_channel *channel,
2002 struct ath5k_chan_pcal_info **pcinfo_l,
2003 struct ath5k_chan_pcal_info **pcinfo_r)
2005 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2006 struct ath5k_chan_pcal_info *pcinfo;
2009 u32 target = channel->center_freq;
2014 if (!(channel->hw_value & CHANNEL_OFDM)) {
2015 pcinfo = ee->ee_pwr_cal_b;
2016 mode = AR5K_EEPROM_MODE_11B;
2017 } else if (channel->hw_value & CHANNEL_2GHZ) {
2018 pcinfo = ee->ee_pwr_cal_g;
2019 mode = AR5K_EEPROM_MODE_11G;
2021 pcinfo = ee->ee_pwr_cal_a;
2022 mode = AR5K_EEPROM_MODE_11A;
2024 max = ee->ee_n_piers[mode] - 1;
2026 /* Frequency is below our calibrated
2027 * range. Use the lowest power curve
2029 if (target < pcinfo[0].freq) {
2034 /* Frequency is above our calibrated
2035 * range. Use the highest power curve
2037 if (target > pcinfo[max].freq) {
2038 idx_l = idx_r = max;
2042 /* Frequency is inside our calibrated
2043 * channel range. Pick the surrounding
2044 * calibration piers so that we can
2046 for (i = 0; i <= max; i++) {
2048 /* Frequency matches one of our calibration
2049 * piers, no need to interpolate, just use
2050 * that calibration pier */
2051 if (pcinfo[i].freq == target) {
2056 /* We found a calibration pier that's above
2057 * frequency, use this pier and the previous
2058 * one to interpolate */
2059 if (target < pcinfo[i].freq) {
2067 *pcinfo_l = &pcinfo[idx_l];
2068 *pcinfo_r = &pcinfo[idx_r];
2074 * Get the surrounding per-rate power calibration data
2075 * for a given frequency and interpolate between power
2076 * values to set max target power supported by hw for
2080 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2081 struct ieee80211_channel *channel,
2082 struct ath5k_rate_pcal_info *rates)
2084 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2085 struct ath5k_rate_pcal_info *rpinfo;
2088 u32 target = channel->center_freq;
2093 if (!(channel->hw_value & CHANNEL_OFDM)) {
2094 rpinfo = ee->ee_rate_tpwr_b;
2095 mode = AR5K_EEPROM_MODE_11B;
2096 } else if (channel->hw_value & CHANNEL_2GHZ) {
2097 rpinfo = ee->ee_rate_tpwr_g;
2098 mode = AR5K_EEPROM_MODE_11G;
2100 rpinfo = ee->ee_rate_tpwr_a;
2101 mode = AR5K_EEPROM_MODE_11A;
2103 max = ee->ee_rate_target_pwr_num[mode] - 1;
2105 /* Get the surrounding calibration
2106 * piers - same as above */
2107 if (target < rpinfo[0].freq) {
2112 if (target > rpinfo[max].freq) {
2113 idx_l = idx_r = max;
2117 for (i = 0; i <= max; i++) {
2119 if (rpinfo[i].freq == target) {
2124 if (target < rpinfo[i].freq) {
2132 /* Now interpolate power value, based on the frequency */
2133 rates->freq = target;
2135 rates->target_power_6to24 =
2136 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2138 rpinfo[idx_l].target_power_6to24,
2139 rpinfo[idx_r].target_power_6to24);
2141 rates->target_power_36 =
2142 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2144 rpinfo[idx_l].target_power_36,
2145 rpinfo[idx_r].target_power_36);
2147 rates->target_power_48 =
2148 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2150 rpinfo[idx_l].target_power_48,
2151 rpinfo[idx_r].target_power_48);
2153 rates->target_power_54 =
2154 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2156 rpinfo[idx_l].target_power_54,
2157 rpinfo[idx_r].target_power_54);
2161 * Get the max edge power for this channel if
2162 * we have such data from EEPROM's Conformance Test
2163 * Limits (CTL), and limit max power if needed.
2166 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2167 struct ieee80211_channel *channel)
2169 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2170 struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2171 u8 *ctl_val = ee->ee_ctl;
2172 s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2177 u32 target = channel->center_freq;
2179 ctl_mode = ath_regd_get_band_ctl(&ah->ah_regulatory, channel->band);
2181 switch (channel->hw_value & CHANNEL_MODES) {
2183 ctl_mode |= AR5K_CTL_11A;
2186 ctl_mode |= AR5K_CTL_11G;
2189 ctl_mode |= AR5K_CTL_11B;
2192 ctl_mode |= AR5K_CTL_TURBO;
2195 ctl_mode |= AR5K_CTL_TURBOG;
2203 for (i = 0; i < ee->ee_ctls; i++) {
2204 if (ctl_val[i] == ctl_mode) {
2210 /* If we have a CTL dataset available grab it and find the
2211 * edge power for our frequency */
2212 if (ctl_idx == 0xFF)
2215 /* Edge powers are sorted by frequency from lower
2216 * to higher. Each CTL corresponds to 8 edge power
2218 rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2220 /* Don't do boundaries check because we
2221 * might have more that one bands defined
2224 /* Get the edge power that's closer to our
2226 for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2228 if (target <= rep[rep_idx].freq)
2229 edge_pwr = (s16) rep[rep_idx].edge;
2233 ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2238 * Power to PCDAC table functions
2242 * Fill Power to PCDAC table on RF5111
2244 * No further processing is needed for RF5111, the only thing we have to
2245 * do is fill the values below and above calibration range since eeprom data
2246 * may not cover the entire PCDAC table.
2249 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2252 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2253 u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
2254 u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2255 s16 min_pwr, max_pwr;
2257 /* Get table boundaries */
2258 min_pwr = table_min[0];
2259 pcdac_0 = pcdac_tmp[0];
2261 max_pwr = table_max[0];
2262 pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2264 /* Extrapolate below minimum using pcdac_0 */
2266 for (i = 0; i < min_pwr; i++)
2267 pcdac_out[pcdac_i++] = pcdac_0;
2269 /* Copy values from pcdac_tmp */
2271 for (i = 0 ; pwr_idx <= max_pwr &&
2272 pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2273 pcdac_out[pcdac_i++] = pcdac_tmp[i];
2277 /* Extrapolate above maximum */
2278 while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2279 pcdac_out[pcdac_i++] = pcdac_n;
2284 * Combine available XPD Curves and fill Linear Power to PCDAC table
2287 * RFX112 can have up to 2 curves (one for low txpower range and one for
2288 * higher txpower range). We need to put them both on pcdac_out and place
2289 * them in the correct location. In case we only have one curve available
2290 * just fit it on pcdac_out (it's supposed to cover the entire range of
2291 * available pwr levels since it's always the higher power curve). Extrapolate
2292 * below and above final table if needed.
2295 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2296 s16 *table_max, u8 pdcurves)
2298 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2305 s16 mid_pwr_idx = 0;
2306 /* Edge flag turs on the 7nth bit on the PCDAC
2307 * to delcare the higher power curve (force values
2308 * to be greater than 64). If we only have one curve
2309 * we don't need to set this, if we have 2 curves and
2310 * fill the table backwards this can also be used to
2311 * switch from higher power curve to lower power curve */
2315 /* When we have only one curve available
2316 * that's the higher power curve. If we have
2317 * two curves the first is the high power curve
2318 * and the next is the low power curve. */
2320 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2321 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2322 mid_pwr_idx = table_max[1] - table_min[1] - 1;
2323 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2325 /* If table size goes beyond 31.5dB, keep the
2326 * upper 31.5dB range when setting tx power.
2327 * Note: 126 = 31.5 dB in quarter dB steps */
2328 if (table_max[0] - table_min[1] > 126)
2329 min_pwr_idx = table_max[0] - 126;
2331 min_pwr_idx = table_min[1];
2333 /* Since we fill table backwards
2334 * start from high power curve */
2335 pcdac_tmp = pcdac_high_pwr;
2339 /* If both min and max power limits are in lower
2340 * power curve's range, only use the low power curve.
2341 * TODO: min/max levels are related to target
2342 * power values requested from driver/user
2343 * XXX: Is this really needed ? */
2344 if (min_pwr < table_max[1] &&
2345 max_pwr < table_max[1]) {
2347 pcdac_tmp = pcdac_low_pwr;
2348 max_pwr_idx = (table_max[1] - table_min[1])/2;
2352 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2353 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2354 min_pwr_idx = table_min[0];
2355 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2356 pcdac_tmp = pcdac_high_pwr;
2360 /* This is used when setting tx power*/
2361 ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2363 /* Fill Power to PCDAC table backwards */
2365 for (i = 63; i >= 0; i--) {
2366 /* Entering lower power range, reset
2367 * edge flag and set pcdac_tmp to lower
2369 if (edge_flag == 0x40 &&
2370 (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2372 pcdac_tmp = pcdac_low_pwr;
2373 pwr = mid_pwr_idx/2;
2376 /* Don't go below 1, extrapolate below if we have
2377 * already swithced to the lower power curve -or
2378 * we only have one curve and edge_flag is zero
2380 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2382 pcdac_out[i] = pcdac_out[i + 1];
2388 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2390 /* Extrapolate above if pcdac is greater than
2391 * 126 -this can happen because we OR pcdac_out
2392 * value with edge_flag on high power curve */
2393 if (pcdac_out[i] > 126)
2396 /* Decrease by a 0.5dB step */
2401 /* Write PCDAC values on hw */
2403 ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2405 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2409 * Write TX power values
2411 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2412 ath5k_hw_reg_write(ah,
2413 (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2414 (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2415 AR5K_PHY_PCDAC_TXPOWER(i));
2421 * Power to PDADC table functions
2425 * Set the gain boundaries and create final Power to PDADC table
2427 * We can have up to 4 pd curves, we need to do a simmilar process
2428 * as we do for RF5112. This time we don't have an edge_flag but we
2429 * set the gain boundaries on a separate register.
2432 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2433 s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2435 u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2436 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2439 u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2442 /* Note: Register value is initialized on initvals
2443 * there is no feedback from hw.
2444 * XXX: What about pd_gain_overlap from EEPROM ? */
2445 pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2446 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2448 /* Create final PDADC table */
2449 for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2450 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2452 if (pdg == pdcurves - 1)
2453 /* 2 dB boundary stretch for last
2454 * (higher power) curve */
2455 gain_boundaries[pdg] = pwr_max[pdg] + 4;
2457 /* Set gain boundary in the middle
2458 * between this curve and the next one */
2459 gain_boundaries[pdg] =
2460 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2462 /* Sanity check in case our 2 db stretch got out of
2464 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2465 gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2467 /* For the first curve (lower power)
2468 * start from 0 dB */
2472 /* For the other curves use the gain overlap */
2473 pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2476 /* Force each power step to be at least 0.5 dB */
2477 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2478 pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2482 /* If pdadc_0 is negative, we need to extrapolate
2483 * below this pdgain by a number of pwr_steps */
2484 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2485 s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2486 pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2490 /* Set last pwr level, using gain boundaries */
2491 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2492 /* Limit it to be inside pwr range */
2493 table_size = pwr_max[pdg] - pwr_min[pdg];
2494 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2496 /* Fill pdadc_out table */
2497 while (pdadc_0 < max_idx)
2498 pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2500 /* Need to extrapolate above this pdgain? */
2501 if (pdadc_n <= max_idx)
2504 /* Force each power step to be at least 0.5 dB */
2505 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2506 pwr_step = pdadc_tmp[table_size - 1] -
2507 pdadc_tmp[table_size - 2];
2511 /* Extrapolate above */
2512 while ((pdadc_0 < (s16) pdadc_n) &&
2513 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2514 s16 tmp = pdadc_tmp[table_size - 1] +
2515 (pdadc_0 - max_idx) * pwr_step;
2516 pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2521 while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2522 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2526 while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2527 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2531 /* Set gain boundaries */
2532 ath5k_hw_reg_write(ah,
2533 AR5K_REG_SM(pd_gain_overlap,
2534 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2535 AR5K_REG_SM(gain_boundaries[0],
2536 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2537 AR5K_REG_SM(gain_boundaries[1],
2538 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2539 AR5K_REG_SM(gain_boundaries[2],
2540 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2541 AR5K_REG_SM(gain_boundaries[3],
2542 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2545 /* Used for setting rate power table */
2546 ah->ah_txpower.txp_min_idx = pwr_min[0];
2550 /* Write PDADC values on hw */
2552 ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2553 u8 pdcurves, u8 *pdg_to_idx)
2555 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2559 /* Select the right pdgain curves */
2561 /* Clear current settings */
2562 reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2563 reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2564 AR5K_PHY_TPC_RG1_PDGAIN_2 |
2565 AR5K_PHY_TPC_RG1_PDGAIN_3 |
2566 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2569 * Use pd_gains curve from eeprom
2571 * This overrides the default setting from initvals
2572 * in case some vendors (e.g. Zcomax) don't use the default
2573 * curves. If we don't honor their settings we 'll get a
2574 * 5dB (1 * gain overlap ?) drop.
2576 reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2580 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2583 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2586 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2589 ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2592 * Write TX power values
2594 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2595 ath5k_hw_reg_write(ah,
2596 ((pdadc_out[4*i + 0] & 0xff) << 0) |
2597 ((pdadc_out[4*i + 1] & 0xff) << 8) |
2598 ((pdadc_out[4*i + 2] & 0xff) << 16) |
2599 ((pdadc_out[4*i + 3] & 0xff) << 24),
2600 AR5K_PHY_PDADC_TXPOWER(i));
2606 * Common code for PCDAC/PDADC tables
2610 * This is the main function that uses all of the above
2611 * to set PCDAC/PDADC table on hw for the current channel.
2612 * This table is used for tx power calibration on the basband,
2613 * without it we get weird tx power levels and in some cases
2614 * distorted spectral mask
2617 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2618 struct ieee80211_channel *channel,
2619 u8 ee_mode, u8 type)
2621 struct ath5k_pdgain_info *pdg_L, *pdg_R;
2622 struct ath5k_chan_pcal_info *pcinfo_L;
2623 struct ath5k_chan_pcal_info *pcinfo_R;
2624 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2625 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2626 s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2627 s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2630 u32 target = channel->center_freq;
2633 /* Get surounding freq piers for this channel */
2634 ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2638 /* Loop over pd gain curves on
2639 * surounding freq piers by index */
2640 for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2642 /* Fill curves in reverse order
2643 * from lower power (max gain)
2644 * to higher power. Use curve -> idx
2645 * backmaping we did on eeprom init */
2646 u8 idx = pdg_curve_to_idx[pdg];
2648 /* Grab the needed curves by index */
2649 pdg_L = &pcinfo_L->pd_curves[idx];
2650 pdg_R = &pcinfo_R->pd_curves[idx];
2652 /* Initialize the temp tables */
2653 tmpL = ah->ah_txpower.tmpL[pdg];
2654 tmpR = ah->ah_txpower.tmpR[pdg];
2656 /* Set curve's x boundaries and create
2657 * curves so that they cover the same
2658 * range (if we don't do that one table
2659 * will have values on some range and the
2660 * other one won't have any so interpolation
2662 table_min[pdg] = min(pdg_L->pd_pwr[0],
2663 pdg_R->pd_pwr[0]) / 2;
2665 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2666 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2668 /* Now create the curves on surrounding channels
2669 * and interpolate if needed to get the final
2670 * curve for this gain on this channel */
2672 case AR5K_PWRTABLE_LINEAR_PCDAC:
2673 /* Override min/max so that we don't loose
2674 * accuracy (don't divide by 2) */
2675 table_min[pdg] = min(pdg_L->pd_pwr[0],
2679 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2680 pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2682 /* Override minimum so that we don't get
2683 * out of bounds while extrapolating
2684 * below. Don't do this when we have 2
2685 * curves and we are on the high power curve
2686 * because table_min is ok in this case */
2687 if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2690 ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2695 /* Don't go too low because we will
2696 * miss the upper part of the curve.
2697 * Note: 126 = 31.5dB (max power supported)
2698 * in 0.25dB units */
2699 if (table_max[pdg] - table_min[pdg] > 126)
2700 table_min[pdg] = table_max[pdg] - 126;
2704 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2705 case AR5K_PWRTABLE_PWR_TO_PDADC:
2707 ath5k_create_power_curve(table_min[pdg],
2711 pdg_L->pd_points, tmpL, type);
2713 /* We are in a calibration
2714 * pier, no need to interpolate
2715 * between freq piers */
2716 if (pcinfo_L == pcinfo_R)
2719 ath5k_create_power_curve(table_min[pdg],
2723 pdg_R->pd_points, tmpR, type);
2729 /* Interpolate between curves
2730 * of surounding freq piers to
2731 * get the final curve for this
2732 * pd gain. Re-use tmpL for interpolation
2734 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2735 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2736 tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2737 (s16) pcinfo_L->freq,
2738 (s16) pcinfo_R->freq,
2744 /* Now we have a set of curves for this
2745 * channel on tmpL (x range is table_max - table_min
2746 * and y values are tmpL[pdg][]) sorted in the same
2747 * order as EEPROM (because we've used the backmaping).
2748 * So for RF5112 it's from higher power to lower power
2749 * and for RF2413 it's from lower power to higher power.
2750 * For RF5111 we only have one curve. */
2752 /* Fill min and max power levels for this
2753 * channel by interpolating the values on
2754 * surounding channels to complete the dataset */
2755 ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2756 (s16) pcinfo_L->freq,
2757 (s16) pcinfo_R->freq,
2758 pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2760 ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2761 (s16) pcinfo_L->freq,
2762 (s16) pcinfo_R->freq,
2763 pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2765 /* We are ready to go, fill PCDAC/PDADC
2766 * table and write settings on hardware */
2768 case AR5K_PWRTABLE_LINEAR_PCDAC:
2769 /* For RF5112 we can have one or two curves
2770 * and each curve covers a certain power lvl
2771 * range so we need to do some more processing */
2772 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2773 ee->ee_pd_gains[ee_mode]);
2775 /* Set txp.offset so that we can
2776 * match max power value with max
2778 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2780 /* Write settings on hw */
2781 ath5k_setup_pcdac_table(ah);
2783 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2784 /* We are done for RF5111 since it has only
2785 * one curve, just fit the curve on the table */
2786 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2788 /* No rate powertable adjustment for RF5111 */
2789 ah->ah_txpower.txp_min_idx = 0;
2790 ah->ah_txpower.txp_offset = 0;
2792 /* Write settings on hw */
2793 ath5k_setup_pcdac_table(ah);
2795 case AR5K_PWRTABLE_PWR_TO_PDADC:
2796 /* Set PDADC boundaries and fill
2797 * final PDADC table */
2798 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2799 ee->ee_pd_gains[ee_mode]);
2801 /* Write settings on hw */
2802 ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2804 /* Set txp.offset, note that table_min
2805 * can be negative */
2806 ah->ah_txpower.txp_offset = table_min[0];
2817 * Per-rate tx power setting
2819 * This is the code that sets the desired tx power (below
2820 * maximum) on hw for each rate (we also have TPC that sets
2821 * power per packet). We do that by providing an index on the
2822 * PCDAC/PDADC table we set up.
2826 * Set rate power table
2828 * For now we only limit txpower based on maximum tx power
2829 * supported by hw (what's inside rate_info). We need to limit
2830 * this even more, based on regulatory domain etc.
2832 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2833 * and is indexed as follows:
2834 * rates[0] - rates[7] -> OFDM rates
2835 * rates[8] - rates[14] -> CCK rates
2836 * rates[15] -> XR rates (they all have the same power)
2839 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2840 struct ath5k_rate_pcal_info *rate_info,
2846 /* max_pwr is power level we got from driver/user in 0.5dB
2847 * units, switch to 0.25dB units so we can compare */
2849 max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2851 /* apply rate limits */
2852 rates = ah->ah_txpower.txp_rates_power_table;
2854 /* OFDM rates 6 to 24Mb/s */
2855 for (i = 0; i < 5; i++)
2856 rates[i] = min(max_pwr, rate_info->target_power_6to24);
2858 /* Rest OFDM rates */
2859 rates[5] = min(rates[0], rate_info->target_power_36);
2860 rates[6] = min(rates[0], rate_info->target_power_48);
2861 rates[7] = min(rates[0], rate_info->target_power_54);
2865 rates[8] = min(rates[0], rate_info->target_power_6to24);
2867 rates[9] = min(rates[0], rate_info->target_power_36);
2869 rates[10] = min(rates[0], rate_info->target_power_36);
2871 rates[11] = min(rates[0], rate_info->target_power_48);
2873 rates[12] = min(rates[0], rate_info->target_power_48);
2875 rates[13] = min(rates[0], rate_info->target_power_54);
2877 rates[14] = min(rates[0], rate_info->target_power_54);
2880 rates[15] = min(rates[0], rate_info->target_power_6to24);
2882 /* CCK rates have different peak to average ratio
2883 * so we have to tweak their power so that gainf
2884 * correction works ok. For this we use OFDM to
2885 * CCK delta from eeprom */
2886 if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2887 (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2888 for (i = 8; i <= 15; i++)
2889 rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2891 /* Now that we have all rates setup use table offset to
2892 * match the power range set by user with the power indices
2893 * on PCDAC/PDADC table */
2894 for (i = 0; i < 16; i++) {
2895 rates[i] += ah->ah_txpower.txp_offset;
2896 /* Don't get out of bounds */
2901 /* Min/max in 0.25dB units */
2902 ah->ah_txpower.txp_min_pwr = 2 * rates[7];
2903 ah->ah_txpower.txp_max_pwr = 2 * rates[0];
2904 ah->ah_txpower.txp_ofdm = rates[7];
2909 * Set transmition power
2912 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
2913 u8 ee_mode, u8 txpower)
2915 struct ath5k_rate_pcal_info rate_info;
2919 ATH5K_TRACE(ah->ah_sc);
2920 if (txpower > AR5K_TUNE_MAX_TXPOWER) {
2921 ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
2925 txpower = AR5K_TUNE_DEFAULT_TXPOWER;
2927 /* Reset TX power values */
2928 memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
2929 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
2930 ah->ah_txpower.txp_min_pwr = 0;
2931 ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
2933 /* Initialize TX power table */
2934 switch (ah->ah_radio) {
2936 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
2939 type = AR5K_PWRTABLE_LINEAR_PCDAC;
2946 type = AR5K_PWRTABLE_PWR_TO_PDADC;
2952 /* FIXME: Only on channel/mode change */
2953 ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
2957 /* Limit max power if we have a CTL available */
2958 ath5k_get_max_ctl_power(ah, channel);
2960 /* FIXME: Tx power limit for this regdomain
2961 * XXX: Mac80211/CRDA will do that anyway ? */
2963 /* FIXME: Antenna reduction stuff */
2965 /* FIXME: Limit power on turbo modes */
2967 /* FIXME: TPC scale reduction */
2969 /* Get surounding channels for per-rate power table
2971 ath5k_get_rate_pcal_data(ah, channel, &rate_info);
2973 /* Setup rate power table */
2974 ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
2976 /* Write rate power table on hw */
2977 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
2978 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
2979 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
2981 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
2982 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
2983 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
2985 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
2986 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
2987 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
2989 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
2990 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
2991 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
2993 /* FIXME: TPC support */
2994 if (ah->ah_txpower.txp_tpc) {
2995 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
2996 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
2998 ath5k_hw_reg_write(ah,
2999 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3000 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3001 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3004 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3005 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3011 int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3014 struct ieee80211_channel *channel = &ah->ah_current_channel;
3017 ATH5K_TRACE(ah->ah_sc);
3019 switch (channel->hw_value & CHANNEL_MODES) {
3023 ee_mode = AR5K_EEPROM_MODE_11A;
3027 ee_mode = AR5K_EEPROM_MODE_11G;
3030 ee_mode = AR5K_EEPROM_MODE_11B;
3033 ATH5K_ERR(ah->ah_sc,
3034 "invalid channel: %d\n", channel->center_freq);
3038 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3039 "changing txpower to %d\n", txpower);
3041 return ath5k_hw_txpower(ah, channel, ee_mode, txpower);