2 * linux/fs/nfs/direct.c
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6 * High-performance uncached I/O for the Linux NFS client
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
48 #include <linux/nfs_fs.h>
49 #include <linux/nfs_page.h>
50 #include <linux/sunrpc/clnt.h>
52 #include <asm/system.h>
53 #include <asm/uaccess.h>
54 #include <asm/atomic.h>
59 #define NFSDBG_FACILITY NFSDBG_VFS
61 static struct kmem_cache *nfs_direct_cachep;
64 * This represents a set of asynchronous requests that we're waiting on
66 struct nfs_direct_req {
67 struct kref kref; /* release manager */
70 struct nfs_open_context *ctx; /* file open context info */
71 struct kiocb * iocb; /* controlling i/o request */
72 struct inode * inode; /* target file of i/o */
74 /* completion state */
75 atomic_t io_count; /* i/os we're waiting for */
76 spinlock_t lock; /* protect completion state */
77 ssize_t count, /* bytes actually processed */
78 error; /* any reported error */
79 struct completion completion; /* wait for i/o completion */
82 struct list_head rewrite_list; /* saved nfs_write_data structs */
83 struct nfs_write_data * commit_data; /* special write_data for commits */
85 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
86 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
87 struct nfs_writeverf verf; /* unstable write verifier */
90 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
91 static const struct rpc_call_ops nfs_write_direct_ops;
93 static inline void get_dreq(struct nfs_direct_req *dreq)
95 atomic_inc(&dreq->io_count);
98 static inline int put_dreq(struct nfs_direct_req *dreq)
100 return atomic_dec_and_test(&dreq->io_count);
104 * nfs_direct_IO - NFS address space operation for direct I/O
105 * @rw: direction (read or write)
106 * @iocb: target I/O control block
107 * @iov: array of vectors that define I/O buffer
108 * @pos: offset in file to begin the operation
109 * @nr_segs: size of iovec array
111 * The presence of this routine in the address space ops vector means
112 * the NFS client supports direct I/O. However, we shunt off direct
113 * read and write requests before the VFS gets them, so this method
114 * should never be called.
116 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
118 dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
119 iocb->ki_filp->f_path.dentry->d_name.name,
120 (long long) pos, nr_segs);
125 static void nfs_direct_dirty_pages(struct page **pages, unsigned int pgbase, size_t count)
132 pages += (pgbase >> PAGE_SHIFT);
133 npages = (count + (pgbase & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT;
134 for (i = 0; i < npages; i++) {
135 struct page *page = pages[i];
136 if (!PageCompound(page))
137 set_page_dirty(page);
141 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
144 for (i = 0; i < npages; i++)
145 page_cache_release(pages[i]);
148 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
150 struct nfs_direct_req *dreq;
152 dreq = kmem_cache_alloc(nfs_direct_cachep, GFP_KERNEL);
156 kref_init(&dreq->kref);
157 kref_get(&dreq->kref);
158 init_completion(&dreq->completion);
159 INIT_LIST_HEAD(&dreq->rewrite_list);
162 spin_lock_init(&dreq->lock);
163 atomic_set(&dreq->io_count, 0);
171 static void nfs_direct_req_free(struct kref *kref)
173 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
175 if (dreq->ctx != NULL)
176 put_nfs_open_context(dreq->ctx);
177 kmem_cache_free(nfs_direct_cachep, dreq);
180 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
182 kref_put(&dreq->kref, nfs_direct_req_free);
186 * Collects and returns the final error value/byte-count.
188 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
190 ssize_t result = -EIOCBQUEUED;
192 /* Async requests don't wait here */
196 result = wait_for_completion_killable(&dreq->completion);
199 result = dreq->error;
201 result = dreq->count;
204 return (ssize_t) result;
208 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
209 * the iocb is still valid here if this is a synchronous request.
211 static void nfs_direct_complete(struct nfs_direct_req *dreq)
214 long res = (long) dreq->error;
216 res = (long) dreq->count;
217 aio_complete(dreq->iocb, res, 0);
219 complete_all(&dreq->completion);
221 nfs_direct_req_release(dreq);
225 * We must hold a reference to all the pages in this direct read request
226 * until the RPCs complete. This could be long *after* we are woken up in
227 * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
229 static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
231 struct nfs_read_data *data = calldata;
232 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
234 if (nfs_readpage_result(task, data) != 0)
237 spin_lock(&dreq->lock);
238 if (unlikely(task->tk_status < 0)) {
239 dreq->error = task->tk_status;
240 spin_unlock(&dreq->lock);
242 dreq->count += data->res.count;
243 spin_unlock(&dreq->lock);
244 nfs_direct_dirty_pages(data->pagevec,
248 nfs_direct_release_pages(data->pagevec, data->npages);
251 nfs_direct_complete(dreq);
254 static const struct rpc_call_ops nfs_read_direct_ops = {
255 .rpc_call_done = nfs_direct_read_result,
256 .rpc_release = nfs_readdata_release,
260 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
261 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
262 * bail and stop sending more reads. Read length accounting is
263 * handled automatically by nfs_direct_read_result(). Otherwise, if
264 * no requests have been sent, just return an error.
266 static ssize_t nfs_direct_read_schedule_segment(struct nfs_direct_req *dreq,
267 const struct iovec *iov,
270 struct nfs_open_context *ctx = dreq->ctx;
271 struct inode *inode = ctx->path.dentry->d_inode;
272 unsigned long user_addr = (unsigned long)iov->iov_base;
273 size_t count = iov->iov_len;
274 size_t rsize = NFS_SERVER(inode)->rsize;
275 struct rpc_task *task;
276 struct rpc_message msg = {
277 .rpc_cred = ctx->cred,
279 struct rpc_task_setup task_setup_data = {
280 .rpc_client = NFS_CLIENT(inode),
282 .callback_ops = &nfs_read_direct_ops,
283 .flags = RPC_TASK_ASYNC,
290 struct nfs_read_data *data;
293 pgbase = user_addr & ~PAGE_MASK;
294 bytes = min(rsize,count);
297 data = nfs_readdata_alloc(nfs_page_array_len(pgbase, bytes));
301 down_read(¤t->mm->mmap_sem);
302 result = get_user_pages(current, current->mm, user_addr,
303 data->npages, 1, 0, data->pagevec, NULL);
304 up_read(¤t->mm->mmap_sem);
306 nfs_readdata_release(data);
309 if ((unsigned)result < data->npages) {
310 bytes = result * PAGE_SIZE;
311 if (bytes <= pgbase) {
312 nfs_direct_release_pages(data->pagevec, result);
313 nfs_readdata_release(data);
317 data->npages = result;
322 data->req = (struct nfs_page *) dreq;
324 data->cred = msg.rpc_cred;
325 data->args.fh = NFS_FH(inode);
326 data->args.context = ctx;
327 data->args.offset = pos;
328 data->args.pgbase = pgbase;
329 data->args.pages = data->pagevec;
330 data->args.count = bytes;
331 data->res.fattr = &data->fattr;
333 data->res.count = bytes;
334 msg.rpc_argp = &data->args;
335 msg.rpc_resp = &data->res;
337 task_setup_data.task = &data->task;
338 task_setup_data.callback_data = data;
339 NFS_PROTO(inode)->read_setup(data, &msg);
341 task = rpc_run_task(&task_setup_data);
345 dprintk("NFS: %5u initiated direct read call "
346 "(req %s/%Ld, %zu bytes @ offset %Lu)\n",
349 (long long)NFS_FILEID(inode),
351 (unsigned long long)data->args.offset);
356 /* FIXME: Remove this unnecessary math from final patch */
358 pgbase &= ~PAGE_MASK;
359 BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
362 } while (count != 0);
366 return result < 0 ? (ssize_t) result : -EFAULT;
369 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
370 const struct iovec *iov,
371 unsigned long nr_segs,
374 ssize_t result = -EINVAL;
375 size_t requested_bytes = 0;
380 for (seg = 0; seg < nr_segs; seg++) {
381 const struct iovec *vec = &iov[seg];
382 result = nfs_direct_read_schedule_segment(dreq, vec, pos);
385 requested_bytes += result;
386 if ((size_t)result < vec->iov_len)
392 nfs_direct_complete(dreq);
394 if (requested_bytes != 0)
402 static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
403 unsigned long nr_segs, loff_t pos)
406 struct inode *inode = iocb->ki_filp->f_mapping->host;
407 struct nfs_direct_req *dreq;
409 dreq = nfs_direct_req_alloc();
414 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
415 if (!is_sync_kiocb(iocb))
418 result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos);
420 result = nfs_direct_wait(dreq);
421 nfs_direct_req_release(dreq);
426 static void nfs_direct_free_writedata(struct nfs_direct_req *dreq)
428 while (!list_empty(&dreq->rewrite_list)) {
429 struct nfs_write_data *data = list_entry(dreq->rewrite_list.next, struct nfs_write_data, pages);
430 list_del(&data->pages);
431 nfs_direct_release_pages(data->pagevec, data->npages);
432 nfs_writedata_release(data);
436 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
437 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
439 struct inode *inode = dreq->inode;
441 struct nfs_write_data *data;
442 struct rpc_task *task;
443 struct rpc_message msg = {
444 .rpc_cred = dreq->ctx->cred,
446 struct rpc_task_setup task_setup_data = {
447 .rpc_client = NFS_CLIENT(inode),
448 .callback_ops = &nfs_write_direct_ops,
449 .flags = RPC_TASK_ASYNC,
455 list_for_each(p, &dreq->rewrite_list) {
456 data = list_entry(p, struct nfs_write_data, pages);
460 /* Use stable writes */
461 data->args.stable = NFS_FILE_SYNC;
466 nfs_fattr_init(&data->fattr);
467 data->res.count = data->args.count;
468 memset(&data->verf, 0, sizeof(data->verf));
471 * Reuse data->task; data->args should not have changed
472 * since the original request was sent.
474 task_setup_data.task = &data->task;
475 task_setup_data.callback_data = data;
476 msg.rpc_argp = &data->args;
477 msg.rpc_resp = &data->res;
478 NFS_PROTO(inode)->write_setup(data, &msg);
481 * We're called via an RPC callback, so BKL is already held.
483 task = rpc_run_task(&task_setup_data);
487 dprintk("NFS: %5u rescheduled direct write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
490 (long long)NFS_FILEID(inode),
492 (unsigned long long)data->args.offset);
496 nfs_direct_write_complete(dreq, inode);
499 static void nfs_direct_commit_result(struct rpc_task *task, void *calldata)
501 struct nfs_write_data *data = calldata;
502 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
504 /* Call the NFS version-specific code */
505 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
507 if (unlikely(task->tk_status < 0)) {
508 dprintk("NFS: %5u commit failed with error %d.\n",
509 task->tk_pid, task->tk_status);
510 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
511 } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
512 dprintk("NFS: %5u commit verify failed\n", task->tk_pid);
513 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
516 dprintk("NFS: %5u commit returned %d\n", task->tk_pid, task->tk_status);
517 nfs_direct_write_complete(dreq, data->inode);
520 static const struct rpc_call_ops nfs_commit_direct_ops = {
521 .rpc_call_done = nfs_direct_commit_result,
522 .rpc_release = nfs_commit_release,
525 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
527 struct nfs_write_data *data = dreq->commit_data;
528 struct rpc_task *task;
529 struct rpc_message msg = {
530 .rpc_argp = &data->args,
531 .rpc_resp = &data->res,
532 .rpc_cred = dreq->ctx->cred,
534 struct rpc_task_setup task_setup_data = {
536 .rpc_client = NFS_CLIENT(dreq->inode),
538 .callback_ops = &nfs_commit_direct_ops,
539 .callback_data = data,
540 .flags = RPC_TASK_ASYNC,
543 data->inode = dreq->inode;
544 data->cred = msg.rpc_cred;
546 data->args.fh = NFS_FH(data->inode);
547 data->args.offset = 0;
548 data->args.count = 0;
550 data->res.fattr = &data->fattr;
551 data->res.verf = &data->verf;
553 NFS_PROTO(data->inode)->commit_setup(data, &msg);
555 /* Note: task.tk_ops->rpc_release will free dreq->commit_data */
556 dreq->commit_data = NULL;
558 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
560 task = rpc_run_task(&task_setup_data);
565 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
567 int flags = dreq->flags;
571 case NFS_ODIRECT_DO_COMMIT:
572 nfs_direct_commit_schedule(dreq);
574 case NFS_ODIRECT_RESCHED_WRITES:
575 nfs_direct_write_reschedule(dreq);
578 if (dreq->commit_data != NULL)
579 nfs_commit_free(dreq->commit_data);
580 nfs_direct_free_writedata(dreq);
581 nfs_zap_mapping(inode, inode->i_mapping);
582 nfs_direct_complete(dreq);
586 static void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
588 dreq->commit_data = nfs_commit_alloc();
589 if (dreq->commit_data != NULL)
590 dreq->commit_data->req = (struct nfs_page *) dreq;
593 static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
595 dreq->commit_data = NULL;
598 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
600 nfs_direct_free_writedata(dreq);
601 nfs_zap_mapping(inode, inode->i_mapping);
602 nfs_direct_complete(dreq);
606 static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
608 struct nfs_write_data *data = calldata;
609 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
610 int status = task->tk_status;
612 if (nfs_writeback_done(task, data) != 0)
615 spin_lock(&dreq->lock);
617 if (unlikely(status < 0)) {
618 /* An error has occurred, so we should not commit */
620 dreq->error = status;
622 if (unlikely(dreq->error != 0))
625 dreq->count += data->res.count;
627 if (data->res.verf->committed != NFS_FILE_SYNC) {
628 switch (dreq->flags) {
630 memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf));
631 dreq->flags = NFS_ODIRECT_DO_COMMIT;
633 case NFS_ODIRECT_DO_COMMIT:
634 if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) {
635 dprintk("NFS: %5u write verify failed\n", task->tk_pid);
636 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
641 spin_unlock(&dreq->lock);
645 * NB: Return the value of the first error return code. Subsequent
646 * errors after the first one are ignored.
648 static void nfs_direct_write_release(void *calldata)
650 struct nfs_write_data *data = calldata;
651 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
654 nfs_direct_write_complete(dreq, data->inode);
657 static const struct rpc_call_ops nfs_write_direct_ops = {
658 .rpc_call_done = nfs_direct_write_result,
659 .rpc_release = nfs_direct_write_release,
663 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
664 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
665 * bail and stop sending more writes. Write length accounting is
666 * handled automatically by nfs_direct_write_result(). Otherwise, if
667 * no requests have been sent, just return an error.
669 static ssize_t nfs_direct_write_schedule_segment(struct nfs_direct_req *dreq,
670 const struct iovec *iov,
671 loff_t pos, int sync)
673 struct nfs_open_context *ctx = dreq->ctx;
674 struct inode *inode = ctx->path.dentry->d_inode;
675 unsigned long user_addr = (unsigned long)iov->iov_base;
676 size_t count = iov->iov_len;
677 struct rpc_task *task;
678 struct rpc_message msg = {
679 .rpc_cred = ctx->cred,
681 struct rpc_task_setup task_setup_data = {
682 .rpc_client = NFS_CLIENT(inode),
684 .callback_ops = &nfs_write_direct_ops,
685 .flags = RPC_TASK_ASYNC,
687 size_t wsize = NFS_SERVER(inode)->wsize;
693 struct nfs_write_data *data;
696 pgbase = user_addr & ~PAGE_MASK;
697 bytes = min(wsize,count);
700 data = nfs_writedata_alloc(nfs_page_array_len(pgbase, bytes));
704 down_read(¤t->mm->mmap_sem);
705 result = get_user_pages(current, current->mm, user_addr,
706 data->npages, 0, 0, data->pagevec, NULL);
707 up_read(¤t->mm->mmap_sem);
709 nfs_writedata_release(data);
712 if ((unsigned)result < data->npages) {
713 bytes = result * PAGE_SIZE;
714 if (bytes <= pgbase) {
715 nfs_direct_release_pages(data->pagevec, result);
716 nfs_writedata_release(data);
720 data->npages = result;
725 list_move_tail(&data->pages, &dreq->rewrite_list);
727 data->req = (struct nfs_page *) dreq;
729 data->cred = msg.rpc_cred;
730 data->args.fh = NFS_FH(inode);
731 data->args.context = ctx;
732 data->args.offset = pos;
733 data->args.pgbase = pgbase;
734 data->args.pages = data->pagevec;
735 data->args.count = bytes;
736 data->args.stable = sync;
737 data->res.fattr = &data->fattr;
738 data->res.count = bytes;
739 data->res.verf = &data->verf;
741 task_setup_data.task = &data->task;
742 task_setup_data.callback_data = data;
743 msg.rpc_argp = &data->args;
744 msg.rpc_resp = &data->res;
745 NFS_PROTO(inode)->write_setup(data, &msg);
747 task = rpc_run_task(&task_setup_data);
751 dprintk("NFS: %5u initiated direct write call "
752 "(req %s/%Ld, %zu bytes @ offset %Lu)\n",
755 (long long)NFS_FILEID(inode),
757 (unsigned long long)data->args.offset);
763 /* FIXME: Remove this useless math from the final patch */
765 pgbase &= ~PAGE_MASK;
766 BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
769 } while (count != 0);
773 return result < 0 ? (ssize_t) result : -EFAULT;
776 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
777 const struct iovec *iov,
778 unsigned long nr_segs,
779 loff_t pos, int sync)
782 size_t requested_bytes = 0;
787 for (seg = 0; seg < nr_segs; seg++) {
788 const struct iovec *vec = &iov[seg];
789 result = nfs_direct_write_schedule_segment(dreq, vec,
793 requested_bytes += result;
794 if ((size_t)result < vec->iov_len)
800 nfs_direct_write_complete(dreq, dreq->inode);
802 if (requested_bytes != 0)
810 static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
811 unsigned long nr_segs, loff_t pos,
815 struct inode *inode = iocb->ki_filp->f_mapping->host;
816 struct nfs_direct_req *dreq;
817 size_t wsize = NFS_SERVER(inode)->wsize;
818 int sync = NFS_UNSTABLE;
820 dreq = nfs_direct_req_alloc();
823 nfs_alloc_commit_data(dreq);
825 if (dreq->commit_data == NULL || count < wsize)
826 sync = NFS_FILE_SYNC;
829 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
830 if (!is_sync_kiocb(iocb))
833 result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, sync);
835 result = nfs_direct_wait(dreq);
836 nfs_direct_req_release(dreq);
842 * nfs_file_direct_read - file direct read operation for NFS files
843 * @iocb: target I/O control block
844 * @iov: vector of user buffers into which to read data
845 * @nr_segs: size of iov vector
846 * @pos: byte offset in file where reading starts
848 * We use this function for direct reads instead of calling
849 * generic_file_aio_read() in order to avoid gfar's check to see if
850 * the request starts before the end of the file. For that check
851 * to work, we must generate a GETATTR before each direct read, and
852 * even then there is a window between the GETATTR and the subsequent
853 * READ where the file size could change. Our preference is simply
854 * to do all reads the application wants, and the server will take
855 * care of managing the end of file boundary.
857 * This function also eliminates unnecessarily updating the file's
858 * atime locally, as the NFS server sets the file's atime, and this
859 * client must read the updated atime from the server back into its
862 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
863 unsigned long nr_segs, loff_t pos)
865 ssize_t retval = -EINVAL;
866 struct file *file = iocb->ki_filp;
867 struct address_space *mapping = file->f_mapping;
870 count = iov_length(iov, nr_segs);
871 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
873 dprintk("nfs: direct read(%s/%s, %zd@%Ld)\n",
874 file->f_path.dentry->d_parent->d_name.name,
875 file->f_path.dentry->d_name.name,
876 count, (long long) pos);
882 retval = nfs_sync_mapping(mapping);
886 retval = nfs_direct_read(iocb, iov, nr_segs, pos);
888 iocb->ki_pos = pos + retval;
895 * nfs_file_direct_write - file direct write operation for NFS files
896 * @iocb: target I/O control block
897 * @iov: vector of user buffers from which to write data
898 * @nr_segs: size of iov vector
899 * @pos: byte offset in file where writing starts
901 * We use this function for direct writes instead of calling
902 * generic_file_aio_write() in order to avoid taking the inode
903 * semaphore and updating the i_size. The NFS server will set
904 * the new i_size and this client must read the updated size
905 * back into its cache. We let the server do generic write
906 * parameter checking and report problems.
908 * We also avoid an unnecessary invocation of generic_osync_inode(),
909 * as it is fairly meaningless to sync the metadata of an NFS file.
911 * We eliminate local atime updates, see direct read above.
913 * We avoid unnecessary page cache invalidations for normal cached
914 * readers of this file.
916 * Note that O_APPEND is not supported for NFS direct writes, as there
917 * is no atomic O_APPEND write facility in the NFS protocol.
919 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
920 unsigned long nr_segs, loff_t pos)
922 ssize_t retval = -EINVAL;
923 struct file *file = iocb->ki_filp;
924 struct address_space *mapping = file->f_mapping;
927 count = iov_length(iov, nr_segs);
928 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
930 dfprintk(VFS, "nfs: direct write(%s/%s, %zd@%Ld)\n",
931 file->f_path.dentry->d_parent->d_name.name,
932 file->f_path.dentry->d_name.name,
933 count, (long long) pos);
935 retval = generic_write_checks(file, &pos, &count, 0);
940 if ((ssize_t) count < 0)
946 retval = nfs_sync_mapping(mapping);
950 retval = nfs_direct_write(iocb, iov, nr_segs, pos, count);
953 iocb->ki_pos = pos + retval;
960 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
963 int __init nfs_init_directcache(void)
965 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
966 sizeof(struct nfs_direct_req),
967 0, (SLAB_RECLAIM_ACCOUNT|
970 if (nfs_direct_cachep == NULL)
977 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
980 void nfs_destroy_directcache(void)
982 kmem_cache_destroy(nfs_direct_cachep);